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ABSTRACT

We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions,
which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets.
To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities
modify the frequencies, and can shift them into and out of resonance with either the planets’ eigenfrequencies
(forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming
mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We
calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed
map (the “map of the mean momenta”), and find good agreement between analytical and numerical results. This
map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this
newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury’s two
free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in
the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode),
secular resonances involving these four modes overlap and cause Mercury’s chaos. We confirm this with N-body
integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical
understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have
eccentricity and inclination of a few percent. The timescale for Mercury’s chaotic diffusion depends sensitively
on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale
comparable to the lifetime of the solar system.
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1. INTRODUCTION

The question of the stability of planetary orbits in the solar
system has a long history, and has attracted the attention of some
of the greatest scientists, including Newton, Laplace, Lagrange,
Gauss, Poincaré, Kolmogorov, and Arnol’d. Newton thought
that interplanetary perturbations are eventually destabilizing,
and that divine intervention is required to restore the planets’
orbits to their rightful places (Laskar 1996). Yet it is only
over the last 20 years that the stability of the solar system has
been definitively settled, with the aid of computer simulations
(Sussman & Wisdom 1988; Laskar 1989; Quinn et al. 1991;
Wisdom & Holman 1991; Lecar et al. 2001; Laskar & Gastineau
2009). We now know that Newton was not far off: the solar
system is marginally stable; it is unstable, but on a timescale
comparable to its age. In the inner solar system, the planets’
eccentricities chaotically diffuse on a billion-year timescale,
with the two lightest planets, Mercury and Mars, experiencing
particularly large variations. In fact, Mercury has roughly a 1%
chance of colliding with Venus or the Sun within the next five
billion years (Laskar & Gastineau 2009). By comparison, the
giant planets in the outer solar system are well spaced, and
their orbital elements undergo largely quasiperiodic variations,
exhibiting chaotic diffusion only on extremely long timescales
(Laskar 1996; Murray & Holman 1999).

The dynamics in the inner solar system is primarily due to
secular interactions (Laskar 2008). In general, interplanetary
interactions can be decomposed into secular ones and mean
motion resonances (MMRs—not to be confused with secular
resonances). Secular interactions result from orbit-averaging

the equations of motion. Since averaging a Keplerian orbit
produces an elliptical ring, secular evolution can be thought of
as interactions between elliptical rings. Secular timescales are
long—they are longer than the orbital time by at least the ratio
of the star’s mass to that of a planet. By contrast, interactions
driven by MMRs depend on orbital phase, and typically occur
on the orbital timescale, or longer if some of the planets’ orbital
periods are close to integer ratios. Intuitively, one would expect
that the dynamics on long timescales can be treated by averaging
over the fast orbital phase—i.e., they are secular in nature. This
is true in the inner solar system. It is also true more generally
for well-spaced planets that do not happen to lie near MMRs.3

Linear secular theory has been understood for hundreds
of years, dating back to the famous solution of Laplace and
Lagrange (see Murray & Dermott 2000). To linear order in the
planets’ eccentricities and inclinations, secular theory reduces
to a simple eigenvalue problem, with two eigenmodes per
planet—one for the eccentricity degree of freedom, and one for
the inclination. Each eigenmode has a constant amplitude and
a longitude that precesses uniformly in time. However, secular
interactions among solar system planets, even at their very low
values of eccentricities and inclinations (a few percent), lead
to chaos and instabilities that are clearly beyond the power of
linear secular theory.

It has been suggested that secular chaos shapes the archi-
tecture of the inner solar system (Laskar 1996), as well as the

3 In the outer solar system the dynamics is not mainly secular because the
giant planets lie near a number of MMRs, such as the 5:2 between Jupiter and
Saturn (the “Great Inequality”), and the 2:1 between Uranus and Neptune.
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architecture of extra-solar planetary systems (Wu & Lithwick
2011). Surprisingly, despite the importance of secular chaos,
there has been little theoretical understanding of it (see, e.g., the
review of solar system chaos by Lecar et al. 2001). By contrast,
chaos due to MMRs is well understood. Standard tools have
been developed to calculate the width and location of these res-
onances (see, e.g., Murray & Dermott 2000), and it has been
firmly established that the overlap between these resonances
leads to chaos (Chirikov 1979; Lecar et al. 2001). These theo-
retical understandings have been successfully applied to explain,
e.g., the Kirkwood gaps in the asteroid belt (Wisdom 1983), the
very weak chaos of the outer solar system planets, which is
due to three-body MMRs (Murray & Holman 1999), and the
unstable orbital zones in binary star systems (Mudryk & Wu
2006).

An equivalent theory for secular chaos is needed. While an
MMR occurs when the orbital mean motions (or their linear
combinations) are integer multiples of each other, a secular
resonance happens when the precession frequencies (or their
linear combinations) are integer multiples of each other. It has
been generally supposed that chaos in the inner solar system
is caused by the overlap between these secular resonances.
Yet thus far there has been little quantitative calculation. To
our knowledge, the only previous theoretical work toward
calculating secular chaos was by Sidlichovsky (1990) for the
special case of coplanar systems (Section 3). For a general
secularly interacting system, such as the solar system or the
newly discovered Kepler 11 system with six transiting planets
(Lissauer et al. 2011), it is desirable to analytically predict
at what strength of interaction (i.e., values of eccentricity
and inclination) resonance overlap occurs. However, how the
locations and widths of the secular resonances depend on these
interaction strengths is not yet understood. We set out to derive
these dependencies in this work.

In the case of the inner solar system, numerical attempts
to identify the mechanism of chaos were made by Laskar
(1990, 1992) and Sussman & Wisdom (1992). These authors
found that the angle associated with the (secular) frequency
(gmercury − gjupiter) − (smercury − svenus) alternately librated and
circulated in their simulations, where g is the apsidal precession
rate, and s is the nodal precession rate (or, to be more precise,
g and s here refer to the frequencies of the normal mode
that is dominated by the corresponding planet). Laskar (1992)
also found that two angles associated with Earth and Mars,
corresponding to 2(gmars − gearth) − (smars − searth) and (gmars −
gearth) − (smars − searth), alternately librated, and conjectured
that the overlap of those secular resonances was responsible
for chaos. But, as Sussman & Wisdom (1992) note, Laskar’s
conjecture is not fully convincing because there are too many
unrelated angles that alternately circulate and librate,4 and it
is not clear which are dynamically important. Furthermore,
only one librating angle has been identified for Mercury, yet
chaos requires the overlap of at least two resonances. So why
is Mercury chaotic (Lecar et al. 2001)? Without a theory for
secular chaos, the dynamics remain obscure, and we will be
forever at the mercy of computer simulations.

A theory for secular chaos will guide us in searching for
the relevant angles, and more usefully, would illuminate the
criterion for chaos. In the second half of this work, we will use
our newly developed theory to answer the following questions:

4 For example, even an angle involving both Mercury and Neptune appears to
alternately librate and circulate (Sussman & Wisdom 1992); yet this is almost
certainly a coincidence, and of no dynamical significance.

why does instability in the solar system occur at such low values
of eccentricity and inclination (∼ few percent)? And, what sets
the timescale of the chaos?

In this paper, we construct the theory for secular chaos of a test
particle, and then apply the theory to Mercury. In Section 2, we
present the test particle’s equations of motion. In Section 3, we
describe the coplanar solution, and in Section 4 we generalize to
the case when bodies have non-zero inclinations. In Section 5,
we apply the theory to N-body simulations of the real Mercury.
We conclude in Section 6. Readers interested in an outline of
the results are referred to Section 6 for an itemized summary.

2. SECULAR EQUATIONS OF MOTION

We focus on the secular evolution of a massless test particle
that is orbiting a star in the presence of multiple massive planets,
assuming the planets’ orbits are known.

The particle has six orbital elements, {a, e, i, λ,", Ω}, using
standard notation (Murray & Dermott 2000). In secular theory,
one averages over λ. As a consequence, a is a constant of
motion, leaving only four orbital elements to be considered. The
equations of motion for the particle’s eccentricity and longitude
of periapse (e and" ) are given by Hamilton’s equations for the
Poincaré canonical variables Γ ≡

√
GM&a(1 −

√
1 − e2) and

γ ≡ −" (Murray & Dermott 2000). Since a is constant, it is
simpler to choose the canonical momentum to be ∝ Γ/

√
GM&a,

so we introduce the momentum

pe ≡ 2
(
1 −

√
1 − e2

)
(1)

= e2 + O(e4) (2)

and its conjugate coordinate to be " . Although this is a non-
canonical transformation from Poincaré’s variables, if we simul-
taneously re-scale the energy by defining as the Hamiltonian

H ≡ − 2√
GM&a

E, (3)

where E is the particle’s energy per unit mass,5 then the
equations of motion are Hamilton’s equations:

d"/dt = ∂H/∂pe (4)

dpe/dt = − ∂H/∂". (5)

Therefore, we may consider (pe," ) to be canonically conju-
gate. Similarly, for the inclination and longitude of node (i, Ω),
we take the canonical variables to be related to the correspond-
ing Poincaré variables in the same way by defining

pi ≡ 4
√

1 − e2 sin2(i/2) (6)

= i2 + O(e2i2, i4), (7)

and taking its conjugate coordinate to be Ω. The equations of
motion for (pe,", pi, Ω) are Hamilton’s equations generated by
the scaled H. These equations are exact as long as a is constant,
which is the case for secular interactions.

An alternative formulation of the equations of motion will
also prove useful. For an arbitrary Hamiltonian H(p, q), one

5 The test particle’s energy per unit mass E is given by Equation (A1) in
Appendix A for the case of a single external planet.
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may define the complex canonical variable6 Z ≡ √
peiq . As

may be directly verified, the equation of motion for Z is then
dZ/dt = i∂H/∂Z∗ where H (Z,Z∗) = H (p, q). This complex
equation of motion simultaneously encodes both of Hamilton’s
equations. Since our real canonical variables are (pe,", pi, Ω),
we introduce the complex ones,

z ≡ √
pee

i" =
[
2
(
1 −

√
1 − e2

)]1/2
ei" ≈ eei" (8)

ζ ≡ √
pie

iΩ = 2(1 − e2)1/4 sin(i/2)eiΩ ≈ ieiΩ, (9)

which, to leading order in e and i, are the usual complex
eccentricity and inclination.7 The equations of motion for (z, ζ )
are

dz/dt = i∂H/∂z∗ (10)

dζ/dt = i∂H/∂ζ ∗. (11)

Throughout this paper, we freely switch between the set of real
canonical variables (RCV) and the set of complex canonical
variables (CCV),

RCV: (pe," ;pi, Ω) (12)

CCV: (z, ζ ). (13)

Although Hamilton’s equations of motion for the RCV
and CCV are exact, we take an approximate form for the
Hamiltonian by expanding H to fourth order in e and i, and
to leading order in the ratios of semimajor axes, keeping only
secular terms. The relevant terms are listed in Table 1 in
Appendix A. Throughout the bulk of this paper, we focus on
the c1, c2, c4, c11, c12, c14, and c15 terms in that table. As we
show in Section 4.5, the remaining terms in the table have a
small effect in the parameter regime we focus on.

