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Abstract

This document contains additional results for the manuscript “Adversarial Coordination and

Public Information Design.” All numbered items (i.e., sections, subsections, lemmas, conditions,

propositions, and equations) in this document contain the prefix “AM”. Any numbered reference

without the prefix “AM” refers to an item in the main text. Please refer to the main text for

notation and definitions.

Section AM1 extends the result in Theorem 1* in the main text (about the optimality of per-

fectly coordinating the market response) to a class of economies in which (a) agents’ prior beliefs

need not be consistent with a common prior, nor be generated by signals drawn independently

across agents, conditionally on θ, (b) the number of agents is arbitrary (in particular, finitely

many agents), (c) payoffs can be heterogenous across agents, (d) agents have a level-K degree

of sophistication, (e) the policy maker may possess imperfect information about the payoff state

and/or the agents’ beliefs, (f) the policy maker may disclose different information to different

agents.

Section AM2 discusses the benefits to discriminatory disclosures, when the latter are feasible.
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Section AM1: Generalization of Perfect Coordination Property

Consider the following amendment of the model in Section 2 in the main text.

Agents and exogenous information. Let N denote the set of agents; N is assumed to be

measurable and can be finite or infinite. For each i ∈ N , let Xi denote a measurable set and define

X ≡ Π
i∈N

Xi. The set X is endowed with the product topology. For each i ∈ N , let Λi : Xi → ∆(Θ×X )

be a measurable function (with respect to the Borel sigma-algebra associated with Xi). The profile

x = (xi)i∈N ∈ X indexes the hierarchy of the agents’ exogenous beliefs about θ and the beliefs of

other agents.

The state of Nature in this environment is denoted by ω = (θ,x) ∈ Ω ≡ Θ×X and comprises the

realization of the payoff fundamental θ and the exogenous profile of the agents’ beliefs x. Note that

no restriction on the agents’ belief profile x is imposed. In particular, the agents’ beliefs need not be

consistent with a common prior, nor be generated by signals drawn independently conditionally on

θ.

Payoffs. Each agent’s expected payoff differential between investing and not investing is given

by

ui(θ,A) =

gi(θ,A) if r = 1

bi(θ,A) if r = 0,

i ∈ N , where A denotes the aggregate investment (in case of finitely many agents, A coincides with

the number of agents investing). The functions gi and bi are continuously differentiable and satisfy

the same monotonicity assumptions as in the main text. In other words, for any i ∈ N , any (θ,A):

(a) ∂
∂θgi(θ,A),

∂
∂θ bi(θ,A) ≥ 0, (b) ∂

∂Agi(θ,A),
∂
∂Abi(θ,A) ≥ 0; and (c) gi(θ,A) > 0 > bi(θ,A). Default

occurs if and only if R(θ,A) ≤ 0, where R is increasing in (θ,A).

For simplicity, and to better highlight the novel effects, we abstract from the possibility that

the regime outcome (i.e., default), as well as the agents’ payoffs, may depend on variables z only

imperfectly correlated with θ. As explained in Section 4 in the main text, the possibility of increas-

ing the agents’ expected payoffs while coordinating them on the same course of action extends to

economies in which the regime outcome is a stochastic function of (θ,A). The optimality of policies

satisfying the perfect coordination property also extends to these more general economies provided

the planner’s payoff satisfies Condition PC in Section 4 in the main text.

Disclosure Policies. Let S be a Polish space defining the set of possible disclosures to the agents.

Let m : N → S denote a message function, specifying, for each individual i ∈ N , the endogenous

signal mi ∈ S disclosed to the individual. Let M(S) denote the set of all possible message functions

with codomain S. Let P be a partition of Ω and h(ω) the information set (equivalently, the cell)

in P containing the state ω ∈ Ω. A disclosure policy Γ = (S,P, π) consists of a set S along with

a mapping π : Ω → ∆(M(S)) measurable with respect to the σ-algebra defined by the partition
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P.1 For each ω, π(ω) denotes the lottery whose realization yields the message function used by the

policy maker to communicate with the agents. The case in which the partition P coincides with Ω

corresponds to the case in which the policy maker is able to distinguish any two states in Ω (in this

case the σ-algebra associated with Ω is the Borel σ-algebra).

Solution Concept. Agents have a level-K degree of sophistication. The policy maker adopts a

conservative approach and evaluates the performance of any given policy on the basis of the “worst

outcome” consistent with the agents playing (interim correlated) level-K rationalizable strategies.

That is, for any given selected policy Γ, the policy maker expects the market to play according to

the “most aggressive level-K rationalizable profile” defined as follows:

Definition AM1-1. Given any policy Γ, any K ∈ N ∪ {∞}, the most aggressive level-K

rationalizable profile (MARP-K) associated with Γ is the strategy profile aΓ(K) ≡ (aΓ(K),i)i∈[0,1] that

minimizes the policy maker’s ex-ante expected payoff, among all profiles surviving K rounds of

iterated deletion of interim strictly dominated strategies.

Hereafter we use IDISDS to refer to the process of iterated deletion of interim strictly dominated

strategies.

Definition AM1-2. A policy Γ = (S,P, π) satisfies the perfect-coordination property

(PCP) if, for any ω ∈ Ω, any message function m ∈ supp[π(ω)], any i, j ∈ N , aΓ(K),i(xi,mi) =

aΓ(K),j(xj ,mj).

Fix an arbitrary policy Γ = (S,P, π). For any ω ∈ Ω, any message function m ∈ supp[π(ω)],

let r(ω,m; aΓ(K)) ∈ {0, 1} denote the regime outcome that prevails at ω when the distribution of

endogenous signals is m, and agents play according to the strategy profile aΓ(K).

