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IIl. THE GALILEAN SATELLITE SYSTEM

The possible importance of dissipation of tidal energy in the satellites to
the dynamical evolution of the Galilean satellite system is supported by the
effect of: that dissipation on the thermal evolution of lo, the innermost mem-
ber. The value of the forced eccentricity can be found within the framework of
the theory developed in Sec. II, even though more than a single term must be
kept in the disturbing function for the general analysis we develop below. The
effect of the libration of A, — 2A, + &, is to force Europa’s eccentricity but
not Io’s, since conjunctions of Io and Europa occur near Europa’s apocenter
and e, is forced to that value (o keep &, in step with the conjunctions (see,
e.g., Peale et al. 1979). The libration of A, — 23 + @ also forces Europa’s
eccentricity, and this additional forced eccentricity for Europa leads to a de-
crease in ny — 2n, to maintain A, — 2A, — @, in libration. The continued
libration of A; — 2X, - &/ forces e, to a larger value, but its magnitude is
determined completely by the value of the two-body parameter n; — 2n,; that
is, only the resonance term with argument A | - 2k, + @, is used for deter-
mining the forced value of ¢, and we can use the theory of Sec. II above.

Table II (Yoder and Peale 1981) lists the important parameters for the
Galilean satellites. In addition, n, — 2ny = ry — 21y = 07739/day from
which we obtain from Eq. (22) for the libration of Ay — 2A; + @,

0°900/day = 1.82 X 107 rad s~

o =
B =13716 x 1074 g~ cm™2
g = —1.989 X 10 g2 cm s73/2, (48a)
From Eq. (25)
5= —22823 {48b)

and the positive real root of Eq. (30) s x = 0.358, which yields the eccen-
tricity corresponding to the stable stationary point of e; = 0.0043 from Egs.
(7), (23) and (27). This is the mean eccentricity which must be maintained for
To’s orbit given the observed value of & in Eq. (48). Substitution of this value
of e, into Eq. (46) yields a rate of tidal heating of Io of (Peale et al. 1979)

21
dci] _ 1.9;110 erg s 49)

where a solid, homogeneous body with Love number k, = 3 pgR/19u is as-
sumed with rigidity # = 6.5 % 101! dyne cm 2 (that of the outer layers of the
Moor {Nakamura et al. 1976]), and the remaining parameters are from Table
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TABLE I
Orbital Parameters for the Galilean Satellites®

Ganymede Callisto

7.803 + 0.030

Europa
2.523 £ 0.025

Io
4.684 = 0,022

5.661 + 0.019

M/My x 109

21.5711

50.317¢6

101.1747

203.4890

n(°/day)
@, (°/day)
Q°/day)

a(km)

0.002
—0.002

0.007

0.048
—0.033

0.161
-0.134

0.007
1,071,000

1,884,000

671,400

422,000

0.0006
0.0015

0.0101
(9.2 +1.9)x107°

0.0041

(1£2)x 1075
(7.0 £ 1.9) x 10~

€forced (21 1)

€free

0.0073

0.0049
2400 + 10

0.0034
2631 + 10

0.0082
1569 = 10

sin f free

R(km)

1816 £ 5

1.79

1.93

3.03

3.53

plg cm™%)

*Table after Yoder and Peale (1981).
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IT. Io’s tidal heating is also considered in the chapters by Schubert et al. and
Nash et al.

The value of Q, for rocks on Earth is typically near 100 (Knopoff 1964),
and the value for Mars for tides raised by Phobos is comparable (Shor 1975;
Smith and Born 1976; cf. Burns’ chapter). Substitution of Q| = 100 in Eq.
(49) yields a rate of dissipation in Io which is three times that in the Moon
from radiogenic sources and a rate per unit volume in the center about 10
times the lunar average. As the Moon appears to be molten or nearly molten in
the center (Nakamura et al. 1976; Ferrari et al. 1980; Yoder 19815, Stevenson
and Yoder 1982), it is likely that the center of Io was melted by tidal dissipa-
tion. Once melted in the center, a Iess rigid Io suffers a greater amplitude of
tidal flexing leading to a higher dissipation per unit volume in the surrounding
shell. The total increase in dissipation exceeds the loss due to the reduction in
the volume of solid material in which the dissipation is occurring. Peale et al,
(1979) demonstrated that solid-state convection would be unable to rid the
satellite of this heat as fast as it was generated by the tides and therefore could
not prevent a thermal runaway from an initial state of melting in the center to a
state where only a relatively thin shell of solid material remained near the
surface. (Although it is likely that the inner core would solidify eventually
[Schubert et al, 1981 and chapter herein], the high rate of dissipation in the
shell persists as long as it is decoupled from the solid core by a liquid layer
[Cassen et al. 1982].) That Io had indeed been heated extensively by tides was
dramatically verified by the observation of extensive active volcanism in Voy-
ager 1 images (Smith et al. 1979q).

Although the stability of the Galilean resonances, including the libration
of Ay — 3Ay + 2X3 about 180°, was understood at the time of Laplace (this
latter resonance bears his name), the almost immeasurably small amplitude of
libration of the Laplace angle in particular defied explanation in the frame-
work of the assembly of the resonances by differential tidal expansion of the
orbits (see, e.g.. Sinclair 1975). In a major dynamical feat, Yoder (197956)
showed that inclusion of the dissipation of tidal energy in Io made almost all
the observational constraints on the system consistent with an origin and evo-
lution of the resonances from tides raised on Jupiter. (This analysis was later
elaborated and extended [see Yoder and Peale 1981].) The dissipation of tidal
energy in Io is completely dominant in rapidly reducing the amplitudes of hi-
bration to the small values currently observed, and one need no longer infer
special damping conditions at the time of origin of the satellite system. An
added bonus is the establishment of rather tight constraints on the rate of tidal
dissipation in both Io and Jupiter. The upper bound on the @ of Jupiter has led
to new dynamical processes inferred for the interiors of the giant planets (Ste-
venson 1983).

