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Abstract

We study the optimal dynamics of incentives for a manager whose ability to generate cash flows changes 
stochastically with time and is his private information. We show that distortions (aka, wedges) under optimal 
contracts may either increase or decrease over time. In particular, when the manager’s risk aversion and 
ability persistence are small, distortions decrease, on average, over time. For sufficiently high degrees of 
risk aversion and ability persistence, instead, distortions increase, on average, with tenure. Our results follow 
from a novel variational approach that permits us to tackle directly the “full program,” thus bypassing some 
of the difficulties of the “first-order approach” encountered in the dynamic mechanism design literature.
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1. Introduction

In dynamic business environments, the ability of top managers to generate profits for their 
firms is expected to change with time as a result, for example, of changes in the organization, 
the arrival of new technologies, or market consolidations. A key difficulty is that, while such 
changes are largely expected, their implications for profitability typically remain the managers’ 
private information. In this paper we ask the following questions: are managers induced to work 
harder at the beginning of their employment relationships or later on? Do the distortions in the 
provision of incentives due to asymmetric information tend to decrease over time? How does 
“pay for performance” change over the course of the employment relationship to sustain the 
desired dynamics of effort? Should the intertemporal variation in the provision of incentives be 
more pronounced for managers of low or of high initial productivity?

We consider an environment where, at the time of joining the firm, the managers possess 
private information about their productivity (i.e., their ability to generate cash flows). This private 
information originates, for instance, in tasks performed in previous contractual relationships, as 
well as in personal traits that are not directly observable by the firm. The purpose of the analysis 
is to examine the implications of this private information, and the fact that it evolves with time, 
for the dynamic provision of incentives.

In the environment described above, a firm finds it expensive to ask a manager to exert more 
effort for three reasons. First, higher effort is costly for the manager and must be compensated. 
Second, asking higher effort of a manager with a given productivity requires increasing the com-
pensation promised to all managers with higher productivity. This compensation is required even 
if the firm does not ask the more productive managers to exert more effort and represents an 
additional “rent” for these managers. It is needed to discourage them from mimicking the less 
productive managers by misrepresenting their productivity and reducing their effort. Third, in-
ducing higher effort requires pay to be more sensitive to performance. This, in turn, exposes 
the managers to more volatility in their compensation. When the managers are risk averse, this 
increase in volatility reduces their expected payoff, requiring higher compensation by the firm.

The above effects of effort on compensation shape the way the firm induces its managers to 
respond to productivity shocks over time. In this paper we investigate the implications of the 
above trade-offs both for the dynamics of effort and for the distortions in the provision of incen-
tives due to asymmetric information. As in the new Dynamic Public Finance, in the presence of 
wealth effects (that is, beyond the quasilinear case), distortions are best measured by the “wedge” 
between the marginal cash flows generated by higher effort and the marginal compensation that 
must be paid to the managers to keep their utility constant. Importantly, if one considers compen-
sation schemes that are differentiable in the firm’s cash flows and depend only on (a) the history 
of reported productivity and (b) the cash flows generated in the period of compensation, then 
the wedges are also related to the “local” sensitivity of compensation to cash flows around the 
“equilibrium cash flows”. More generally, the dynamics of wedges provides information on how 
the firm optimally distorts both effort and compensation intertemporally to reduce the managers’ 
information rents.

Our analysis identifies certain properties of optimal contracts by applying variational argu-
ments directly to the firm’s “full problem”. That is, we directly account for all of the manager’s 
incentive constraints. For any incentive-compatible contract, we identify certain “admissible per-
turbations” that preserve participation and incentive-compatibility constraints. For a contract to 
be optimal, these perturbations must not increase the firm’s expected profits. This requirement 
implies a new set of Euler conditions that equate the average marginal benefit of higher effort 
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with its average marginal cost. The average marginal benefit is simply the increase in the firm’s 
expected cash flows. The average marginal cost combines the disutility of effort with (a) the 
cost of increasing the compensation for higher types to induce them to reveal their private in-
formation, and (b) the cost of increasing the volatility of compensation in case the manager is 
risk averse. Importantly, the admissible variations that lead to the Euler conditions do not permit 
us to characterize how effort and compensation respond to all possible contingencies. However, 
they do permit us to identify certain predictions as to how, on average, effort and the power of 
incentives evolve over time under fully optimal contracts.

The advantage of this approach is that it permits us to bypass some of the difficulties encoun-
tered in the literature. The typical approach involves imposing only a restricted set of incentive 
constraints, usually referred to as “local” constraints. In other words, one first solves a “relaxed 
problem”. One then seeks to identify restrictions on the primitive environment that guarantee 
that the solution to the relaxed problem satisfies the remaining incentive constraints.1 When val-
idated, the relaxed approach has the advantage of yielding ex-post predictions about effort and 
compensation that depend on the realized productivity history. In contrast, the variational ap-
proach we develop here yields only ex-ante predictions that hold by averaging over productivity 
histories.2 The primitive conditions under which the variational approach yields useful predic-
tions are neither stronger nor weaker than the conditions that validate the first-order approach. 
For example, while the variational approach requires (a) the disutility of effort to be quadratic 
and (b) effort to possibly take negative values (so as to avoid corner solutions), such restrictions 
are not required under the first-order approach. On the other hand, some of the restrictions on 
the productivity distribution required by the first-order approach can be dispensed with under the 
variational approach.

Key results. Consider first the case where managers are risk neutral. The concern for reducing 
the rent left to those managers whose initial productivity is high typically leads the firm to distort 
downward (relative to the first best) the level of effort asked of those managers whose initial 
productivity is low. While a similar property has been noticed in previous work (see, among 
others, Laffont and Tirole, 1986), all existing results have been established for cases where the 
optimal contract is the solution to the “relaxed program”. We show that this property is true more 
generally, as long as the effort that the firm asks at each point in time is bounded away from zero 
from below with probability one (that is, except over at most a zero-measure set of productivity 
histories). We also provide novel primitive conditions for this to be the case.

An important further result is that, whenever (a) on average, period-1 effort is distorted 
downward relative to the first-best level, and (b) the effect of the initial productivity on future 
productivity declines with time, the firm asks, on average, for higher effort later in the relation-
ship. This is because, when productivity is less than fully persistent, the benefit of distorting the 
effort of those managers whose initial productivity is low so as to reduce the compensation paid 
to those managers whose initial productivity is high is greatest early in the relationship.

Next consider the case where the managers are risk averse. Mitigating the volatility of future 
compensation calls for contracts that, on average, further distort effort and compensation away 

1 The relaxed approach fails whenever the effort policies that solve the relaxed problem fail to satisfy certain “mono-
tonicity conditions” necessary for incentive compatibility (for the present paper, see Condition (B) in Proposition 1). We 
refer the reader to Pavan et al. (2014) for further discussion of how the relaxed approach may fail in quasilinear settings.

