Draft version March 23, 2013

Preprint typeset using LATEX style emulateapj v. 03/07/07

Subject headings:

1. RESONANCE FOR A TEST PARTICLE

Consider a Kuiper belt object near an exterior j:j-1 MMR resonance with a circular Neptune. (One can also consider interior resonances by defining $\bar{j}=1-j$.) The test particle's energy per unit mass is

$$
\begin{equation*}
E=-\frac{G M_{\odot}}{2 a}+\frac{G m_{N}}{a} f e \cos \left(j \lambda-(j-1) \lambda_{N}-\varpi\right), \tag{1}
\end{equation*}
$$

where a, e, λ, ϖ are for the test particle, and quantities subscripted with N are for Neptune. f is a Laplace coefficient, which is a function of j and a / a_{N}. Hamilton's equations follow after replacing the particle's variables with the Poincaré canonical variables (per unit mass):

$$
\begin{align*}
& \Lambda=\sqrt{G M_{\odot} a} \tag{2}\\
& \lambda \tag{3}\\
& \Gamma=\sqrt{G M_{\odot} a}\left(1-\sqrt{1-e^{2}}\right) \tag{4}\\
& \gamma=-\varpi \tag{5}
\end{align*}
$$

However, instead of using these variables, we shall rescale the momenta and Hamiltonian by the same constant factor $2 / \sqrt{a_{*} G M_{\odot}}$, where a_{*} is at nominal resonance, defined via

$$
\begin{equation*}
\sqrt{\frac{G M_{\odot}}{a_{*}^{3}}}=n_{N} \frac{j-1}{j} \tag{6}
\end{equation*}
$$

and n_{N} is Neptune's constant mean motion. The equations of motion will still be Hamilton's equations. We denote rescaled quantities by bars, in which case the Hamiltonian is

$$
\begin{equation*}
\bar{H}=n_{N} \frac{j-1}{j}\left(-\frac{a_{*}}{a}+2 \mu_{N} \frac{a_{*}}{a} f e \cos (.)\right) . \tag{7}
\end{equation*}
$$

We henceforth assume $a \approx a_{*}$ in the cosine coefficient, which is typically ok. (At least, it is usually nearly constant.) The canonical variables for this Hamiltonian are

$$
\begin{align*}
& \bar{\Lambda}=2 \sqrt{a / a_{*}} \tag{8}\\
& \lambda \tag{9}\\
& \bar{\Gamma}=2 \sqrt{a / a_{*}}\left(1-\sqrt{1-e^{2}}\right) \tag{10}\\
& \gamma=-\varpi \tag{11}
\end{align*}
$$

Next, we make a canonical transformation with the generating function

$$
\begin{equation*}
F=p_{e}\left(j \lambda-(j-1) \lambda_{N}+\gamma\right)+p_{a} \lambda \tag{12}
\end{equation*}
$$

The new Hamiltonian is h, where

$$
\begin{equation*}
\frac{h}{n_{N}(j-1) / j}=-\frac{a_{*}}{a}-j p_{e}+2 \mu_{N} f e \cos \phi \tag{13}
\end{equation*}
$$

and the new canonical momenta and coordinates are

$$
\begin{align*}
p_{e} & =\bar{\Gamma} \tag{14}\\
\phi & =j \lambda-(j-1) \lambda_{N}-\varpi \tag{15}\\
p_{a} & =\bar{\Lambda}-j \bar{\Gamma}-2 \tag{16}\\
\lambda & . \tag{17}
\end{align*}
$$

To employ Hamilton's equations, one must write a and e in terms of p_{e} and p_{a}. Note that p_{a} is a constant of motion (Brouwer's constant); we shifted it by -2 to make its value small near resonance. Thus far, our manipulations are exact, aside from the coefficient of the cosine term.

We note the following approximate relations:

$$
\begin{align*}
& p_{e} \approx e^{2} \tag{18}\\
& p_{a} \approx \frac{\Delta a}{a_{*}}-j e^{2} \tag{19}
\end{align*}
$$

where $\Delta a=a-a_{*}$.
Inserting into the Hamiltonian

$$
\begin{equation*}
a=\frac{a_{*}}{4}\left(2+p_{a}+j p_{e}\right)^{2}, \tag{20}
\end{equation*}
$$

expanding to second order in p_{e} and p_{a}, keeping only the leading term for the cosine coefficient, and dropping constants, we have

$$
\begin{equation*}
\frac{h}{n_{N}(j-1) / j}=-\frac{3 j^{2}}{4}\left(p_{e}+p_{a} / j\right)^{2}+2 \mu_{N} f \sqrt{p_{e}} \cos \phi \tag{21}
\end{equation*}
$$

(with momenta scaled by $\sqrt{G M_{\odot}}$):

$$
\begin{array}{cc}
\Lambda \quad=\sqrt{a} ; & \lambda \\
\Gamma \approx \sqrt{a} e^{2} / 2 ; & \gamma=-\varpi \tag{23}
\end{array}
$$

for which the (scaled) Hamiltonian is

$$
\begin{equation*}
H=\sqrt{G M_{\odot}}\left(-\frac{1}{2 \Lambda^{2}}+\frac{\mu_{N}}{a} f e \cos \left(2 \lambda-\lambda_{N}+\gamma\right)\right) \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{N} \equiv \frac{m_{N}}{M_{\odot}} \tag{25}
\end{equation*}
$$

We shall later take the coefficient of the $e \times$ cosine term to be a constant, even though it is really a function of a. That approximation is typically okay, because the variations $\delta a \sim \delta e^{2}$, and that term is already $\mathrm{O}(e)$.