We can develop a formulation in canonical variables for the interaction
of the four satellites just as we did for two (see, e.g., Yoder and Peale 1981),
but it is more expedient to change variables to a noncanonical set of orbital
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eieme.nts a, e, I, @, Q, A If o; and B; are conjugate coordinates and momenta
used in Sec. II for a single satellite and the new variables are represented by
v, we have for Hamiltonian H

d?j 6 oH
- :kzl['}’j}yk]a,ﬁm (50)
where
3
_ dy; e ¥y vk
1> Vila, g i;:;( b0, 38, OB aa!-) (51)

are the Poisson brackets. There follows (see, e.g., Plummer 1918, p. 142):

da 2 Ja oH

dt m Y N

de _ Vl—ezﬂ_((l—el) ~Vi-e\ o
dt me W d me\/ﬁa dh
a7 _ tan ¥ [ (g]i+ _ag_) 1 oH
A mVua(l — £2) \ 9 dd msin I'Vpa(l — ¢2) 90
A _2 [aoH (- -Vi-& ol ___ _tnl _ 9H
dz my g da meV pa de mVya(l—e2) ol
do _ ~V1-e o0  tmwil

de meVua O mV pa(l — e?) o

o _ -1 OH
dt  msin IVua(l — e2) ol (52)
where
i Gmpm
- _ oM
n--3, 9 o
with
4 4
Gm;m; 1
) L X Gmomy ) — — —- (54)
hi=lo Ty k=2 foe Tk
i<j
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following from the generalization of Eq. (6) from two to four satellites. Ap-
propriate subscripts may be placed on the variables in Eq. (52) for each satel-
lite. Equation (54) is expanded to lowest order in m;/my and subsequently to a
series like Eq. (12), from which the important terms may be selected. To the
disturbing potential @ must be added the coniribution of the nonspherically
symmetric parts of Jupiter’s gravitational field leading to conservative secular
motions. The effects of tidal dissipation in both Jupiter and in the satellites
must also be included. Perturbations by the Sun are small and have been
omitted although, as we shall point out later, they may have an important in-
fluence on the interpretation of the libration amplitude of the Laplace angle.

The selection of the low-frequency (resonant) terms in the expanded ver-
sion of @ eliminates Callisto completely except for its contribution to the con-
servative secular motions. Next, the current values of n; — 2ny = 1, — 213
= 0°739/day coupled with the secular motions, 2;; = — 0°134/day (the sub-
script s indicates secular) means all the inclination resonances associated with
the 2: 1 commensurability (see Eq. 45) have not been encountered and are suf-
ficiently far away to be considered high frequency. Further simplification is
obtained by keeping only those resonant terms in @ which are first order in the
eccentricity, which is reasonable since these terms are also multiplied by one
factor of m;/m, and the eccentricities are relatively small. This last sim-
plification eliminates the terms with argument A; — 4A; + 3&,, since the
coefficient has a factor 3. The infinite number of terms in & has now been
reduced to only those terms involving the arguments Ay — 2A, + @y, A
— X, + @y, Ay — 23+ @3, Ay — 2A3 + &3 and the secular terms.

The general assumption is that the orbits of the Galilean satellites were
originally in a nonresonant configuration with Io being pushed away from
Jupiter most rapidly such that it approaches the 2: 1 resonance with Europa.
Those terms in $ involving A5 are thus initially high frequency and are not
included here. Although two resonant terms are important in &, the librations
M — 2\, + @ and A — 2\, + @, are semi-independent, since most of the
variation of each resonance variable is in the respective @;, and we may con-
sider the capture of each variable into resonance whether or not the other vari-
able is librating at the time. (See the discussion of the Enceladus-Dione rese-
nance in Sec. I1.) The fact that the &’ for both resonance variables are now
negative (Eq. 48b) and were more negative in the past, shows that both vari-
ables were captured into their respective librating states with certainty. Hence,
we can consider the subsequent evolution of the Io-Europa system with both
resonance variables librating.

From Eqgs. (52) and (53) with n; = Vi /a?

dﬂj — 3 EDL
dr m,-ajz 8?\,
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de, 1 9D
ds mzez\/#z‘af 06,
do, _ -1 D
dr mieN pa; %€ )

where higher-order terms in the equations of variation are omitted, consistent
with the order of the terms kept in &, &/} = d®/al = 0 and the equations
for A and I are not needed. With

—Gmm
P = #{Clelcos(hl — 20y + @) + Chescos(hy — 2h, + &)
(36)
for the resonance part with Cy = — 1.19 and €, = 0.428 for a,/a, = 0.63

(see, e.g., Brouwer and Clemence 1961, p. 490), we need but add the effects
of tidal dissipation and the secular motions.