2 Predictions that hold only on average may still be important for empirical work, especially given that histories of 
productivity shocks are typically unobservable to the econometrician.
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from their efficient levels later in the relationship. The reason is that, viewed from the date the 
contract is initially agreed, managers face greater uncertainty about their productivity at later 
dates. Whether distortions increase or decrease, on average, over time then depends on the de-
grees of managerial risk-aversion and productivity persistence. For low degrees of risk aversion 
and low degrees of productivity persistence, the dynamics of distortions are the same as in the 
risk neutral case (that is, distortions decrease, on average, over time). When, instead, productiv-
ity is perfectly persistent (meaning that shocks to productivity are permanent as in the case of a 
random walk), then, for any degree of risk aversion, distortions increase, on average, over time.3

Subject to certain qualifications, we argue that the same result should also be expected for large 
degrees of persistence. In particular, we argue that the dynamics of distortions are continuous 
with respect to the degree of productivity persistence, provided that effort under optimal policies 
remains bounded.

Implications for empirical work. The empirical literature typically focuses on a measure 
of incentives proposed by Jensen and Murphy (1990). This is the responsiveness of CEO pay 
to changes in shareholder wealth. The empirical evidence of how incentives vary with tenure is 
mixed. Gibbons and Murphy (1992), Lippert and Porter (1997), and Cremers and Palia (2010)
find that the sensitivity of managerial pay to performance typically increases with tenure, while 
Murphy (1986) and Hill and Phan (1991) find evidence of the opposite. A number of theories 
have been proposed to explain these patterns. Gibbons and Murphy (1992) provide a model 
of career concerns to suggest that explicit pay-for-performance ought to increase closer to a 
manager’s retirement. Edmans et al. (2012) suggest a similar conclusion but based on the idea 
that, with fewer remaining periods ahead, replacing current pay with future promised utility 
becomes more difficult to sustain. Arguments for the opposite finding have often centered on the 
possibility that managers capture the board once their tenure has grown large (see, e.g., Hill and 
Phan, 1991 and Bebchuk and Fried, 2004), while Murphy (1986) proposes a theory based on 
market learning about managerial quality over time, where the learning is symmetric between 
the market and the managers.

Our paper contributes to this debate by indicating that a key determinant for whether incen-
tives (proxied by the sensitivity of pay to performance) ought to increase or decrease with tenure 
may be the manager’s degree of risk aversion. Another prediction of our model, although one 
which is subject to the limitations of the relaxed approach discussed above, is that, under risk 
neutrality, the increase in the provision of incentives over time is most pronounced for those 
managers whose initial productivity is low.4 Because productivity is positively correlated with 
performance, this result suggests a negative correlation between early performance and the in-
crease in the provision of incentives (equivalently, in the sensitivity of pay for performance) over 
the course of the employment relationship. This prediction seems a distinctive feature of our 
theory, albeit one that, to the best of our knowledge, has not been tested yet.

Organization of the paper. The rest of the paper is organized as follows. We briefly review 
some pertinent literature in the next section. Section 3 describes the model while Section 4 char-

3 Note that a process that is fully persistent is not necessarily one in which productivity is constant over time. The 
result that distortions increase, on average, over time in the random walk case, for any strictly concave felicity function, 
hinges on the fact that future productivity is stochastic.

4 We expect that this property carries over to settings with risk-averse managers, provided that productivity is less than 
fully persistent (see Fig. 2, for instance, for an example).
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acterizes the firm’s optimal contract. Section 5 concludes. All proofs are in Appendix A at the 
end of the manuscript.

2. Related literature

The literature on managerial compensation is too vast to be discussed within the context of 
this paper. We refer the reader to Prendergast (1999) for an excellent overview and to Edmans 
and Gabaix (2009) for a survey of some recent developments. Below, we limit our discussion to 
the papers that are most closely related to our own work.

Our work is related to the literature on “dynamic moral hazard” and its application to man-
agerial compensation. Seminal works in this literature include Lambert (1983), Rogerson (1985), 
and Spear and Srivastava (1987). These works provide qualitative insights about optimal con-
tracts but do not provide a full characterization. This has been possible only in restricted set-
tings: Phelan and Townsend (1991) characterize optimal contracts numerically in a discrete-time 
model, while Sannikov (2008) characterizes the optimal contract in a continuous-time setting 
with Brownian shocks.5 In contrast to these works, Holmstrom and Milgrom (1987) show that 
the optimal contract has a simple structure when (a) the agent does not value the timing of pay-
ments, (b) noise follows a Brownian motion, and (c) the agent’s utility is exponential and defined 
over consumption net of the disutility of effort. Under these assumptions, the optimal contract 
takes the form of a simple linear aggregator of total profits.

Contrary to the above works, in the current paper we assume that, in each period, the man-
ager observes the shock to his productivity before choosing effort.6 In this respect, our paper is 
closely related to Laffont and Tirole (1986) who first proposed this alternative timing. This tim-
ing permits one to use techniques from the mechanism design literature to solve for the optimal 
contract. The same approach has been recently applied to dynamic managerial compensation by 
Edmans and Gabaix (2011) and Edmans et al. (2012). Our model is similar in spirit, but with 
a few key distinctions. First, we assume that the manager is privately informed about his initial 
productivity before signing the contract; this is what drives the result that the manager must be 
given a strictly positive share of the surplus. A second key difference is that we characterize how 
effort and the power of incentives in the optimal contract evolve over time.7

Our paper is also related to our previous work on managerial turnover in a changing world 
(Garrett and Pavan, 2012). In that paper, we assume that all managers are risk neutral and focus on 
the dynamics of retention decisions. In contrast, in the present paper, we abstract from retention 
(i.e., assume a single manager) and focus instead on the effect of risk aversion on the dynamics 
of incentives.

A growing number of papers study optimal financial instruments in dynamic principal-agent 
relationships. For instance, DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007), 

5 See also Sadzik and Stachetti (2013) for recent work on the relationship between discrete-time and continuous-time 
models.

6 We abstract from the possibility that performance is affected by transitory noise that occurs after the manager chooses 
his effort. It is often the case, however, that compensation can be structured so that it continues to implement the desired 
effort policies even when performance is affected by transitory noise.

7 In contrast, the above work assumes that it is optimal to induce the highest feasible effort constantly over time, thus 
bypassing the difficulty of balancing the costs and benefits of additional effort in response to productivity shocks.
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Sannikov (2007),8 and Biais et al. (2010) study optimal financial contracts for a manager who 
privately observes the dynamics of cash flows and can divert funds from investors to private con-
sumption. In these papers, it is typically optimal to induce the highest possible effort (which is 
equivalent to no stealing/no saving); the instrument which is then used to create incentives is 
the probability of terminating the project. One of the key findings is that the optimal contract 
can often be implemented using long-term debt, a credit line, and equity. The equity component 
represents a linear component to the compensation scheme which is used to make the agent indif-
ferent as to whether or not to divert funds to private use. Since the agent’s cost of diverting funds 
is constant over time and output realizations, so is the equity share. In contrast, we provide an 
explanation for why and how this share may change over time. While these papers suppose that 
cash-flows are i.i.d., Tchistyi (2006) explores the consequences of correlation and shows that the 
optimal contract can be implemented using a credit line with an interest rate that increases with 
the balance. As in Tchistyi (2006), we also assume that managerial productivity is imperfectly 
correlated over time.

