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Pollack et al. (1979) and Pollack and Fanale (1982). Numerical integrations
demonstrate that, for capture to happen while traversing the nebula, the plane-
toid’s speed must be slowed by at least tens of percent. This in turn means that
the planetoid, during its flight across the nebula, must interact with gas that
has mass equal to tens of percent, defined as the fraction 8, of its own mass.
Since 3 is inversely proportional to the planetoid’s radius, small objects are
preferentially acquired. Nevertheless, for expected nebula models (Pollack et
al. 1977), objects up to 10 to 102 km can be slowed enough to be captured
near the edges of the nebula; deeper penetrations of the nebula are necessary
to ensnare a satellite like Triton. The abrupt deceleration that transpires in the
capture event will likely cause fragmentation. The relative speed between
members of either Jovian cluster are of the same order as escape velocities off
the largest member; they hint that each cluster was born when a primordial
object barely split apart.

Once capture by gas drag is accomplished, orbital evolution proceeds
swiftly because the acquired planetoid continues to sweep through the circum-
planetary envelope. The characteristic time for evolution is ~ P/8 (where P
Is the satellite’s orbital period) or ~ 10 yr. This rapid evolution has an impor-
tant implication: post-capture orbital evolution can quickly turn jrregular or-
bits into fairly circular, uninclined ones that ultimately crash into the planet.
indeed some process must halt the evolution (i.e., remove the nebula) if any
satellites are to be found in orbit, Fortunately models of nebular evolution do
undergo such a collapse phase. If this scenario is correct, the current outer
satellites are only the last of many captured objects, their predecessors having
fallen into the planet proper.

IV. CONCLUSION

Even though the solar system itself has not changed much in the decade
since the last review of satellite evolution (Burns 19775), our understanding
of it has. I foresee a similar evolution over the next decade, with resonances
and ring-satellite interactions better comprehended. The advent of super-
computers should help sort out the complex interactions of many-body sys-
tems. Just as surely, new and equally interesting puzzles will arise to be
solved.
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5. ORBITAL RESONANCES, UNUSUAL CONFIGURATIONS AND

EXOTIC ROTATION STATES AMONG PLANETARY SATELLITES
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Several examples of satellite dynamics are presented where significant progress
has been made in understanding a complex problem, where a long-standing
problem has finally been solved, where newly discovered configurations have
motivated novel descriptions or where an entirely new phenomenon has been
revealed. The origin of orbital resonances is shown in the demonstration of the
evolution of a pair of planetary satellites through a commensurability of the
mean motions by a sequence of diagrams of constant energy curves in a iwo-
dimensional phase space, where the closed curve corresponding to the motion
in each successive diagram is identified by its adiabatically conserved area. All
of the major features of orbital resonance capture and evolution can be thus
understood with a few simple ideas. Qualifications on the application of the the-
ory to real resonances in the solar system are presented. The two-body reso-
nances form a basis for the solution of the problem of origin and evolution of the
three-body Laplace resonance among the Galilean satellites of Jupiter. Dissipa-
tion in Io is crucial to the damping of the amplitude of the Laplace libration o
its observed small value. The balance of the effects of tidal dissipation in lo to
that in Jupiter leads to rather tight bounds on the rate of dissipation of tidal
energy in Jupiter. Motion in the relative horseshoe orbits of Saturn’s coorbital
sateilites is described very well by a simple expansion about circular reference
orbits. The coorbitals are currently very stable, and their relative motions can
be used for the determination of the masses of both sarellites. Pluto and its rela-
tively large satellite Charon form an unusual system where the relative size and
proximity of Charon lead to a most probable state where both Pluto and Charon
are rotating synchronously with their orbital motion, The normal tidal evolution
of a satellite spin toward synchronous rotation is frustrated in the case of Sat-
wrn’s satellite Hyperion where gravitational torques on the large permanent
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asymmelry cause it to tumble chaotically. Observations of Hyperion's lightcurve
are consistent with the chaotic rotation but do not verify it with certainy.

I. INTRODUCTION

The planetary satellite systems have provided a long list of puzzles in-
volving origins and evolutions of various configurations that have slowly
yielded to solution over the years. Much more detailed information about
these systems from recent spacecraft observations has motivated a flurry of
dynamical analysis—some of which does not even depend much on the new
observations. We describe several examples of this recent activity, where the
emphasis is on resonances and the consequences of the dissipation of tidal
energy. By resonance we mean a situation in which the mean angular ve-
locities of two satellites have a ratio near that of two small integers.

The dynamical evolutions of various satellite configurations in the solar
system include the effects of energy dissipation on both the orbits and the
spins. We discuss first (Sec, H) the origin and evolution of the two-body or-
bital resonances among the satellites, where significant progress has been
made in simplifying the rather complex and diverse mathematical descrip-
tions. It is now possible to understand the origin and evolutien of orbital reso-
nances in terms of a few simple principles. We begin here with a heuristic
discussion of a two-body orbital resonance as an introduction to the descrip-
tion of the mathematical development. This development starts with first prin-
ciples, and will require the reader to be familiar with graduate level classical
mechanics but only the more commonly known. jargon of celestial mechanics.
The reward for the persevering reader will be a knowledge of how the rela-
tively complex system is reduced to a single degree of freedom to yield the
simplified Hamiltonian used in the analysis and:of the approximations used in
getting it. We show how the evolution of a two-body orbital resonance due to
differential tidal expansion of the respective orbits can be followed through a
sequence of diagrams showing curves of constant Hamiltonian in the two-
dimensional phase space. The trajectory of the system in this phase space is
essentially one of the curves of constant Hamilionian in each diagram. Since
the Hamiltonian is not conserved as the system evolves, the trajectory corre-
sponding to the motion in successive diagrams is identified by the adiabati-
cally conserved action. The conditions for capture into an orbital resonance as
tides push the system toward a commensurability of the mean motions and the
subsequent evolution within the resonance are easily seen in the sequence of
diagrams. The model also allows analytic determinations of the probability
of capture into the resonance when the system reaches a commensurability of
mean motions.

This analysis has greatly eased the understanding of the establishment
and current configurations of orbital resonances among the satellites. We indi-

cate how it can give reasonably accurate quantitative descriptions of real reso-
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nances in some cases, but many existing resonances require a more accurate
analysis—ofien with much more elaborate models including dissipation
within the satellites and, in the case of Saturn’s satellites, strong interactions
with the rings.

In Sec. T we show how the analysis of the two-body orbital resonances
described in Sec. Il suffices for the description of the two-body resonances
among the Galilean satellites of Jupiter. This description works in spite of the
existence of the three-body Laplace resonance and the simultaneous libration
of more than one resonance variable at the same commensurability of the
mean motions. The two-body resonances form the basis for understanding the
evolution to, and capture within, the more complex Laplace crbital resonance
involving the inner three Galilean satellites. The subsequent analysis de-
scribes the evolution of the Galilean satellite system to its current configura-
tion of a very small libration amplitude for the three-body Laplace resonance,
where a high rate of dissipation of tidal energy in the satellite To is crucial to
the damping of the libration. This theory for the origin of the Laplace reso-
nance, especially the understanding of the almost zero amplitude of libration
of the Laplace angle, must rank as one of the major accomplishments in the
study of dynamical evolution in the Iast decade. A perhaps unexpected bonus
from this work is the establishment of rather tight constraints on the rate of
dissipation of tidal energy in Jupiter. As in Sec. H, sufficient mathematical
detail is presented here to enable one to follow the development without mys-
tery concerning the source of the conclusions and the approximations in-
volved, In Sec. IV we describe the coorbital satellites of Saturn, where the
evolutionary aspects of this system apply more to the future than to the past.
The interest in this system lies in its uniqueness and in the very simple modi-
fication of the analysis of the restricted three-body problem which suffices for
its description. The relative horseshoe orbits for the satellites are shown to be
currently very stable. In principle, the masses and densities of both coorbitals
can be found by inserting observational parameters into the analysis, but ac-
curate values will require more precise observations from a spacecraft orbit-
ing Saturn. From an emphasis on orbital configuration and evolution, we turn
{Sec. V) to a description of the Pluto-Charon system, where both planet
and satellite appear to rotate synchronously with the orbital motion. This iso-
lated system has thus reached the ultimate endpoeint of tidal evolution, and its
recent discovery, its uniqueness aind the interesting dynamics of the dual-
synchronous rotation state warrants its inclusion here. Two possible states of
dual-synchronous rotation for a given total angular momentum are shown to
exist—an unstable state at close separation and a stable state at a more distant
separation. The Pluto-Charon system occupies the latter. The tidal evolution
of the spins of the satellites discussed to this point have been a relentless retar-
dation by tides toward the currently observed synchronous rotation. Except
for the Pluto-Charon example, this evolution has not been elaborated, since it
has been long understood. Hyperion, on the other hand, is distinguished from
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other satellites of its size by being very nonspherical. In addition, it occupies
an orbital resonance with Titan which maintains its very large orbital eccen-
tricity of about 0.1. We show in Sec. VI that this combination of circum-
stances forces Hyperion to evolve not toward an orderly synchronous or other
commensurate spin-orbit state, but to a region in phase space where it will
most likely tumble chaotically, essentially forever.