3. COPLANAR JUPITER AND SATURN

In this section, we consider the evolution of a test particle
in the presence of two massive exterior planets (“Jupiter”
and “Saturn”), with all bodies having zero inclinations. We
assume that the massive planets’ orbits are given by their
linear Laplace–Lagrange solution, and evolve the test particle’s
equations of motion to leading nonlinear order (terms listed
in Table 1 in Appendix A). This case was worked out by
Sidlichovsky (1990). We describe it here in some detail because
it sets the stage for the considerably more complicated case with
non-zero inclinations (Section 4).

3.1. Jupiter Only

We shall solve the coplanar case with a sequence of increas-
ingly complicated sub-cases. Consider first the linear secular
evolution of a test particle perturbed by a circular Jupiter. From
Table 1 in Appendix A, the particle’s Hamiltonian is

H (z) = γ |z|2, (14)

6 Our definition of the complex canonical variable differs from Ogilvie
(2007) by a minus sign, and hence our Hamilton’s equation also differs by a
minus sign.
7 The symbol e denotes both the eccentricity and the exponential (Euler’s
constant), and the symbol i denotes both the inclination and the imaginary unit.
There should be no confusion because for the remainder of this paper we use
as our dynamical variables either the RCV or CCV (Equations (12) and (13))
in lieu of e and i.

where the constant

γ ≡ 3
4

mJ

M&
α3

(
GM&

a3

)1/2

(15)

is the particle’s linear free precession rate induced by Jupiter
(Equation (A4)); mJ is Jupiter’s mass, and α is the ratio of the
particle’s semimajor axis to Jupiter’s. The equation of motion is
dz/dt = i∂H/∂z∗ = iγ z, with solution z = const. × eiγ t , an
orbit with constant eccentricity that precesses at frequency γ .

For the second sub-case, we consider the test particle’s linear
evolution when Jupiter is assigned a constant eccentricity eJ and
precession rate gJ , in which case the particle’s Hamiltonian is

H (z) = γ (|z|2 − (εJ eigJ t z∗ + c.c.)), (16)

where εJ = 5
4αeJ ; we drop nonlinear terms (i.e., the fourth-

order terms in Table 1). Of course, if Jupiter were the only
massive planet in the system, it would not precess (gJ = 0). But
we consider a finite gJ in anticipation of what happens when
Saturn is included.

Hamilton’s equation is

1
iγ

dz

dt
= z − εJ eigJ t . (17)

The solution is a sum of free and forced eccentricities:

z = const. × eiγ t +
εJ

∆
eigJ t , (18)

where
∆ ≡ γ − gJ

γ
. (19)

The forced solution diverges at secular resonance (γ = gJ ). But
this divergence is not physical. It is a consequence of dropping
nonlinear terms.

With the nonlinear term included, the test particle’s Hamilto-
nian becomes8

H (z) = γ
(

|z|2 − |z|4

4
− (εJ eigJ t z∗ + c.c.)

)
, (20)

with equation of motion

1
iγ

dz

dt
= z

(
1 − |z|2

2

)
− εJ eigJ t . (21)

The nonlinear term reduces the free frequency from γ to
g ≡ γ (1 − |z|2/2). We call g the nonlinear free frequency.
It can also be introduced by first re-writing the Hamiltonian in
terms of the real canonical variables pe and " and defining

g ≡ d"

dt

∣∣
εJ =0 = γ (1 − pe/2). (22)

Because g is a function of eccentricity, secular resonance can
occur if the eccentricity is chosen so that g ≈ gJ . This is a
nonlinear secular resonance.

Solutions of Equation (21) are shown in Figure 1 for two
cases, γ < gJ and γ > gJ . When γ < gJ (left panel), the
free frequency at small |z| is less than the forcing frequency,

8 We drop the c3 term (see Table 1) because it merely alters the coefficient of
the c1 term by a small amount.
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Figure 1. Trajectories of z for a test particle in the presence of a coplanar Jupiter:
the curves are solutions of Hamiltonian (20), i.e., of Equation (21). Equivalently,
they are level curves of Hamiltonian (24). The y-axis is approximately e2, and
the x-axis is the phase, modulo 2π . Nonlinear secular resonance occurs for the
case gJ < γ .
(A color version of this figure is available in the online journal.)

g||z|→0 ≈ γ < gJ . Increasing |z| decreases g, moving it further
away from resonance. Hence, the particle’s evolution is similar
to the linear case, but with a smaller precession rate. When
γ > gJ (right panel), the precession rate at small values of
|z| exceeds gJ . Increasing |z| causes the precession rate g to
decrease until it nearly matches gJ . A resonant island appears,
within which the angle " − gJ t librates. Increasing |z| even
further forces the free frequency to be less than gJ , taking the
particle out of secular resonance.

To calculate the width of the nonlinear secular resonance,
we first write Hamiltonian (20) in terms of the real canonical
variables pe and " (Equation (8)), and then convert the
Hamiltonian to a time-independent one by making the canonical
transformation to (pe,"−), where

"− ≡ " − gJ t, (23)

yielding the new Hamiltonian

1
γ

H−(pe,"−) = −p2
e

4
+ ∆ · pe − 2εJ

√
pe cos"− . (24)

This form for a Hamiltonian has been called the “second
fundamental model for resonance,” the first being the pendulum.
Its properties have been extensively cataloged because it also
applies to first-order MMRs, for which the variables have a
different interpretation (Henrard & Lemaitre 1983; Murray &
Dermott 2000). The numerical integrations shown in Figure 1
trace level curves of this Hamiltonian. For parameters such that
the resonant island both exists and is sufficiently far from |z| = 0
(as in the right panel of Figure 1), one may approximate the√

pe multiplying the cosine term as constant, in which case the
Hamiltonian is that of the pendulum. The center of the resonant
island is where (d/dt)"− = 0, i.e., at

pe∗ = 2∆ (25)

in this approximation; this is equivalent to g = gJ . The
width of the island may be found by first completing the
square in the “kinetic” part of the Hamiltonian, i.e., setting
−p2

e /4+∆ ·pe = − 1
4 (pe −pe∗)2 + const. Since H− is constant,

the half-width of the island is given by

δpe = 4(εJ
√

pe∗)1/2 = 4ε1/2
J (2∆)1/4. (26)

Figure 2. Surfaces of section for the coplanar case (H given by Equation (27)):
section taken at times when ei(gJ −gS )t = 1; the y-axis is approximately e2; the
x-axis is the phase, modulo 2π . In the left panel, the chosen parameters yield
non-overlapping separatrices, and very little chaos is seen. In the right panel gJ
is slightly larger, yielding overlapping separatrices and a sea of chaos.
(A color version of this figure is available in the online journal.)

3.2. Jupiter and Saturn

We now add in the effect of a second coplanar planet, Saturn,
and assume that Jupiter’s and Saturn’s evolution is described by
their linear Laplace–Lagrange solution. In that solution, Jupiter
and Saturn participate in two normal modes, which we call
the Jupiter-dominated and Saturn-dominated modes. We denote
the eigenfrequencies of these two modes gJ and gS. Jupiter’s
(complex) eccentricity is a sum of two terms, one for each mode,
and may be written as eJ,J eigJ t + eJ,Se

igS t . Similarly, Saturn’s
eccentricity has one term ∝ eigJ t and another ∝ eigS t . When all
four terms are included, one arrives at the following form for
the test particle’s Hamiltonian (see Equation (20)):

H (z) = γ
(

|z|2 − 1
4
|z|4 − (εJ eigJ t z∗ + εSeigS t z∗ + c.c.)

)
, (27)

where γ is now re-interpreted to represent the test particle’s
precession rate due to both Jupiter and Saturn. The εJ term is
due to the Jupiter-dominated mode, with εJ now a weighted sum
of both Saturn’s and Jupiter’s eccentricities within that mode;
similarly, εS is for the Saturn-dominated mode. For the purposes
of this section, rather than solving the linear Laplace–Lagrange
equations, we consider the parameters γ , εJ , and εS to be
adjustable constants.

Hamiltonian (27) would also describe the test particle’s
evolution if Jupiter’s and Saturn’s eccentricities and precession
rates were enforced by hand to be eJ , eS, gJ , and gS, with εJ =
5
4αJ eJ and εS = 5

4αSeS . This re-interpretation of Hamiltonian
(27), while unphysical as far as Jupiter and Saturn are concerned,
can be helpful when considering the test particle’s evolution
under their influence.

Figure 2 shows results of numerical integrations of
Hamilton’s equation, plotted as surfaces of section. Changing to
real canonical variables (Equation (8)), we see that Hamiltonian
(27) has two cosine terms. The εJ cosine term acting alone would
yield a resonant island as long as γ ! gJ . Similarly, the εS term
would yield an island if γ ! gS . The location and width of the
islands are quantified in Figure 1. When acting together, there
may be two resonant islands. The left panel of Figure 2 shows
a case when the parameters have been chosen to yield two non-
overlapping islands. The result is mostly regular motion. The
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right panel shows what happens when gJ is increased, so that
Jupiter’s ∆ (Equation (19)) is reduced sufficiently that the islands
overlap: the overlapping islands break up into a sea of chaos.
This the well-known Chirikov resonance-overlap criterion for
chaos (Chirikov 1979). From the widths and locations of the res-
onances as displayed in Figures 1 and 2, one deduces that the cri-
terion for chaos is 2|gJ −gS |/γ " 4ε1/2

J (2∆)1/4 +4ε1/2
S (2∆S)1/4,

where ∆S ≡ (γ − gS)/γ (Sidlichovsky 1990).
It is instructive to consider the form of the surface of section

shown in Figure 2 in more detail. This reasoning will also
be helpful when we include a second degree of freedom (i.e.,
inclination) below. When the motion of z is regular, it can be
written as a Fourier sum of terms with frequencies equal to the
three fundamental frequencies of the problem (i.e., g, gJ , gS ,
where g is the nonlinear free frequency), as well as integer
combinations of these frequencies. But since only relative
frequencies are physically meaningful, there are really only two
fundamental frequencies, which may be chosen to be g − gJ

and gS − gJ , i.e., relative to gJ . In other words, if z is regular,
then z̃ ≡ ze−igJ t is a doubly periodic function with periods
2π/(g − gJ ) and 2π/(gS − gJ ). In Figure 2, we choose to plot
the amplitude versus phase of z̃ whenever the second period
completed an integer number of cycles. As long as z is regular,
the value of z̃ at those times is a singly periodic function, and
hence appears in the plot as a connected curve. By contrast,
when z is chaotic, it appears as scattered points.