Definition AM1-3. The disclosure policy Γ = (S,P, π) is regular if for any ω′, ω′′ ∈ Ω for

which h(ω′) = h(ω′′) and any m ∈ supp [π(ω′)] = supp [π(ω′′)], r(ω′,m; aΓ(K)) = r(ω′′,m; aΓ(K)) .

A disclosure policy is thus regular if the default outcome induced by MARP-K compatible with Γ

is measurable with respect to the policy maker’s information (as captured by the partition P).2 With

an abuse of notation, when we find it convenient to highlight the measurability restriction implied

by the regularity of the policy, we will denote by r(h(ω),m; aΓ(K)) ∈ {0, 1} the regime outcome that

prevails at any state in h(ω) under the message function m. Observe that, when the policy maker

can perfectly distinguish between any two states, then any policy is regular.

1That is, by the collection of P-saturated sets. Let B be the standard Borel σ-algebra associated with the primitive

set Ω. A set A ∈ B is P-saturated if ω ∈ A implies h(ω) ⊆ A. Thus A = ∪ω∈Ah(ω) .
2Note that regularity is violated in the two-state-two-receiver model in Alonso and Zachariadis (2023)
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Theorem AM1-1. For any regular policy Γ, there exists another regular policy Γ∗ satisfying the

perfect-coordination property (PCP) and such that, for any ω, the probability of default under Γ∗ is

the same as under Γ.

Proof of Theorem AM1-1. Let AΓ ≡ {(ai(·) : Xi × S → [0, 1])i∈N} denote the entire set

of strategy profiles in the continuation game among the agents that starts with the policy maker

announcing the policy Γ. For any n ∈ N, let TΓ
(n) denote the set of strategies surviving n rounds

of IDISDS under the original policy Γ, with TΓ
(0) = AΓ. Denote by āΓ(n) ≡ (āΓ(n),i(·))i∈[0,1]∈ TΓ

(n)

the profile in TΓ
(n) that minimizes the policy maker’s ex-ante payoff. Such a profile also minimizes

the policy maker’s interim payoff, as it will become clear from the arguments below. Hereafter, we

refer to the profile āΓ(n) as the most aggressive profile surviving n rounds of IDISDS. The profiles

(āΓ(n))n∈N can be constructed inductively as follows. The profile āΓ(0) ≡ (āΓ(0),i(·))i∈[0,1]) prescribes

that all agents refrain from investing irrespective of their exogenous and endogenous signals; that is,

each āΓ(0),i(·) is such that āΓ(0),i(xi, s) = 0, for all (xi, s) ∈ Xi×S.3 Given any strategy profile a∈ AΓ,

any i ∈ N , let UΓ
i (xi,mi; a) denote the payoff that agent i with exogenous signal xi and endogenous

signal mi obtains from investing, when all other agents follow the behavior specified by the strategy

profile a. For any n ≥ 1, the most aggressive strategy profile surviving n rounds of IDISDS is the one

specifying, for each agent i, each (xi,mi) ∈ Xi × S, āΓ(n),i(xi,mi) = 1 if UΓ
i (xi,mi; ā

Γ
(n−1)) > 0 and

āΓ(n),i(xi,mi) = 0 if UΓ
i (xi,mi; ā

Γ
(n−1)) ≤ 0. The most aggressive level-K rationalizable strategy profile

(MARP-K) consistent with the policy Γ is thus the profile ā(K)
Γ = (āΓ(K),i(·))i∈N )∈ TΓ

K . The case of

fully rational agents in the main text corresponds to the limit in which K → ∞. To be consistent

with the notation in the main text, we denote MARP consistent with Γ by dropping the subscript

K and denoting such profile by āΓ ≡ ((āΓi (·))i∈N , with āΓi (·) ≡ limK→∞ā
Γ
(K),i(·), all i ∈ N .

Now, consider the policy Γ+ = (S+,P , π+), S+ = S × {0, 1}, obtained from the original policy

Γ by replacing each message function m : N → S in the support of each π(ω) with the message

function m+ : N → S+ that discloses to each agent i ∈ N the same message mi disclosed by

the original policy m, along with the regime outcome r(ω,m; āΓ(K)) that would have prevailed at

(ω,m) under Γ when all agents play according to the most aggressive level-K rationalizable strategy

profile āΓ(K) consistent with the original policy Γ. That is, for each ω ∈ Ω, each m ∈ supp[π(ω)],

the policy Γ+ selects the message function m+ obtained from the original message function m by

adding to its codomain the regime outcome r(ω,m; āΓ(K)) that would have prevailed at (ω,m) under

MARP-K āΓ(K), with the same probability that Γ would have selected the original message function

m. Hereafter, we denote by m+
i = (mi, r(ω,m; āΓ(K))) the message sent to agent i under the new

policy Γ+ when the exogenous state is ω and the message function selected under the original policy

Γ is m. Note that the assumption that Γ is regular implies that Γ+ is measurable with respect to the

σ-algebra generated by P and hence also regular.

3Note that, to ease the notation, we let each individual strategy prescribe an action for all (xi,mi) ∈ R×S, including
those that may be inconsistent with the policy Γ.
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Let AΓ+ ≡ {(ai(·) : Xi × S × {0, 1}} → [0, 1])i∈N} denote the set of strategy profiles in the con-

tinuation game among the agents that starts with the policy maker announcing the new policy Γ+.

For any n ∈ N, let TΓ+

(n) ⊂ AΓ+
denote the set of strategies surviving n rounds of IDISDS under the

new policy Γ+, with TΓ+

(0) = AΓ+
. Denote by āΓ

+

(n) ≡ (āΓ
+

(n),i(·))i∈N ∈ TΓ+

(n) the profile in TΓ+

(n) that

minimizes the policy maker’s ex-ante payoff, and observe that āΓ
+

(0) ≡ (āΓ
+

(0),i(·))i∈N prescribes that all

agents refrain from investing, irrespective of their exogenous and endogenous signals.