H. ORBITAL RESONANCES

If two satellites orbiting the same primary have mean orbital angular ve-
locities (mean motions) which have a ratio very near that of two small inte-
gers, the satellite motions are said to be commensurate and to define an orbital
resonance, Orbital resonances among the satellites of the major planets are of
interest because many more such resonances exist than can be accounted for
by a random distribution of orbits (Roy and Ovenden 1955). The inner three
Galilean satellites of Jupiter, Jo, Europa and Ganymede, are locked in the fa-
mous Laplace relation where ny — 3n, + 2r3 = 0 with Ay + 3A; + 2A,
librating about 180° with very small amplitude. The subscripts on the mean
motions and mean longitudes (#;, A;) number the satellites sequentially from
the closest to the farthest from Jupiter. In addition, A; — 2A, + @ and A, —
2Ah3 + @, librate about 0° and A, — 2A, + @&, librates about 7, where the &;
are the longitudes of periapses. At Saturn, Enceladus-Dione, Mimas-Tethys
and Titan-Hyperion ate Jocked in orbital resonances with a;/n; = 1/2, 1/2
and 3/4, respectively. For Mimas-Tethys, 2x; — 4x5 + £, +  librates
about 0° (£); are the longitudes of ascending nodes), for Enceladus-Dione, A,
— 2h4 + @, librates about 0° and for Titan-Hyperion, 3hg — 4A; + &7 li-
brates about 7. Voyagers 1 and 2, as well as contemporaneous groundbased
observations, revealed several examples of stable commensurabilities in the
Saturn system where two satellites’ periods were nearly identical. Some were
librating about the Trojan points 60° in front of or behind a large satellite
whereas one pair, the so-called coorbitals, have horseshoe-shaped orbits rela-
tive to each other. We shall address the analysis of this last 1:1 resonance in
Sec. IV and consider here only the resonances where the mean orbital motions
are near the ratio j:j + k where j and k are nonzero integers.

The hypothesis of the formation of orbital resonances by the differential
tidal expansion of initially randomly distributed orbits was suggested by T.
Gold (personal communication, 1960). Goldreich (1965) showed the reso-
nances to be stable against continued tidal expansion of the orbits and Allan
(1969) demonstrated how the age of a resonance follows from the amplitude
of libration if the rate of tidal expansion of the orbits is assumed. Greenberg et
al. (1972) and Greenberg (19734) demonstrated the automatic capture of a
Titan-Hyperion {ype resonance and the subsequent evolution within the reso-
nance, and Sinclair (1972) calculated capture probabilifies for the resonances

involving Mimas-Tethys and Enceladus-Dione, respectively, as the resonance
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Fig. 1. Schematic diagram of resonant orbits demonstrating stability, Arbitrary positions of re-
petitive conjunctions are at points A, B, C and D. L and » are angular momentum and mean
mation, respectively. :

variable of each system passed from circulation to libration. Yoder (1973,
19794a) developed the first analytic theory which described the complete ori-
gin and evolution of an arbitrary two-body resonance including analytically
determined capture probabilities. The field was reviewed by Peale (1976b)
and by Greenberg (1977). Heuristic descriptions of several resonance proper-
ties and processes are given in both reviews. One of these descriptions of sta-
bility and some evolutionary aspects are given here to illuminate the physical
basis for the mathematical development to follow.,

The stability of two-body orbital resonances was understood at the time
of Laplace and follows from the ensuing argument. Consider two satellites of
masses m >>> m' in coplanar orbits about a primary. The inner satellite m is
assumed to be in a circular orbit and is so much more massive than m' that
perturbations by the latter can be ignored. The mean motions are assumed to
be nearly commensurate, and m’ to be in an eccentric orbit. The orbits are
shown schematically in Fig. 1, where &’ is the longitude of the outer orbit’s
pericenter. Four arbitrary positions of repetitive conjunctions are indicated
by dashed lines, and the relative positions of each satellite just before and just
after a conjunction are also shown along with the radial and tangential compo-
nents of the perturbing force by m on m’. A dot over a symbol indicates time
differentiation.

During the period from opposition to conjunction, m removes angular
momentem from m’ via the tangential component of the perturbing force and,
from conjunction to the next opposition, it adds angular momentum. If the
conjunction occurs exactly at pericenter or exactly at apocenter, the effects of
the tangential forces integrate to zero, and there is no net transfer. Repetitive
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conjunctions at any other point destroy this symmetry. If we assume that the
line of apsides is fixed and also assume precise commensurability of the mean
motions, a conjunction at point A in Fig. 1, for example, would be followed
by successive conjunctions at the same point for noninteracting satellites.
However, the tangential component of the perturbing force is larger prior to
conjunction than after (for £, = &, in Fig. 1) because the orbits are diverging.
In addition, the angular velocity of m' is closer to that of m prior to conjunc-
tion, as m’ is slowing down as it approaches apocenter. This means m catches
up with m' more slowly than it recedes after conjunction, so the larger tangen-
tial force opposing the motion of m is also applied for a longer time than the
smaller tangential force in the opposite sense after conjunction. Hence, a con-
junction at A leads to a net loss of angular momentum by m' over an entire
synodic period. The resulting increase in the mean orbital angular velocity »’
means that the next conjunction is closer to apocenter.

Similarly, a conjunction after apocenter {point B in Fig. 1) results in a net
gain of angular momentum by m’, and a tendency for the next conjunction to
be again closer to apocenter. The conjunctions thus librate stably about the
apocenter of m’, preserving the commensurability. Allowing a secular varia-
tion of @ does not change this conclusion as the ratio n/n' is adjusted such
that conjunctions still librate about the apocenter.

The same arguments applied to a conjunction at points C or D near peri-
center show that conjunctions are again driven toward apocenter. The peri-
center conjunctions thus correspond to an unstable equilibrium configuration
like that of a pendulum near the top of its support. The stable point of the
analogous pendulum corresponds to the apocenter conjunction,

Now suppose conjunctions occur repetitively at apocenter with no libra-
tion and that the inner orbit is being expanded by tidal interactions with the
primary. The orbital period of m will increase, and successive conjunctions
will occur slightly after apocenter on the average. Angular momentum will
thus be secularly transferred in just the right amount to preserve the com-
mensurability against the tendency of the tide to distupt it (Goldreich 1965).