4. AN INCLINED AND ECCENTRIC JUPITER

4.1. Equations of Motion

In this section, we consider the evolution of a test particle that
comes under the influence of a single planet (“Jupiter”) that has
fixed values of eccentricity eJ , inclination iJ , apsidal precession
rate gJ ≡ "̇J , and nodal precession rate sJ ≡ Ω̇J .

This is a model for the case when a particle comes under
the influence of two planetary Laplace–Lagrange modes, one
eccentric and one inclined (see the discussion of Hamiltonian
(27)). As we show below, in the real solar system the main modes
affecting Mercury are the Jupiter-dominated eccentricity mode
and the Venus-dominated inclination mode, with the Venus-
dominated eccentricity mode also playing a role. Therefore, for
application to Mercury, eJ and gJ refer to the amplitude and
frequency of the Jupiter-dominated eccentricity mode, while iJ
and sJ refer to those of the Venus-dominated inclination mode.
Nonetheless, for the purposes of the present section it is simplest
to assume that Jupiter is the only planet, and that both of its
precession rates are enforced by divine intervention.

We evolve the secular equations for the test particle to
leading nonlinear order. Because the test particle now has two
coupled degrees of freedom, its evolution is more complicated
than before, and there are many more terms to include in its
Hamiltonian. At first (Sections 4.1–4.4), we include only the
following terms from Table 1:

1
γ

H (z, ζ ) = |z|2 − |ζ |2 − |z|4 − |ζ |4

4
− 2|z|2|ζ |2

−(εJ eigJ t z∗ − iJ eisJ tζ ∗ + c.c.), (28)

where εJ = 5
4αeJ . Note that the effect of Jupiter’s eccentricity is

diluted by a factor ∼α , 1, whereas the effect of its inclination
is undiluted by any such factor. In Section 4.5 we add in all the
remaining terms from Table 1, and show that these additional
terms have little effect in the parameter regime of interest. The

terms in Hamiltonian (28) that are second order in eccentricity
or inclination (i.e., the first two terms, and the bracketed terms
on the second line) are responsible for linear evolution. We
keep only three nonlinear terms, ∝ |z|4, |ζ |4, and |z|2|ζ |2. As
we show in this subsection, these are responsible for nonlinear
frequency shifts. And as we show in subsequent subsections,
nonlinear frequency shifts are crucial for resonance overlap and
chaos. Even though the frequency shifts might be small (second
order in eccentricity and inclination), they can still be sufficient
to shift the frequency into and out of secular resonance. One
of the terms we drop is the Kozai resonance, i.e., the term
c26 ×

(
z∗2ζ 2 + c.c.

)
in Table 1. That term has little effect on

Mercury’s evolution, because its phase is rapidly varying, and
hence the term nearly averages to zero for parameters similar to
Mercury’s (Section 4.5). By contrast, the frequency-changing
terms can never average to zero.9

The equations of motion are

1
iγ

dz

dt
= z

(
1 − |z|2

2
− 2|ζ |2

)
− εJ eigJ t (29)

1
iγ

dζ

dt
= ζ

(
−1 +

|ζ |2

2
− 2|z|2

)
+ iJ eisJ t . (30)

Expressed in terms of the real canonical variables
(Equation (12)), Hamiltonian (28) has two cosine terms (i.e.,
primary resonances), which become important when their argu-
ments vary slowly. We first focus on the term ∝ cos(" − gJ t).
Defining the free nonlinear apsidal frequency

g ≡ d"

dt

∣∣
εJ =iJ =0 = γ

(
1 − 1

2
pe − 2pi

)
, (31)

one would expect this resonance to be important near where

g(pe, pi) = gJ , (32)

as may also be inferred by an inspection of Equation (29). To
nonlinear order, g is a function of eccentricity and inclination,
because of the nonlinear frequency-changing terms included in
Hamiltonian (28). Hence by varying e and i, one can alter the
free precession frequency and bring it into secular resonance.
In the pe–pi plane, the resonance traces out a one-dimensional
curve—or, in fact, a straight line to leading nonlinear order.

The second cosine term in the above Hamiltonian, cos(Ω −
sJ t) behaves similarly. Defining

s ≡ dΩ
dt

∣∣
εJ =iJ =0 = γ

(
−1 +

1
2
pi − 2pe

)
, (33)

one would expect it to be important near where

s(pe, pi) = sJ . (34)

We shall make these considerations more precise in Section 4.3,
where we also work out the resonant widths, and show that in
addition to the primary resonances are a multitude of secondary
resonances.

9 We do drop some frequency-changing terms, specifically ones that are
given by const. × |z|2, and const. × |ζ |2, where the constant is O(e2, i2). Even
though these terms do not average to zero, they merely shift the linear
frequencies, and hence do not change the behavior qualitatively. In the absence
of these terms, the linear apsidal and nodal frequencies are equal and opposite;
we rectify this shortcoming in our κ-model Hamiltonian (Equation (53)).
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Figure 3. Map of the mean momenta (MMM) with low excitation: each point
is the result of a single integration of Hamiltonian (28), with parameters
εJ = iJ = 0.0003, gJ = 0.72γ , and sJ = −1.26γ . The y-axis is the
time-averaged |ζ |2 ≈ i2, and the x-axis is the time-averaged |z|2 ≈ e2. The
initial conditions are on a uniform grid in |ζ |2 and |z|2. Resonant bands are
clearly visible, as is the zone of chaos where the bands overlap. Because of
the averaging, chaotic orbits that explore the full extent of the overlap zone give
rise to points at the center of the zone. Chaotic orbits that only partially explore
the overlap zone (as is true of the real Mercury today; see below) give rise to
chaotic points at the edges of the overlap zone. The orbits are very regular at
small pe, pi; for comparison, the real Mercury currently has 〈pe〉 ∼ 0.05 and
〈pi〉 ∼ 0.02. Its motion would be regular under this weak forcing.

4.2. Simulations: Maps of the Mean Momenta

We run suites of simulations of Hamiltonian (28), i.e., of
Equations (29) and (30). There are only five parameters, γ ,
gJ , sJ , εJ , and iJ . The linear frequency γ sets the overall
timescale, and can be scaled out. We choose gJ /γ = 0.72
and sJ /γ = −1.26, since these are close to the true values in
the solar system for the Jupiter-dominated eccentricity mode
(relative to Mercury’s free precession frequency), and for the
Venus-dominated inclination mode (see Section 5). We also set
the excitation amplitudes equal to each other, εJ = iJ , and
present sequences of simulations with various amplitudes. The
true value in the solar system for the corresponding modes is,
very roughly, εJ ∼ iJ ∼ 0.01 (see Section 5 for more precise
values).

The dynamics is that of two nonlinearly coupled harmonic
oscillators, each of which is also nonlinear and is forced peri-
odically. We have attempted many different methods for visual-
izing the integration results, such as using catalogs of surfaces
of section or Fourier transforms. However, most methods were
too complicated, and obscured the underlying simplicity of the
dynamics, i.e., they obscured that it is the overlapping of reso-
nances that drive chaos. In the end, we invented a new method,
the map of the mean momenta (MMM). This method has many
advantages over the usual surfaces of section. It is somewhat
similar to the frequency map analysis (FMA) of Laskar (1990;
see below).

Figure 3 maps the results from around 50,000 numerical
integrations at very small excitation, εJ = iJ = 0.0003, using

Figure 4. MMM with medium excitation: similar to Figure 3, but with εJ and iJ
increased by a factor of 10. The resonant bands are larger, as is the chaotic zone,
which has encroached much closer to where the real Mercury lies, ∼(0.05, 0.02).
The dashed magenta square is for comparison with the axes of Figure 5.
(A color version of this figure is available in the online journal.)

the MMM. Each point in the plot is the time-averaged value
of |z|2 ≈ e2 and |ζ |2 ≈ i2 from a single simulation, averaged
over a time span of 3 × 104/γ . Before taking the time average,
we filter with a Hanning filter (Laskar 1993), which leads to
a faster convergence of the averages (when they do converge).
The simulations were initialized with values of |z|2 and |ζ |2 that
were equally spaced on a grid, with the spacing in |z|2 twice
that in |ζ |2; the initial phases were " = π/2 and Ω = −π/2.

Three kinds of motion are readily apparent in the MMM:
(1) regular and non-resonant, (2) regular and resonant, and (3)
chaotic. Most of the figure is covered with a regular grid of points
that nearly traces the initial conditions. Here, the values of z and
ζ remain regular and non-resonant throughout the simulation.
A few resonant bands also appear in the figure, where the
motion is also regular. Note that if the initial conditions span a
resonant island, and if the motion remains regular, then the time-
averaged momenta (|z|2 and |ζ |2) exhibit a sharp discontinuity.
Inside the island, they average to their values near the island
center, whereas outside the island’s separatrix they average to
a value offset from the center by a finite amount, of order
the resonance width (or, more accurately, around 1/4 of the
resonance full-width). This can be seen clearly in Figure 3,
where the regular points at the center of the resonant bands
represent librating particles. Also apparent in the figure are the
chaotic trajectories. These show up as the cluster of irregular
points near where resonant bands intersect. We have checked the
Lyapunov exponent, as well as surfaces of section (see below),
to verify that points that appear on the figure to be chaotic are
truly chaotic.

Figures 4 and 5 show the MMM for simulations with the same
parameters as in Figure 3, but with εJ and iJ increased first to
0.003, and then to 0.01. With increasing forcing, the locations of
the resonant bands do not change, but they get wider, and higher
order resonances become visible. As a result, the zone of chaos
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Figure 5. MMM with high excitation: similar to Figures 3 and 4, but with
εJ = iJ = 0.01. Note the expanded scale. Many high-order resonances are
visible. The zone of chaos approaches the origin, even though εJ and iJ are ,1.
The points labeled Mercury are the result of an N-body simulation of the full
solar system; each point is Mercury’s pe and pi averaged over a time span of
100 Myr, for the first 600 Myr of the simulation shown in Figure 16. Mercury’s
true orbit lies near the boundary between regular motion and chaos in the MMM
of the simplified model. Parameters used for this MMM are within ∼20% of
the true solar system values. The true solar system is more chaotic due to other
forcings.
(A color version of this figure is available in the online journal.)

where the bands overlap expands. Surprisingly, even with the
seemingly modest forcing of εJ = iJ = 0.01—values that are
comparable to those in the real solar system (see below)—the
zone of chaos approaches very low values of e and i, and
close to the values for the real Mercury.

Our method for displaying results, the MMM, is similar
in philosophy to FMA (Laskar 1990). But whereas in FMA
one plots the frequencies of the coordinates, here we plot the
averages of the momenta. We have also performed the FMA (not
shown); and when we convert from frequencies to momenta via
the inverse of Equations (31) and (33), the resulting maps are
almost identical to the MMM. For the purposes of the present
paper, we prefer the MMM because its axes are approximately
〈e2〉 and 〈i2〉, which are simpler to interpret than the precession
frequencies.