The disturbing potential from which the tidal effects are found is given
by (Kaula 1964; see Burns’ chapter)

— k,GmR> i 2 — m')!

q)T(ms b) = a*3a3 =0 (2 + mf)| (2 - 8(}m’)

¢ ©
X B0 2 oIy )G (NG 2]

*
S COS(V2m'pq - E2m’pq - V2m’pq) 57

where m is the tide-raising body, k, and R are the Love number and radius,
respectively, of the body on which the tide is raised and

Vawpg = 2 =20+ QA — g — (2= 2p —mHQ— mY (59

with i being an angle defining the rotation of the tidally distorted body. The
starred variables refer to m as the body raising the tide and the unstarred vari-
ables refer to m as the body reacting to the tidal distribution of mass. Gener-
ally, secular tidal effects arise only when disturbed and disturbing bodies are
the same, so starred and unstarred coordinates are equated after the deriva-
tives relative to the unstarred variables are taken. There is a secular contribu-
tion to the perturbations of one satellite by the tide raised on mq by another if
the orbital periods are commensurate, but these are small and will be ne-
glected. The angle €,,,, is the phase lag of the response of the tidally dis-
torted body relative to the phase of the tide-generating potential and is numeri-
cally equal to 1/Q. The F3,,,(I) are closed functions of cos I and Gp,(e) are
infinite series, which are both tabulated in Kaunla (1964) and in Table I of
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Burns® chapter. For our purposes here we can set I = 0 in which case F:(0)
= — 1/2, Fay(0) = 3 and all remaining F’s are zero. The d@r/dA term must
be retained in the de/d¢ equation since those terms in Eq. (57) with g = O are
not factored by e.

Substitution of Eqs. (56) and (57) into Eq. (55) yields

dny _ 5, 3 2 a; (C,e, sin 8, + Cye; sin 6,)
d: 2 mg ajl

— cin% [t —00D, — 12.75)81]

dny, _ — g n3 (Cye; sin B; + Che; sin 0;)
ds hy
- Czn% [1 - (7Dg_ — 12.75)2%]

dey _ My A ¢ sing, — S (7D, — 4.75)e,
dt Hig as 3

de, _ my : _ Lafa — 475

3 = o M2Casin 8, 5 (ID2 = 4.75)e;
dd]l _ mz al C] +

TR my ay € cos 8, + &,

L7 R TRL L NI (59)
ds mg €3

where 01 = 1\,] - 2}\2 + (1'1 and 92 = )\,1 - 2)\2 + 6)2 and

_9 k3 (R myi
“ T2, \a; ) my
] =k_5£_0_2(_&)5 9 (60)
b k% m:‘) Ry fo'

The Love numbers kb = 3p,g;R;/19u, for the satellites are those for a homo-
geneous, incompressible sphere, and f is an enhancement factor to account for
added dissipation if a satellite interior is partially molten. Equations (39) rep-
resent the variations with dissipative effects included, both in Jupiter and in
the satellites. The D; are measures of the ratio of the dissipation within the
satellites to that in Jupiter. The satellite dissipation tends to increase n; and
decrease e;. The numerical constant in the coefficient of e; corresponds to the
lowest-order term in eccentricity for dissipation in Jupiter, and it leads to an
increase in e; and a decrease in ;. The ¢;n? are just the rates of change of n;
from tidal torgues from myg for m; in a circular orbit.

We can simplify the dissipative terms by noting that kgl) = (1.036 for u
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=5 X 10" dyne cm 2 and that k4 = 0.38 (Gavrilov and Zharkov 1977) from
which

9,
D; > 0.478 5 61)

since f > 1. But Q; > 6 X 104 from the proximity of lo to Jupiter after 4.6
Gyr (Goldreich and Soter 1966), so with Q| = 0{100) by analogy with ter-
restrial rocks, D) > 300 (we shall argue later that D; = 4000), and 7D, >>
the numerical constant in the coefficients of ¢ ,. This means the effect of dissi-
pation in Jupiter in changing e and in the e, effect on n is small compared to
the effect of dissipation in the satellite and may be neglected. Next c,n3 =
0.026 c;n{ and we also make little error in neglecting the dissipation in
Europa altogether.

Equations (59) are most easily solved by changing variables first to h; =
e;Sin @;, k; = ¢; cos @; to eliminate the singularity when ¢; = 0 and finally to
pi = ki — by, g, = k; + ok, where ¢ = V'~ 1. The dissipative terms are
written in terms of the new variables as follows:

dh de; da
il - 1
= sin @, + ¢ cos
dt diss dt t 1 @ ! dt

7 L : _
——?clnlDle]sme+mﬂe[cosw1 (62)

where only the secular @, enters here since the resonance-controlled motion
is accounted for by terms with argument ;. There results

d; a; m 7 :
—(%j—= — ?;-';I”i” Cy exp(t¥) — I:? cimDy + stl]pl

d a 7 1
—C;]leml a; €y exp(— 1) ‘[ cyn Dy - LC'331}‘?1

d m 7 5

_(z;’tl = —in, m; C, exp(tV)) — [? canaDy + twsz]Pz

d 7 :

J—df =, z—;CZ exp(— V) — [? CatipDy — “"sZ] 92 (63)

where Vi = Ay — 2X,. The equations for 7, and #, are unchanged except for
dropping the small numerical constant in the coefficients of e;.