Step 1. First, we prove that, for any i ∈ N ,

{(xi,mi) ∈ Xi×S : UΓ
i (xi,mi; a) > 0 ∀a ∈ AΓ}

⊆ {(xi,mi) ∈ Xi×S : UΓ+

i (xi, (mi, 1); a) > 0 ∀a ∈ AΓ+}.

That is, any agent who finds it dominant to invest under Γ after receiving information (xi,mi) also

finds it dominant to invest under Γ+ after receiving information (xi, (mi, 1)). To see this, first use

the fact that the game is supermodular to observe that, given any policy Γ,

{(xi,mi) ∈ Xi×S : UΓ
i (xi,mi; a) > 0 ∀a ∈ AΓ} = {(xi,mi) ∈ Xi×S : UΓ

i (xi,mi; ā
Γ
(0)) > 0}.

Likewise,

{(xi,mi) ∈ Xi×S : UΓ+

i (xi, (mi, 0); a) > 0 ∀a ∈ AΓ+} = {(xi,mi) ∈ Xi×S : UΓ+

i (xi, (mi, 0); ā
Γ+

(0)) > 0}.

Next, observe that, because under both āΓ(0) and ā
Γ+

(0) all agents refrain from investing, regardless

of their exogenous and endogenous information, under both āΓ(0) and āΓ
+

(0) , default occurs if, and

only if, θ ≤ θ̄ (with θ̄ defined by R(θ̄, 0) = 0). Then, note that, under Γ+, for any i ∈ N , any

(xi,mi) ∈ Xi × S,

∂ΛΓ+

i (ω,m|xi, (mi, 1)) =
1{r(ω,m;āΓ

(K)
)=1}

ΛΓ
i (1|xi,mi)

∂ΛΓ(ω,m|xi,mi), (AM1)

where

ΛΓ
i (1|xi,mi) ≡

∫
{(ω,m):r(ω,m;āΓ

(K)
)=1}

dΛΓ(ω,m|xi,mi)

is the total probability that, under the policy Γ, agent i with information (xi,mi) assigns to the

event {(ω,m) ∈ Ω ×M(S) : r(ω,m; āΓ(K)) = 1}. Under Bayesian learning, the agents’ beliefs under

the new policy policy Γ+ thus correspond to “truncations” of their beliefs under the original policy

Γ. In turn, this property of Bayesian updating implies that, for any (xi,mi) ∈ Xi × S such that

UΓ
i (xi,mi; ā

Γ
(0)) =

∫
(ω,m)

(
bi(θ, 1)1{θ ≤ θ̄}+ gi(θ, 1)1{θ > θ̄}

)
dΛΓ

i (ω,m|xi,mi) > 0,
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it must be that

UΓ+

i (xi, (mi, 1); ā
Γ+

(0)) =
1

ΛΓ
i (1|xi,mi)

∫
(ω,m)

(
bi(θ, 1)1{θ ≤ θ̄}+ gi(θ, 1)1{θ > θ̄}

)
×

×1{r(ω,m;āΓ
(K)

)=1}dΛ
Γ
i (ω,m|xi,mi)

>
1

ΛΓ
i (1|xi,mi)

∫
(ω,m)

(
bi(θ, 1)1{θ ≤ θ̄}+ gi(θ, 1)1{θ > θ̄}

)
dΛΓ

i (ω,m|xi,mi)

=
1

ΛΓ
i (1|xi,mi)

UΓ
i (xi,mi; ā

Γ
(0))

> 0,

where the first equality follows from the truncation property of Bayesian updating, the first inequality

from the fact that, for all (ω,m) ∈ Ω × M(S) such that r(ω,m; āΓ(K)) = 0, θ ≤ θ̄, and hence

r(ω,m; āΓ(0)) = 0, implying that

bi(θ, 1)1{θ ≤ θ̄}+ gi(θ, 1)1{θ > θ̄} = bi(θ, 1) < 0,

the second equality from the definition of UΓ
i (xi,mi; ā

Γ
(0)), and the second inequality from the fact

that UΓ
i (xi,mi; ā

Γ
(0)) > 0.

The above result implies that any an agent who, under Γ, finds it dominant to invest after

receiving information (xi,mi) also finds it dominant to invest under Γ+ after receiving information

(xi, (mi, 1)), as claimed.

Step 2. We now show that a property analogous to the one established in Step 1 applies to

any other round of the IDISDS procedure. The result is established by induction. Take any round

n ∈ {1, 2, ...,K} and assume that, for any 0 ≤ k ≤ n− 1, any i ∈ [0, 1],

{(xi,mi) ∈ Xi×S : UΓ
i (xi,mi; a) > 0 ∀a ∈ TΓ

(k−1)}

⊆ {(xi,mi) ∈ Xi×S : UΓ+

i (xi, (mi, 1); a) > 0, ∀a ∈ TΓ+

(k−1)}.
(AM2)

Recall that this means that any agent who, under Γ, finds it optimal to invest when his opponents

play any strategy surviving k rounds of IDISDS under Γ continues to find it optimal to invest when

expecting his opponents to play any strategy surviving k rounds of IDISDS under Γ+. Below we

show that that the same property extends to strategies surviving n rounds of IDISDS. That is,

{(xi,mi) ∈ Xi×S : UΓ
i (xi,mi; a) > 0 ∀a ∈ TΓ

(n−1)}

⊆ {(xi,mi) ∈ Xi×S : UΓ+

i (xi, (mi, 1); a) > 0, ∀a ∈ TΓ+

(n−1)}.
(AM3)

To see this, use again the fact that the game is supermodular to observe that

{(xi,mi) ∈ Xi×S : UΓ
i (xi,mi; a) > 0 ∀a ∈ TΓ

(n−1)} = {(xi,mi) ∈ Xi×S : UΓ
i (xi,mi; ā

Γ
(n−1)) > 0}

(AM4)
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and, likewise,

{(xi,mi) ∈ Xi×S : UΓ+

i (xi, (mi, 1); a) > 0, ∀a ∈ TΓ+

(n−1)}

= {(xi,mi) ∈ Xi×S : UΓ+

i (xi,mi; ā
Γ+

(n−1)) > 0},
(AM5)

where recall that āΓ(n−1) (alternatively, āΓ
+

(n−1)) is the most aggressive profile surviving n − 1 < K

rounds of IDSIDS under Γ (alternatively, Γ+).