Two other characteristics of a stable commensurability can now be under-
stood. First, if conjunctions always occur at apocenter of the outer satellite in
this example, the radial force of m on m’ accelerates m' toward the primary,
and m' follows a trajectory slightly inside the trajectory it would have fol-
lowed if m were not there. This means m’ will reach its closest point to the
primary slightly sooner than normal and the line of apsides will have rotated
in a retrograde sense. If m is sufficiently massive, this regression of the line of
apsides due to the resonant perturbation (conjunction always at apocenter) can
dominate the normal prograde motion due to the oblateness of the primary
and the secular perturbations from other satellites. This is actually realized in
the Titan-Hyperion resonance where the line of apsides of Hyperion's orbit
regresses about 19° yr~1.

The second characteristic is the secular increase of the eccentricity in

5
f
fust
it
i
£
e
£
by

it

B

Sl e R e s G i S L

<t

5. RESONANCES 165

o, ry

Tz

Toz

X Mz

Fig. 2. Definition of variables used in orbital resonance analysis.

this type of orbital resonance. Recall that a tidal expansion of the inner orbit
causes the conjunctions of the stable resonance to occur slightly after apo-
center. A radial impulse force anywhere between apocenter and pericenter
causes the orbiting body to fall closer to the primary, thereby increasing the
eccentricity e' of its orbit. With conjunctions now occuering slightly after apo-
center, the maximum of the radial perturbative force tends to increase e’
secularly.

The stability of a resonance to tidal expansion of the orbits and the
growth of the eccentricity of that satellite orbit whose longitude of apoapse or
periapse is always near the conjunctions is thus understood from simple ideas.
These properties of orbital resonances emerge naturally in the description be-
low, and they play fundamental roles in the evolutionary process. Additional
heuristic descriptions are found in Peale (1976b) and in Greenberg (1977).
See also Greenberg (19735) for a lucid description of the Mimas-Tethys reso-
nance, which involves the inclinations of both orbits to Saturn’s equato-
rial plane with libration of conjunctions about the mean of ascending node
longitudes.

The relatively complex descriptions of origin and evolution of orbital
resonances by differential tidal expansion of the orbits have recently been sim-
plified enormously (Henrard 19824a; Henrard and Lemaitre 1983). An elegant
description of the capture process (Henrard 19824) has led to a second, much
simplified analytic evaluation of capture probability (Borderies and Goldreich
1984) applicable to the most common orbital resonances. However, a modi-
fication of these capture probabilities may be necessary when the chaotic
nature of the separatrix (the curve in phase space separating circulation from
libration) is taken into account (Wisdom et al. 1984) (see Sec. VI).
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We shall develop here the Hamiltonian appropriate to two-body reso-
nances from first principles and justify various approximations. Henrard and
Lemaitre (1983} use this Hamiltontan together with the adiabatic invariance
of the system action in a description in which most of the resonance phenom-
ena are easily followed and understood as the system evolves into and within
libration due to tidal expansion of the orbits. The success of this simplified
theory int explaining the origin and current states of some orbital resonances,
as well as cases in which better approximations are necessary, will be demon-
strated by examples.

We describe the motion of two interacting satellites orbiting a primary as
a system of three point masses mg >> m,, m, with position vectors r} from a
fixed origin at the center of mass (Fig. 2). Relative positions are indicated by
ry = 1j — r;. The equations of motion are

O omymy by
m) = 3 T = Wy (M)
i#j J"‘j
where
G m;m;
V=2 —-*t (2)
Fior

with G being the gravitational constant and V, indicating differentiation with
respect to the coordinates of the ith mass. By referring the position of m to
my and that of m, to the center of mass of m and my, the potential can be
separated into a central term for the elliptic motion of the m; about their re-
spective centers (i.e., mg and the center of mass of mg and m;) and a com-
mon disturbing potential which appears in the equation of motion of each m;
(i > 0). This system of coordinates was found by Jacobi (see, e.g., Brouwer
and Clemence 1961, p. 588). There results

dzl'j G Right; Iy o
dr? + rim; vi m; 3
where
i—1 i—1
= I‘; - kg{) mkr,’(/_kze 1177 (4)

locates m; relative to their respective centers,
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) m; kZO My
mi = ———— 5)
kzﬂ "
and
1 1
®=—G[m+mm(———m)] 6
"1z e o ©

is the disturbing potential for the two masses m | and m,, which is just V less
the part that produces the second term in Eq. (3). From Eq. (6) one sees how
@ and hence Eq. (3) can be generalized to any number of masses (see Eq. 54
in Sec. III below),

The left-hand side of Eq. (3) is just the expression for two-body motion
with G(mg + my) replaced by p; = Gmom:/m}. The Cartesian coordi-
nates and velocities can thus be transformed into a canonical set, (see, e.g.,
Plummer 1918, pp. 142-153) and subsequent canonical transformations used
to yield

Li = m; Vi C h= et nide

Wi=L;(1—- VI e) » W= =8,

Zi=LVT= (1 —cosly , 3=~ @
dL; _ - oH - A OH

dr ah., E] dt EJL,-

dw, _ — oH dw; _ oH

dz w; ’ d oW,

4z, _ —aH dz; _ OH

M_Ldt oz, dr a8z, (8)

where a;, e;, I;, \;, @;, Q, g are, respectively, the semimajor axes, eccen-
tricities, inclinations of the orbit planes to some reference plane (here the
equator of mg), mean longitudes, longitudes of the periapses, longitudes of
the ascending nodes of the orbit planes on the reference plane and mean longi-
tudes at epoch, and n; = Vp,/a? are the orbital mean motions. H is the
Hamiltonian given by

2 fa
= 3 KT
H ,Z'; 217 + @, 9)
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The two terms in € are called the direct and indirect terms, respectively.
From Eq. (4)

Fp=ri—ri=r + Kr (10)

where K1 = m /{mg + m,) and we see that the indirect part of ® is expand-
able in a rapidly converging series in X,(ry/ro):

L =m o my V
Ty " p T%—cos S12+0( my ) (1D

We neglect terms of order (m/mg)? and higher, and also let my + m; = m,
which means m; == m;. With these approximations, we can expand & to the
form (Allan 1969)

Gmym o - 2pd
(I):—z—alz—g-uC[lw mn zpluzie m ZPZIeII‘Iﬂgz"IZi Ccos ¢fmp[p1q;q1

where

¢€mp1p1q|q2 =~ 2p + M~ = 2py+Hghy — (€~ m— 2p )8,

+ € —m— 20 — g6, + g2,
. (13)

and where we assume a, > a;. InBq. (12) Cis a series in ai/ay, e, 3, 11,
13 whose lowest order term is of order (a /a,)¢; that is, the lowest order term
in C contains neither e nor /. The summation 1nd1ccs have the range 2 = € <
w, 0= p<{,0=m<{, — o< g<ow Animportant property of the series
is the equality of the coefficient of @ with the lowest power of e in the coeffi-
cient of the cosine and the equality of the coefficient of & with the lowest
power of /. When @ is expressed in terms of the canonical variables, L, W, Z
are confined to the coefficients of the cosines and A, w, z are confined to the
arguments. Rotational invariance requires that the sum of the coefficients in
each argument vanish.

Near a low order commensurability of the mean motions of two satel-
lites, the frequency of some of the terms becomes very small. Often the com-
bination of a large coefficient and a smal! frequency makes the perturbations
due to a single term completely dominant. Keeping only this term in the ex-
pansion of ¢ is equivalent to averaging over high-frequency terms and ignor-
ing all the remaining terms with small coefficients. This is a much more severe
approximation than neglecting the terms which are higher order in the masses,
because terms which have small frequencies but which are not the lowest
order in ¢ or I may have other factors in the coefficient of the cosine that make
them comparable in magnitude to the lowest order term. Still, keeping only
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the single term in & is usually a good approximation if e (or f) is not too
large. It is this model we shall investigate.