4.3. Theory: Resonance Locations and Widths, and
Zone of Chaos

To develop understanding of the behavior seen in the MMMs,
we first re-write Hamiltonian (28) in terms of the real canon-
ical variables (Equations (8) and (9)), and then transform
from (pe," ) to (pe,"− ≡ " − gJ t) and from (pi, Ω) to
(pi, Ω− ≡ Ω − sJ t), which transforms the Hamiltonian to a
time-independent one:

1
γ

H−(pe,"−;pi, Ω−) = ∆ · pe + ∆s · pi −
p2

e − p2
i

4
−2pepi − 2εJ

√
pe cos"− + 2iJ

√
pi cos Ω−, (35)

Figure 6. Four strongest resonances and their widths and region of overlap
(analytic calculation): parameters are as in Figure 3. The center of each [m, n]
resonance is the line determined by mg− + ns− = 0 (Equations (41) and (42)).
The arrows show the half-widths, with the orientation aligned with the direction
of motion in the corresponding resonances. The central gray shaded region
shows the region of overlapping separatrices, where chaotic motion is expected.
Comparing with Figure 3 shows agreement between theory and simulation.
(A color version of this figure is available in the online journal.)

where ∆ is the linear apsidal frequency mismatch
(Equation (19)), and

∆s ≡ −γ − sJ

γ
(36)

is the mismatch for the nodal frequencies. In the absence of
the coupling term (∝ pepi) both degrees of freedom would
evolve independently according to the equations of the second
fundamental model (Section 3.1).

In the following, we determine the location and width
of the two primary resonances: the eccentricity resonance
([1,0]) and the inclination resonance ([0,1]). To do so, we
ignore inclination forcing (setting iJ = 0) when studying the
eccentricity resonance, and vice versa. The system is trivially
integrable if either iJ = 0 or εJ = 0. In the former case,
pi is constant because the Hamiltonian does not depend on
Ω−. Therefore, H− is equivalent to the coplanar Hamiltonian
(Equation (24)), but with ∆ → ∆ − 2pi . This implies that the
center of the eccentricity resonance is located at

pe∗ = 2(∆ − 2pi) → [1, 0] (37)

(Equation (25)) and the island has half-width at fixed pi given
by

δpe = 4(εJ
√

pe∗)1/2 → [1, 0] (38)

(Equation (26)). The interior of this island is plotted in Figure 6
as a blue band, with parameter values as chosen for the
simulations of Figure 3. Comparing the two figures shows that
the above analytic expressions agree well with the result of
the numerical integrations. Note that we plot the half-width
in Figure 6 rather than the full-width because the average
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momentum of an orbit that lies just outside of a separatrix is
approximately half-way to the edge of the resonance. Figure 6
also shows the inclination resonance as a red band. Reasoning
as before, its center and half-width (at fixed pe) are

pi∗ = −2(∆s − 2pe) → [0, 1] (39)

δpi = 4(iJ
√

pi∗)1/2 → [0, 1] (40)

In addition to these primary resonances are an infinite number
of secondary ones. Far from resonances, we may ignore the
cosine forcing terms since they tend to average to zero. The test
particle’s free precession frequencies relative to Jupiter are then

g− ≡ g − gJ ≡ d"−

dt

∣∣
εJ =iJ =0 = γ

(
∆ − 1

2
pe − 2pi

)
(41)

s− ≡ s − sJ ≡ dΩ−

dt

∣∣
εJ =iJ =0 = γ

(
∆s +

1
2
pi − 2pe

)
. (42)

Resonances are important near where

mg− + ns− = 0 → [m, n] (43)

for integer pair [m, n]. Therefore, the center of each [m, n]
resonance traces out a line in the pe–pi plane. For instance, the
centers of the [1, 0] and [0, 1] resonances are as worked out
above, and the center of the [1,−1] resonance is the line

pe∗ − 5
3
pi∗ = 2

3
(∆s − ∆) → [1,−1] (44)

which passes close to the origin for our choices of ∆ and ∆s .
In general, the slope of a resonance line in the pe–pi plane is
(4n + m)/(n − 4m), and all [m, n] resonant lines intersect at the
point in the pe–pi plane where g− = s− = 0, i.e., at (pe∗∗, pi∗∗),
where

pe∗∗ ≡ 2
17

(∆ + 4∆s), pi∗∗ ≡ 2
17

(4∆ − ∆s). (45)

Although there are an infinite number of secondary reso-
nances, most are very weak, i.e., their widths are small. The most
prominent resonances in Figure 3 are the primary resonances
[1, 0] and [0, 1], whose widths have been worked out above.
Next most prominent are the [1, −1] and [1, 1] resonances,
whose widths may be understood qualitatively as follows (see
Appendix B for a quantitative calculation). The linear solu-
tion for z is a sum of two terms, the free and forced complex
eccentricities (Equation (18)). Similarly, to linear order ζ is
a sum of free and forced complex inclinations. Therefore, to
leading nonlinear order, the coupling term in the Hamiltonian
(pepi = |z|2|ζ |2) can be written as a sum of terms, one of which
has the form zφz

∗
f ζ

∗
φ ζf ≈ eφef iφif exp(i(gφ − gJ − sφ + sJ )),

where the subscript f denotes forced and φ denotes free.
This term has frequency corresponding to the [1,−1] reso-
nance; hence the width of this resonance is ∼

√
|eφiφef if |. The

[1, 1] resonance behaves similarly.
The quantitative calculation in Appendix B shows that, in

agreement with the above estimate, the [1, ±1] resonances have
half-widths (Equation (B10)),

δpe = δpi = 2
√

eφiφef if → [1,±1] (46)

after defining the free values as

eφ ≡ √
pe∗ iφ ≡ √

pi∗ (47)

and the forced values as

ef ≡ εJ

|∆ − pe∗/2 − 2pi∗|
, if ≡ iJ

|∆s + pi∗/2 − 2pe∗|
, (48)

where the asterisk denotes values at resonant center, and
we neglect here the small difference between the lower-case
momenta and the upper-case ones used in Appendix B. As in
linear theory, the forced eccentricity scales as the inverse of
the frequency detuning (Equation (18)), although now it is the
nonlinear frequency detuning g− (Equation (41)) that is relevant;
similarly, if is inversely proportional to s−.

The above widths for the [1, ±1] resonances are shown in
Figure 6. The [1, −1] resonance leaves pe + pi nearly constant,
which produces trajectories in the pe–pi plane that have a slope
of −1 (see Appendix B; we again neglect the small difference
between lower- and upper-case momenta). Therefore, for each
value of (pe∗, pi∗) at resonant center (i.e., where g− − s− = 0),
the upper and lower envelopes of the resonant band are at
(pe∗±δpe, pi∗∓δpe). Comparing with Figure 3 shows excellent
agreement between theory and simulations.

The central gray region in Figure 6 is the overlap zone of
the above four resonances. Its shape is peculiar because each
resonance induces a trajectory with a particular orientation in the
pe–pi plane, and we take the overlapping region to be wherever
one resonance can induce motion into a second resonance.
The zone of chaos seen in Figure 3 is about twice as large
as that predicted in Figure 6. This difference is not surprising
because we plot the half-widths in Figure 6, whereas one might
expect that chaos would begin where the full-widths overlap.
Furthermore, we shall show that higher order combinations of
the four strongest resonances also play a role in the chaos.
Nonetheless, the gray zone provides a reasonable estimate of
the zone of chaos.

Figure 7 plots the widths calculated above when the forcing
εJ and iJ take on the values of Figure 4. The latter figure is
overlayed on Figure 7, showing excellent agreement between
theory and simulation in the zones of regular motion. And, as
before, the zone of chaos from the simulations is around twice
as large as the region where the resonant half-widths overlap.

The dimensions of the zone of chaos may be estimated
analytically. These estimates will be used later to infer the
threshold for chaos in the solar system. In Figures 6 and 7,
the horizontal and vertical spikes of the chaotic zone are due
to the [1, 0] and [0, 1] resonances; the extent of the spikes is
simply estimated by the resonance width near zone center,

δpe∗ 0 4ε1/2
J p1/4

e∗∗ → [1, 0] × [0, 1] (49)

δpi∗ 0 4i
1/2
J p

1/4
i∗∗ → [1, 0] × [0, 1], (50)

for the horizontal and vertical spikes, respectively, where pe∗∗
and pi∗∗ are the coordinates of the zone center (Equation (45)).
The extent of the zone caused by the overlap between the [1, −1]
separatrix with the [1, 0] resonance can be estimated similarly
as

δpe∗ = k(εJ iJ )1/4(pe∗∗pi∗∗)1/8 → [1,−1] × [1, 0], (51)
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Figure 7. Resonant bands and their region of overlap, overlayed on MMM:
the colored bands show the theoretically predicted widths of the four strongest
resonances, as in Figure 6. The gray region is the zone of resonance overlap
for these four resonances. Also shown is the MMM of Figure 4, showing
excellent agreement between the theoretical and numerical resonant widths,
and satisfactory agreement for the zone of chaos.
(A color version of this figure is available in the online journal.)

where k 0 (20/17)
√

3/4 is an order-unity constant.10 The
expression for δpi∗ is the same, as are the extents due to the
overlap between either [1, 1] or [1, −1] with either [1, 0] or [0,
1], albeit all have different order-unity values for k.

It might appear surprising that the width of the chaotic zone
due to the overlap of a primary resonance with a secondary one
(Equation (51)) is not much smaller than that due to the overlap
between two primary resonances, despite the fact that the width
of a primary resonance is first order in eccentricity or inclination
(Equations (38) and (40)), whereas the width of the [1, −1] is
second order (Equation (46)). The reason for this is that the [1,
−1] resonance is enhanced by the denominator that appears in
the forced eccentricity and inclination (Equation (48)). Because
of this, the [1, ±1] resonances play an important role in setting
the extent of the chaotic zone. For example, with the forcing
frequencies that we have chosen for the MMMs (which are
comparable to those for Mercury), the [1, −1] resonance overlap
allows the region of chaos to encroach upon the origin (e ∼ 0,
i ∼ 0) at lower values of the forcing than would have been
expected based solely on the overlap of the [1, 0] and [0, 1]
resonances. In Section 5, we shall show explicitly that the [1,
−1] resonance plays a dominant role in driving chaos for the
real Mercury.

One could also proceed to calculate the widths of higher order
resonances. Extending our reasoning from above, the width of

10 Focusing on the region to the lower left of the zone center in Figure 6 or 7,
the center of the [1, −1] resonance is displaced from zone center in the pe–pi
plane by the vector −(1, 3/5)x (Equation (44)); we take x > 0. The orbit given
by the half-width of the [1, −1] is therefore displaced from zone center by the
vector −(1, 3/5)x + (−1, 1)δpe , where δpe 0 2(pe∗∗pi∗∗)1/4√εJ iJ /(17x/10)
(Equation (46)). Equating that vector to the displacement of the center of the
[1, 0] resonance, i.e., to (−1, 1/4)x′ (Equation (37)) yields Equation (51).