From a methodological standpoint, we draw from recent results in the dynamic mechanism 
design literature. In particular, the necessary and sufficient conditions for incentive compatibil-
ity in Proposition 1 in the present paper adapt to the environment under examination results 
in Theorems 1 and 3 in Pavan et al. (2014). That paper provides a general treatment of incen-
tive compatibility in dynamic settings. It extends previous work by Baron and Besanko (1984), 
Besanko (1985), Courty and Li (2000), Battaglini (2005), Eso and Szentes (2007), and Kapicka
(2013), among others, by allowing for more general payoffs and stochastic processes and by 
identifying the role of impulse responses as the key driving force for the dynamics of optimal 
contracts. One of the key properties identified in this literature is that of declining distortions (see, 
e.g., Baron and Besanko, 1984; Besanko, 1985, and Battaglini, 2005, among others). A contribu-
tion of the present paper is to qualify the extent to which this property is robust to the possibility 
that the agent is risk averse.9 In this respect, the paper is also related to Farinha Luz (2014) who, 
in an insurance model with two types, identifies conditions on the utility function that guarantee 
that distortions decrease over time over all possible paths. Another contribution of the present 
paper relative to this literature is in the way we identify certain properties of optimal contracts. 
As explained above, this involves identifying perturbations of the proposed policies that pre-
serve participation and incentive-compatibility constraints and then using variational arguments 
to verify the key properties. To the best of our knowledge, this approach is new to the dynamic 
mechanism design literature. Variational methods have been used in agency models with hidden 
actions only by Cvitanić et al. (2009), Capponi et al. (2012), and Sannikov (2014). For a general 
treatment of variational methods in optimization problem, see e.g. Luenberger (1997).

The paper is also related to the literature on optimal dynamic taxation (also known as Mir-
rleesian taxation, or new public finance). Recent contributions to this literature include Battaglini 
and Coate (2008), Zhang (2009), Golosov et al. (2012) and Farhi and Werning (2013). Our defi-
nition of distortions in the provision of incentives coincides with the definition of labor “wedge” 
in this literature, which is considered the appropriate measure of distortions in the provision of 
incentives in the presence of private information and non-quasilinear payoffs. A complication 
encountered in this literature is that, because of risk aversion, policies solving the relaxed pro-

8 As in our work, and contrary to the other papers cited here, Sannikov (2007) allows the agent to possess private 
information prior to signing the contract. Assuming the agent’s initial type can be either “bad” or “good”, he characterizes 
the optimal separating menu where only good types are funded.

9 For static models with risk aversion, see Salanie (1990), and Laffont and Rochet (1998).
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gram can only be computed numerically; likewise, the incentive-compatibility of such policies 
can only be checked with numerical methods. The approach introduced in the present paper may 
perhaps prove useful for characterizing certain properties of optimal dynamic taxes, as well as 
optimal contracts for risk-averse agents in other settings.

3. The model

3.1. The environment

Players, actions, and information. The firm’s shareholders (hereafter referred to as the prin-
cipal) hire a manager to work on a project for two periods. In each period t = 1, 2, the manager 
receives some private information θt ∈ �t = [

θ t , θ̄t

]
about his ability to generate cash flows for 

the firm (his type). After observing θt , he then chooses effort et ∈ E = R. The latter, combined 
with the manager’s productivity θt , then leads to cash flows πt according to the simple technol-
ogy πt = θt + et .

Both θ ≡ (θ1, θ2) ∈ � ≡ �1 ×�2 and e ≡ (e1, e2) ∈ R
2 are the manager’s private information. 

Instead, the cash flows π ≡ (π1, π2) are verifiable, and hence can be used as a basis for the 
manager’s compensation.

Payoffs. For simplicity, we assume no discounting.10 The principal’s payoff is the sum of the 
firm’s cash flows in the two periods, net of the manager’s compensation, i.e.

UP (π, c) = π1 + π2 − c1 − c2,

where ct is the period-t compensation to the manager and where c ≡ (c1, c2). The function UP

is also the principal’s Bernoulli utility function used to evaluate possible lotteries over (π, c).
By choosing effort et in period t , the manager suffers a disutility ψ(et ). The manager’s 

Bernoulli utility function is then given by

UA(c, e) = v (c1) + v (c2) − ψ(e1) − ψ (e2) , (1)

where v : R→R is a strictly increasing, weakly concave, surjective, Lipschitz continuous, and 
differentiable function.11 The case where v is linear corresponds to the case where the manager 
is risk neutral, while the case where v is strictly concave corresponds to the case where he is risk 
averse. Note that the above payoff specification also implies that the manager has preferences 
for consumption smoothing. This assumption is common in the dynamic moral hazard (and tax-
ation) literature (a few notable exceptions are Holmstrom and Milgrom, 1987 and more recently 
Edmans and Gabaix, 2011).12 We denote the inverse of the felicity function by w (i.e., w ≡ v−1).

Productivity process. The manager’s first-period productivity, θ1, is drawn from an abso-
lutely continuous c.d.f. F1 with density f1 strictly positive over �1. His second-period pro-
ductivity is drawn from an absolutely continuous c.d.f. F2 (·|θ1) with density f2 (·|θ1) strictly 

10 None of the results hinge on this assumption.
11 The reason for assuming that v (·) is surjective is twofold: (i) it guarantees the existence of punishments sufficient to 
discourage the agent from not delivering the anticipated cash flows; (ii) it also guarantees that, given any effort policy 
that satisfies the appropriate monotonicity conditions of Proposition 1 below, one can always construct a compensation 
scheme that delivers, on path, the utility that is required for the agent to report his productivity truthfully.
12 As is standard, this specification presumes that the manager’s period-t consumption ct coincides with the period-t
compensation. In other words, it abstracts from the possibility of secret private saving. The specification also presumes 
time consistency. This means that, in both periods, the manager maximizes the expectation of UA , where the expectation 
depends on all available information.
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positive over a subset �2 (θ1) = [
θ2 (θ1) , θ̄2 (θ1)

]
of �2. We will assume θt follows an autore-

gressive process so that θ̃2 = γ θ̃1 + ε̃, with ε̃ drawn from a continuously differentiable c.d.f. 
G with finite support 

[
ε, ε̄

]
.13 That productivity follows an autoregressive process implies that 

the impulse responses of period-2 types, θ2, to period-1 types, θ1, are constant and equal to γ . 
While monotonicity of the impulse responses is often used to validate the first-order approach 
(see Pavan et al., 2014, and Battaglini and Lamba, 2014), it does not play a role in the variational 
approach in our paper. The perturbations we discuss in Section 4 continue to preserve incen-
tive compatibility under more general processes in which impulse responses are neither constant 
nor monotone. The only result that uses the assumption that impulse responses are constant is 
Proposition 3 below where we consider perturbations of effort over multiple periods that leave 
the manager’s payoff unchanged. However, this result is superseded by Proposition 2 whenever 
expected effort can be shown to be non-negative.

We assume that γ ≥ 0, so that higher period-1 productivity leads to higher period-2 productiv-
ity in the sense of first-order stochastic dominance. We will refer to γ = 1 as to the case of “full 
persistence” (meaning that, holding effort fixed, the effect of any shock to period-1 productivity 
on the firm’s average cash flows is constant over time). We will be primarily interested in the 
case where γ ∈ [0,1].