Now let A(ω,m; a) denote the aggregate investment that, under Γ, prevails at (ω,m), when agents

play according to a∈ AΓ. Then take any i∈ N and any (xi,mi) ∈ Xi × S such that

UΓ
i (xi,mi; ā

Γ
(n−1)) =

∫
(ω,m)

ui(θ,A(ω,m; āΓ(n−1)))dΛ
Γ
i (ω,m|xi,mi) > 0.

Because āΓ(n−1) is more aggressive than āΓ(K), in the sense that, for any i ∈ N , any (xi,mi) ∈ Xi×S,
āΓ(n−1),i(xi,mi) ≤ āΓK,i(xi,mi), then for all (ω,m),

r(ω,m; āΓ(K)) = 0 ⇒ r(ω,m; āΓ(n−1)) = 0.

This implies that∫
(ω,m) ui(θ,A(ω,m; āΓ(n−1)))1{r(ω,m; āΓ(K)) = 0}dΛΓ

i (ω,m|xi,mi) =∫
(ω,m) bi(θ,A(ω,m; āΓ(n−1)))1{r(ω,m; āΓ(K)) = 0}dΛΓ

i (ω,m|xi,mi) < 0.
(AM6)

This observation, together with the truncation property in (AM1), implies that, for any i ∈ N , any

(xi,mi) ∈ Xi × S such that UΓ
i (xi,mi; ā

Γ
(n−1)) > 0,

UΓ+

i (xi, (mi, 1); ā
Γ
(n−1)) =

∫
(ω,m) ui(θ,A(ω,m; āΓ(n−1)))dΛ

Γ+

i (ω,m|xi,mi)

= 1
ΛΓ
i (1|xi,mi)

∫
(ω,m) u(θ,A(ω,m; āΓ(n−1)))1{r(ω,m; āΓ(K)) = 1}dΛΓ

i (ω,m|xi,mi)

> 1
ΛΓ
i (1|xi,mi)

∫
(ω,m) u(θ,A(ω,m; āΓ(n−1)))dΛ

Γ
i (ω,m|xi,mi)

= 1
ΛΓ
i (1|xi,mi)

UΓ
i ((xi,mi); ā

Γ
(n−1))

> 0,

(AM7)

where the first and third equalities are by definition, the second equality follows from (AM1), the

first inequality follows from (AM6), and the last inequality from the fact that

UΓ
i (xi,mi; ā

Γ
(n−1)) > 0, by assumption.

Next, note that āΓ(n−1) and ā
Γ+

(n−1) are such that, for all i ∈ N , all (xi,mi) ∈ Xi×S, āΓ(n−1),i(xi,mi),

āΓ
+

(n−1),i(xi, (mi, 0)) ∈ {0, 1} and

{(xi,mi) ∈ Xi × S : āΓ(n−1),i(xi,mi) = 1} = {(xi,mi) ∈ Xi × S : UΓ
i (xi,mi; ā

Γ
(n−2)) > 0}

and, likewise,

{(xi,mi) ∈ Xi × S : āΓ
+

(n−1),i(xi, (mi, 1)) = 1} = {(xi,mi) ∈ Xi × S : UΓ+

i (xi, (mi, 1); ā
Γ+

(n−2)) > 0}.
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Together properties (AM2), (AM4) and (AM5) imply that āΓ(n−1) and āΓ
+

(n−1) are such that, for

all i ∈ N , all (xi,mi) ∈ Xi × S,

āΓ(n−1),i(xi,mi) = 1 ⇒ āΓ
+

(n−1),i(xi, (mi, 1)) = 1. (AM8)

Condition (AM8), along with the fact that the game is supermodular, implies that

UΓ+

i (xi, (mi, 1); ā
Γ
(n−1)) > 0 ⇒ UΓ+

i (xi, (mi, 1); ā
Γ+

(n−1)) > 0. (AM9)

Together (AM7) and (AM9) imply the property in (AM3).

Step 3. Equipped with the results in steps 1 and 2 above, we now prove that, for all i ∈ N , all

(xi,mi) ∈ Xi × S,
āΓ

+

(K),i(xi, (mi, 1)) = 1.

This follows directly from the fact that, for all i ∈ N , all (xi,mi) ∈ Xi × S,

āΓ(K),i(xi,mi) = 1 ⇒ āΓ
+

(K),i(xi, (mi, 1)) = 1, (AM10)

which, in turn implies that, for any (ω,m),

r(ω,m; āΓ(K)) = 1 ⇒ r(ω,m; āΓ
+

(K)) = 1.

