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Subject headings:

1. RESONANCE FOR A TEST PARTICLE

Consider a Kuiper belt object near an exterior j:j-1
MMR resonance with a circular Neptune. (One can also
consider interior resonances by defining j̄ = 1− j.) The
test particle’s energy per unit mass is

E = −GM�

2a
+
GmN

a
fe cos(jλ− (j − 1)λN −$) , (1)

where a, e, λ,$ are for the test particle, and quantities
subscripted with N are for Neptune. f is a Laplace co-
efficient, which is a function of j and a/aN . Hamilton’s
equations follow after replacing the particle’s variables
with the Poincaré canonical variables (per unit mass):

Λ =
√
GM�a (2)

λ (3)

Γ =
√
GM�a

(
1−

√
1− e2

)
(4)

γ=−$ . (5)

However, instead of using these variables, we shall rescale
the momenta and Hamiltonian by the same constant fac-
tor 2/

√
a∗GM�, where a∗ is at nominal resonance, de-

fined via √
GM�

a3∗
= nN

j − 1

j
. (6)

and nN is Neptune’s constant mean motion. The equa-
tions of motion will still be Hamilton’s equations. We
denote rescaled quantities by bars, in which case the
Hamiltonian is

H̄ = nN
j − 1

j

(
−a∗
a

+ 2µN
a∗
a
fe cos(.)

)
. (7)

We henceforth assume a ≈ a∗ in the cosine coefficient,
which is typically ok. (At least, it is usually nearly con-
stant.) The canonical variables for this Hamiltonian are

Λ̄ = 2
√
a/a∗ (8)

λ (9)

Γ̄ = 2
√
a/a∗

(
1−

√
1− e2

)
(10)

γ=−$ (11)

Next, we make a canonical transformation with the
generating function

F = pe(jλ− (j − 1)λN + γ) + paλ (12)

The new Hamiltonian is h, where

h

nN (j − 1)/j
= −a∗

a
− jpe + 2µNfe cosφ , (13)

and the new canonical momenta and coordinates are

pe = Γ̄ (14)

φ= jλ− (j − 1)λN −$ (15)

pa = Λ̄− jΓ̄− 2 (16)

λ . (17)

To employ Hamilton’s equations, one must write a and e
in terms of pe and pa. Note that pa is a constant of mo-
tion (Brouwer’s constant); we shifted it by -2 to make its
value small near resonance. Thus far, our manipulations
are exact, aside from the coefficient of the cosine term.

We note the following approximate relations:

pe≈ e2 (18)

pa≈
∆a

a∗
− je2 , (19)

where ∆a = a− a∗.
Inserting into the Hamiltonian

a =
a∗
4

(2 + pa + jpe)
2 , (20)

expanding to second order in pe and pa, keeping only
the leading term for the cosine coefficient, and dropping
constants, we have

h

nN (j − 1)/j
= −3j2

4
(pe + pa/j)

2
+ 2µNf

√
pe cosφ .

(21)



4

(with momenta scaled by
√
GM�):

Λ =
√
a ; λ (22)

Γ≈
√
ae2/2 ; γ =−$ (23)

for which the (scaled) Hamiltonian is

H =
√
GM�

(
− 1

2Λ2
+
µN

a
fe cos(2λ− λN + γ)

)
,

(24)
where

µN ≡
mN

M�
(25)

We shall later take the coefficient of the e× cosine term
to be a constant, even though it is really a function of
a. That approximation is typically okay, because the
variations δa ∼ δe2, and that term is already O(e).

Now, we change variables (canonically) so the argu-
ment of the cosine is a new angle. To do that, we use the
generating function

F = P1(2λ− λN + γ) + P2λ , (26)

which yields the transformation laws to the new set
{P1, Q1;P2, Q2}

Q1 = 2λ− λN + γ ; Q2 = λ (27)

Λ = 2P1 + P2 ; Γ = P1 . (28)

Inverting the latter two yields

P1 = Γ ≈
√
ae2/2 (29)

P2 = Λ− 2Γ ≈
√
a(1− e2) . (30)

Clearly, P2 = const, because the Hamiltonian is only a
function of Q1. Therefore we define a∗ via

√
a∗ ≡ P2 . (31)

The transformed Hamiltonian is then

H(Γ, Q1) =
√
GM�

(
− 1

2(
√
a∗ + 2Γ)2

(32)

− nN√
GM�

Γ +
µN

a
fe cosQ1

)
(33)

Now, we rescale Γ and H,

p ≡ 2
√
a∗

Γ ≈ e2 (34)

H̄ ≡ 2
√
a∗
H , (35)

to arrive at the following Hamiltonian

H̄ = −n∗
1

(1 + p)2
− nNp+ n∗2µNf

√
p cosQ1 , (36)

where

n∗ ≡
√
GM�/a3∗ , (37)

and we have replaced the a in the cosine coefficient by
a∗. Finally, we expand and drop the constant to yield

H̄ = (2n∗ − nN )p− 3n∗p
2 + n∗2µNf

√
p cosQ1 (38)

2. J+1:J RESONANCE

Energy per unit mass:

E = −GM�

2a
+
GmN

a
fe cos((j + 1)λ− jλN −$) , (39)

Generating function:

F = P1((j + 1)λ− jλN + γ) + P2λ , (40)

which yields the transformation laws to the new set
{P1, Q1;P2, Q2}

Q1 = (j + 1)λ− jλN + γ ; Q2 = λ (41)

Λ = (j + 1)P1 + P2 ; Γ = P1 . (42)

Inverting the latter two yields

P1 = Γ ≈
√
ae2/2 (43)

P2 = Λ− (j + 1)Γ ≈
√
a(1− ((j + 1)/2)e2) . (44)

Define √
a∗ ≡ P2 . (45)

The transformed Hamiltonian is then

H(Γ, Q1) =
√
GM�

(
− 1

2(
√
a∗ + (j + 1)Γ)2

(46)

− nN√
GM�

jΓ +
µN

a
fe cosQ1

)
(47)

H̄=−n∗
1

(1 + p(j + 1)/2)2
− nN jp+ n∗2µNf

√
p cosQ1

≈ ((j + 1)n∗ − jnN )p− 3

4
(j + 1)2n∗p

2 (48)

+n∗2µNf
√
p cosQ1 (49)