Effort disutility. As mentioned in the Introduction, the variational approach in the present 
paper requires that ψ (e) = e2/2 for all e. That the disutility of effort is quadratic permits us 
to identify a convenient family of perturbations to incentive-compatible contracts that preserve 
incentive compatibility. That effort can take negative values in turn permits us to disregard the 
possibility of corner solutions. It also guarantees that a manager misreporting his productivity 
can always adjust his effort to “hide the lie” by generating the same cash flows as the type being 
mimicked. This property also facilitates the analysis by turning the model de facto into a pure 
adverse selection one, as first noticed by Laffont and Tirole (1986).

Many of the formulas below will retain the notation ψ ′ (e) and ψ ′′ (e) to distinguish the role 
of these functions from effort e and from the constant 1.

3.2. The principal’s problem

The principal’s problem consists in choosing a contract specifying for each period a recom-
mended effort choice along with compensation that conditions on the observed cash flows. It is 
convenient to think of such a contract as a mechanism � ≡ 〈ξ, x〉 comprising a recommended 
effort policy ξ ≡ (ξ1 (·) , ξ2 (·)) and a compensation scheme x ≡ (x1 (·) , x2 (·)).

The effort ξ1(θ1) that the firm recommends in period one is naturally restricted to depend on 
the manager’s self-reported productivities θ = (θ1, θ2) only through θ1. This property reflects 
the assumption that the manager learns his period-2 productivity θ2 only at the beginning of the 
second period, as explained in more detail below.14 The effort that the firm recommends in the 
second period, ξ2(θ), depends on the manager’s self-reported productivity in each of the two peri-
ods, but is independent of the first-period cash flow, π1. This property can be shown to be without 
loss of optimality for the principal, a consequence of the assumptions that (i) cash flows are de-
terministic functions of effort and productivity (which implies that, on path, π1 is a deterministic 

13 Throughout, we use the superscript “∼” to denote random variables.
14 While we naturally restrict ξ1 to depend on θ only through the period-1 productivity θ1, we often abuse notation by 
writing ξ1 (θ) whenever this eases the exposition without the risk of confusion.
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function of θ1), and (ii) the manager is not protected by limited liability (which implies that in-
centives for period-1 effort can be provided through the compensation scheme x1(·) without the 
need to condition effort in the second period on off-path cash flows). The compensation xt(θ, π)

paid in each period naturally depends both on the reported productivities and the observed cash 
flows.15 Note that, by reporting his productivity, the manager effectively induces a change to his 
compensation scheme. This seems consistent with the practice of managers proposing changes 
to their compensation, which has become quite common (see, among others, Bebchuk and Fried, 
2004, and Kuhnen and Zwiebel, 2008).16

Let πt (θ) ≡ θt + ξt (θ) denote the period-t “equilibrium” cash flows (by “equilibrium”, here-
after we mean under a truthful and obedient strategy for the manager). Note that the compensa-
tion scheme x is defined for all possible cash flows π ∈ R

2, not only the equilibrium ones; i.e., 
each payment xt (θ,π) is defined also for π �= π (θ) ≡ (π1(θ1),π2 (θ)). For any θ ∈ �, we then 
further define ct (θ) = xt (θ, π(θ)) to be the equilibrium compensation to the manager in state θ
and refer to c ≡ (c1 (·) , c2 (·)) as the firm’s compensation policy. While our focus is on charac-
terizing the firm’s optimal effort and compensation policies, the role of the out-of-equilibrium 
payments xt (θ,π) for π �= π (θ) is to guarantee that the manager finds it optimal to follow a 
truthful and obedient strategy, as will be discussed in detail below.

Importantly, we assume that the firm offers the manager the contract after he is already in-
formed about his initial productivity θ1 ∈ �1. After receiving the contract, the manager then 
chooses whether or not to accept it. If he rejects it, he obtains an outside continuation payoff 
which we assume to be equal to zero for all possible types. If, instead, he accepts it, he is then 
bound to stay in the relationships for the two periods.17 He is then asked to report his productivity 
θ̂1 ∈ �1 and is recommended effort ξ1(θ̂1). The manager then privately chooses effort e1, which 
combines with the manager’s productivity θ1 to give rise to the period-1 cash flows π1 = θ1 + e1. 
After observing the cash flows π1, the firm then pays the manager a compensation x1(θ̂1, π1).

The functioning of the contract in period two parallels the one in period one. At the beginning 
of the period, the manager learns his new productivity θ2. He then updates the principal by 
sending a new report θ̂2 ∈ �2. The contract then recommends effort ξ2(θ̂ ) which may depend 
on the entire history θ̂ ≡ (θ̂1, θ̂2) of reported productivities. The manager then privately chooses 
effort e2 which, together with θ2, leads to the cash flows π2. After observing π2, the firm then 
pays the manager a compensation x2(θ̂ , π) and the relationship is terminated.

As usual, we restrict attention to contracts that are accepted by all types and that induce the 
manager to report truthfully and follow the principal’s recommendations in each period.18 We 
will refer to such contracts as individually rational and incentive compatible.

15 Again, we abuse notation by writing x1 (θ,π) when convenient, although x1 is naturally restricted to depend only on 
(θ1,π1).
16 However, note that the allocations sustained under the optimal contract as determined below are typically sustainable 
also without the need for direct communication between the manager and the firm (this is true, in particular, when there 
is a one-to-one mapping from the manager’s productivity to the equilibrium cash flows).
17 We do not expect our results to hinge on the assumption that the manager is constrained to stay in the relationship 
throughout both periods. For example, when the manager’s period-2 outside option is sufficiently small, the period-2 
individual rationality constraints are slack. One reason why the outside option in period two may be small is that the 
manager may anticipate adverse treatment by the labor market in case he leaves the firm prematurely. Fee and Hadlock
(2004), for instance, document evidence for a labor market penalty in case a senior executive leaves the firm early, 
although the size of this penalty depends on the circumstances surrounding departure.
18 Note that the manager’s second-period payoff does not depend directly on his first-period productivity. Hence, the 
environment is “Markov”. This means that restricting attention to contracts that induce the manager to follow a truthful 



784 D.F. Garrett, A. Pavan / Journal of Economic Theory 159 (2015) 775–818
4. Profit-maximizing contracts

4.1. Implementable policies

As anticipated above, the principal’s problem consists in choosing effort and compensation 
policies 〈ξ, c〉 to maximize the firm’s expected profits subject to the policies being imple-
mentable. By this we mean the following.

Definition 1. The effort and compensation policies 〈ξ, c〉 are implementable if there exists a com-
pensation scheme x such that (i) the contract � = 〈ξ, x〉 is incentive compatible and individually 
rational, and (ii) the manager’s on-path compensation under the contract � = 〈ξ, x〉 is given by c, 
i.e. xt (θ,π (θ)) = ct (θ) for all t , and all θ .