Under Γ+, the announcement that r = 1 thus reveals to the agents that (ω,m) is such that

r(ω,m; āΓ
+

(K)) = 1. Because the payoff from investing is strictly positive when the bank avoids de-

fault, any agent i receiving a signal (mi, 1) thus necessarily invests. Under MARP-K consistent

with the new policy Γ+ thus all agents invest, regardless of their exogenous and endogenous private

signals, when the policy publicly announces r = 1. That they all refrain from investing, irrespective

of (xi,mi), when the policy announces r = 0 follows from the fact that r = 0 makes it common

certainty among the agents that (ω,m) is such that r(ω,m; āΓ(K)) = 0 and hence that θ ≤ θ̄. But

then, irrespective of (xi,mi), any agent i ∈ N receiving exogenous information xi and endogenous

information m+
i = (mi, 0) finds it optimal to refrain from investing when expecting all other agents

to abstain from investing no matter their exogenous and endogenous information. This implies that

under MARP-K consistent with the new policy Γ+, all agents refrain from investing when hearing

that r = 0.

We conclude that the new policy Γ+ satisfies the perfect coordination property and is such that,

for any (θ,x)∈ Θ×X , the probability of default under Γ+ is the same as under Γ. Q.E.D.

Section AM2: Discriminatory Disclosures

In this section, we consider an extension in which the policy maker can disclose different information

to different market participants. The purpose of the section is to illustrate the possible benefits
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of discriminatory disclosures, when the latter are feasible. To maintain the analysis as simple as

possible, we assume that the environment satisfies the conditions in Theorem 3*, implying that, if

the policy maker were to restrict attention to non-discriminatory policies, the optimal policy would

be a simple monotone pass/fail test failing with certainty all institutions with fundamentals below a

cut-off θ∗ and passing with certainty all the others.

We start by explaining that the benefits of discriminatory disclosures stem from the possibility of

increasing the uncertainty each agent faces about the beliefs that rationalize other agents’ behavior.

We then consider a parametric setting in which the policy maker can engineer any public disclosure

of her choice, but is constrained to use Gaussian signals when communicating privately with the

agents. The advantage of such a parametric approach is that the combination of the exogenous and

the endogenous private information can be conveniently summarized in a uni-dimensional sufficient

statistics. This in turn permits us to relate the benefits of discriminatory disclosures to the type

of securities issued by the banks (more generally, to the sensitivity of the agents’ payoffs to the

underlying fundamentals).4

In this section, to simplify the exposition, we assume away the shocks z imperfectly correlated

with θ.

Subsection AM2.1: Benefits of Discriminatory Disclosures

Perhaps surprisingly, the reason why discriminatory disclosures may improve upon non-discriminatory

ones has little to do with the possibility of tailoring the information disclosed to the agents to their

prior beliefs. Discriminatory disclosures may outperform non-discriminatory ones because, by en-

hancing the dispersion of posterior beliefs, they make it harder for the agents to refrain from investing,

thus permitting the policy maker to save a larger set of institutions.

To illustrate the point in the simplest possible way, consider an economy in which the agents’

prior beliefs are homogenous (formally, this amounts to assuming the exogenous private signals x are

completely uninformative). Next let u(θ,A) denote the payoff from investing when the fundamentals

are θ and the aggregate investment is A. Notice that, for any θ̂ such that∫
u(θ, 0)dF (θ|θ > θ̂) > 0,

the most aggressive rationalizable strategy profile following the public announcement that θ > θ̂ is

such that every agent invests.5 Under the assumptions of Theorem 3* in the main text, the optimal

4See also Li, Song and Zhao (2023) and Morris, Oyama and Takahashi (2024) for the characterization of the optimal

discriminatory policy when agents do not possess any exogenous private information.
5The notation F (θ|θ > θ̂) stands for the common posterior obtained from the prior F by conditioning on the event

that θ > θ̂.
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non-discriminatory policy is then a threshold rule with cut-off equal to6

θ̂∗ = inf{θ̂ ∈ R s.t.

∫
u(θ, 0)dF (θ|θ > θ̂) > 0}. (AM11)

Suppose now the policy maker, instead of announcing whether θ is above or below some threshold

θ̂, sends to each individual a private signal of the form mi = θ + σξi, where σ ∈ R+ is a scalar, and

where the idiosyncratic terms ξi are drawn from a smooth distribution over the entire real line (e.g.,

a standard Normal distribution), independently across agents, and independently from θ. From

standard results in the global games literature, we know that, as the private messages become highly

precise (formally, as σ → 0+), in the absence of any public disclosure, under the most aggressive

rationalizable profile, each agent invests if, and only if, his endogenous private signal falls above the

threshold θMS ∈ (θ, θ̄) implicitly defined by the unique solution to∫ 1

0
u(θMS , A)dA = 0. (AM12)

As explained in the main text, the threshold θMS corresponds to the value of the fundamentals at

which an agent who knows θ and holds Laplacian beliefs with respect to the aggregate investment7

is indifferent between investing and not investing. Importantly, θMS is independent of the initial

common prior and of the distribution of the noise terms ξ in the agents’ signals. The above result

thus implies that, with discriminatory disclosures, the policy maker can always guarantee that default

never occurs for any θ > θMS . We then have the following result:8

Proposition AM2-1. Assume the agents possess no exogenous private information about the

underlying fundamentals. Let θ̂∗ be the threshold in (AM11) and θMS be the threshold in (AM12).

Whenever θMS < θ̂∗, discriminatory disclosures strictly improve upon non-discriminatory ones.

The result follows directly from the arguments preceding the proposition. Because θ̂∗ can be

arbitrarily close to θ for particular prior distributions, and because θMS is invariant in the prior

distribution from which θ is drawn, the result in Proposition AM2-1 is relevant in many cases of

interest.

As anticipated above, the reason why discriminatory disclosures can improve upon non-discriminatory

ones is that they permit the policy maker to enhance the dispersion of the agents higher-order beliefs.

