Exercice 1

1. In equilibrium,

\[M_s = M_d \]
\[M_s = P \times Y \times \exp(a_o - a_1 r) \]

Taking the log, we get:

\[\ln M_s = \ln P + \ln Y + a_o - a_1 r \]

\[\Leftrightarrow \]

\[r^* = \frac{\ln P + \ln Y + a_o - \ln M_s}{a_1} \]

This gives us:

\[\frac{\partial r^*}{\partial P} \geq 0 \]
\[\frac{\partial r^*}{\partial Y} \geq 0 \]

An increase in P and Y increases the demand for money, which increases interest rate.

2. The market clearing condition is

\[M_s = M_d \]
\[M_s = P \times Y \times \exp(a_o - a_1 r_0) \]

3. The M we observe is the equilibrium outcome. So we have for all t:

\[\ln M_t - \ln P_t - \ln Y_t = a_o - a_1 r_t + \varepsilon_t \]

So we can use Least Square to estimate \(a_o \) and \(a_1 \). \(\varepsilon_t \) is the error term.

This is exactly equivalent to estimate

\[y_t = x_t' \beta + \varepsilon_t \]

with \(y_t = \ln M_t - \ln P_t - \ln Y_t \)
and \(x_t' = [1 \ r_t] \) and \(\beta = \begin{bmatrix} a_o \\ -a_1 \end{bmatrix} \).

An estimate \(b \) of \(\beta \) is \(b = (XX')^{-1}X' y \).
Exercice 2

1. **Question 5**
 Nobody will choose gold alone (lower expected return, higher uncertainty than the stock market). You may want to hold some as hedge.

2. **Question 6**

 \[
 \text{cov}(r_{\text{best}}, b_{\text{cane}}) = \sum_s P(s) [r_{\text{best}}(s) - E(r_{\text{best}})] [r_{\text{cane}}(s) - E(r_{\text{cane}})]
 \]
 \[
 = 0.5(25 - 10.5)(7 - 6) + 0.3(10 - 10.5)(-5 - 6) + 0.2(-25 - 10.5)(20 - 6)
 \]
 \[
 = -90.5
 \]

 We need \(\sigma_{\text{cane}}^2\)

 \[
 \sigma_{\text{cane}}^2 = 0.5(7 - 6)^2 + 0.3(-5 - 6)^2 + 0.2(20 - 6)^2
 \]
 \[
 = 76
 \]

 \[
 \rho(\text{best-cane}) = \frac{\text{cov}(r_{\text{best}}, b_{\text{cane}})}{\sigma_{\text{cane}} \sigma_{\text{best}}} = \frac{-90.5}{\sqrt{76} \times 18.9} = -0.549
 \]

 It is still a good hedging, but not as good as before.

- First method to get \(\sigma_p\)

Assuming equal weight of each stock, we get:

\[
E(p/s = \text{bullish}) = 0.5 \times 25 + 0.5 \times 7 = 16\%
\]
\[
E(p/s = \text{bearish}) = 0.5 \times 10 + 0.5 \times (-5) = 2.5\%
\]
\[
E(p/s = \text{crisis}) = 0.5 \times (-25) + 0.5 \times 20 = -2.5\%
\]

This gives us the following expected return for the portfolio:

\[
E(p) = 0.5 \times 16 + 0.3 \times 2.5 - 0.2 \times 2.5
\]
\[
= 8.25
\]

Then we get:

\[
\sigma_p^2 = 0.5(16 - 8.25)^2 + 0.3(2.5 - 8.25)^2 + 0.2(-2.5 - 8.25)^2
\]
\[
= 63.063
\]
- Using rule 5 to get σ_p
Then we get:

$$\sigma_p^2 = 0.5^2 \times 18.9^2 + 0.5^2 \times 76 + 2 \times 0.5 \times 0.5 \times (-90.5)$$
$$= : 63.063$$

The 2 methods are consistent!

2. Pb 1 from appendix A

$$ret = \frac{div + E(P_2) - P_1}{P_1}$$

$$S1 \; ret = \frac{-12}{12} = -1$$
$$S2 \; ret = \frac{0.25 + 2 - 12}{12} = -0.8125$$
$$S3 \; ret = \frac{0.40 + 14 - 12}{12} = 0.2$$
$$S4 \; ret = \frac{0.60 + 20 - 12}{12} = 0.716$$
$$S5 \; ret = \frac{0.85 + 30 - 12}{12} = 1.57$$

a.

$$E(ret) = -1 \times 0.1 - 0.8125 \times 0.2 + 0.2 \times 0.4 + 0.716 \times 0.25 + 1.57 \times 0.05$$
$$= 0.075$$

The median is the minimum t st $\text{Prob}(ret \leq t) \geq 0.5$.