Our first result provides a complete characterization of implementable policies. For any (θ; ξ), 
let

W (θ; ξ) ≡ ψ(ξ1(θ1)) + ψ (ξ2(θ)) +
∫ θ1

θ1

{
ψ ′ (ξ1 (s)) + γEθ̃2|s

[
ψ ′(ξ2(s, θ̃2))

]}
ds

+
∫ θ2

θ2

ψ ′(ξ2(θ1, s))ds −E
θ̃2|θ1

[∫ θ̃2

θ2

ψ ′(ξ2(θ1, s))ds

]
. (2)

Proposition 1. The effort and compensation policies 〈ξ, c〉 are implementable if and only if the 
following conditions jointly hold: (A) for all θ ∈ �,

v (c1 (θ1)) + v (c2 (θ)) = W (θ; ξ) + K (3)

where K ≥ 0 is such that

E
θ̃ |θ1

[
W(θ̃; ξ) − ψ(ξ1(θ̃1)) − ψ(ξ2(θ̃))

]
+ K ≥ 0 (4)

for all θ1; and (B)(i) for all θ1, θ̂1 ∈ �1,∫ θ1

θ̂1

{
ψ ′ (ξ1(θ̂1) + θ̂1 − s

)
+ γEθ̃2|s

[
ψ ′ (ξ2(θ̂1, θ̃2)

)]}
ds

≤
∫ θ1

θ̂1

{
ψ ′ (ξ1 (s)) + γEθ̃2|s

[
ψ ′ (ξ2(s, θ̃2)

)]}
ds, (5)

and (B)(ii) π1 (θ1)+γEθ̃2|θ1

[
π2(θ1, θ̃2)

]
is non-decreasing in θ1 and, for all θ1 ∈ �1, π2 (θ1, θ2)

is non-decreasing in θ2.

Note that Condition (A) says that the manager’s ex-post equilibrium payoff

V (θ) ≡ v (c1 (θ1)) + v (c2 (θ)) − ψ(ξ1(θ1)) − ψ (ξ2(θ))

and obedient strategy in period two also after having departed from truthful and obedient behavior in period one is 
without loss of optimality.
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in each state of the world θ = (θ1, θ2) must be equal to his period-1 expected payoff

E
θ̃ |θ1[V (θ̃)] = E

θ̃ |θ1 [V (θ̃)] +
∫ θ1

θ1

{
ψ ′ (ξ1 (s)) + γEθ̃2|s

[
ψ ′(ξ2(s, θ̃2))

]}
ds (6)

augmented by a term

∫ θ2

θ2

ψ ′(ξ2(θ1, s))ds −E
θ̃2|θ1

[∫ θ̃2

θ2

ψ ′(ξ2(θ1, s))ds

]

that guarantees that the manager has the incentives to report truthfully not only in period-1 but 
also in period-2 and that vanishes when computed based on period 1’s private information, θ1. 
The necessity of this condition is obtained by combining certain period-2 local necessary con-
ditions for incentive compatibility (as derived, for example, in Laffont and Tirole, 1986) with 
certain period-1 local necessary conditions for incentive compatibility (as derived, for example, 
in Pavan et al., 2014; see also Garrett and Pavan, 2012 for a similar derivation in a model of 
managerial turnover, and see Garrett and Pavan, 2011 for a generalization of this condition to a 
richer setting with more than two periods). Observe that Condition (A) in the proposition implies 
that the surplus that type θ1 expects above the one expected by the lowest period-1 type θ1 is 
increasing in the effort that the firm asks of managers with initial productivities θ ′

1 ∈ (
θ1, θ1

)
in each of the two periods. This surplus is necessary to dissuade type θ1 from mimicking the 
behavior of these lower types. Such mimicry would involve, say, reporting a lower type in the 
first period and then replicating the distribution of that type’s productivity reports in the second 
period. By replicating the same cash flows expected from a lower type, a higher type obtains the 
same compensation while working less if the effort asked of the lower type is positive, and more 
if the effort asked of the lower type is negative.

Also note that, when productivity is only partially persistent (in the autoregressive model, 
when γ < 1), then asking for a lower period-1 effort from types θ ′

1 < θ1 is more effective in 
reducing type θ1’s expected surplus than asking for a lower period-2 effort from the same types. 
The reason is that the amount of effort that type θ1 expects to be able to save relative to these 
lower period-1 types (alternatively, the extra effort that he must provide, in case the effort asked 
to these lower types is negative) is smaller in the second period, reflecting the fact that the initial 
productivity is imperfectly persistent. As we will see below, this property plays an important role 
in shaping the dynamics of effort and the distortions in the provision of incentives under optimal 
contracts.

Finally note that the scalar K in (3) corresponds to the expected payoff Eθ̃ |θ1[V (θ̃)] of the 
lowest period-1 type. Using (6), it is easy to see that, when the effort requested is always non-
negative, then if the lowest period-1 type finds it optimal to accept the contract, then so does any 
manager whose initial productivity is higher. This property, however, need not hold in case the 
firm requests a negative effort from a positive-measure set of types.

Next consider Condition (B) in the proposition. Observe that, while Condition (A) imposes 
restrictions on the compensation that must be paid to the manager, for given effort policy ξ , Con-
dition (B) imposes restrictions on the effort policy that are independent of the manager’s felicity 
function, v. In particular, Condition (B)(ii) combines the familiar monotonicity constraint for the 
second-period cash flows from static mechanism design (e.g., Laffont and Tirole, 1986) with a 
novel monotonicity constraint that requires the NPV of the expected cash-flows, weighted by the 
impulse responses (which here are equal to one in the first period and γ in the second period) 
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to be non-decreasing in period-1 productivity.19 Finally, Condition (B)(i) is an “integral mono-
tonicity condition,” analogous to the one in Theorem 3 of Pavan et al. (2014). That the conditions 
in the proposition are necessary follows from arguments similar to those in Theorems 2 and 3 
in Pavan et al. (2014), adapted to the environment under examination here. That they are also 
sufficient follows from the fact that, when satisfied, one can construct compensation schemes 
under which the best a manager can do when mimicking a different type is to replicate the same 
cash flows of the type being mimicked. This turns the manager’s problem into a pure adverse 
selection one. The conditions in the proposition then guarantee that, at each history, the manager 
prefers to follow a truthful and obedient strategy in the remaining periods rather than lying and 
then replicating the cash flows of the type being mimicked, irrespective of past effort, true and 
reported productivity.

4.2. Optimal policies

The next step is to use Condition (A) of Proposition 1 to derive an expression for the firm’s 
profits in terms only of the effort policy ξ and the period-1 compensation c1. This follows after 
observing that, given ξ and c1, the period-2 equilibrium compensation c2(θ) = x2 (θ,π(θ)) is 
uniquely determined by the need to provide the manager with a lifetime utility of monetary 
compensation equal to the level required by incentive compatibility, as given by (3). That is,

c2 (θ) = w (W (θ; ξ) + K − v (c1 (θ1))) . (7)

The following representation of the firm’s profits then follows from the result in Proposition 1.

Lemma 1. Let 〈ξ, c〉 be implementable effort and compensation policies yielding an expected 
surplus of K to a manager with the lowest period-1 productivity θ1. The firm’s expected profits 
under 〈ξ, c〉 are given by

E

[
UP

]
= E

[
θ̃1 + ξ1(θ̃1) + θ̃2 + ξ2(θ̃ ) − c1(θ̃1) − w

(
W(θ̃; ξ) + K − v(c1(θ̃1))

)]
. (8)

Note that, when the manager is risk neutral (v(y) = w(y) for all y), the result in Lemma 1
implies that the firm’s expected profits are equal to the entire surplus expected from the rela-
tionship, net of a term that corresponds to the expected surplus that the firm must leave to the 
manager and which depends only on the effort policy ξ :

E

[
UP

]
= E

[
θ̃1 + ξ1(θ̃1) − ψ(ξ1(θ̃1)) + θ̃2 + ξ2(θ̃) − ψ(ξ2(θ̃))

− 1 − F1(θ̃1)

f1(θ̃1)

{
ψ ′(ξ1(θ̃1)) + γψ ′(ξ2(θ̃1, θ̃2))

}
− K

]
. (9)

The expression in (9) is what in the dynamic mechanism design literature (where payoffs are 
typically assumed to be quasilinear) is referred to as “dynamic virtual surplus”.