The equations are solved by successive approximations justified as fol-
lows. Before the system entered the resonances, the free eccentricities of Io
and Europa were damped at rates given by Eq. (47) with time constants of
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3.3 X 104 O, yr
1.4 X 106 Q5 yr. (64)

T
T2

With Q; = 100 both eccentricities must have been extremely small by the
time the 2:1 commensurability was approached. The automatic transitions
into libration as described in Fig. 4 occurred when the 8’s were very negative
with the trajectory in the phase plane being a tiny circle. There could have
been only a negligibly small fluctuation in nf — 2n§ even when the libration
in @; was 90° immediately after libration began since the libratioas are accom-
modated by the variations in &; (see, e.g., Peale 1976b). As the forced eccen-
tricity grows (the small circular trajectory moving to the right of the origin in
Fig. 4), librations could begin to cause fluctuations in n¥ — 2n¥, but the
librations are reduced to negligible amplitude by this time as can be perceived
from Fig. 4 with a tiny circular trajectory about the stationary point on the
positive x| axis. Hence, throughout the history of the evolving two-body reso-
nance Vi = n¥ - 2nr¥ (nf = n; + Ay; Eq. 16) is only slowly varying, and we
can use the zero order solution n¥ = constant in Eqs. (63). '

Eguations (63) now separate from the #; equations and, with v, = V| =
rY — 2r3, have the particular solutions

g aimy O ‘+
P iy aZ mG (Pl + (bsl) exp "(vl gl)
po= —ny T2 exp iyt + £5) (65)

my (v + @g)
where éi are the complex conjugates of Eq. (63) and

7 emD;
) L0 o B 66
& 3 v+ ey (66)

We have used 1 + &, = exp t£; and neglected ¢7 in the denominator. The
solution of the homogeneous equation

7 :
Pi= P exp[ 3 cymDy — “Un]?f {67

is a transient with the very short time constant given by Eq. (64), and it can be
ignored. Note that the damping of the free eccentricity represented by Eq.
(67) coincides with the damping of the libration amplitude of the resonance
variable. The stationary solution in terms of the forced eccentricity and the
center of libration follows from Eq. (65), since p; = e[ C0S @; — (2, 8in & .
‘We obtain

i

Hidge

e e i
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= —p, 4 C
—n _

e =
’ a; Mg VT @y
" C
ey = ng b ——F—
my ¥+ dgn
@ = = (W +£)
@y = -V + &)+ (68)

where ¢;; indicates the value of e, forced by m;. The effect of satellite dissipa-
tion is to cause conjunctions to occur slightly past the pericenter of To’s orbit
and past the apocenter of Europa’s orbit. Thatis, ¥V} + &, = A; — 2A, + &,
=—¢&sowhenA; = Ay, Ay = @, + §,. There is an additional phase shift in
the same direction from the secular decrease in n| causing it to arrive late at
the conjunction point. This latter phase shift can be determined from the con-
dition that (d/d#}(n; — 2n, + &,) = 0 but the effect is relatively small com-
pared to the satellite dissipation and will be neglected.

Now e; cos @; and ¢, sin &, obtained from Eq. (65) are known functions
of time which, when substituted into the equations for dr;/d¢ yield

dn a; m

“8?1‘: —c ni(1 — 14D e + 7 czn%-a—;Tn—?—Dze%,

dn, _ -~ mp; dj

- —an%(l -+ IDze%l) — 14 —;}—j—;n%chleﬁ. (69)

We neglect the dissipation in Europa compared to that in Io and combine these
to give

dv dn dn,
= a2 g0 = —cnl(l = 345D eh) + 26,03, (70)

We have used Egs. (66) and (68) to obtain Egs. (69) and (70). In Eq. (70) we
see that dv,/d¢ vanishes when e, = (34.5D,)~!, a consequence of the dis-
sipative effects in Io tending to reduce e balancing the effect of tides raised
on Jupiter tending to increase e, by driving n, closer to the exact commen-
surability. Once #| = 0, ¢y, and ¢, have equilibrium values determined by
Eq. (68) which change only on the slow time scale of the orbit expansion.
Transfer of angular momentum between m, and m, is not efficient until n, is
reasonably close to 2n, and e, is close to its equilibrium value. The time
required for e, to approach equilibrium is thus comparable to that for #| to
approach 2r, from some unknown initial value. The value of D | = 4200 de-
termined below leads to e, = 0.0026 and from Eq. (68) e, = 0.0014 at
equilibrium. '
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After equilibrium is reached, the system expands with the outward accel-
eration of Europa maintaining its mean motion at a fixed factor near 0.5 times
the mean motion of lo. This stable state is maintained until Europa encounters
the 2:1 resonance with Ganymede. Just as dissipation in Io tends to repel
Europa by the secular transfer of angular momentum, dissipation in Europa
would tend to transfer angular momentum to Ganymede in the 2: 1 resonance.
However, if Buropa were acting alone, the equilibrium eccentricity for the
Europa-Ganymede interaction would be three times the current vatue of 0.01.
Long before this can happen, the frequency », = n3 — 2n¥ of the outer pair
approaches »; = n¥ — 2n¥ of the inner pair. The vanishing of the difference
¥, — v, describes the presently observed three-body Laplace relation.

Once the 2: 1 resonance with Ganymede is approached, we must add the
appropriate resonance terms in @ for the Europa-Ganymede interaction. Cor-
responding To-Ganymede terms are omitted as they are third order in e, so o
and Ganymede interact almost entirely by using Europa as an intermediary.