Figure 8. Surfaces of section from integrations of Hamiltonian in Equation (28):
the parameters are gJ = 0.72γ and sJ = −1.26γ , and other parameters as
shown. The three upper left panels show surfaces of section with increasing
forcing, showing how the [1, −1] resonance gets wider, and its separatrix breaks
up into a sea of chaos. The (blue) chaotic trajectory in the upper right panel
has, very roughly, parameters comparable to the real Mercury. The lower right
panel shows a “double section” of this blue chaotic trajectory. In the double
section, it traces out a branch of a hyperbola in momentum space. Comparing
with Figure 5 shows where this trajectory lies relative to the MMM.
(A color version of this figure is available in the online journal.)

an [m, n] resonance in the pe–pi plane should scale as

δp ∼ O(ε|m|i|n|) → [m, n], (52)

where ε is comparable to the typical eccentricity, and i is
comparable to the typical inclination. However, as we have
seen for the [1,±1] resonances, near-resonant denominators can
make the widths significantly larger than this naive estimate.

4.4. Surfaces of Section and Libration of Resonant Angles

Here, instead of the global map (MMM), we investigate a
few particular trajectories in detail to demonstrate the chaotic
behavior, using both surfaces of section and resonant angles.

Figure 8 shows a number of surfaces of section from Hamil-
tonian (28). Since the transformed Hamiltonian (Equation (35))
is time independent with two degrees of freedom, we follow
the usual practice of taking a section whenever the phase of
one of the degrees of freedom (here, "−) executes an integer
number of cycles. At those times, we plot the amplitude versus
phase of the second degree of freedom (pi versus Ω−). We may
also understand this form for the surface of section as follows.
Hamiltonian (28) has four fundamental frequencies, gJ , sJ , g,
and s where g and s are the nonlinear free frequencies of z and
ζ , respectively. Only relative frequencies are physically mean-
ingful, and there are three of these, which we may choose to be
g−gJ , s−sJ , and g−s. But Hamiltonian (28) does not depend on
"−Ω, and hence the frequency g−s does not enter.11 Therefore,

11 The full fourth-order Hamiltonian does depend on " − Ω because of the
Kozai term; see Table 1. Therefore, one cannot take surfaces of section of the
full fourth-order Hamiltonian, but one can still plot its MMM (Figure 10).
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Figure 9. Chain of librating angles: each panel shows resonant angles m"− +
nΩ− (modulo 10π ) with various values of [m, n], for the blue chaotic trajectory
of Figure 8. The green shaded zones show librating angles. Different resonant
angle combinations librate in turn. The first gray strip is when [6,−5] librates
(not shown). The second gray shaded strip shows a time when the [1,−1] and
[4,−5] alternately librate in rapid succession, and no other angles are clearly
librating.
(A color version of this figure is available in the online journal.)

there are two remaining fundamental frequencies, as for the
coplanar case (Section 3.2). And, as described there, to exam-
ine the characteristics of the motion, one may take a section
whenever the phase corresponding to one of the fundamental
frequencies (here, the phase " − gJ t which corresponds to
g − gJ ) executes an integer number of cycles.

The three upper left panels of Figure 8 show surfaces of
section with values of gJ and sJ as before, and with various
values of εJ and iJ . All the surfaces of section shown have the
same (constant) value of energy, H− = 0.0154γ . To map out
phase space would require many different energy values, but for
that purpose the MMM is more useful. The lower right panel in
Figure 8 shows a “double section” of the (blue) chaotic trajectory
in the upper right panel, i.e., it shows the two momenta wherever
both"− and Ω− have executed a half-integer number of cycles.
At these times, the cosine terms in the transformed Hamiltonian
vanish, and all trajectories with a fixed energy H− fall along the
same branch of a hyperbola. Of course, double sections from
all the trajectories shown in Figure 8 would lie along the same
branch of the hyperbola because they all have the same value of
H−.

The surface of section in the upper left panel has a relatively
low εJ and iJ , and the motion is mostly regular for the value of
energy chosen. This can also be seen in the MMM (Figure 4)
near the relevant hyperbola branch. The [1, −1] resonance
is clearly evident in the top left panel of Figure 8. Its half-
width is δpi = 0.0055, as compared to the prediction of 0.006
from Equation (46). The upper right panel of Figure 8 shows
the case with higher forcing. With this higher forcing, the [1,
−1] resonance is wider, and the region near its separatrix has
broken up into a wide zone of chaos. Some of the higher order
resonances are visible in this section. In the lower left panel, the

Figure 10. MMM with full fourth-order Hamiltonian: similar to Figure 5,
but integrations have been performed with the full Hamiltonian (Table 1 in
Appendix A), rather than the truncated Hamiltonian (28). From the fact that
the two figures are broadly similar, one can infer that the terms dropped from
Hamiltonian (28) are of small importance in the regime of interest.
(A color version of this figure is available in the online journal.)

forcing has been raised further. Even though εJ and iJ are still
relatively small compared to unity, the zone of chaos is vast.

The blue chaotic trajectory in the upper right panel of Figure 8
behaves qualitatively like the real Mercury, and the parameters
are also similar (Section 5). Therefore, we investigate it in more
detail. From its surface of section, we see that the separatrix
of the [1, −1] resonance is largely responsible for driving the
chaos for this orbit, together with overlapping higher order
resonances. This orbit remains bounded by the [3, −2] and
[2, −3] resonances, and hence can never come under the direct
influence of the primary resonances ([1, 0] and [0, 1]). The
bound on the chaotic zone is a consequence of using a truncated
Hamiltonian that can be written in a time-independent form
with two degrees of freedom. For the full Hamiltonian, one
might expect that diffusion could act on long timescales (Arnold
diffusion), ultimately allowing the trajectory to cross into other
regions of phase space.

Figure 9 shows explicitly that the chaos is due to the
overlapping of high-order resonances. The resonant angles
m"− + nΩ− are plotted for various values of [m, n]. Different
resonant angles librate in turn, showing that this orbit first comes
under the influence of the [1,−1], then the [5,−4], then the
[1,−1], etc.

4.5. Full Fourth-order Hamiltonian

Thus far we have focused on the truncated fourth-order
Hamiltonian (Equation (28)). Figure 10 shows the MMM of
the full fourth-order Hamiltonian, expanded to leading order in
α (i.e., including all terms in Table 1 in Appendix A). From the
similarity of Figure 10 to the truncated integrations of Figure 5,
we conclude that the terms dropped in the truncated Hamiltonian
have little effect on the dynamics, particularly in the region of
small e and i (lower left corner of the MMM).

10



The Astrophysical Journal, 739:31 (17pp), 2011 September 20 Lithwick & Wu

The dropped terms have little effect because the only new
fundamental relative frequency they introduce is g−s (see
first paragraph of Section 4.4). This “Kozai frequency” differs
significantly from zero in the domain of Figure 10, and hence
it can only combine with the other two relative frequencies
(g − gJ and s − sJ ) to give resonances at high order. To be
quantitative, the resonant line of the Kozai frequency is at
g − s ≈ γ (2 + (3/2)pe − (5/2)pi) ≈ 0, i.e., it traces the line
pi ≈ (4 + 3pe)/5. Hence, the Kozai resonance is at much larger
pi than shown in Figure 10.

Aside from the Kozai term (c26 in Table 1), all other terms
dropped from the truncated Hamiltonian depend on Jupiter’s
eccentricity or inclination. These do not introduce new forcing
frequencies because Jupiter’s frequencies already appear in the
test particle’s orbit at linear order—in its forced e and i. While
the dropped terms do change the amplitudes of the forcing
terms, the change is small as long as Jupiter’s e and i is smaller
than the e and i it linearly forces in the test particle, as is true of
Figure 10.

We suspect that the terms dropped from Hamiltonian (28) are
quite often of secondary importance. This is largely true for the
real Mercury (Section 5). And we suspect that it is true more
generally because if secular interactions between two planets
are strong, then the forced e’s and i’s will typically (though
not always) be larger than the forcing ones. Nonetheless, the
dropped terms can be important in certain circumstances; for
example, the Kozai term will play a role if a planet has a high
inclination, and MMRs will be important for planets whose
orbital periods are near integer ratios.

4.6. Fourier Transforms

In Section 5 we shall make the connection to the real Mercury.
For that purpose, it will prove instructive to examine trajectories
in Fourier space.

For a more exact comparison to Mercury, we consider here
the Hamiltonian

1
γ

H (z, ζ ) = |z|2 − γ̂ |ζ |2 − |z|4 − |ζ |4

4
− 2|z|2|ζ |2

− (εJ eigJ t z∗ − iV eisV tζ ∗ + c.c.), (53)

which differs from Hamiltonian (28) by the inclusion of a
constant γ̂ to allow the linear apsidal and nodal precession
rates to differ from each other (see footnote 9). Note that
we also change notation so that iV and sV are the amplitude
and precession rate of the Venus mode. We focus on a one-
dimensional family of systems parameterized by κ , which
scales all eccentricities and inclinations. More precisely, in this
“κ-model” we choose the parameters εJ = iV = 0.008κ , and
initial conditions |z| = 0.16κ , |ζ | = 0.07κ ," = Ω = π/2. The
remaining parameters are γ̂ = 0.9, gJ = 0.72γ , sV = −1.14γ .
With these parameters, the center of the [1, 0] resonance is
at pe∗ = 2(0.28 − 2pi), as before; and the center of the [0,
1] resonance is at pi∗ = −2(0.24 − 2pe), whereas before
the constant was 0.26 rather than 0.24. This difference is of
little consequence. For displaying the results of the integration,
we shall choose γ = 5.′′87 yr−1. Our rationale for choosing these
particular numerical values will be explained in Section 5.

Figure 11 shows the Fourier transforms of z and ζ for the
κ-model trajectory that has κ = 0.75. We normalize the Fourier
transform of z as

ẑ(ω) ≡ 1
T

∫ T

0
z(t)e−iωt dt, (54)

Figure 11. Fourier transforms of the test particle’s z and ζ for the κ-model with
κ = 0.75 (Equation (53)): with this relatively small value of κ , the trajectory is
quasiperiodic, as indicated by narrow spikes in the Fourier transform. The free
and forced z are peaks at gM and gJ in the top panel. The other peaks are due
to nonlinear couplings, and are at frequencies gM + m(gM − gJ ) + n(sM − sV ),
labeled [m, n]. The horizontal red arrows in both panels denote frequencies
spaced by gM − gJ . The bottom panel shows that |ζ̂ | is similar, with free
and forced ζ at frequencies sM and sV , and nonlinearly generated peaks at
sM + m(gM − gJ ) + n(sM − sV ).
(A color version of this figure is available in the online journal.)

and similarly for ζ , where T is the duration of the Fourier
transform, which we choose in the present subsection to be
T = 4400/γ . With this normalization, if z has constant
amplitude and frequency, i.e., if z(t) = k0e

iω0t , then |ẑ| = |k0|
at frequencies close to ω0.