19 Formally, let θ2 = z(θ1, ε), where ε is a shock independent of θ1. The impulse response of θ2 to θ1 is the derivative 
of z with respect to θ1. In the case of a linear autoregressive process θ2 = z(θ1, ε) = γ θ1 + ε, so that the impulse 
response of θ2 to θ1 is equal to the persistence parameter γ . More generally, the impulse response of θ2 to θ1 is given by 
I (θ1, θ2) ≡ E 

[
∂z(θ1 ε̃)

∣∣∣ z(θ1, ε̃) = θ2

]
.

∂θ1
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As one should expect, when instead the manager is risk averse, the firm’s payoff depends not 
only on the effort policy, but also on the way the compensation is spread over time. The value 
of the result in Lemma 1 comes from the fact that the choice over such compensation can be 
reduced to the choice over the period-1 compensation. This is because any two compensation 
schemes implementing the same effort policy ξ must give the manager the same utility of com-
pensation not just in expectation, but ex-post, that is, at each productivity history θ = (θ1, θ2). 
This equivalence result (which is the dynamic analog in our non-quasilinear environment of the 
celebrated “revenue equivalence” for static quasilinear problems) plays an important role below 
in the characterization of the optimal policies.20

We now consider the question of which implementable effort and compensation policies max-
imize the firm’s expected profits. As noted in the Introduction, the approach typically followed in 
the dynamic mechanism design literature to identify optimal policies is the following. First, con-
sider a relaxed program that replaces all incentive-compatibility constraints with Condition (3)

and all individual-rationality constraints with the constraint that K = E
θ̃ |θ1

[
V (θ̃)

]
≥ 0. Then 

choose policies (ξ1, ξ2, c1) along with a scalar K to solve the unconstrained maximization of 
the firm’s profits as given by (8) and then let c2(·) be given by (7).21 However, recall that, 
alone, Condition (3) is necessary but not sufficient for incentive compatibility. Furthermore, 
when the solution to the relaxed program yields policies prescribing a negative effort over a 
positive-measure set of types, satisfaction of the participation constraint for the lowest period-1 
type θ1 does not guarantee satisfaction of all other participation constraints. Therefore, one must 
typically identify auxiliary assumptions on the primitives of the problem guaranteeing that the 
effort and compensation policies 〈ξ, c〉 that solve the relaxed program are implementable.

The approach we follow here is different. Because the firm’s profits under any individually-
rational and incentive-compatible contract must be consistent with the representation in (8), we 
use this expression to evaluate the performance of different contracts. However, not all policies 
(ξ1, ξ2, c1), coupled with c2 as given in (7) for some K ≥ 0, are implementable (in particular, 
this may be the case for those policies that maximize (8)). Hence, we do not aim at maximizing 
this expression directly. Instead, we use variational arguments to identify properties of optimal 
policies. More precisely, we first identify “admissible variations”. By this we mean perturbations 
to implementable policies such that the perturbed policies remain implementable (i.e., continue 
to satisfy the conditions of Proposition 1). For the candidate policies to be sustained under an 
optimal contract, it then must be the case that no admissible variation increases the firm’s profits, 
as expressed in (8).

Natural candidates for admissible variations are obtained by adding functions α(θ1) and β(θ)

to the original effort policies ξ1(θ1) and ξ2(θ), and then adjusting the compensation policy c so 
that payments continue to satisfy (3). While not all such variations are admissible (in particular, 
they need not yield effort policies satisfying the integral monotonicity constraints in (5)), it is 
easy to verify that, when the disutility of effort is quadratic, then adding non-negative constant 
functions α(θ1) = a > 0 and β(θ) = b > 0, all θ , to the original effort policies ξ1(θ1) and ξ2(θ)

and then adjusting the compensation policy c so that payments continue to satisfy (3) preserves 
all the constraints in Proposition 1. Furthermore, if the original policies 〈ξ, c〉 are such that the 

20 See Pavan et al. (2014) for a more general analysis of payoff-equivalence in dynamic settings.
21 When the agent is risk neutral, the distribution of payments over time is irrelevant for the agent and hence (8) is 
independent of c1(·). In this case, solving the relaxed program means finding an effort policy ξ = (ξ1, ξ2) that maximizes 
(9) and then letting c = (c1, c2) be any compensation policy that satisfies (3).
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participation constraints bind at most only for the lowest period-1 type, θ1 (which is always the 
case when the original effort policy ξ prescribes effort bounded away from zero from below at 
almost all histories), then we may also add negative constant functions, as long as |a| and |b| are 
small enough. The requirement that such perturbations do not increase the firm’s expected profits 
then yields the following result. Let

E

[
1 − ψ ′ (ξ∗

1 (θ̃1)
)

w′ (v (c∗
1(θ̃1)

))]

≤ E

⎡
⎣ψ ′′

(
ξ∗

1 (θ̃1)
)

f1(θ̃1)

∫ θ̄1

θ̃1

w′ (v (c∗
1 (r)

))
f1 (r) dr

⎤
⎦ , (10)

E

[
1 − ψ ′ (ξ∗

2 (θ̃)
)

w′ (v(c∗
2(θ̃))

)]

≤ γE

⎡
⎣ψ ′′

(
ξ∗

2 (θ̃)
)

f1(θ̃1)

∫ θ̄1

θ̃1

w′ (v (c∗
1 (r)

))
f1 (r) dr

⎤
⎦

+E

⎡
⎣ψ ′′

(
ξ∗

2 (θ̃)
)

f2(θ̃2|θ̃1)

∫ θ̄2

θ̃2

{
w′ (v(c∗

2(θ̃1, r))
)

− w′ (v(c∗
1(θ̃1))

)}
f2(r|θ̃1)dr

⎤
⎦ , (11)

and

w′ (v (c∗
1(θ1)

))= E
θ̃2|θ1

[
w′ (v(c∗

2(θ1, θ̃2))
)]

all θ1 ∈ �1. (12)

Proposition 2. Let 〈ξ∗, c∗〉 be effort and compensation policies sustained under an optimal con-
tract. Then 〈ξ∗, c∗〉 must satisfy Conditions (10), (11) and (12).22 Furthermore, the inequalities 

in (10) and (11) must hold as equalities if ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃ ))
]

is bounded away 
from zero from below with probability one.

Conditions (10) and (11) capture how the firm optimally solves the trade-off between increas-
ing the manager’s expected effort on the one hand and reducing the expected payments to the 
manager on the other. When the manager has preferences for consumption smoothing, his com-
pensation must also be appropriately distributed over time according to Condition (12).