The disturbing function becomes '

® = @j;”—*gw[clel cos(hj — 20y + ;) + Caeg cos(h; — 20, + @y)]
+ Grmyms . .

o [Ciescos(hy — 2hg -+ @y) + Caes cos(hy — 23 + @3)]

(71)

and the variations in n;, e;, &; follow from Egs. (55} and (57). The procedure
is identical to that used before, and we find

my Cycos(Vi+&5) | m ay € cos(V + &)

€5 COS By = = p

2 2 g vy + W 2 Mg 4s Va + Wy
g5 8in @y = ng T Cpsin(V; + &) n, 2392 C, sin(¥; + £3)

"y L 41 + 6Js2 Mg s L] + [0
- my C,cos(Vs + =
€3 C08 Wy = — Ry ;z—‘ 2 v, ("I*Z(I) 354) -+ €30 CXP[“‘ Kt]COS w3l
5.
.. _ o my C,sin(l + £4)

3 8in @y = R + e45 X Ktlsin é4,¢ 72

3 3 3 g vy + G 30 expl — Kt} 3s 72

where V, = A, — 2\, &, is given for i = 3, 4 by Eq. (66) with v, = ny — 2n;
replacing ¥, and e, is an initial free eccentricity. The expressions for e4
cos @, and e, sin @, are still given by the real and imaginary parts of Eq.
(65), and we have retained the (not so) transient solution for m4 with K = 7/3
¢4n3D 5 as the inverse of the time constant also given by Eq. (47). This time
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constant is 2.5 X 1075 p3Q5 yr which perhaps should have led to a more
damped e+ if the rigidity ps were that of ice (4.8 x 1010 dyne cm~2). But
¢3q 18 observed to be about 0.0015 compared to a forced e, = 0.0007 and A,
- 2A3 + @; is not librating; that is, the circular trajectory of radius e 4 in
Fig. 4 encloses the origin as the center of the circle is a distance & e3; < e4,
away.

If we neglect £; and ¢;n? for i > 1, substitute Eq. (72) into the new ex-
pressions for dn;/ds and write the forced values of the eccentricities as

€13 = — _L al Cl
Ymy ay vy + dy
€y = n in_l__gl_
! z mg v+ dgn
» my 4 C
e e (73)

My as v, + @p

where e; = e, + ey is now forced by both 1o and Ganymede, we find

dni 2 Hatis d cC
i = B 1“2 :
d 3?11]1,2 m% a3 vy + Ci)sz Sln(Vl - Vz) - CIH%(I - 14D1e%),
dnz 3 Mimy Qs ‘ ( 6
= p c,C : g i -

dr 2 mg ay 12 Va + (DSZ L + 6.132 )SIn(Vl VZ}

S l4Cin} L2 p et
dn3 - 2 MM, C Czﬂz
dr = 6713 m% vy + d) SlIl(Vl - Vz) (74)

With ¢ = Ay — 3N, + 2X3 = V; — V4, we can write from Eq. (74)

a2 .
dz‘f + Andsing = —c n}(1 — 44.8D %) (75)

dv .
-j + (A — 24ndsing = —cni(l — 34.5D,e%,) (76)

where

A :A;73A2+2A3

a, Ham n
Ay =3C,C, B Mty g
ay mg vyt g
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2n 2
Ay = —3C,Cy 2L ——w’”lm3( 2 — 4 )

a, mj \vytdg vt og
2
g \* mima na €))
= O, —= = .
A3 = 6C, 2( a3) mg v+ 0o

The left-hand side of Eq. (75) is that obtained by Laplace apd reveals the pen-
dulumlike stability of the libration of ¢. The right-hand side of Eq (75)‘ in-
cludes the effects of dissipative tides raised on Jupiter by fo and- of tidal dissi-
pation in Io only. Inclusion of dissipation in the remaining satellites has only a
small effect on the outcome. . .

The encounter of Europa with the 2:1 commensurability with Ganymede
has introduced fluctuations into v as indicated by Eq. (76). It is these fiuc.:tua—
tions which hold the key to the capture of ¢ into libration. We can eliminate
sin ¢ between Eqgs. (75) and (76) to yield

dvy _ A1 =24 do 4390 x2(1 - 12.6D1eh).  (78)
di A dr

Integration of Eq. (78) gives

Y = 0.686 + vip - 9

where (¢} = 0.68 {¢) + vyqis slowly varying. ‘

At resonance {¢) = 0 and ¢ represents fluctuations about zero with ()
= p . For the approach to resonance we can define 8¢ as the periodic part (?f
¢ which is a fluctuation about some mean value. The fluctuating part of »; is

thus
sv; = 0.683¢. (80)

Equation (75) contains v and v, through A and through e, It is the fluctua-
tions in A and e, through v and »; which define the capture scheme. The
fluctuations in », follow from the definition of o = v — ¥

Sy, = vy — S = —0.328¢. (81}
Now SA/A = 0.04 S¢/(v, + @y) whereas 8(el)ied, = —1.36 do/(v,
+ @), 50 we can neglect the former and write
1.365¢ ,
eh = <e%2>[1 - ﬁ] (82)

and Eq. (753) becomes

S SECTE W
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o+ Andsing = — ¢ ri(l — 44.8De}) — obe (83)

where

2 2
_ cniDe
o= 6091112
v, + gy

(84)

and where e, is now the average value with the fluctuations explicitly dis-

played by 8.

Initially ¢ = »; — v, < 0 since v, = n, — 2n; must be large. S0 (¢) = 0
can only be approached if —c;a3(1 — 44.8D,e}) > 0 or e, >
(1/44.8D )12, But this is assured if the equilibrium in the To-Europa 2: 1 reso-
nance is reached before encounter with Ganymede since e, = (1/34.5D )12
in that case.