Now, we change variables (canonically) so the argument of the cosine is a new angle. To do that, we use the generating function

$$
\begin{equation*}
F=P_{1}\left(2 \lambda-\lambda_{N}+\gamma\right)+P_{2} \lambda \tag{26}
\end{equation*}
$$

which yields the transformation laws to the new set $\left\{P_{1}, Q_{1} ; P_{2}, Q_{2}\right\}$

$$
\begin{align*}
Q_{1}= & 2 \lambda-\lambda_{N}+\gamma ; & Q_{2} & =\lambda \tag{27}\\
\Lambda & =2 P_{1}+P_{2} ; & \Gamma & =P_{1} \tag{28}
\end{align*}
$$

Inverting the latter two yields

$$
\begin{align*}
& P_{1}=\Gamma \approx \sqrt{a} e^{2} / 2 \tag{29}\\
& P_{2}=\Lambda-2 \Gamma \approx \sqrt{a}\left(1-e^{2}\right) \tag{30}
\end{align*}
$$

Clearly, $P_{2}=$ const, because the Hamiltonian is only a function of Q_{1}. Therefore we define a_{*} via

$$
\begin{equation*}
\sqrt{a_{*}} \equiv P_{2} \tag{31}
\end{equation*}
$$

The transformed Hamiltonian is then

$$
\begin{align*}
H\left(\Gamma, Q_{1}\right) & =\sqrt{G M_{\odot}}\left(-\frac{1}{2\left(\sqrt{a_{*}}+2 \Gamma\right)^{2}}\right. \tag{32}\\
& \left.-\frac{n_{N}}{\sqrt{G M_{\odot}}} \Gamma+\frac{\mu_{N}}{a} f e \cos Q_{1}\right) \tag{33}
\end{align*}
$$

Now, we rescale Γ and H,

$$
\begin{gather*}
p \equiv \frac{2}{\sqrt{a_{*}}} \Gamma \approx e^{2} \tag{34}\\
\bar{H} \equiv \frac{2}{\sqrt{a_{*}}} H \tag{35}
\end{gather*}
$$

to arrive at the following Hamiltonian

$$
\begin{equation*}
\bar{H}=-n_{*} \frac{1}{(1+p)^{2}}-n_{N} p+n_{*} 2 \mu_{N} f \sqrt{p} \cos Q_{1} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{*} \equiv \sqrt{G M_{\odot} / a_{*}^{3}}, \tag{37}
\end{equation*}
$$

and we have replaced the a in the cosine coefficient by a_{*}. Finally, we expand and drop the constant to yield

$$
\begin{gather*}
\bar{H}=\left(2 n_{*}-n_{N}\right) p-3 n_{*} p^{2}+n_{*} 2 \mu_{N} f \sqrt{p} \cos Q_{1} \tag{38}\\
2 . \mathrm{J}+\mathbf{1 : J} \text { RESONANCE }
\end{gather*}
$$

Energy per unit mass:

$$
\begin{equation*}
E=-\frac{G M_{\odot}}{2 a}+\frac{G m_{N}}{a} f e \cos \left((j+1) \lambda-j \lambda_{N}-\varpi\right) \tag{39}
\end{equation*}
$$

Generating function:

$$
\begin{equation*}
F=P_{1}\left((j+1) \lambda-j \lambda_{N}+\gamma\right)+P_{2} \lambda \tag{40}
\end{equation*}
$$

which yields the transformation laws to the new set $\left\{P_{1}, Q_{1} ; P_{2}, Q_{2}\right\}$

$$
\begin{align*}
Q_{1}= & (j+1) \lambda-j \lambda_{N}+\gamma ; & Q_{2} & =\lambda \tag{41}\\
\Lambda & =(j+1) P_{1}+P_{2} ; & \Gamma & =P_{1} \tag{42}
\end{align*}
$$

Inverting the latter two yields

$$
\begin{align*}
& P_{1}=\Gamma \approx \sqrt{a} e^{2} / 2 \tag{43}\\
& P_{2}=\Lambda-(j+1) \Gamma \approx \sqrt{a}\left(1-((j+1) / 2) e^{2}\right) \tag{44}
\end{align*}
$$

Define

$$
\begin{equation*}
\sqrt{a_{*}} \equiv P_{2} \tag{45}
\end{equation*}
$$

The transformed Hamiltonian is then

$$
\begin{align*}
H\left(\Gamma, Q_{1}\right)= & \sqrt{G M_{\odot}}\left(-\frac{1}{2\left(\sqrt{a_{*}}+(j+1) \Gamma\right)^{2}}\right. \tag{46}\\
& \left.-\frac{n_{N}}{\sqrt{G M_{\odot}}} j \Gamma+\frac{\mu_{N}}{a} f e \cos Q_{1}\right) \tag{47}
\end{align*}
$$

$$
\bar{H}=-n_{*} \frac{1}{(1+p(j+1) / 2)^{2}}-n_{N} j p+n_{*} 2 \mu_{N} f \sqrt{p} \cos Q_{1}
$$

$$
\begin{equation*}
\approx\left((j+1) n_{*}-j n_{N}\right) p-\frac{3}{4}(j+1)^{2} n_{*} p^{2} \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
+n_{*} 2 \mu_{N} f \sqrt{p} \cos Q_{1} \tag{49}
\end{equation*}
$$