A higher dispersion in turn makes it more difficult for the agents to play adversarially to the policy

maker (i.e, to refrain from investing). Formally speaking, when beliefs are sufficiently dispersed, an

6Here we follow the same abuse as in the main text and refer to the optimal non-discriminatory policy as the

monotone policy whose threshold is given by θ̂∗.
7This means that the agent believes that the aggregate investment is uniformly distributed over [0, 1].
8The proposition shows that the condition θMS < θ̂∗ is sufficient for discriminatory policies to strictly improve upon

non-discriminatory ones. When, instead, θMS ≥ θ̂∗, whether or not the optimal policy is discriminatory depends on

the prior F and on the sensitivity of the agents’ payoffs to θ. See Li, Song and Zhao (2023) and Morris, Oyama and

Takahashi (2024) for a characterization of the optimal discriminatory policy when payoffs are constant in θ.
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agent receiving a private signal indicating that the bank may collapse under a sufficiently large attack

(i.e, in case few agents invest) may nonetheless invest if he expects many other agents to have received

extreme signals indicating that the fundamentals are strong enough for the bank not to collapse, no

matter the aggregate investment. In this case, investing may become iteratively dominant for this

individual. The optimality of discriminatory policies thus follows from a “divide-and-conquer” logic

reminiscent of the one in the vertical contracting literature (see, e.g., Segal (2003) and the references

therein). Importantly, when discriminatory policies outperform non-discriminatory ones, this is not

because they mis-coordinate the response by the market (recall that, by virtue of Theorem AM1-1

in the present document, the optimal policy always satisfies the perfect-coordination property, irre-

spectively of whether or not it is discriminatory), but because, by enhancing the heterogeneity in

structural uncertainty, they make it difficult for market participants to coordinate on an adversarial

course of action when the planner recommends that they invest.

Subsection AM2.2: Payoff Sensitivity and the Optimality of Discriminatory Poli-

cies

We conclude by showing how the optimality of discriminatory policies may depend to the sensitivity of

the agents’ payoffs to the underlying fundamentals and relate such sensitivity to the type of securities

issued by the banks under scrutiny. To gain on tractability, we consider an environment in which the

prior distribution F from which θ is drawn is an improper uniform distribution over the entire real

line and where the agents’ exogenous private signals are given by xi = θ + σηηi, with ηi ∼ N (0, 1).9

Furthermore, to facilitate the aggregation of the agents’ exogenous and endogenous signals into a

uni-dimensional statistics, we restrict attention to the following parametric structure. The policy

maker can engineer any public disclosure of her choice but is constrained to sending signals of the

Gaussian form m̃i = θ+σξξi, with ξi ∼ N (0, 1), when communicating privately with the agents. The

restriction to Gaussian private applies only to the information the policy maker discloses privately

to the agents, over and above the information conveyed by the public test. In each state θ, the

endogenous information mi = (s̃, m̃i) disclosed to each agent i thus comprises a public signal s̃,

along with a private signal m̃i. Under such a structure, the quality of the private signals is then

conveniently parametrized by the variance σ2ξ > 0 of the endogenous noise terms.

We also assume the agents’ payoff from investing depends on the aggregate investment A only

through the effects of the latter on the default outcome. In other words, we assume that there exist

strictly increasing functions ḡ(θ) and b(θ) such that the payoff of each agent investing is equal to ḡ(θ)

in case the bank does not default and equal to b̄(θ), in case the bank defaults. The payoff from not

investing is equal to zero. Finally, we assume that the function R determining the default outcome

9The assumption that F is an improper uniform distribution is standard in the global-game literature. It simplifies

the formulas below, without any serious effect on the results. Also observe that the entire hierarchy of the agents’

beliefs is well defined, despite the prior being improper.
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takes the same linear form R(θ,A) = θ − 1 +A as in the baseline model.10

Then observe that the information contained in each pair (xi, m̃i) of exogenous and endogenous

private signals is the same as the information contained in the sufficient statistics

zi ≡
σ2ξxi + σ2ηm̃i

σ2η + σ2ξ
,

which, given θ, is normally distributed with mean θ and variance σ2z ≡
(
σ2ησ

2
ξ

)
/
(
σ2η + σ2ξ

)
. Hence,

the policy maker’s choice of the discriminatory component of her disclosure policy can be conveniently

reduced to the choice of the standard deviation σz of the above sufficient statistics, with σz ∈ (0, ση].

Arguments analogous to those establishing Theorem 2* in main document then imply that, for

any realization s̃ of the endogenous public signal, the most aggressive rationalizable strategy profile

aΓ is characterized by a unique cut-off z̄(s̃) (whose value depends on the distribution from which

the public signal is drawn) such that, for all i ∈ [0, 1], aΓi (xi, (s̃, m̃i)) = 1 {zi > z̄(s̃)}. Moreover,

arguments similar to those establishing Theorem 2* in the main text imply that, for any given choice

of σ2z , the optimal public announcement is binary with s̃ ∈ {0, 1} — that is, the public test has a

pass/fail structure. Finally, from Theorem AM1-1 in the present document, the optimal policy has

the perfect-coordination property which means that, given σ2z , z̄(0) = +∞, and z̄(1) = −∞. That

is, all agents invest when s̃ = 1, and they all refrain from investing when s̃ = 0.

Next, let Φ denotes the cdf of the standard Normal distribution, and, for any θ ∈ [0, 1], define

z∗σz(θ) ≡ θ + σzΦ
−1(θ),

to be the private statistics threshold such that, when all agents refrain from investing when zi < z∗σz(θ)

and invest when zi > z∗σz(θ), default occurs when the fundamentals fall below θ and does not occur

when they are above θ.11

For any (θ0, θ̂, σz), let ψ(θ0, θ̂, σz) denote the payoff from investing of an agent with private

statistic z∗σz(θ0), when regime change occurs for all θ ≤ θ0 ∈ [0, 1], public information reveals that

θ ≥ θ̂, and the total precision of private information is σ−2
z . Then let

θinfσz ≡ inf
{
θ̂ : ψ(θ0, θ̂, σz) > 0 all θ0 ∈ [0, 1]

}
.