Equation (83) is that of a pendulum with an applied torque good for ei-
ther circulation or libration of the Laplace angle . As the system passes
through resonance, the mean value of ¢ is essentially zero and 8¢ = ¢. Re-
placing 8¢ by ¢ in Eq. (83) yields a form identical with that derived for
spin-orbit coupling by Goldreich and Peale (1966), and we can use their ex-

pression for the capture probability to obtain (Yoder 1979%; Yoder and Peale
1981)

2 2

S iy THE (85)
4 olAnZi? ( 3700 )
where o7 = — ¢ ni(1 — 44.8D e?,) is the secular rate of change in {¢) from

the tidal expansion of the orbits and e 5 = (1/34.5D ) at the time of capture
is used to obtain the final form with Egs, (73) and (77) giving v; + @, in
terms of D) in A and ¢. Capture into the resonance is certain if D; << 3700.
The ¢ term will damp the librations in ¢ and we see directly how the
dissipation in Io can provide the previously elusive means of accounting for
the extremely small amplitude of the Laplace libration. The tides will con-
tinue to reduce n; and, with the addition of Ganymede to the resonant system,
Eq. (78) shows that v, is also further reduced as e, increases toward a new
equilibrium value of (12.60 )1/, In libration {dw/d¢) = 0 in Eq. (78). If the
current value of ¢; = 0.0041 is the equilibrium value, D, = 4600. A larger
equilibrium e |, would result in a smaller D, and we see from Eq. (83) that

P.=009. (86)

Henrard (1983) has refined the mathematical modei used here and finds P,
= 1, with similarly slight changes in other parameters. That the value of e is
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indeed currently at equilibrium follows from the analysis of the damping of

the libration in ¢. .
We pointed out in the discussion of Enceladus that the action, here repre-

sented by

J = $odyp , (&7

is no longer conserved when there is dissipation in th(? satf.:llites, z_md we see
from Eq. (87) that J vanishes with the amplitude of -11brat10n. ’_I‘hls 'suggests
we follow the decrease in J to analyze the tidal damp1_ng of the libration in ¢.
This approach is especially convenient because it avoids altogether any ;:_»rob—
lems with the infinite period on the separatrix which has to be dealt with if we
MONItoT @, directly. If we write the libration energy as

E= %—g'az—An%COS(‘o (88)

then J = J(E, A), and

& _|dE 9 ﬂé__a_] .
”&T*[dz oF T ar oA [P0
=[(“a? 4 dr ) oE T oA 9P (

whete 9E/at is with A held constant and follows by multiplying Eq. (83) by ¢,

. .o dAY 3 , dA 3 |..
m—z[(—m,oz+<pfrpﬂ-nzcos<p—&r—)ﬁ—+ & aA}gﬁ«pdgo. (90)

Solving Eq. (88) for ¢, we find d¢/3E = /¢ and ol DA =_n2 cos ¢/ep.
Making these substitutions in Eq. (90) and averaging over a period 7 yields

LA ©1)
< a > aJ
and
t
J(1) = J(0) exp f |~ ot ©2)

where T = $¢ ~!de, o and ¢y are assumed constant during the averaging over
the libration period.

S
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An explicit solution of Eq. (91) follows if we change the integration vari-
able from tto z = y /¥, wherey, = », + @, and ¥ is the value of y at the
equilibrium e, = (12.6D;)~ 12 (Yoder and Peale 1981). There results

A V2w e, | 2R — 22) 76
‘A(O) g Sin? = [Z_z(l i ] (93)

for smalt libration amplitude ¢,,, where the Laplace resonance was estab-
lished at 1 = O when z = zo = 1.63. From Eq. (77) A(£)/A(0) = [z4 — (&,
— W)y l/z —~ (@ — @)y, ] and Eq. (93) vields z = 1.047 for a current

~ amplitude of ¢, = 0°066 (Lieske 1980). From a solution of Eq. (78) with

(o) =0,

_ Y1 _ 1 I+z 11—z .
T 8320, [20 2 ln( T, 94)

which yields an age of the Laplace resonance of (Yoder and Peale 1981}
t = 1600 Q, yr (95)

for z = 1.047. If o,, = 0°066 is not a remnant amplitude of the damping pro-
cess, Eq. (95) is not applicable and the age of the resonance cannot be deter-
mined in terms of ;. The amplitude may be forced by a solar perturbation
(Yoder and Peale 1981).

The more important result of the damping analysis is that @y — 0 as
z—> 1, i.e., as the system approaches equilibrium. The value of 0 = 02066
and z = 1.047 with e, = 0.0041 gives e}, = (13D,)~12 = 0.0043 at equi-
librium from which D; = 4200. If ¢ 12 = 0.0041 is the equilibrium value (¢,
= 07066 not a remnant amplitude), D | = 4600. Even if @ = 07066 is only an
upper bound on the free amplitude, Eq. (95) places an upper bound on Q; of

0;=3x 108 (96)

since ¢ << 4.6.Gyr.