For the purpose of illustration, we shall choose a simple eccentricity type
resonance where a single term in @ dominates. The disturbing potential

becomes
Gmymy R . -
O = ——=Cre M cos(jr | — (j + k)ha + kés ). (14)
If j = k& =1, Eq. (14) would be appropriate for the Enceladus-Dione
resonance.

The secular motions of the nodes and periapses due to the oblateness of
g and the presence of the other satellites are important in separating the fre-
quencies of several variables having the same ratio of the coefficients of A,
and Ay (e.g., Ay — 203 + @, A — 2, + @;). Only because the secular
variations of @; and {}; are sufficiently different for the two satellites, can we
consider all but one resonance variable to be high frequency and hence ignor-
able. (We shall see later that two resonances with nearly identical frequencies
can still be treated independently provided the respective resonance variables
contatn no common longitudes of periapses or common longitudes of ascend-
ing nodes.) We can include these secular motions by adding to Bq. {14) the
terms from Hq. (12) with ¢¢ = 0, the zero frequency terms from the disturbing
functions involving the other satellites and the Sun as well as the secular terms
from expansion of m,’s nonspherical field. Rather than carry this exercise out
in detail, we note that

dw| . _ 9H
AT T8 T aw 13)

which we can obtain by adding the term — Wai, to H. Similarly — Z €, and
L, account for the secular motion of the node and the addition to the mean
motion. The subscript s denotes secular. Then

G?mgmi G mim3  GEmgmym3 c (ZWI |72
2L} 2L} L3 L,
X cos(jhy = (F + KAy — kw) — Widy — Z,0),
+ Likg — Wb — Ll + Liky
(16)

is the Hamiltonian for the two-body, simple eccentricity type resenance,
where from Eq. (7) W) = L,e3/2 has been used,

There are two sets of variables L;, W;, Z;, A;, w;, z; corresponding to
g? 6 degrees of freedom, but the above approximate form of A allows us to re-
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duce this to 4 degrees of freedom. Since z; = — (1}, does not appear in ® Fi.e.,
z; is cyclic), the Z; are constants of the motion and aH/8Z; = — (1 are inde-

pendent of the other variables. Next, the angle variables appear only in the
combination jA, — (j + kA, + ké; which suggests we make the further
change of vagiables (recall w; = — ;)

Oy =ik — G+, — by

0, = jh; — (j+ KAy — kwy

93 = }\1

84 = A2 (mn

The momenta ©; conjugate to 8; are obtained from the differential relation
(Brouwer and Clemence 1961, p. 539)

2

[ ©:d0; = 3 (L;AN; + widwy) (18)
e

I =

which yields

O, + 0+ 6,=1L;
—(+HEKO, +0;) + 6, =L,
—'ke} = Wl

kO, = W (19)

Since 61, 05 and ¢, do not appear in H, ©,, O, and O, are constants of the
motion, and the problem is reduced to one degree of freedom with only ¢ and
O, as variables.

Now 8, = — Wy/k = = L,(1 — V1 — e3) = — L,e}/2 and since it is
constant, we can set it equal to zero or include its value in O3 and Oy in
Eq. (19) with negligible change in the resonance behavior. Then in the new
variables

_ G'mimi Gimimi
2(0; + 02 200, — (j+ K)O]?

_ szlmgmoC(-— 2ke])k!2 cOS 91

[0, — (j + K}0,1[0; + jO 1
%d)s + %2—66.:2 + (Je] + e3));51
+[= G+ 08 + 01K, (20)

H =

From Eqgs. (19) and (7) we see that |9 << s, and |©,] << B; hence,
we can expand the first two terms in H to second order in ©/0; and 04/0,

i

§
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consistent with the magnitude of the terms kept in @. Since the coefficient of
the cosine is a factor m/mg smaller than the first two terms, we need not
expand the denominator of this term in ©,. We carry out the expansions, ab-
sorb all the constant terms into H, use W, as a variable instead of O, replace
the angle variable &, by #{ = 7k and drop the prime. Then with /I’ = — H
and dWy/dr = — aH’/d@, df /dr = aH'/dW,, we arrive at the Hamiltonian
used by Henrard and Lemaitre (1983),

I

H = oW, + W3 + 22w cos k8, @

where

Il

a = (jnf — (j + Knd + ki Wk

P -3[ 2 +(j+k)2]

2k% | ma? myaj

3-k
e=Coh)Hg  Emid (22)
where nF = n; + X; with ©; = L, and O, = L, being used. This Hamil-
tonian is the same form used by Yoder (1973,19795) in his original analytic
solution. ‘

The reason for transforming the angle variable to 8,/k from the old 4, is
to have &f; as the argument of the cosine in Eq. (21), We shall use a canonical
transformation below similar to x = (2W;)"/2 cos 9, and y = 2W)1"2 sin 6,
where the Hamiltonian in the new variables x and y is analytic at the origin for
k > 1 only with k8, as the cosine argument. This property of the disturbing
potential is called the d’Alembert characteristic. Although we shall explicitly
treat only the & = I case in detail, this proper choice of canonical variables is
an important consideration in the analysis of higher-order resonances.

‘We have assumed C to be constant without expressing it in terms of the
O;. This is justified as follows. The lowest-order term in C involves only
aj/ay. Then 8C/C ~ 8aia ~~ BL/L. Since ©5 = L| + jW,/k is a constant of
the motion, 8L, = —j 8Wi/k. But 8e /e, ~ SW/W, = (8L /L )/e? or
O(8CC)/e?. So the variation in the coefficient of the cosine during the con-
servative oscillations is determined almost completely by the variation in e,
and keeping C constant is a good approximation.

All three coefficients and the “constants™ absorbed in B’ will be slowly
varying as tides raised on m cause n{ and n¥ to decrease differentially. How-
ever, « is small near the resonance and the fractional change in e due to the
changes in n} will generally be much larger than the fractional change in 8 or
&. The exception to this condition occurs when the mass m, is sufficiently
larger than m; that {|jdn{/dr — (j -+ k)dni/dd]) is very small, where {) indi-
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cates averaged value. In this case substantial changes in the a; would oceur for
significant change in a. Since 88/8 ~ 8a/a and 8¢/& ~ da/a, the fractional
change in 8 and & would not be small compared to der/ee. However, for th'e
existing resonances among the satellites we can consider 8 and & approxi-
mately constant compared to o The approximation is least applicable to t.he
Mimas-Tethys resonance where mofm, == 17, but the physical processes in-
volved remain the same and are adequately described by the model.

The approximate constancy of 8 and & compared to o is a necessary con-
dition for the applicability of the Henrard-Lemaitre mode] in which the Hamil-
tonian is reduced to a dimensionless form with a single variable parameter. We
consider only the case k = 1, which applies to all the two-body resonances
among the satellites except the Mimas-Tethys resonance and even this can
be approximated as a k = 1 resonance because ma/m, is so large. Henrard
and Lemaitre (1983) simplify the Hamiltonian by the following change
in variables:

R = (gf_)zfs :
=0, +7 ifef>0
¢ =0, ifef <0
T = (ﬁi_z)uss i (23)
The Hamiltonian becomes
K=~-33+ )R+ R*— 2V2R cos ¢ (24)
where
and
O9R _ _ 9K dé _ oK . (26)
dr ad ’  dr oR

In Eq. (24) the variations due to tides are confined to the single parameter 8.

Since K is a constant of the motion in the absence of tides, the nature of
the motion can be ascertained by plotling R vs. ¢ for various values of K.
These curves are called the level curves of the Hamiltonian or constant energy
curves. It is more convenient to do this in Poincare variables, with

5
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x="V2Rcos ¢
¥y =V2Rsind . 2n

With V2R used instead of R in the definitions of x and v, the transformation
is canonical with

dx _ 9K dy _ 9K
dt dy ’ dr = ax (28)
and
2 2 2 232

2 4

where A = 3 (1 + §). Also V2R = €1, and the radius from the origin to the
trajectory measures the instantaneous eccentricity.
The stationary points follow from 9K/dx = ak/dy = 0 and are the
roots of
)
¥ —Ax-2=09,
y=0. (3

The parameter 8 has been constructed such that for § < 0 (A < 3) there are no
negative real roots of Eq. (30) and one positive real root, whereas for § > 0
(A > 3), there are two negative real roots and one positive real root.