Note that, for any θ̂ > θinfσz , under the most aggressive rationalizable strategy profile, all agents

invest after the public signal reveals that θ ≥ θ̂. Hereafter, we assume that all agents invest also

when public disclosures reveal that θ ≥ θinfσz . This simplifies the exposition below by permitting us

to talk about the “optimal policy.” As discussed in the main body, the latter does not formally exist

when agents are expected to play according to the most aggressive rationalizable profile. However,

10The results below extend to more general payoff functions, as long as the agents’ exogenous signals x are sufficiently

precise.
11Given that R(θ,A) = θ − 1 +A, z∗σz

(θ) is implicitly defined by the equation Φ
(

z∗−θ
σz

)
= θ.
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because the policy maker can always guarantee that, no matter the selection of the rationalizable

strategy profile, each agent invests for any θ > θinfσz , we find the abuse justified.

Proposition AM2-2. Suppose the policy maker is constrained to using Gaussian signals when

communicating privately with the agents. Let

σ∗z ≡ argmin
σz∈(0,ση ]

θinfσz .

The optimal disclosure policy has the following structure. The policy maker publicly announces

whether θ < θinfσ∗
z
, or whether θ ≥ θinfσ∗

z
. In addition, when θ ≥ θinfσ∗

z
, the policy maker sends a

Gaussian private signal to each agent of precision σ−2
ξ = [σ2η − (σ∗z)

2]/(σ∗z)
2σ2η.

The result follows from the arguments preceding the proposition – note that the precision of the

endogenous private information σ−2
ξ in the proposition is the one that, together with the precision of

the exogenous signals σ−2
η yields a total precision σ−2

z for the sufficient statistics zi that minimizes

the threshold θinfσz defining the default outcome.

Equipped with the result in Proposition AM2-2, we can then identify primitive conditions under

which the optimal policy is non-discriminatory. By virtue of Proposition AM2-2, discriminatory dis-

closures strictly dominate non-discriminatory ones if, and only if, σ∗z < ση (equivalently, if, and only

if, there exists σz < ση such that θinfσz < θinfση ). For any precision σ−2
z of the agents’ private statistics,

let θ#σz denote the unique solution to the equation ψ(θ#σz , θ
inf
σz , σz) = 0. Note that, under MARP, θ#σz

identifies the fundamental threshold below which regime change occurs when the total precision of

the agents’ private information is σ−2
z , and the endogenous disclosure of public information reveals

that θ ≥ θinfσz . Let12

D(θ, θ#σz) ≡

b̄′(θ) if θ < θ#σz

ḡ′(θ) if θ ≥ θ#σz .

Proposition AM2-3. Suppose that, for any σz ∈ (0, ση],

E[D(θ, θ#σz)(θ − θ#σz)|z
∗(θ#σz), θ ≥ θinfσz ;σz] ≥ 0. (AM13)

Then the optimal policy is non-discriminatory.

The formal proof is below. Here we first discuss the intuition behind the result and its implica-

tions. The condition in Proposition AM2-3 is a measure of the sensitivity of the marginal agent’s

net payoff from investing to the underlying fundamentals.13 To see this, note that the condition is

12Here b̄′ and ḡ′ denote the derivatives of the b̄ and ḡ functions, respectively.
13The marginal agent is the one with signal z∗σz

(θ#σz
).
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equivalent to14

E[ḡ′(θ)(θ − θ#σz)|z∗(θ
#
σz), θ ≥ θ#σz ;σz]

E[ḡ(θ)|z∗(θ#σz), θ ≥ θ#σz ;σz]
≥ E[b̄′(θ)(θ#σz − θ)|z∗(θ#σz), θ ∈ (θinfσz , θ

#
σz);σz]

E[|̄b(θ)||z∗(θ#σz), θ ∈ (θinfσz , θ
#
σz);σz]

.

The left-hand side is the elasticity of the marginal agent’s expected net payoff from investing

with respect to the underlying fundamentals, in case of no default. The right-hand side is the

corresponding elasticity in case of default.15

To gather some intuition, consider the case in which, when default occurs, the agents’ payoff

differential between investing and not investing is constant in the underlying fundamentals (i.e.,

b̄′(θ) = 0 for all θ). In this case, the marginal agent faces only upside risk. Hence, when the

quality of private information decreases (which amounts to a mean-preserving increase in risk), the

agent’s expected net payoff from investing increases. Starting from any policy that discloses private

information to the agents (i.e., for which σz < ση), the policy maker can then do better by reducing

the precision of the agents’ private information. In this case, the optimal policy is non-discriminatory.

The value of Proposition AM2-3 is in indicating how the optimality of discriminatory disclosures

relates to the sensitivity of the agents’ payoffs to the underlying fundamentals. In turn, such sensitiv-

ity typically depends on the type of security issued by the banks. For example, the above condition

is more likely to hold when investors are equity holders. In this case, when the bank defaults, their

claims are junior (i.e., subordinated) with respect to those from other stake holders with higher

seniority (e.g., bond holders). In case of default, the agents’ payoff then amount to a liquidation

value that is typically little sensitive to the exact amount of the bank’s performing loans (the bank’s

fundamentals). On the contrary, when the bank does not default (i.e., when the government succeeds

in persuading the bank’s equity holders to stay put), the value of the equity-holders’ claims reflect

the bank’s long-term profitability, which is sensitive to the amount of the bank’s performing loans.

The result in Proposition AM2-3 thus indicates that discriminatory disclosures are more likely to be

beneficial when the banks are seeking external funding by issuing bonds than when they do so by

issuing equity.