The upper bound on Q; given in Eq. (96) is also supported by the obser-
vation of the extensive thermal activity on Jo. Surely the tidal dissipation in Io
Is at least as high as the energy generated within from radioactive decay,
since, for example, the Moon most likely has a similar content of radioactive
elements as lo, yet shows no current thermal activity. Cassen et al, (1979h)
have estimated the lunar heat source from radioactivity to be 6.9 x 108
erg g~! s71 at the present time with nearly four times this amount 4.6 Gyr
ago. This implies a current deposition of radiogenic heat of 6 X 108 erg s~1,
and from Eq. (49) Q; = 300 if tidal dissipation is to exceed this. From Eq.
(60) with Dy = 4200, k" = 0.036, f= 1, Q; = 2.6 x 106.
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This upper bound on Q; is considerably below some estimafs B?f o ;
from first principles (Goldreich and Nichol§on 1?7?; H.ubb_arcl 1?7 ; urnst
chapter), and has led to the suggestion that tidal dissipation in Jupiter ma};l no
have caused the assembly of the resonances. The Fesonances 'wou.ld then_ a\;c::f
to be assembled by unspecified processes at the time the Jupiter sysiuenll itse
was formed (see, e.g., Greenberg 1982a). However, the obser'ved dissipation
in To would result in an increase in »; and an eventual destructhn of the.reso—
nances if there were no transfer of angular momentum .fr{?m Jupiter tending :o
decrease ». (Only the term containing D, woulc} remain in I_E.q. .783 Tl;]e on S}i
way a primordial origin could be compatiblej with obse,rvatlon is for ! ’e sy .
tem to have started deeper in the resonance with larger e’s and smaller s, an
we would now be watching the system relax toward smaller values of eccen-

ici le and Greenberg 1980).
trlmt)lz-lg::ver, a linear stabié;ity analysis (Yoder and.Peale 1981) has shown tihe
Laplace resonance to be unstable at the current stationary values of the ang es
for e, > 0.012, so the system could probably th have started any Qeep;r in
the resonance than this. An origin deeper within the resonance m1ghlt 1ave
been possible if the stationary values of the angles change and osc;lla;;gc;s
about these angles remain stable for e, = 0.012 (Qreenberg 1984b, ,
and schemes for storage of the system on the other §1de of t}‘m resonance o;an
be contrived. Fowever, the latter schemes are highly 1mp1au§1l?lf: and noneo ;1;
been shown even to be possible (Yoder and Peale 198 1). An 1n'1t1a1 e, > ‘;) "
would in any case be rapidly reduced to values. fess than this bouélcl y ;;
expécted high rate of dissipation in lo. If0.012 is assun_led tobe a ﬁm UIt)}I; .
bound on e;, the total energy available for he.at.lr.lg Tois someyvhat .e}s;s a:
the change in the orbital energy between the initial configuration WI;' e .
0.012 and the present configuration with ¢, = 0.9041 under ;1;13 condition oc1
conserved angular momentum. This latter energy 1s 55X IQ erg co;npared
with about 2 X 103 erg available from radioactive d§cay in Io (Yoder ;mt
Peale 1981). As tidal dissipation must exceed the rac}mgemc source (;fd. ea
today and would have been larger in the past, one can infer that the tida 1:51—
pation has been considerably more than that necessary to relax the sys ein
from its most extreme resonance configuration Fo that we see today.. The only
way to accommodate this dissipation is for Jupiter to supply sufficient torcljlue
to retard the relaxation. Otherwise the system would have relaxed to sma e;
eccentricities than we now observe (Peale and Greenberg 1980; Yo.dfzr an
Peale 1981). The current eccentricity is thercf'ore close to the E:ql.llhbrﬂ]il
value whether or not the resonance was primordial and the upper bound Q; =
6 sti lies. ‘ ‘
> }S?evitilllgozp?w%) has found a mechanism of di§sipation o.f tl‘dal energy (11n
Jupiter involving a phase change of helium which vields @, within the bounds
i namics of the satellite systerm. '
lmpo'sl’?itg\:fl:; gzund'Q ;> 6.6 x 104 establishe.d by the proximity of Io to
Jupiter after 4.5 Gyr is apparently in conflict with the measured heat flow
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from the satellite, which has been estimated to be near 1500 erg cm 2 g1
averaged over the surface (Matson et al. 1981¢; Sinton 1981; Morrison and
Telesco 1980; chapter by Schubert et al.}. One can calculate the dissipation in
Io as a function of Q, independent of the properties of the satellite provided
that an equilibrium configuration is assumed (Lissauer et al. 1984). For a
given Q;, the rate at which the torque does work on Io is known and the rate
of increase in the orbital energy in the preserved configuration can be calcy-
lated. The rate of work done exceeds the rate of increase in the orbital energy
by the rate at which energy is dissipated in Io. For minimum {2 this dissipa-
tion corresponds to a surface flux density of about 800 erg cm=2 s~! o only
about half of that estimated from observation. It has been pointed out by
Johnson et al. (1984) that the observations of lo in the infrared from which the
heat flow had been estimated were done while To was eclipsed by Jupiter and
were all therefore of the same hemisphere. Since the estimates of total heat
fiux had been made on the assumption of a uniform distribution of sources, a
lack of sources on the far hemisphere would reduce these estimates to values
near the above maximum average heat flux determined by the dynamical con-
straints. Further observations of lo at a variety of phases do show a concentra-
tion of hot spots in the previously observed hemisphere (To eclipsed when
viewed from Earth) (Johnson et al. 1984), but continuing heat flux estimates
from all sources show time fluctuations about 1500 erg cm~2 s=! with no ap-
parent trend in the mean value (McEwen et al. 1985). This implies that the
heat flux observed over the last six years must considerably exceed the long-
term average flux.

Yoder’s (1979) solution of the long-standing problem of the origin and
subsequent damping of the Laplace libration is one of the most outstanding
accomplishments of dynamical analysis during the past decade. Tt was prob-
ably not anticipated that the solution of this particular problem in dynamical
evolution would also lead to such narrow bounds on the dissipative properties
of a giant gaseous planet.