It is worth commenting on where our approach is similar to the one in the existing literature 
and where it departs. Condition (12) is obtained by considering perturbations to the compensa-
tion policy that leave the manager’s payoff unchanged. In particular, we consider variations in 
period-1 compensation coupled with adjustments to the period-2 compensation chosen so that 
the total utility that the manager derives from his life-time compensation continues to satisfy (3). 
If the original policies 〈ξ, c〉 are implementable, so are the perturbed ones 

〈
ξ, c′〉. Therefore, un-

der any optimal contract, such perturbations must not increase the firm’s expected profits. For 

22 The effort policy implemented under any optimal contract is essentially unique, that is, unique, except over a zero-
measure set of productivity histories. If v is strictly concave, the compensation policy implemented under any optimal 
contract is also essentially unique.



D.F. Garrett, A. Pavan / Journal of Economic Theory 159 (2015) 775–818 789
this to be the case, the proposed compensation scheme must satisfy Condition (12), which is the 
same inverse Euler condition

1

v′(c∗
1(θ1))

= E
θ̃2|θ1

[
1

v′(c∗
2(θ1, θ̃2))

]

first identified by Rogerson (1985). The only novelty relative to Rogerson is that here the to-
tal utility from compensation is required to satisfy (3), which is necessary when the manager’s 
productivity is his private information.

The point where our analysis departs from the rest of the literature is in the derivation of Con-
ditions (10) and (11), which link the dynamics of effort to the dynamics of compensation, under 
optimal contracts. As mentioned above, these conditions are obtained by considering translations 
of the effort policy ξ that preserve implementability, i.e. that preserve Condition (B) in Proposi-
tion 1. Contrary to the perturbations of the compensation policy that lead to Condition (12), these 
perturbations necessarily change the manager’s expected payoff, as one can readily see from (6). 
For these perturbations not to increase the firm’s expected profits, it must be that the original 
policies satisfy Conditions (10) and (11) in the proposition.

Note that Conditions (10) and (11) hinge on our assumption that the disutility of effort is 
quadratic. As explained above, this assumption is what guarantees that translations of the effort 
policy ξ continue to satisfy Condition (B)(i) of Proposition 1. One might conjecture that our ap-
proach could be generalized to disutility functions that are not quadratic as follows: Rather than 
translating effort by a constant, one could translate the marginal disutility of effort. That is, one 
could consider the new effort policy given, for some t ∈ {1,2}, by ψ ′ (ξη

t (θ)
)= ψ ′ (ξ∗

t (θ)
)+ η

for η small, while letting ξη
s (θ) = ξ∗

s (θ) for s �= t . Unfortunately, the new effort policy ξη typi-
cally does not satisfy Condition (B)(i) of Proposition 1 (even though, by assumption, the original 
policy ξ∗ does satisfy this condition). On the other hand, the assumptions that (a) productiv-
ity follows an AR(1) process and (b) there are only two periods are not essential for the result 
in Proposition 2. In fact, it is easy to verify that the same perturbations also preserve incentive 
compatibility in environments with more than two periods and richer stochastic processes. Euler 
conditions analogous to those in (10) and (11) can thus be obtained also for richer environments.

The next proposition uses an alternative class of perturbations that preserve not only incentive 
compatibility but also the manager’s expected payoff conditional on his period-1 type θ1. This is 
obtained by considering joint perturbations of ξ1 and ξ2 of opposite sign. The requirement that 
such perturbations not increase profits yields another Euler condition that links the effort and 
compensation policies across the two periods.

Proposition 3. Let 〈ξ∗, c∗〉 be effort and compensation policies sustained under an optimal con-
tract. The policies 〈ξ∗, c∗〉 must satisfy the following condition for almost all θ1 ∈ �1:

E
θ̃ |θ1

[
1 − ψ ′ (ξ∗

2 (θ̃ )
)

w′ (v(c∗
2(θ̃ ))

)]
= γ [1 − ψ ′ (ξ∗

1 (θ1)
)
w′ (v (c∗

1(θ1)
))]

+E
θ̃ |θ1

⎡
⎣ψ ′′

(
ξ∗

2 (θ̃ )
)

f2(θ̃2|θ̃1)

∫ θ̄2

θ̃2

{
w′ (v(c∗

2(θ̃1, r))
)

− w′ (v(c∗
1(θ̃1))

)}
f2(r|θ̃1)dr

⎤
⎦ . (13)

Interestingly, note that Conditions (10) and (11) in Proposition 2 above jointly imply that 
Condition (13) holds in expectation, but only when the inequalities in (10) and (11) hold as 
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equalities. Thus, an advantage of the perturbations that lead to Proposition 3 is that they per-
mit us to establish (13), without any restriction on the shape of the policies (in particular, these 

perturbations do not require that ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃ ))
]

is bounded away from zero 
from below with probability one). On the other hand, the new Euler condition (13) is established 
using the property that the productivity process is autoregressive. This assumption permits us 
to add a function α(θ1) = aq1(θ1) to the period-1 effort policy ξ1(θ1) and then compensate the 
variation by deducting the function β(θ) = a

γ
q(θ1) from the period-2 effort policy ξ2(θ) preserv-

ing simultaneously the manager’s period-1 expected payoff, as given by (6), and all the integral 
monotonicity conditions, as given by (5).

4.3. Dynamics of expected distortions

Our next objective is to understand how distortions in the provision of incentives for effort 
change with tenure under optimal contracts. First, we need a workable definition of the “distor-
tions”.

Definition 2 (Wedges). For each t = 1, 2 and each θ = (θ1, θ2), the (local ex-post) distortions

Dt(θ) ≡ 1 − ψ ′ (ξt (θ))w′ (v (ct (θ))) (14)

in the provision of incentives under the (incentive-compatible) mechanism � = 〈ξ, x〉 are given 
by the wedge between the marginal effect of higher effort on the firm’s cash flows and its marginal 
effect on the compensation necessary to preserve the manager’s utility constant.

Note that the formula of the wedge in (14) parallels the one in the new dynamic public finance 
literature; it captures the distortion in the provision of incentives due to the manager’s private in-
formation (in a first-best world, the wedge would be equal to zero at all periods and across all 
states). Interestingly, note that the second term in (14) can also be related to a certain measure of 
“pay for performance”. Consider payment schemes x where the payments in each period depend 
on the history of observed cash flows only through the contemporaneous observations (that is, for 
all t = 1, 2, xt (θ, π) depends on π only through πt ) and where each payment xt(θ, π) is differ-
entiable in the contemporaneous cash flows πt . Recall that the dependence of the compensation 
scheme on the reported productivities is meant to capture changes to the compensation scheme 
proposed by the manager at the beginning of the period. It is then easy to see that any payment 
scheme with the above properties implementing the effort and consumption policies 〈ξ, c〉 must 
satisfy, for any θ ,

∂x1(θ1,π1)

∂π1
|π1=π1(θ1) = ψ ′ (ξ1 (θ1))w′ (v (c1 (θ1)))

∂x2(θ,π2)

∂π2
|π2=π2(θ) = ψ ′ (ξ2 (θ))w′ (v (c2 (θ)))

with πt (θ) = θt + ξt (θ), t = 1, 2. The second term in (14) thus coincides with the rate at which, 
under such schemes, the period-t compensation changes with the period-t cash flows, around 
the target level.23 The above schemes, however, need not always implement the desired policies. 