Proof of Proposition AM2-3. We establish the result by showing that, when Condition

(AM13) holds, for any fixed θ̂, the function Ψ(θ̂, σz) ≡ minθ0∈[0,1]ψ(θ0, θ̂, σz) is increasing in σz.

Moreover, in this case, the regime threshold in the absence of any public disclosure, θ∗σz , implicitly

defined by ψ(θ∗σz ,−∞, σz) = 0, is decreasing in σz, with limσz→0+ θ
∗
σz = θMS .

To ease the notation, let σ = σz. By the envelope theorem, we have that ∂
∂σΨ(θ̂, σ) = ∂

∂σψ(θ̄σ, θ̂, σ),

14See also Iachan and Nenov (2015) for a similar condition in a related class of games of regime change.
15Observe that, for the marginal agent with signal z∗σz

(θ#σz
),

P[θ ≥ θ#σz
|z∗σz

(θ#σz
), θ ≥ θinf

σz
;σz]E[ḡ(θ)|z∗σz

(θ#σz
), θ ≥ θ#σz

;σz] =

P[θ ∈ (θinf
σz

, θ#σz
)|z∗σz

(θ#σz
), θ ≥ θinf

σz
;σz]E[|b̄(θ)||z∗σz

(θ#σz
), θ ∈ (θinf

σz
, θ#σz

);σz].
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with θ̄σ ∈ argminθ0∈[0,1] ψ(θ0, θ̂, σ). Note that, for any θ0 > θ̂, any σ,

∂
∂σψ(θ0, θ̂, σ) =

∂
∂σ

∫∞
θ̂

(
b̄(θ)1θ<θ0 + ḡ(θ)1θ≥θ0

) ϕ
(

z∗σ(θ0)−θ

σ

)
σΦ

(
z∗σ(θ0)−θ̂

σ

)dθ

= ∂
∂σ

∫ 1

1−Φ

(
z∗σ(θ0)−θ̂

σ

)(b̄(z∗σ(θ0)−σΦ−1(1−A))1A<1−θ0
+ḡ(z∗σ(θ0)−σΦ−1(1−A))1A>1−θ0)dA

Φ

(
z∗σ(θ0)−θ̂

σ

)

=

∫ 1

1−Φ

(
z∗σ(θ0)−θ̂

σ

)(b̄′(z∗σ(θ0)−σΦ−1(1−A))1A<1−θ0
+ḡ′(z∗σ(θ0)−σΦ−1(1−A))1A>1−θ0)(Φ

−1(θ0)−Φ−1(1−A))dA

Φ

(
z∗σ(θ0)−θ̂

σ

)

+
(ψ(θ0,θ̂,σ)−b(θ̂))ϕ

(
z∗σ(θ0)−θ̂

σ

)
(θ0−θ̂)

σ2Φ

(
z∗σ(θ0)−θ̂

σ

)

where the second equality follows from the change of variablesA = 1−Φ
(
z∗σ(θ0)−θ

σ

)
along with the fact

that, by definition, 1−Φ
(
z∗σ(θ0)−θ0

σ

)
= 1−θ0, while the third equality from using z∗σ(θ) = θ+σΦ−1(θ).

Lastly, by reverting the change of variables, and letting

D(θ, θ0) ≡

b̄′(θ) if θ < θ0

ḡ′(θ) if θ ≥ θ0,

we have that

∂

∂σ
ψ(θ0, θ̂, σ) =

∫∞
θ̂ D(θ, θ0)(θ − θ0)ϕ

(
z∗σ(θ0)−θ

σ

)
dθ + (ψ(θ0, θ̂, σ)− b(θ̂))ϕ

(
z∗σ(θ0)−θ̂

σ

)(
θ0 − θ̂

)
σ2Φ

(
z∗σ(θ0)−θ̂

σ

)
= σ−1E[D(θ, θ0)(θ − θ0)|z∗σ(θ0), θ ≥ θ̂] +

(ψ(θ0, θ̂, σ)− b(θ̂))ϕ
(
z∗σ(θ0)−θ̂

σ

)(
θ0 − θ̂

)
σ2Φ

(
z∗σ(θ0)−θ̂

σ

) .

When evaluated at θ̂ = θinfσ and θ0 = θ#σ , because ψ(θ#σ , θ
inf
σ , σ) = 0, we have that the above

expression becomes

∂

∂σ
ψ(θ#σ , θ

inf
σ , σ) = σ−1E[D(θ, θ#σ )(θ − θ#σ )|z∗σ(θ#σ ), θ ≥ θinfσ ] +

|b(θinfσ )|ϕ
(
z∗σ(θ

#
σ )−θinf

σ

σ

)(
θ#σ − θinfσ

)
σ2Φ

(
z∗σ(θ

#
σ )−θinf

σ

σ

) .

It is now easy to see that Condition (AM13) implies that ∂
∂σψ(θ

#
σ , θ

inf
σ , σ) > 0.

The above property implies that, fixing θinfσz , a marginal increase in the standard deviation of

the agents’ private information at σz increases Ψ(θinfσz , σz). Furthermore, because the threshold θ#σz
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solves ψ(θ#σz , θ
inf
σz , σz) = 0, we have that, by increasing σz while keeping the threshold θinfσz fixed, the

policy maker guarantees that, for any θ > θinfσz , ψ(θ, θ
inf
σz , σz) > 0. Next, note that θinfσz is decreasing

in σz. This follows from the fact that, for any σz, any θ > θ̂, ψ(θ, θ̂, σz) is strictly increasing in θ̂

(this last property in turn follows from Lemma 2 in Angeletos, Hellwig and Pavan (2007)). From

the above results, we thus have that, starting from any discriminatory policy, a reduction in the

precision of the agents’ private information (i.e., a marginal increase in σz) lowers the fundamental

threshold θinfσz below which regime default occurs, thus improving the policy maker’s payoff. Q.E.D.
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