The trajectory used for Figure 11 is quasiperiodic—the peaks
in the Fourier transform are simply spikes, whose widths
become narrower for larger T. We call the two largest peaks
in the top panel the forced and free z. The forced z is at
frequency gJ = 0.72γ = 4.′′23 yr−1. The free z is at frequency
gM = 5.′′78 yr−1. Because of nonlinearities, the free frequency
(gM) differs from the linear free frequency (γ ) by a small but
non-negligible amount. Similarly, in the bottom panel the largest
two peaks are the forced ζ at frequency sV = −1.14γ , and the
free ζ at frequency sM = −5.′′45 yr−1, which differs from the
linear free frequency −γ̂ γ .

In addition to the free and forced z and ζ , there are
a multitude of peaks in Figure 11 that are generated by
nonlinear couplings. The peaks in ẑ all fall at frequencies
gM + m(gM − gJ ) + n(sM − sV ) for integers m, n. Roughly
speaking, the peak amplitudes become smaller for larger values
of |m| and |n|. These amplitudes can be calculated perturba-
tively, as is outlined in the following. As before, we define
the free and forced components as (zφ, zf , ζφ, ζf ), which have
phases that rotate with frequencies (gM, gJ , sM, sV ), respec-
tively. To leading nonlinear order, the nonlinear terms in the
equation for dz/dt are proportional to z|z|2 = (zφ+zf )|zφ+zf |2
and z|ζ |2 = (zφ + zf )|ζφ + ζf |2 (Equation (29)). These
generate six new frequencies in z: (2gM −gJ ), (2gJ −gM ), gM ±
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Figure 12. Fourier transforms of results from three κ-model simulations, with
κ = 1, 1.3, 1.55. At κ = 1 (leftmost panels), the motion is still largely
quasiperiodic. The amplitudes of the nonlinearly generated peaks have risen
significantly relative to Figure 11 (κ = 0.75), even though the forced and free z
and ζ have changed by a modest amount. At κ = 1.3, there is weak chaos—the
peaks have widened, and neighboring peaks overlap. At κ = 1.55, the trajectory
is highly chaotic.
(A color version of this figure is available in the online journal.)

(sM − sV ), gJ ± (sM − sV ). Each frequency-generating term acts
as a linear forcing on z. Together with the free and forced z,
these account for eight of the peaks marked in the top panel of
Figure 11; specifically, they account for the two highest peaks
in each of the four leftmost triplets. The other peaks are ac-
counted for by higher order nonlinear terms. One of these other
peaks—the one labeled [1,−1]—is quite large, even though one
might naively have expected that it would be smaller because it
enters at a higher nonlinear order. The reason for this is that its
forcing frequency differs from gM by σ ≡ (gM −gJ )−(sM −sV )
which is quite small. Hence, this near resonance amplifies the
peak by gM/σ ∼ 20. We note parenthetically that the width of
the [1,−1] resonance (as described in Section 4.3) is directly
related to the amplitudes of the three peaks at gM and gM ± σ .
The Fourier transform of ζ behaves similarly to that of z, with
the frequency peaks at sM + m(gM − gJ ) + n(sM − sV ).

Figure 12 shows the Fourier transforms for the κ-model at
higher values of κ . The leftmost panels show the case κ = 1. The
motion is largely quasiperiodic, but the nonlinearly generated
peaks have increased significantly relative to the κ = 0.75 case.
At κ = 1.3 the motion is chaotic, and at κ = 1.55 it is highly
chaotic.

5. MERCURY

We integrate the eight solar system planets with the SWIFT
symplectic integrator (Levison & Duncan 1994), supplemented
with a routine for Mercury’s relativistic precession (see Wu &
Lithwick 2011, for code details). We initialize the planets with
their current orbits and use their actual masses. The integration
time step is 8 days.

Figure 13. Fourier transform of Mercury’s z and ζ (roughly, its complex
eccentricity and inclination) in a SWIFT N-body simulation, κnbody = 0.75: the
initial e’s and i’s of all planets were pre-multiplied by the factor κnbody. The peaks
here are broadly similar to those of the κ-model. As in Figure 11, they are marked
by vertical lines that are displaced from gM and sM by m(gM −gJ )+n(sM −sV ).
The agreement between the two figures shows that the κ-model captures much of
the physics of the real Mercury. Nonetheless, there are a number of differences.
See the text.
(A color version of this figure is available in the online journal.)

One might suspect that Mercury’s orbital evolution is more
complicated than our toy model for a variety of reasons: its e
and i are not too small, and hence the fourth-order expansion is
approximate; it is not massless, and hence backreacts onto the
other planets (especially Venus); there are seven other planets
that do not have constant orbital elements and frequencies but
participate in the overall chaos of the solar system; and Mercury
can be affected by resonant terms. Despite these complications,
we show that the chaotic behavior of Mercury is qualitatively
similar to the Hamiltonian model. This is perhaps not too
surprising, since nonlinear dynamics are largely driven by
resonances and their overlap. Hence, as long as a model roughly
captures the locations and widths of the principal resonances, it
should produce qualitatively correct behavior.

5.1. Fourier Transforms

To compare with the κ-model, we first consider cleaner cases
by pre-multiplying the current eccentricities and inclinations
of all planets by the reduction factor κnbody. Figure 13 shows
Mercury’s Fourier transforms in a κnbody = 0.75 integration
lasting T = 150 Myr. Comparing this with the κ-model at
κ = 0.75 (Figure 11) shows broad agreement. In truth, the
parameters for the κ-model were chosen to match the free and
forced z and ζ seen in Figure 13, i.e., the frequencies and
heights of the four peaks marked gJ , gM, sV , sM . Since there
were eight quantities to match, we could do this by adjusting
eight parameters in the κ-model: γ , γ̂ , gJ , sV , εJ , iV , as well as
the initial values of |z| and |ζ |. Therefore, it is not significant
that the forced and free peaks in the two figures agree. What is
significant is that the other peaks that are generated by nonlinear
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Figure 14. Same as Figure 13, but with κnbody increased from 0.75 to 0.95. The
motion is more chaotic here, and Venus’s eccentricity forcing at frequency gV
is distinct. The blue dashed arrows denote frequency spacings of gV − gM , and
the blue dashed vertical lines denote peaks due to the gV mode and nonlinear
couplings generated by that mode.
(A color version of this figure is available in the online journal.)

couplings of the forced and free peaks also largely agree. This
indicates that the κ-model captures much of the nonlinearity as
seen in the real Mercury.

There are, however, at least three differences of note. First, the
peaks in Figure 13 are broader than those in Figure 11. This is
because Figure 13 suffers from weak chaos. But it is remarkable
how sharp the largest peaks are: even though the e’s and i’s of the
solar system have only been reduced by 25%, the resulting chaos
is surprisingly weak. Note that the integration intervals in the
two figures are the same, T = 4400/γ = 150 Myr, and hence
the finite width of the peaks in Figure 13 is not due to the finite T.
A second difference between the two figures is that the ẑM peak
at frequency gM + (gM − gJ ) is significantly larger in the κnbody
integration. That peak is so large because it is overlapped by a
peak forced by Venus’s eccentricity mode, which has precession
frequency gV ≈ 2gM − gJ . In other words, for κnbody = 0.75,
Mercury is in a secular resonance with a librating angle that
corresponds to frequency 2gM −gV −gJ , and this largely hides
the effect of gV in the Fourier transform of Figure 13. The third
difference between the two figures is the peak in ζ̂M that is
caused by Uranus’s inclination mode. But this peak appears to
have little dynamical consequence for Mercury.

In Figure 14, the factor multiplying the initial e’s and i’s
has been raised to κnbody = 0.95. The resulting motion is
more chaotic, as the widths of the peaks are wider than before,
especially for ζ̂M . In addition, the frequencies have been shifted
sufficiently to break Mercury from the 2gM −gV −gJ resonance,
and the effect of Venus’s eccentricity forcing is distinct. Even
though the motion is more chaotic, the principal forcing peaks
and their harmonics are still identifiable.

Figure 15 shows the Fourier transform of the real Mercury
(κnbody = 1). Even though the initial e’s and i’s have been
increased by only 5% relative to Figure 14, the motion is sig-

Figure 15. Same as Figures 13 and 14, but planets are initialized with their true
values (κnbody = 1): the motion is significantly more chaotic, and the peaks are
less easily identifiable. Nonetheless, we conclude that the primary drivers of
Mercury’s chaos are Jupiter’s eccentricity mode and Venus’s inclination mode,
with Venus’s eccentricity mode playing a supporting role.
(A color version of this figure is available in the online journal.)

nificantly more chaotic, and the nonlinearly generated peaks
are less easily identifiable, especially those near Mercury’s free
frequencies gM and sM . Nonetheless, we conclude from the pro-
gression of Figures 13–15 that the κ-model captures much of
the physics. In particular, two modes—the Jupiter eccentricity
mode and the Venus inclination mode—are primarily responsi-
ble for driving Mercury’s chaos. The most important element
lacking from the κ-model appears to be the extra forcing by the
Venus eccentricity mode. The fact that the κ-model becomes
chaotic at a higher threshold than the real Mercury (κ ∼ 1.3
versus κnbody ∼ 1) is likely partly due to that extra forcing (i.e.,
extra forcing makes the real Mercury more chaotic). An addi-
tional contributor to the discrepancy between the two critical κ’s
is that the simple κ-model does not accurately capture nonlinear
frequency shifts, while the precise values of the frequencies are
important for where the resonances overlap. Despite this, the
difference between the critical κ’s is not large, and this lends
support to our claimed origin for Mercury’s chaos.

We note parenthetically that while we only focus on a
narrow range of frequencies in Figure 15, Mercury also has
peaks at |ω| ∼ 20′′ yr−1, due to forcing by Earth and Mars.
However, these peaks have amplitudes "10−3, and appear to
have little influence on Mercury’s chaotic motion. Had they
been important, one would have expected to see their influence
in Figure 13, whereas all the main peaks in that figure have
already been identified.