A typical set of level curves is shown in Fig. 3, where A = 9. Curves for
positive and negative circulation and for libration are indicated. We define
libration here as any state where ¢ is bounded. The curve marked separatrix
separates regions of circulation from those of libration in Fig. 3, although it is
possible to have a librating system, according to our definition, without the
trajectory being inside the separatrix. There are three stationary poinis appar-
ent in Fig. 3 (two stable and one unstable corresponding to the roots of Eg.
30}, and a trajectory near the stable point on the negative x axis is not within
the separatrix but would correspond to libration about ¢ = 180°.

Henrard (personal communication, 1985) is careful to point cut that li-
bration of a resonance variable ¢ does not necessarily imply much dynamical
significance. In our example, ¢ could be librating even though #, and #, are
far from commensurability when. e is very small and & varies rapidly. In
this case, the libration has little or no effect on the system evolution unless
it is maintained until n, and n, approach the commensurability. There is
thus some argument for reserving the term “resonance” for those systems
described by a level curve contained within the separatrix (Henrard and
Lemaitre 1983). However, we shall retain our definition of libration, but keep
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Fig. 3. A typical set of level curves of the Hamiltonian appropriate to & two-body orbital reso-
nance. Positive and negative circulation and libration curves are indicated as well as the curve
{separatrix) separating ¢irculation from libration.

in mind that the “Tesonance” is significant only when r/n, is relatively close
to commensurability. (See the qualifications below for mere discussion on this
point.)

The character of the set of level curves depends on the value of A {or 8).
For example, there is only one stationary point and no separatrix for & < 3,
and both inner and outer curves of the separatrix expand as A increases above
3. As A is only slowly varying, the actual trajectories of the system in the xy
plane are very close to the trajectories for constant A and the system can be
thought to evolve slowly through a set of level curve diagrams as A varies. :1'0
follow the behavior of the system as the set of possible level curve trajectorics
changes with A, we need one more important principle. .

As long as A does not change very much during a period of the motion,

the action
J = ¢$Rde = $xdy 3D

is an adiabati¢c invariant. This has been proven for periodic systems with a
slowly varying parameter by Gardner (1959), Lenard (1959), and explicitly
for nonlinear oscillations appropriate to orbital resonance by Henrard (19824,
see also Landau and Lifshitz 1960; Yoder 19795). The exception to the adia-
batic conservation of J occurs when a trajectory crosses the separatrix since
the period on the separatrix is infinite, due to asymptotic approach to the un-
stable equilibrium point. Hence, we expect the action to be conserved until a

-

e
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A=R20

Fig. 4. Tidal evolution of two bodies toward orbital resonance as a series of level curves of the
Hamiltorian, The particular curve appropriate to the motion encloses the shaded area which is
the conserved system action determined by initial conditions far from resonance. The sense of
motion about the curves is shown in Fig. 3. This series illustrates automatic capture into
libration.

separatrix is crossed at which time the action will change in the transition to
a librating or oppositely circulating state, but thereafter remain constant
through further evolition following the transition. From Eq. (31), we see that
the action is just the area within a trajectory and is determined by initial con-
ditions far from resonance. Hence, we can identify the trajectory traversed by
the system at any stage of the evolution as that irajectory which encloses an
arca equal to the initial action integral or that area enclosed by one or both
curves of the separatrix (not the initial action) after a transition through that
separatrix. The series of level curve diagrams coupled with the adiabatically
conserved action allow us to understand in a simple way ali of the major char-
acteristics of the origin and evolution of orbital resonances. We do this by
considering the consequences of several initial conditions far from resonance
and two directions of approach to the resonance.

Figure 4 shows the trajectory evolution on a series of xy phase plane
plots for the case where A increases from negative values as the resonance is
approached. From Eqs. (22) and (25), a negative 5(A < 3) corresponds to
positive e and the resonance is being approached as the inside satellite catches
up to the resonance configuration by the more rapid expansion of its orbit; that
is, n/n; is decreasing. We have chosen a relatively small initial eccentricity
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far from resonance so the action (area inside trajectory) is small. Maintaining
the area inside the trajectory corresponding to the motion as A increases
through the series of diagrams shows that the system evolves smoothly into
libration about ¢ = 0°. We have included the separatrix trajectory in the dia-
grams after its appearance at A = 3. For the small eccentricity chosen as an
initial condition, the capture into resonance is certain. Subsequent evolution
within the resonance is seen to be a continued increase in the forced eccen-
tricity (determined by the separation from the origin of the stationary point
enclosed by the trajectory) as the amplitude of libration is reduced.

Figure 5 shows a similar evolution over the same change in A but starting
with a much larger eccentricity far from resonance. Now the separatrix forms
inside the circulation trajectory and expands as A increases until the outer
curve of the separatrix is nearly the same as the trajectory. At this point, the
trajectory must cross the separatrix and a transition from the state of positive
circulation must occur. This is the resonance encounter and the transition
from positive circulation can have but one of two outcomes. After following a
trajectory very close to the separatrix, the system can either reverse its direc-
tion of motion and trace the crescent shaped trajectory of libration (capture
into resonarnce) or continue its negative circulation (escape). The action is not
conserved across the transition, but assumes a new essentially constant value,
which is equal to the area inside the crescent-shaped separatrix at the time of
transition into libration (Fig. 5, A = 6) or to the area of the inside curve of the
separatrix for transition into negatjve circulation. The evolution beyond tran-
sition can now be followed as before with the proper trajectory once again
being determined by the conserved area within. In libration, the initial ampli-
tude is 180°, and it is reduced as the forced eccentricity increases, as shown in
Fig. 5. Unlike the situation for a small eccentricity far from resonance where
capture into libration was certain, here the capture is probabilistic. A proce-
dure for estimating that probability will be discussed below.

Comparison of Figs. 4 and 5 shows that the criterion for certain capture
into resonance is that the inifial action far from resonance be less than the area
inside the separatrix first formed when A = 3 (5 = 0). Since the initial trajec-
tories far from resonance are essentially circles centered at the origin, the cri-
terion for certain capture is

Jo=m(x} + y§) = 2mRy < J, = -6m (32)

whete Jg is directly proportional to ef and J, is the area inside the critical
separatrix for A = 3. The integral for J, is most easily done using the first
form of Eq. (31) involving R and ¢, where Eqs. (24) and (26) are used to
change the integration variable from ¢ to R and dR/d7 = 0 and dgp/d7 = O at
R(¢ = 180°) = R* are used to factor terms in the integrand. From Eq. (32)
the criterion becomes
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4=86 A=10 A=20

Fig. 5. Same as for Fig. 4 except now the separatrix forms before the resonance is reached be-
cause of the higher initial eccentricity. The series shows capture into libration which is now

p_rcbahi‘]istic. There is a discontinuous change in the action (shaded area) upon transition from
circulation to libration,

e%o<$(i)2I3 33
Vi a 28 G

for certain capture.

The age of a resonance can be estimated by comparing the current value
of A and the value of A in the past when the area inside the separatrix was
equal to the current action. If the current action is less than the area of the
critical separatrix at A = 3, the transition into resonance was automatic, and
the value of A when this occurred corresponds to the trajectory passing
through the origin of the xy plane. With current and initial values of A deter-
mined, their difference gives the change in o from Eq. (25), and the age T =
a/& where ¢ follows from the rate of change of ja¥ — (j + k)i due to tides
‘raised on mg. This age is qualified in one of the applications below where the
implicit assumptions op which it is based are questioned.

