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Subject headings:

1. RESONANCE FOR A TEST PARTICLE

Consider a Kuiper belt object near an exterior j:j-1
MMR resonance with a circular Neptune. (One can also
consider interior resonances by defining j = 1 — j.) The
test particle’s energy per unit mass is
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where a, e, A\, w are for the test particle, and quantities
subscripted with N are for Neptune. f is a Laplace co-
efficient, which is a function of j and a/ay. Hamilton’s
equations follow after replacing the particle’s variables
with the Poincaré canonical variables (per unit mass):

E=—

fecos(jA = (j — D)An — @), (1)

A=\/GMya (2)
A (3)
I'=./GMya (1 V- 62) (4)

V=—w (5)

However, instead of using these variables, we shall rescale
the momenta and Hamiltonian by the same constant fac-
tor 2/+/a.GMg, where a, is at nominal resonance, de-
fined via

GMg j—1

a3 =NnyN j . (6)

and ny is Neptune’s constant mean motion. The equa-
tions of motion will still be Hamilton’s equations. We
denote rescaled quantities by bars, in which case the
Hamiltonian is
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We henceforth assume a = a, in the cosine coefficient,

which is typically ok. (At least, it is usually nearly con-
stant.) The canonical variables for this Hamiltonian are

A=2+/a/a. (8)
(
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L'=2\/a/a. (1—\/1—62) (10)
N=—w (11)

Next, we make a canonical transformation with the
generating function

F:pe(j)‘_(j_l))‘N+7)+pa)\ (12)
The new Hamiltonian is A, where
h Ay
——————— = —— — jpe +2unfecos¢, (13
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and the new canonical momenta and coordinates are

pezf (14)
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To employ Hamilton’s equations, one must write a and e

in terms of p. and p,. Note that p, is a constant of mo-

tion (Brouwer’s constant); we shifted it by -2 to make its

value small near resonance. Thus far, our manipulations

are exact, aside from the coefficient of the cosine term.
We note the following approximate relations:
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where Aa = a — a,.
Inserting into the Hamiltonian
Ay
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expanding to second order in p. and p,, keeping only
the leading term for the cosine coefficient, and dropping
constants, we have
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(21)

a (24 pa + jpe)? (20)



4
(with momenta scaled by /GMg):

A =va A (22)
'~ \/ae?/2 ; v=—w (23)

for which the (scaled) Hamiltonian is

1
H=./GMg; (2[\2 + %ercos@)\ — AN +’y)) ;

(24)
where
BN = (25)

We shall later take the coefficient of the e x cosine term
to be a constant, even though it is really a function of
a. That approximation is typically okay, because the
variations da ~ de?, and that term is already O(e).

Now, we change variables (canonically) so the argu-
ment of the cosine is a new angle. To do that, we use the
generating function

F=P1(2)\—)\N+’Y)+P2)\7 (26)

which yields the transformation laws to the new set

{P1,Q1; P2, Q2}

Qu=2A— Ay +7; Q2= A (27)
A =2P + P r =pm. (28)
Inverting the latter two yields
P, =T =~ ae?/2 (29)
Py=A—2I' = va(l — €?) . (30)

Clearly, P, = const, because the Hamiltonian is only a
function of @1. Therefore we define a, via

Vas = Py . (31)
The transformed Hamiltonian is then
1

H(D, Q1) = V/GMo (- s @

__ N I‘—l—MTNfecosQl) (33)

VGM,

Now, we rescale I' and H,

2
I~ e? (34)
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to arrive at the following Hamiltonian

_ 1
H = *n*m *an+n*2ﬂNf\/P?COSQ1 , (36)

n. = \/GMg/a3 | (37)

and we have replaced the a in the cosine coefficient by
a.. Finally, we expand and drop the constant to yield

H = (2n. — nn)p — 3n.p” + n.2un f/pcos Q1 (38)
2. J+1:J RESONANCE
Energy per unit mass:
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where

E=-— N fecos((G+ 1A —jAn — @), (39)

Generating function:
F=P([+DA=jAn+7)+ A, (40)

which yields the transformation laws to the new set

{P1,Q1; P>,Q2}

Q=+ DA—Jjiv+7; Q2= A (41)
A :(j+1)P1+P2; r :P1 . (42)

Inverting the latter two yields
P, =T ~ \ae?/2 (43)
Po=A—(j+ 1T ~+Va(l—((j+1)/2)e?) . (44)
Define

Va, =P, . (45)
The transformed Hamiltonian is then
1
H(T, =/GMs| — - 46
nn . HN
— I'+ — fecos 47
Gty fecos @) (D)
H : P+ n.2pn f/peosQ
= —n, - -n Ty cos
A+ p(j+1)/2)?2 NJP UN TP 1
. . 3.
R (G + Dne = jnn)p = (G +1)*n.p® (48)
+ 1. 20N /D cos Q1 (49)