5.2. Resonant Angles

Figure 16 shows results from a 2 Gyr SWIFT integration of
the full solar system (with no reduction of the initial e’s and
i’s). The black curve in the top panel is Mercury’s total |zM |,
which is very nearly equal to its total eccentricity (Equation (8)),
and illustrates the chaotic behavior of Mercury’s orbit. The
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Figure 16. Mercury in an N-body simulation of the solar system: The top panel
shows Mercury’s |zM | (approximately its eccentricity) as a black curve, for the
duration of a 2 Gyr SWIFT simulation. The overplotted green curve is Mercury’s
free |zM |. The second panel shows the same, but for ζM (approximately its
inclination). The bottom two panels show the two four-angle combinations
involving Mercury that were found to undergo libration episodes over the course
of this simulation. The plotted angles are the phases of the free orbital elements
(see the main text). The angles’ transitions between libration and circulation are
reflected in the behavior of eM and iM .
(A color version of this figure is available in the online journal.)

overplotted green curve is the absolute value of Mercury’s
free zM , which we define to be the part of its total zM that
comes from the main peak in Figure 15, i.e., we first take the
Fourier transform of zM , then set to zero all frequencies except
those satisfying 4.′′9 yr−1 < ω < 6.′′5 yr−1, and then take the
inverse Fourier transform. By plotting the free zM , the short-
term variations are reduced, and long-term diffusion is clearer.
The second panel in Figure 16 is the same as the top but for ζM ;
for the free ζM , we filter out frequencies outside of the domain
−6.′′3 yr−1 < ω < −4.′′7 yr−1.

The bottom two panels of Figure 16 show the two four-
angle combinations involving Mercury that were found to
undergo libration episodes. The third panel shows the angle
("M −"J )− (ΩM −ΩV ), which is the angle that has frequency

σ ≡ (gM − gJ ) − (sM − sV ), (55)

i.e., the [1,−1] angle (Equation (43)). (More precisely, we use
the angles of the free elements; see below.) And the bottom
panel shows the angle associated with the frequency

σ ′ ≡ (gM − gV ) + (sM − sV ). (56)

Laskar (1992) has shown that the σ angle can change from
libration to circulation. But our finding that the σ ′ can as well
is new.12 We note that even though both the σ and σ ′ angles
undergo libration episodes, the four-angle combination that is
the sum of the two, i.e., the angle associated with 2gM −gV −gJ

does not. That angle was found to librate in the κnbody = 0.75
simulation (Figure 13), and we suspect that it will eventually
librate in a long enough integration of the full solar system.

12 Since the motion is chaotic, it is possible that σ ′ did not librate at all in the
simulations of Laskar (1992) and Sussman & Wisdom (1992).

Figure 17. Chain of librating angles for the real Mercury: this is the same N-
body simulation as in Figure 16, focusing on the time when the [1,−1] angle
transitions to its first extended period of circulation and then back to libration.
Each panel shows the angle that has frequency [m, n] = m(gM − gJ ) + n(sM −
sV ), for various values of [m, n]. The angles alternately librate, showing that
the chaos is at least partly caused by the overlap of these resonances, as in
the κ-model (Figure 9). The plotted angles are the phases of the free orbital
elements.
(A color version of this figure is available in the online journal.)

The angles displayed in the bottom panels of Figure 16
were those of the free elements. For example, for "M we first
filtered the Fourier transform of zM as described above, and
took the phase of the free part of zM . This filtering procedure
is especially important for ΩV because Venus’s ζV variations
are dominated by forcings due to other modes, including the
Mercury-, Earth-, and Mars-dominated modes (Laskar 1990),
whereas we wish ΩV to denote the phase of the Venus-dominated
mode. Therefore, we first filter the Fourier transform of ζV ,
keeping only frequencies −7.′′7 yr−1< ω < −6.′′3 yr−1, and
use for ΩV the phase of the filtered ζV . Similarly, we filter
zM, ζM, zV , and zJ with appropriate windows to obtain the
other angles of interest. Our method of filtering for extracting
mode angles differs from that of Laskar (1990), who extracts
mode angles by projecting onto the numerically determined
nonlinear “proper modes.” We have experimented with a number
of different methods, and also with changing the size of the
filter window, and the duration of the integration, and found that
our filtering method is simple to implement, is computationally
efficient, and gives reliable results.

In addition to the two four-angle combinations of
Figure 16, one might suspect that there are many more higher
order combinations that librate when both of those angles
simultaneously circulate, as in the Hamiltonian model. In
Figure 17, we zoom into the episode when the [1,−1] an-
gle first undergoes an extended period of circulation, and plot
some higher order combinations associated with the frequencies
[m, n] ≡ m(gM − gJ ) + n(sM − sV ). It can be seen that these
angles librate in turn, just as in the Hamiltonian model (com-
pare with Figure 9). This provides another demonstration that
the physics of the Hamiltonian model is similar to that of the
real Mercury.

14



The Astrophysical Journal, 739:31 (17pp), 2011 September 20 Lithwick & Wu

6. SUMMARY AND DISCUSSION

The general picture for how secular chaos occurs is simple.
For secularly interacting planets, the secular frequencies are
constant to linear order in e and i. But nonlinearities can shift
planets into and out of secular resonance with each other,
and when two resonances overlap, chaos results. However,
despite the importance of secular chaos in the solar system, and
potentially in extra-solar systems as well, a nonlinear secular
theory has not yet been attempted. In this work we set out to
develop such a theory and we accomplish that goal in a number
of steps.

In Sections 2–4, we focus on the dynamics of a test particle
in the presence of multiple massive planets. The test particle
is evolved to leading nonlinear order, and the e’s, i’s, and
precession rates of the massive planets (or more properly of
the planet modes) are taken to be constant. We first consider
the simple case of coplanar perturbers, as worked out by
Sidlichovsky (1990), and find the following basic results.

1. A single eccentric precessing perturber (with frequency
gJ) does not lead to chaos.13 The Hamiltonian resembles
the one that describes a first-order MMR. The precession
frequency of the test particle (with frequency γ in linear
theory) is modified nonlinearly, and when it coincides with
the perturber’s precession frequency, a nonlinear secular
resonance occurs: the center is at pe∗ = 2∆ (Equation (25))
and the width is δpe = 4

(
εJ

√
pe∗

)1/2 = 4ε1/2
J (2∆)1/4

(Equation (26)).
2. Two eccentric, precessing perturbers produce chaos when

their respective resonance islands overlap (Chirikov 1979).
One can write down the overlap criterion using the above
information on centroid and width (Sidlichovsky 1990).

When both eccentricities and inclinations are present, the
dynamics are more complex, and nonlinear effects become
important at much lower amplitudes. Such a general case has
not been studied analytically before. In Section 4, we consider
the case when a test particle comes under the influence of an
eccentric, inclined perturber that precesses (with frequencies gJ
and sJ for the apsidal and nodal precessions, respectively). Our
principal findings are as follows.

1. The particle’s free precession frequencies (apsidal g and
nodal s) are both altered by its eccentricity and inclination.
Therefore, in the particle’s e–i plane, each resonance traces
out a curve. (Equivalently, it traces a line in the pe–pi plane,
where pe ≈ e2 and pi ≈ i2.)

2. Because of this behavior, a particularly illuminating way
to map out the nonlinear dynamics is the use of a novel
“mean momentum map” (MMM), in which each trajectory
is represented by a point on the map, its location being
the time-averaged momenta (pe and pi). In the MMM,
regular and chaotic trajectories are clearly distinguished,
individual secular resonances are identified (even high-
order ones), and their widths easily measurable. This map
also graphically illustrates how the overlap of secular
resonances leads to chaos (Figures 3–5). The MMM is
similar to the well-known FMA (Laskar 1990), but with the
axes representing time-averaged actions rather than average
angular frequencies.

13 At very high eccentricity and inclination, i.e., beyond the leading nonlinear
order, a single perturber can lead to chaos (Naoz et al. 2011; Lithwick & Naoz
2011).

3. Secular resonances occur where m(g−gJ )+n(s − sJ ) = 0,
for integers m, n (Equation (43)). We derive the loca-
tions of all such [m, n] resonances in the pe–pi plane
(Equations (37), (39), (42)–(45)), as well as the widths
of the four strongest resonances: [1, 0] (eccentricity only),
[0, 1] (inclination only), and [1, ±1] (Equations (38), (40),
and (46)). We show that our analytical results agree remark-
ably well with the numerical MMM results (Figures 3–7).

4. The MMM allows us to identify the resonances responsible
for chaos. For parameters relevant for Mercury, we find
overlap between [m,m ± 1] resonances (for small integer
m’s) account for the observed chaos (Figures 3–5). We
also confirm this using the more conventional approaches
of examining surfaces of section (Figure 8) and explicitly
tracing the chain of librating angles (Figure 9).

5. When eJ and iJ are only of order a few percent, a test
particle on a Mercury-like trajectory becomes chaotic.
Furthermore, the area of the chaotic region expands rapidly
with increasing eJ and iJ , as we show both numerically and
analytically (Equations (49)–(51)).

In Section 5, we apply our secular theory for a test particle
to understand the orbital evolution of Mercury in N-body
simulations. We show that despite all the simplifications we
made in the Hamiltonian model of Section 4 (one forcing
body, lowest order nonlinearity, no feedback), the real Mercury
behaves in a similar manner. To show this, we must abandon
the MMM because the solar system has so many degrees of
freedom that the resonances are washed out in the real Mercury’s
MMM. Instead, we demonstrate the dynamics using the Fourier
transforms (Figures 11–15), as well as by tracking the resonant
angles directly (Figures 16 and 17). For the real Mercury, we
find the following.

1. Culpable resonances. Mercury’s chaos is primarily driven
by the sV and gJ modes (i.e., the Venus- and Jupiter-
dominated i and e secular modes), although the gV mode
also plays a role. Similar to the test particle case, we find that
a slew of resonances involving those modes and Mercury’s
own free modes (with frequencies gM and sM) are impor-
tant; in particular, the relevant frequency combinations are
of the form m(gM −gJ )+n(sM −sV ), where n = m±1 and
m is a small integer (Figures 13–15). The corresponding
angles sequentially librate (Figure 17). We identify a new
resonance σ ′ = (gM − gV ) + (sM − sV ) (Equation (56))
that can also undergo libration episodes (Figure 16) and
may contribute to Mercury’s chaos. Whether it is an un-
necessary coincidence for Mercury’s chaos is unknown.
Figures 13–15 show that the aforementioned nonlinear sec-
ular resonances account for virtually all of the features
seen in Mercury’s Fourier transform. Furthermore, Mer-
cury’s Fourier transform agrees with the Fourier transform
of our simplified κ-model, both for real forcings and when
the forcings are artificially reduced (Figures 11 and 12).
This shows that our model quantitatively captures the prin-
cipal effects responsible for Mercury’s chaotic orbit. Other
effects not included in the model, such as MMRs and other
secular resonances play an unimportant role.14 This agrees
with previous findings that N-body integrations of Mer-
cury’s orbital evolution yield similar results to integrations
that use the secular equations (e.g., Laskar 2008).