The understanding of the origin and evolution of the resonances among
the Galilean satellites has been a fascinating exercise with the introduction of
the dissipation of tidal energy in the satellites providing a solution to a long-
standing enigma about the route to the currently completely damped configu-
ration. We turn now to a system in which dissipation appears to be more im-
portant in drastically altering the dynamical configuration in the future than it
has been in establishing the current state. The interest in the coorbital satel-
lites of Saturn discussed in the next section is generated by their being bodies
of comparable mass locked in 1:1 orbital resonance and having such a large
amplitude of libration that one satellite approaches quite close to the other,
alternately in front and behind. An elegantly simple modification of the re-
stricted three-body problem provides an adequate description of the system

and allows a determination of the masses and ultimately the densities of both
satellites.
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IV. THE COORBITAL SATELLITES OF SATURN

The 1:1 orbital resonance has received an enormous amount of attention
in the literature as part of a more general study of the restricted three-body
problem (see, e.g., Szebehely 1967) with application to the Trojan asteroids.
These asteroids librate about the stable stationary points of the restricted
three-body problem, the L, and L5 points 60° ahead and behind Jupiter with
average mean motions identical to that of Jupiter. Three more Trojan-type ob-
jects were found among the satellites of Saturn by groundbased observers at
the time of the Voyager 1 and 2 flybys—one librating about Dione’s L 4 point
(leading by 60°) and one each librating about Tethys’ L, and Ls points.

The coorbital satellites, Janus and Epimetheus, orbit at a mean distance
of 151,000 km from the center of Saturn. This latter exarnple of a 1:1 reso-
nance is unique in the sense that the satellitc masses are comparable (M /M,
= 1/5 to 1/3), and the amplitude of libration is so large that the satellites can
come quite close to each other. The orbit of Epimetheus in a frame rotating
with Janus has the shape of a horseshoe enveloping both the L, and Ls
Lagrange points instead of a Trojan-like path confined to a region near one or
the other point. Reduction of groundbased observations and Voyager 1 and 2

orbit determinations yield (M + M,}/M = (3.9 £ 1.2) X 1079 and M,/(M,
+ M,) = 0.216 = 0.009, where M is the mass of Saturn (C. F. Yoder and
S. Synnott, personal communication, 1985). Estimates of the volumes of the
satellites by P. Thomas (unpublished, 1984; see chapter herein} then give den-
sities of 0.85 (+ 0.3) g cm 3. The small mass ratio allows a simple analytic
approximation which adequately describes the motion of the coorbital pair
and can be used to infer some aspects of their dynamical evolution (Yoder
et al. 1983).

Following Yoder et al. (1983), we can write the equations of motion of
Janus as perturbed as Epimetheus as

4,48,  9Fp
de (rl dt ) 3t &7
der_ dBLz__GM il‘?lg_'
ds? ! ( dt ) T * ary o8)
where
: 1 r}
Fp = GM, |5 — 3 cos(61 — 02) (99)
ry
A? = r3+4 ri—2rrcos(8; — 67). (100)

The subscripts 1 and 2 correspond, respectively, to Janus and Epimetheus.
The polar coordinates r and ¢ are referred to the center of mass of Saturn, and
the satellite orbits are assumed coplanar. The perturbations from other satel-
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lites, the rings, and the Sun are neglected for the time being. The influence of
t?:e oblateness of Saturn does not qualitatively change the character of the mg '
tion and- would unnecessarily clutter the analysis. A similar set of equations i_
approprllate for the effect of Janus on Epimetheus, where F,) is not simj 1S
prol?ortlgnal to Fy; because of the indirect term resulting from the use 011:1
noninertial frame. We can write the equations as perturbations from circular
reference orbits with ag and ng representing the mean distance from Saturn
and mean motion, respectively, and 8r; and 3r; defined by

de; _
4 = Mot (101
. 2 &n;
Fi = ag (1 m?_Lng )+6r,-. (102)

In Eq. (102) the variation in r, is separated into that part resulting from
Kepler’s third law with the orbits remaining circular and the additional incre-
ment -related to an induced eccentricity. The advantage of this separation will
be ewdlent below. Substitution of Egs. (101) and (102) into (97) and (98) and
expansion to first order in 87 and 8n; yields

1
_.?G%E(S_”Q_.F 2nnas 30D 3,

d 0% " a; "~ g, (103)
d*sr) 2 ., d¥(Bn)) aF
a;z T3 ool Tqa T e = (104

' '_Fhe relative magnitudes of the terms in Egs. (103) and (104) for the varia-
tions in 8r) and 8n due to the mutual interactions depend on the small parame-
ter & = [(M, + M,}/M]*2. Although the satellites interact only when they
fue close to each other, the average rate of change of the increments 8r; or 8r;
is t.he .magnitude of the change divided by the time between interaz:tionsz
Wh‘lCh is half the libration period. At the time of the Voyager 1 observations’
Epimetheus was gaining on Janus by 0°254/day, leading to a time betwee:;
en'counters of about 4 yr. In terms of e, this time is of order 2mwinge with g2
being of order M ,/M given above. Using this representation of the time in
Eqs. (103) and (104) and noting that F,, is of order &2q §n3, one finds that &n
lszo_f 0rde1: eng and Or is of order £%a,. Hence, a formulation correct to order
£*is obtamt;d by omitting 8r in Eq. (103) and replacing both #; and r; by ap
in ;. In this approximation M |F;, = M 2F; and we can write the equation
for the variation of the difference angle p = 6, — 8,,

_ld¥ 5 0 1
3 a2 " F ngw‘ 5 - COs ¢ (105)
251n2[