So in our case, the median is 0.2

because $\text{Prob}(ret \leq -0.8125) = 0.3$ and $\text{Prob}(ret \leq 0.2) = 0.7$

The mode is the most frequent value occuring, i.e 0.2.

b.

$$\sigma_p^2 = 0.1(-1 - 0.075)^2 + 0.2(-0.8125 - 0.075)^2 + 0.4(0.2 - 0.075)^2 + 0.25(0.716 - 0.075)^2 + 0.05(1.57 - 0.075)^2 = .49382$$

so $\sigma_p = \sqrt{.49382} = .70272$

mean abs dev= $0.1 \times |{-1} - 0.075| + 0.2 \times |{-0.8125} - 0.075| + 0.4 \times |0.2 - 0.075|$
$$+ 0.25 \times |0.716 - 0.075| + 0.05 \times |1.57 - 0.075| = .57$$

c. The first moment is the mean.
The second moment is the variance.
\[M_3 = 0.1(-1 - 0.075)^3 + 0.2(-0.8125 - 0.075)^3 + 0.4(0.2 - 0.075)^3 + 0.25(0.716 - 0.075)^3 + 0.05(1.57 - 0.075)^3 = -3.0346 \times 10^{-2} \]

This is a left-skewed (negative) distribution.

3. Pb 1 from appendix B

Expected utility without insurance:

\[
EU = 0.999 \ln(200000 + 50000(1 + 0.06)) + 0.001 \ln(50000(1 + 0.06)) = 12.44
\]

Suppose \(x \) is the maximum amount of insurance you are willing to pay.
You should be indifferent between insuring your house and paying \(x \) or not insuring.
so we have the following equation:

\[
\ln(200000 + 50000(1 + 0.06) - x) = 12.44
\]

\[
2.53 \times 10^5 - x = \exp(12.44)
\]

\[
x = 2.53 \times 10^5 - \exp(12.44)
\]

\[
x = 289.4
\]

Exercise 3

a. We have

\[u(W) = \frac{W^\gamma}{\gamma} \]

Taking the first and second derivative:

\[
\begin{align*}
 u'(W) &= W^{\gamma - 1} \\
 u''(W) &= (\gamma - 1)W^{\gamma - 2}
\end{align*}
\]

So for \(\gamma > 1 \), \(u''(W) > 0 \) so \(u(.) \) is convex, and the agent is then risk-lover.
So for \(\gamma < 1 \), \(u''(W) < 0 \) so \(u(.) \) is concave, and the agent is then risk-averse.
So for \(\gamma = 1 \), \(u''(W) = 0 \) so \(u(.) \) is linear, and the agent is then risk-neutral.
It makes sense to have \(\gamma < 0 \). Your utility is negative, but still increasing in wealth.

2. \[
\begin{align*}
 u(CE) &= 0.15u(8) + 0.40u(5) + 0.45u(10) \\
 CE^\gamma &= 0.15 \times 8^\gamma + 0.4 \times 5^\gamma + 0.45 \times 10^\gamma \\
 CE &= (0.15 \times 8^\gamma + 0.4 \times 5^\gamma + 0.45 \times 10^\gamma)^{\frac{1}{\gamma}}
\end{align*}
\]
3. The smaller γ, the more risk-averse the agent is. (the CE is getting smaller as γ decreases).

Exercise 4

If you don’t undertake the project, your expected utility is:

$$EU_{np} = u(W(1 + r)) - v(0)$$

If you undertake the project, your expected utility is:

$$EU_p = \max\{pu(y_s) + (1 - p)u(y_f) - v(1), qu(y_s) + (1 - q)u(y_f) - v(0)\}$$

(a) The agent will undertake the project if

$$EU_p \geq EU_{np}$$

(b) You will exert effort if

$$pu(y_s) + (1 - p)u(y_f) - v(1) \geq qu(y_s) + (1 - q)u(y_f) - v(0)$$