Before illustrating the calculation of the capture probability, we show the
consequence of approaching the resonance from the opposite direction with A
initially large and positive and decreasing. This corresponds to the case where
the orbits are initially too close together for. the resonance, but m, >> m,
such that m,’s orbit expands faster than m,’s even though it is farther away.
This evolution is shown in Fig. 6 where the system starts in negative circula-
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Fig. 6. Same as for Fig. 4, except now the resonance is approached from the opposite direction
(orbits initially too close for resonance). This evelution illustraies temporary inverted libration
but eventual certain escape from the resenance.

tion with relatively small eccentricity and action. As A decreases, the sepa-
ratrix shrinks and eventually the area enclosed by the inner curve of the sepa-
ratrix is equal to the initiai action (Fig. 6, A = 3.6). Again the system has no
choice but to (raverse a path first very ciose to the inside curve of the sepa-
ratrix and then close to the outside curve. This time, however, it must remain
in positive circulation as the separatrix continues to shrink. The shrinking
area enclosed by the separatrix means the action is only invariant after the
transition if the circulating trajectory is left behind as the separatrix shrinks
away from it. Capture into the resonance libration from this direction of ap-
proach is impossible. This was noted by Sinclair (1972) as well as Yoder
(1973) and is discussed in the review by Peale (1976%). However, it is more
simply understood in this approach due to Henrard and Lemaftre (1983), For
the initial conditions assumed for Fig. 6, we see that the system is temporarily
trapped in a state of inverted libration about ¢¢ = ar. A bound on e for such a
temporary inverted libration follows from the condition that the initial action
be less than the area of the inner separatrix when that separatrix passes
through the origin. The inverted libration is always unstable to continued tidal
evolution of the system.

The major consequence of passing through the resonance with decreasing
A is the substantial jump in the free eccentricity. The new action is the area
within the outer separatrix curve at the time of transition. If J, and J, are the

P G E e e e o 4
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areas within the inside and outside curves of the separatrix, respectively, J, =
27Ry, Jo = 27R,, where R, and R, are the nearly constant values of R on
far opposite sides of the resonance, respectively. The initial eccentricity deter-
mines J; which in turn determines the value of A = Ay at transition, Given
Ar, J; (the area of the outside separatrix) is determined by an integration
described earlier, and we find

Ji+ Ty =2m(R, + R,) = 2mhA, (34)
and from Eq. (25) with Ay = 3(87 + 1),

2&'1’

BL,

8%1‘*‘6%}':_ (35)

with e; and e ybeing initial and final values of ¢, far from resonance and ay
the value of e at transition. Note that Ay > 3 (§ > 0) for this transition, re-
quiring ar << 0 (Eq. 25).

Capture Probability

Sinclair (1972,1974) determined capture probabilities for several orbital
resonances encountered by the satellites of Saturn with numerical techniques,
and Yoder (1973) gave the first analytic determination of the probabilities for
general resonances (cf. Peale 19765). We shall outline a method developed by
Henrard (1982a) which led to a second, much simpler analytic determination
of the capture probability by Borderies and Goldreich (1983).

A capture probability only applies to the case where A > 3 (P, = 1 for Ay
<C 3 at resonance encounter) and a separatrix exists as the system approaches
resonance. Transition occurs when the separatrix has expanded to the point
where the system makes a last positive circulation very close to the outside
curve of the separatrix, and the next motion is a traverse in the opposite sense
along a trajectory very close to the inside curve of the separatrix. Let N be the
value of the Hamiltonian X(R, ¢, A) (Eq. 24) relative to its value K(R, ¢, A)
on the separatrix where R (¢b) corresponds to the separatrix. Since K(R, ¢, A)
= K*(R*, ¢*, A) where R* and ¢* are the values at the unstable equilibrium
point on the separatrix, we can write

N =K(R, r, A) — K*(R*, r* A). (36}

As K and K* are fixed if A is fixed, the total variation in N must be due to the
variation in A:

dv ( 9K 8E* ) dA (37

dr \ A BA ) dr -



180 S. Y. PEALE

As the separatrix for which K = K* approaches the circulation trajectory with
Hamiltonian X, necessarily N approaches zero as both X and X* change.
From Eq. (24) a larger circulation trajectory for given A when R is large
vields a larger K, so N is initially positive and dN/d¢ < 0,

For the last circulation trajectory near the outer separatrix curve before

the separatrix is crossed, let
B, = --—dt Agg( )dr=A3§ (iK——&)d%Qﬂ)
PRANY: Y oA/ R
(38)

‘be the change in the relative Hamiltonian, where d = dR/R = dR/R, since
the trajectory is very near the separatrix and ¢ is the outside curve. The next
motion will be a traverse of the inside separatrix curve in the opposite sense.
Call the change in the relative Hamiltonian for this traverse

3K+ \ dR
B = &f (—— - e (39)

Y

where ¢, refers to the inside separatrix curve, K also increases away from the
inside separatrix curve so, if B, is also << 0, capture is certain. If B, > |8 ||,
the system gains more relative energy in traverse of inner separatrix than it
lost in tracing the outer separatrix and escape is certain. If B, > O but B, +
B, << 0 and we assume the possible values of N over therange 0 = N < — B,
at the start of the last outside circulation to have a uniform probability distri-
bution, the capture probability is

B 1+ T
2 sin*l[ Rupax + Rin — 2R* ]
Rmax - Rmin
where we have used Eqgs. (24) and (26) to write
=-oA[ ———2& X @1)
R V(R = Ryn)Romax — R)

where B| = Rz, Rz = R i, the maximum and minimum values of R on the
separatrix. Equation (40) was ﬁrst obtained by Yoder (1973).

We need but evaluate R ., , R i, and R* on the separatrix in terms of A,
From Eq. (27), x* = — V2R* where x* is the most negative root of Eg. (30).
The extremes in R occur on the x axis, so from Egq. (29) with x,, =
V2R x> Xmin = V2R 50y Xmayx a0d X are roots of x* — 2Ax2 — 8x — 4K

5. RESONANCES 181

By

Fig. 7. Probabiiity of capture into a two-body rescnance with i yinp = jij + 1 as a function of
the value of A = Ag at the time of transition.

and x* is a double root. K can be expressed in terms of A and x* with the help
of Eq. (30), (x — x*)2 factored from the quartic and the remaining quadratic
solved for x ., and x ;.. There results the expression obtained by Borderies
and Goldreich (1984):

E, = 2 - 42)
1+ sin~1(sz) 732

where 5 = VAr/3, z = cos(£/3) + V3 sin(é/3) with cos £ = (Ap/3) 372,
P.(Ar) is known and we can evaluate P, as a function of the initial eccentricity
far from resonance by determining the area of the outside separatrix curve as
a function of A. Then Ay is the value of A corresponding to an area of the
outside separatrix curve equal to the initial action J = 2wR where Ry = e}
by Egs. (23) and (7). P, is given as a function of Ay for the j:j + 1 orbit-orbit
resonance in Fig. 7.

An Application

The resonance between Enceladus and Dione is of the type discussed in
the illustrative example above with j = & = 1. Table I gives the relevant pa-
rameters for the two satellites which, when substituted into Eq. (22}, yield

w = 0°072/day = 1.45 X 108 rad 57!
B =405 % 107% g7l cm~2
g = —3.347 X 10% g2 ¢m 5~3/2 (43)
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TABLE I
Parameter Values for the Enceladus-Pione Resonance
Enceladus Dione

n* 2622732/ day 1319535/ day

a 238,040 km. 377,420 km

e 0.6044 0.0022

G 0°410/day 0°084/day

mimg 1.5 x 1077 1.9 x 10°%
where € = — 1.19 is determined from the coefficient of cos(A | — 2A, + @)

in the expansion of ® for a,/a, = 0.63 corresponding to n(/n, = 2 (see,
e.g., Brouwer and Clemence 1961, p. 490). From Eq. (25), 8 = — 2.0, and
Enceladus and Dione are in a state where no separatrix has formed and the
capture into resonance is certain as noted by Sinclair (1972), Yoder (1973) and
others. In fact, from Eq. (33) capture would be certain for any 9 < 0.017
which is much larger than the current value of 0.0044.