14 We ignore throughout this paper the effect of Mercury’s spin on its orbital
evolution because there is negligible angular momentum in its spin relative to
its orbit. Nonetheless, its chaotic orbit could have been responsible for forcing
Mercury into the 3:2 spin-orbit resonance (Correia & Laskar 2004).
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Table 1
Terms in Scaled Disturbing Function 8R

3α2 =
∑

i cihi

i 1 2 3 4 11 12 13 14 15 16 17

ci 1 − 5
4α

3
2 − 1

4 −1 1 3
2

1
4 − 5

8 − 5
8

1
4

hi |z|2 z∗z′ + c.c. |z|2|z′|2 |z|4 |ζ |2 ζ ∗ζ ′ + c.c. |ζ |2|ζ ′|2 |ζ |4 |ζ |2ζ ∗ζ ′ + c.c. |ζ ′|2ζ ∗ζ ′ + c.c. ζ ∗2ζ
′2 + c.c.

i 21 22 23 24 25 26 27 28

ci −2 − 3
2 − 3

2
7
4

7
4

5
4

5
4 − 5

2

hi |z|2|ζ |2 |z′|2|ζ |2 |z|2|ζ ′|2 |z|2ζ ∗ζ ′ + c.c. |z′|2ζ ∗ζ ′ + c.c. z∗2ζ 2 + c.c. z∗2ζ ′2 + c.c. z∗2ζ ζ ′ + c.c.

Notes. The Hamiltonian is H = γ
∑

i cihi where γ is defined in Equation (A4). The variables z and ζ (defined in Equations (8) and (9)) are approximately the
complex eccentricity and inclination. Terms 1–4 are z-only. Terms 11–17 are ζ only. Terms 21+ are mixed. c.c. denotes complex conjugate.

2. Amplitude threshold for Mercury’s chaos. Having identified
the secular resonances responsible for Mercury’s chaos, we
can calculate the threshold for chaos. We do that here in
an approximate way. First, since Mercury’s apsidal and
nodal frequencies differ from gJ and sV by ∼25% (i.e.,
∆ ∼ ∆s ∼ 0.25, Equations (19) and (36)), the location
in the momenta plane (pe–pi) where all [m, n] resonances
intersect are around half that, or pe∗∗ ∼ pi∗∗ ∼ 0.12
(Equation (45)). These values are determined by the linear
precession frequencies of the system. Second, given the
values of ∆ and ∆s , the [1,−1] resonance reaches closest
to the origin.15 The width of the chaotic overlap zone
between the [1, −1] and the [1, 0] (or the [0, 1]) resonances
is ∼2(εJ iJ )1/4(pe∗∗pi∗∗)1/8 (Equation (51)).16 As a result,
when εJ ∼ iJ ! p

3/2
e∗∗/4 ∼ 0.01, the region of chaos

will encroach upon the origin in the pe–pi plane and
even trajectories that are initially circular/coplanar will be
chaotic. This quantitatively explains why Mercury can be
chaotic even though the eccentricities and inclinations in the
solar system are at the level of a few percent. Alternatively,
our analytical theory alone would have allowed us to predict
that Mercury’s orbit is chaotic, were we to live in a world
without digital computers.

3. Mercury’s precarious state. We discover that Mercury is
perched on the threshold of chaos. Although the diffusion
of Mercury’s orbit takes place on a timescale comparable
to the lifetime of the solar system, when we reduce the e’s
and i’s of all the planets by only 25%, Mercury’s motion
becomes nearly regular (Figure 13). By contrast, when
we increase the planets’ e’s and i’s by 20% we observe
violent instability, with Mercury ejected in ∼100 Myr.
This behavior is also apparent in our test particle model
(Figure 12) and is explained by our results on the location
and extent of the chaotic zone (Equations (45), (49)–(51)).
This observation, however, raises an interesting question as
to what puts the solar system in such a delicate balance,
with the instability time comparable to the system lifetime.

With the origin of Mercury’s chaos elucidated, we look ahead
to directions along which our work can be extended and areas
where it can be applied. The weakly nonlinear secular theory
developed here can be extended to order-unity eccentricities
and inclinations. Although that case will be more complicated,
we suspect that the basic structure will remain, with resonant
zones in the e–i plane whose overlap leads to chaos. Another
important direction is to incorporate MMRs, which may be

15 Other [m, n] resonances may be important in different systems. For
instance, the [1,1] resonance will dominate if ∆ ≈ −∆s .
16 We include here an extra factor of two to account for the difference between
the half- and full-width, as described in Section 4.3.

common among planetary systems and can interact with secular
chaos in interesting and yet unsuspected ways.

As mentioned above, Mercury, the most unstable planet in
our system, appears to be perched at the threshold for chaos.
This is certainly a clue for understanding how the solar system
arrived at its current marginally stable state. But much more
work is needed.

Our nonlinear secular theory can also be applied to Earth and
Mars, which also have chaotic orbits and for which librating
angles have been identified that are similar to those we found for
Mercury, i.e., angles of the form m("mars −"earth) + n(Ωmars −
Ωearth), with [m, n] = [1,−1], [2,−1], and [3,−2] (Laskar
1992; Sussman & Wisdom 1992). We now have the right tools
to study in detail the origin of chaos in these two planets. We
have also proposed that secular chaos can play a role in shaping
extra-solar planetary systems (Wu & Lithwick 2011), and hence
the theory of secular chaos might be applicable to extra-solar
planets as well.

APPENDIX A

FOURTH-ORDER SECULAR HAMILTONIAN

In this appendix, we give the expression for the secular Hamil-
tonian of a test particle perturbed by an external planet, where
both particle and planet are orbiting a star. The Hamiltonian is
expanded to fourth order in the particle’s eccentricity and incli-
nation, and to leading order in the ratio of semimajor axes. The
energy per unit mass of the test particle is

E = −GM&

2a
− Gm′

a′ R, (A1)

where M& is the mass of the star, a and a′ are, respectively, the
test particle’s and planet’s semimajor axes, m′ is the planet’s
mass, and R is the disturbing function. We approximate R by
only retaining the secular terms up to fourth order in e and
s ≡ sin(i/2) and second order in α ≡ a/a′ (except for the f10
term whose leading contribution is O(α3e2)):

R ≈ f2e
2 + f3s

2 + f5e
2e′2 + f7(e2s2 + e2s ′2 + e′2s2)

+ f8s
4 + f9s

2s ′2 + f10ee
′ cos(" −" ′)

+
(
f14ss

′ + f15ss
′(e2 + e′2) +f16ss

′(s2 + s ′2)
)

cos(Ω − Ω′)

+ f18e
2s2 cos(2" − 2Ω) + f21e

2ss ′ cos(2" − Ω′ − Ω)
+ f18e

2s ′2 cos(2" − 2Ω′) + f26s
2s ′2 cos(2Ω − 2Ω′),

(A2)

in the notation of the Appendix of Murray & Dermott (2000).
The fi are functions of α that may be expressed as sums of
Laplace coefficients and their derivatives. We drop terms that
are independent of the test particle’s orbital elements.
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In this paper, we work with a scaled Hamiltonian, H ≡
−2E/

√
GM&a (Equation (3)), and hence

H = γ 8R

3α2
, (A3)

dropping the Keplerian term in E because it is irrelevant for
secular dynamics, and defining

γ ≡ 3
4

m′

M&
α3

(
GM&

a3

)1/2

, (A4)

which is the test particle’s secular free precession frequency
based on linear theory. The scaled disturbing function 8R/(3α2)
is a sum of terms that are listed in Table 1, after expanding the
fi to O(α2), and f10 to O(α3).

APPENDIX B

WIDTH OF THE [1, −1] AND [1, 1] RESONANCES FROM
VON ZEIPEL TRANSFORMATION

We start from Hamiltonian (35), which we reproduce here as

H (pe, qe;pi, qi) = − p2
e − p2

i

4
+ ∆pe + ∆spi − 2pepi

− 2εJ
√

pe cos qe + 2iJ
√

pi cos qi, (B1)

setting γ = 1, qe ≡ "− = " − gJ t , and qi ≡ Ω− = Ω − sJ t .
We solve this Hamiltonian perturbatively, treating εJ and iJ as
the small parameters. This is equivalent to expanding in the
test particle’s forced eccentricity and inclination, assumed to be
much smaller than the free e and i. We transform to capitalized
variables with the von Zeipel generating function

F (Pe, qe;Pi, qi) = Peqe + Piqi + ke(Pe, Pi) sin qe

+ ki(Pe, Pi) sin qi, (B2)

where the first two terms generate the identity transformation,
and the functions ke and ki are first order in εJ and iJ; their form
will be chosen to “kill” the cosine terms in the Hamiltonian to
leading order. The von Zeipel generating function transforms
variables as follows:

pe = Pe + ke cos qe (B3)

pi = Pi + ki cos qi (B4)

Qe = qe + ∂Pe
ke sin qe (B5)

Qi = qi + ∂Pi
ki sin qi. (B6)

Inserting into the Hamiltonian yields

H (Pe,Qe;Pi,Qi) = −P 2
e − P 2

i

4
+ ∆Pe + ∆sPi

− 2PePi − keki cos(Qe − Qi)
− keki cos(Qe + Qi) (B7)

to second order, after setting

ke = 2εJ
√

Pe

∆ − Pe/2 − 2Pi

(B8)

ki = −2iJ
√

Pi

∆s + Pi/2 − 2Pe

, (B9)

to eliminate the first-order terms. The two cosine terms in this
Hamiltonian are the [1, −1] and [1, 1] resonances, respectively
(see Equations (41) and (42) and following). Note that we
have dropped second-order terms in the Hamiltonian that are
proportional to cos2 Qe, sin2 Qe, cos2 Qi , and sin2 Qi because
these have little effect on the [1, 1] and [1, −1] resonances; but
they generate new frequency components which are important
for higher order resonances.

To leading order, ke is twice the product of the free eccentricity
(
√

Pe) with the forced eccentricity, where the forced eccentricity
differs from the linear expression (εJ /∆; see Equation (18))
by the terms Pe/2 + 2Pi in the denominator, which arise
from the nonlinear shift of the frequency (Equations (41) and
(42)). Similarly ki is twice the product of the free and forced
inclinations. Hence, the strengths of the [1, −1] and [1, 1]
resonances are proportional to the products of the free and
forced eccentricities and inclinations, as argued qualitatively
in Section 4.

To determine the width of the [1, −1] resonance, we drop the
last cosine term in the above Hamiltonian. Since P+ ≡ Pe + Pi

is an integral of the motion, we may re-write the Hamiltonian as
H (Pe,Q−) = 2(Pe − P∗)2 − keki cos Q−, dropping a constant
and defining Q− ≡ Qe−Qi and P∗ ≡ (5/8)P+−(1/4)(∆g−∆s).
Therefore, the half-width of the resonance is

δPe =
√

|keki | . (B10)

We take the amplitude of the cosine term to be fixed at its value at
resonance center (e.g., Chirikov 1979). Since Pe +Pi is constant,
the half-width in Pi is the same, δPi =

√
|keki |.
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