The amplitude of libration of A ; — 2A4 + @4 about 0° is near 1° (Sinclair
1972). From Fig. 4, we see that the trajectories for § ~ — 2 are nearly cir-
cular, and the libration amplitnde yields the radius of the circle as p = V2R
fan 1° with R, being the value of R at the stationay_@int within the trajec-

" tory. From Eqs. (23) and (7), e; = 7.38 x 1073 V2R from which V2R =
0.603 when ¢, = 0.0044 and p = 0.0105. The action is just p2 and if this is
conserved, the transition into resonance occurred when the circle of radius p
passed through the origin, or the stationary point was at x = p. From Eq.
(30), this yields 8 = — 62.5 at transition and the age of the resonance is the
time for 8 to go from —62.5t0 —-2.

From Eqs. (25) and (22), d&/d¢ « da/d: = dnf/dt — 2dnf/dt +
dé,/dt, where

dn* - m{ R n?

_—9k LN LT 5_ (a4)
dt 2 2 my a QQ

with k, = 0.34 (Gavrilov and Zharkov 1977), @ > 1.6 X 104 (Goldreich
and Soter 1966) and R, being the Love number for Saturn, the dissipation
function for Saturn and the radius of the satellite, respectively. Substitution of
the values of the remaining parameters from Table I yields da/dt = — 1.7 X
10723 rad 5% and an age of the resonance of 1.6 Gyr.

Qualifications

The Henrard-Lemaitre formulation thus describes the origin and evo-
fution of orbital resonances in an orderly and easily understood manner.
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The somewhat diverse approaches to the study of such resonances by Allan
(1969}, Sinclair (1972,1974}, Greenberg (19734) and Yoder (1973), for ex-
ample, are hereby reduced to probably the simplest form and provide a basis
for any study of orbital resonances. As is often the case, however, this most
elegant and simple model must be applied with caution in interpreting the cur-
rent configuration and inferred histories of observed orbital resonances. Let
us begin with the above example of Enceladus-Dione which appears on the
surface to satisfy all the criteria for the model approximations.

Perhaps the most critical assumption is the isolation of a single resonance
term in R to simplify the Hamiltonian. The terms nearest in frequency all have
nyiny = 2, and those frequencies corresponding to the lowest order coeffi-
cients are

(2n¥ = 4n¥ + 20))) = — 1°496/day

(2n¥ — 4n¥ + Q) + ,) = — 1°170/day

(2n¥ — 4n¥ + 20),) = —0°844/day

n¥ — 2n¥ + &y = —0°254/day

20t — 4nf + @y + by = — 0°254/day
¥ —2nF + &, = 0. (45)

I

The frequencies are separated by the different secular motions of (); and &,;.
The identity of two frequencies depends on the existence of the last zero fre-
quency, and this identity would vanish with the resonance. The separation of
the frequencies in Egq. (45) is sufficient that all but the resonant term can be
considered high-frequency terms whose negligible influence justifies selec-
tion of only the single term in R for analysis of the existing configuration.
However, we are interested in the origin and evolution of the system and the
assumption of only a single term in R always dominating the dynamics is not
necessarily correct.

First, Sinclair (1972) noticed that the existing resonance would normally
be the last one encountered among those in Eq. (45) as n; was reduced. The
current orbital inclinations are quite small and uncertain. Sinclair (1974) used
Struve’s (1933) values of I| = I'y = 4.1 % 10~* rad to determine the values of
I; before an assumed transition from positive to negative circulation. Notice
from Figs. 4 and 3 that such a transition reduces the action and hence the
eccentricity in the example and would similarly reduce the inclination for an
inclination type resonance. So, having escaped capture into the series of in-
clination resonances implies larger inclinations in the past for the orbits of
Enceladus and Dione. These larger inclinations insure a nonzero probability
of escape for all the inclination resonances.

We can perform the same analysis as that above using the Henrard-
Lemaitre formulations for the resonance with 8, (=A; — 2A, + &;) as the
librating wvariable. The value of & = 2.87 %X 108 gl? cm s732 o =
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— (°254/day from Eq. (45) and 3 has the same value of 4.05 X 10-# g~1
cm™~2 as it had for the 8, (= A| — 2A, + &) libration, With ¢, = 0.0022 =
7.7 % 10~% V2R, the current action J = 25.65, which is the area of the in-
side separatrix curve at transition. This determines Ay = 13.0 and a capture
probability £, = 0.18 which was also found by Sinclair (1974). From nonzero
probability of escape for all the resonances, Sinclair (1974) showed the con-
sistency of the current Enceladus-Dione resonance with the tidal hypothesis of

. origin under the assumption that the resonances are encountered in the order
Eq. (45). However, from Eqs. (16) and (7) with d@,/d: = 8H/6W, = @y —
(C'/e,) cos 8, a small e, induces a large negative contribution to &, when
0, is small. For the value of e; = 7 X 1075 when libration was established
consistent with conserved action, @, = — 4°5/day so the resonance in
which we find Enceladus-Dione would be the first one encountered instead of
last as given by Eq. (45) (Sinclair 1974; Peate 197658).

The decrease in n§ — 2n¥ within the resonance means each of the other
resonances in the 2:1 set were encountered (resonance angles passed through
zero frequency) while the system was librating in the existing resonance. The
justification of the approximation of keeping a single term in R by other terms
being high frequency or having small coefficients is not necessarily valid.
However, Sinclair (1983) has pointed out the independence of some of the
resonances clustered around the 2: 1 commensurability in the sense that each
can evolve without significantly affecting the states of any of the others. This
follows from the fact that the orbital parameters affected by a given resonance
are often cssentially unique to that resonance. Such independence has been
demonstrated numerically by Wisdom (personal communication, 1983) in a
study of the two first-order eccentricity resonances. Second-order resonances
involving the sum of the two node longitudes or the sumn of the two longitudes
of pericenters do affect the same orbital parameters as other first- and second-
order 2:1 resonances, so one expects some coupling here. Wisdom’s (1983}
calculations indicate a weak effect on the evolutions of two overlapping reso-
nances in this case, but the resonances essentially still evolve independently
for Enceladus-Dione. The current occupancy of only the first-order eccen-
tricity resonance after apparently having passed through the other 2:1 possi-
bilities thus depends only on the nonzero probability of escape from each of
these other resonances, a condition found to be satisfied by Sinclair (1974).
The selection of a single term in the disturbing function for the study of a
particular resonance is valid even when the frequency is not separated from
that of another nearby resonance, provided that the only common angle vari-
ables in the two descriptions of the resonances are the mean longitudes.

Another qualification on the use of the simple model is that the eccen-
tricity not be too large or the satellite orbits not be too close together. This is
illustrated by the application of the model to the Titan-Hyperion resonance
where 3N | — 4A; + @, librates about 7 with an amplitude of 36° and with C
= 3.26 in Eq. (16). We use the mean eccentricity of Hyperion’s orbit of 0.104
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to determine R = 779¢%2 = 843 or x = V2R = 4.11 as the location of the
stationary point (Eqs. 7, 21, 22, 23). From Eq. (30}, 6 = 4458 or A =
3(8 + 1) = 16,37. From Eqgs. (24) and (26), the zero of d¢b/dr yields the value
of R = R, = 8.383 at the extrerve of the libration at ¢, = 36°. Substitution
of R,, into Eq. (24) yields the Hamiltonian K = — 73,580, Equation {29) can
now be solved for the extreme values of x with y = 0, and from Egs. (27),
(23) and (7}, the extremes 0.096 =< ¢ =< 0.111 with the stationary point at ¢ =
0.104. This is almost twice the amplitude of 0.004 found for the fluctuation in
¢ during the 1.75 yr libration of the resonance variable by Woltjer (1928; see
also Taylor 1984). [Most of the observed variation in Hyperion’s eccentricity
(0.08 = ¢ = 0.13) results from Titan’s large eccentricity and the relative mo-
tion of the pericenters.]

Much of the discrepancy can be traced to the expansion in Laplace co-
efficients and the neglect of higher harmenics of the resonance variable. Al-
though the factor e” appears in the coefficient of the harmonic cos[r(3A,
— 4hy + @3)], the factors Cla/a;) grow so rapidly with n that the coeffi-
cients are comparable in magnitude to that of the first harmonic. This slow
convergence of the expansion is also evident in the determination of the reso-
nance driving of @,’s retrograde motion. Henrard (19825) includes terms in
the disturbing potential up to the sixth harmonic of the resonance variable and
finds 0.103 < ¢ < 0.115, which is not a sufficient reduction of the discrep-
ancy. The simple theory where a single resonance term is picked from the
expansion of the disturbing function in Laplace coefficients is cleatly inade-
quate to describe the Titan-Hyperion resonance, although its application has
been dominant in the literature (see, e.g., Peale 19765).

It is noteworthy that the very small amplitude of libration for the current
Enceladus-Dione resonance is not necessarily an indication of a small free
eccentricity at transition——at least not as small as we indicated above. Dissi-
pation of energy in the variation of tides raised on Enceladus by Saturn neces-
sarily reduces the free eccentricity, and, as we shall see shortly, limits the
growth of the forced eccentricity (Sec. III). Tidal energy is dissipated in a
synchronously rotating satellite at the rate (Peale and Cassen 1978)

— 5 k3

where k3, O, are the potential Love number and dissipation function for the
sateflite. The eccentricity is the source of the variation of the amplitude and
orientation of the tidal bulge on the satellite leading to the dissipation (see
Burns’ chapter). The satellite cannot reduce its spin rate in synchronous lock
so the energy dissipated must come from the orbital energy — Gmgm/2a, and
a must decrease. But orbital angular momentum mV Gmga(l — e?) is con-
served (no transfer from spin), so AE/df = (Gm;my/2a?)datds leads to
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The amplitude of libration vanishes with the free eccentricity, so satellite dis-
sipation could have been the dominant cause of the small libration amplitude.
If this is true, the action is no longer a conserved quantity and the area of the
trajectory in the xy plane increases as we go back in time. There is also a
retardation of the rate of change of n¥ — 2n5¥ due to satellite dissipation (see
Sec. 1II below). However, if we ignore this for the time being, the larger area
enclosed by the circular trajectory in the past means it will intersect the origin
a shorter time ago, and the resonance age would be less than the 1.7 Gyr de-
termined above. If satellite dissipation were large enough, even the order in
which the resonances in Eq. (45) were encountered could be altered, since a
larger free e, in the past means &; was less negative at encounter.

It is also possible that the departure of the Enceladus-Dione pair from the
history inferred from the simple tidal model is much more drastic than the
meodification implied by the satellite dissipation alone. This follows from the
fact that Enceladus is a small, icy satellite and tidal dissipation for the current
eccentricity is limited (Yoder 1981a). Yet parts of this satellite’s surface are
almost crater-free and are therefore geologically young (Smith et al. 1982;
chapter by Morrison et al.). This requires considerable internal heating to
provide the necessary activity for smoothing the surface. Since the current
forced eccentricity of 0.0044 is too small for significant tidal heating of a
solid Enceladus, and since tidal heating appears to be the only viable means
for providing the energy (see the chapter by Schubert et al.), Enceladus’ ec-
centricity must have been considerably higher in the past. A proposed earlier
orbital resonance with Tethys has difficulty in generating sufficient eccen-
tricity (Yoder 19814), whereas a fairly recent 2: 1 resonance with Janus (one
of the coorbitals), although capable in principle of driving the eccentricity to
sufficiently large values, is precariously weak because of Janus’ small mass.

‘The unique thing about the latter hypothesis (Lissauer et al. 1984) is that
Janus is driven out by torques from density waves generated by Janus in Sat-
urn’s A ring at the 7:6, 6:5, etc. orbital resonance positions. The rate of an-
gular momentum transfer is so large that, were Janus locked into the 2: 1 reso-
nance with Enceladus, the system would be driven deep into the resonance
pushing Enceladus’ eccentricity to a large value determined by the dissipative
properties in Enceladus (see Sec. III). Enceladus would have approached the
2:1 resonance with Dione far more rapidly than inferred earlier from tides
raised on Saturn. Accordingly, the value of 7, — 2n, would have been much
smaller and the eccentricity much larger than those compatible with the
simple 2: 1 resonance existing today between Enceladus and Dione. The inter-
action with Dione would most likely have destroyed the 2:1 resonance be-
tween Enceladus and Janus because of this incompatibility and Dione’s far
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dominant mass. If this happened, Enceladus would have entered the 2: | reso-
nance with Dione with an eccentricity much too large to be sustained by tides
raised on Saturn in the face of the high rate of dissipation in Enceladus tend-
ing to reduce it. The eccentricity would have damped down to the current
value in only 17 Myr if the breakup of the 2: 1 resonance with Janus coincided
roughly with the establishment of the 2:1 resonance with Dione. This time is
determined by the current separation of Janus from the 2:1 resonance posi-
tion and the rate at which the ring torques are believed to be transferring an-
gular momenturm. This 17 Myr age of the Enceladus-Dione resonance, and
the evolution from high eccentricity to low is a drastically different history
from the 2.7 Gyr evolution inferred from the simple model. Perhaps a more
astounding result which is independent of the possible past existence of a
Janus-Enceladus resonance is that the ring torques on Janus and other close
ring moons are so large that the rings themselves are in a state of rapid
change. The rings bave insufficient angular momentum to transfer at the in-
ferred rate for very long and may therefore be less than 200 Myr old (Lissauer
et al. 1984),

Although the simple model with a single term in the disturbing potential
forms a basis for the discussion of the origin and evolution of the orbital reso-
nances among the major satellites of Saturn, circumstances require much
more elaborate models to adequately describe the Titan-Hyperion and the
Enceladus-Dione resonances. The former requires at least the inclusion of
higher harmonics of the resonance variable to describe the librations or an
expression not involving Laplace coefficients, whereas the latter almost cer-
tainly requires inclusion of dissipation within Enceladus which in turn may
imply a totally different history from that deduced from the simple model.
The Mimas-Tethys 2:1 resonance is reasonably well described by the simple
modei, although Tethys’ large mass, which results in a rate of expansion of
its orbit near that of Mimas, means the approach to resonance and evolu-
tion within the resonance is relatively slow. In this case, the reduction of
the Hamiltonian to a form containing a single variable parameter is less
appropriate.

The profound effects of dissipation within Enceladus on the dynamical
history of the satellite systems of which it is or may have been a part are still
speculative. In the Jupiter system, on the other hand, the dissipation of tidal
energy within the satellite Io (Peale et al. 1979) has made this body the most
thermally active solid object in the solar system (Smith et al. 19794; chapters
by Schubert et al. and Nash et al.). We can use the simple resonance model
again as a basis for discussing the resonances among the Galilean satellites,
but now dissipation in the satellites must be included explicitly. The inclusion
of this dissipation atlowed an understanding of the origin and evolution of the
three-body system of resonances among the Galilean satellites (Yoder 19796),
which had efuded scientific minds for 300 yr. It is this history of the Galilean
satellites which we describe in the next section.