23 While differentiable schemes need not always implement the optimal policies, we conjecture that differentiable 
schemes can always implement policies which are virtually optimal. By this we mean the following. Let 〈ξ∗, c∗〉 be 
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Furthermore, even when they do, there typically exist other schemes that also implement the 
same policies. Hereafter, we thus focus on the dynamics of distortions under optimal contracts 
as opposed to the dynamics of specific compensation schemes. In particular, we are interested 
in how the dynamics of distortions are affected by the persistence of the manager’s productivity 
(here captured by γ ) and by the manager’s degree of risk aversion.

Risk neutrality. We start with the following result.

Proposition 4. Assume the manager is risk neutral (that is, v is the identity function). Then for 
all θ1,

E
θ̃ |θ1

[
D2(θ̃)

]
= γD1(θ1). (15)

The result follows directly from (13) (observe that, when v is the identify function, the last 
term in (13) is identically equal to zero). Hence, in absolute value, the average distortion is lower 
in period two than in period one when γ < 1 and is the same when γ = 1. Furthermore the sign 
of the average distortions is constant over time. Also note that, when the manager is risk neutral, 
distortions in the provision of incentives reduce to the wedge between the marginal effect of 
effort on the firm’s cash flows and the marginal disutility of effort evaluated at the prescribed 
effort level ξ∗

t (θ). In this case, the Euler conditions (10) and (11) describe properties not only of 
the ex-ante distortions, but also of effort.

Proposition 5. Assume the manager is risk neutral (that is, v is the identity function).
(a) Suppose that, on average, period-1 effort is distorted downwards relative to the first-best 

level (that is, E 
[
ξ∗

1 (θ̃1)
]

< 1 = eFB ). Then expected effort is higher in the second period than in 
the first one when γ < 1 and is the same in the two periods when γ = 1.

(b) Suppose that there exists κ > 0 such that, under the optimal contract, Eθ̃|θ1 [V (θ̃)] ≥
κ[θ1 − θ1] all θ1. Then, on average, period-1 effort is distorted downwards relative to the first-
best level.

(c) Suppose that ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃ ))
]

is bounded away from zero from below 
with probability one. Then participation constraints bind only for the lowest period-1 type.

(d) Either one of the following two sets of conditions guarantees that ψ ′(ξ∗
1 (θ1)) +

γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃))
]

is bounded away from zero from below with probability one:

(i) [1 − F1 (θ1)]/f1(θ1) is non-increasing and strictly smaller than (1 + γ )/(1 + γ 2);
(ii) sup {[1 − F1 (θ1)]/f1(θ1)]} < (1 + γ )/(1 + γ 2) − (

θ̄1 − θ1

)
and F2(·|·) satisfies the 

monotone-likelihood-ratio property (that is, for all θ ′
1 ≥ θ1, f2

(
θ2|θ ′

1

)
/f2 (θ2|θ1) is non-

decreasing in θ2 over �2
(
θ ′

1

)∩ �2 (θ1)).

fully optimal policies. For any ε > 0 there exist policies 〈ξ, c〉 and a differentiable compensation scheme x such that 
the following are true: (i) the contract � ≡ 〈ξ, x〉 is individually rational and incentive compatible for the manager; 
(ii) in each state θ , the compensation the manager receives under � is given by c; and (iii) with probability one ∥∥(ξ(θ), c(θ)) − (

ξ∗(θ), c∗(θ)
)∥∥ ≤ ε. In other words, the firm can always implement policies arbitrarily close to the 

fully-optimal ones using differentiable schemes. Moreover, we conjecture that, when the manager is risk averse, if the 
policies 〈ξ, c〉 yield profits arbitrarily close to the ones under the fully optimal policies, then 〈ξ, c〉 must be arbitrarily 
close to 〈ξ∗, c∗〉 in the L1 norm. Virtually optimal policies can then be expected to inherit the same dynamic properties 
discussed below as the fully optimal policies. This is because the key properties discussed below refer to the expectation
of ψ ′ (ξt (θ))w′ (v (ct (θ))), where the expectation is over all possible productivity histories.
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The result in Part (a) follows from (15) by observing that the latter is equivalent to

E
θ̃
[
ξ∗

2 (θ̃ )
]

= 1 − γ + γEθ̃1
[
ξ∗

1 (θ̃)
]

Hence if, on average, period-1 effort is distorted downwards relative to the first best, then 
period-2 effort is, on average, higher in the second period than in the first one when γ < 1
and is the same in both periods when γ = 1.

The result in Part (b) in turn is established by noting that, when the condition holds, then the 
Euler conditions (10) and (11) must hold as equalities and reduce to24

E
θ̃1
[
1 − ψ ′ (ξ∗

1 (θ̃1)
)]

= E
θ̃1

[
1 − F1(θ̃1)

f1(θ̃1)

]
, (16)

E
θ̃
[
1 − ψ ′ (ξ∗

2 (θ̃)
)]

= γEθ̃

[
1 − F1(θ̃1)

f1(θ̃1)

]
. (17)

Recall that the right-hand sides of (16) and (17) capture the effect of higher effort on the 
surplus that the firm must leave to the manager to induce him to reveal his productivity (this 
surplus is over and above the minimal compensation required to compensate the manager for his 
disutility of effort, as one can see by inspecting (6)). The reason why, in this case, the firm distorts 
downward the effort asked of those managers whose initial productivity is low is to reduce the 
rents it must leave to those managers whose initial productivity is high. When productivity is 
not fully persistent, these distortions are more effective in reducing managerial rents early in the 
relationship as opposed to later on. Distortions are therefore smaller at later dates, explaining why 
the expected power of incentives increases with tenure. The increase is most pronounced when 
productivity is least persistent. Indeed, as we approach the case where productivity is independent 
over time (i.e., when γ is close to zero), the expected effort the firm asks of each manager in the 
second period is close to the first-best level (eFB = 1).

Next, consider Part (c). The result follows directly from the fact that the manager’s equi-
librium payoff must satisfy the envelope formula (6). When the expected net present value of 
effort discounted by impulse responses is bounded away from zero from below, then managers 
whose period-1 productivity is above the lowest possible level can always guarantee themselves 
a strictly positive payoff by mimicking lower types, implying that their participation constraints 
are necessarily slack.

Finally consider Part (d), which provides sufficient conditions for the optimal effort policy ξ∗

to be such that ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃))
]

is bounded away from zero from below. The 
first condition requires that the hazard rate f1 (θ1) /[1 − F (θ1)] of the period-1 distribution be 
non-decreasing (as typically assumed in the mechanism design literature) and strictly higher than 
1+γ 2

1+γ
. In this case, the optimal effort policies are those that solve the “relaxed program” and are 

given by

ξR
1 (θ) = 1 − 1 − F1 (θ1)

f1 (θ1)
(18)

24 That the Conditions (10) and (11) must hold as equalities follows from the fact that, in this case, perturbations such as 
those discussed before Proposition 2 with a, b > −κ preserve both the integral monotonicity constraints of Proposition 1
as well as all participation constraints.



D.F. Garrett, A. Pavan / Journal of Economic Theory 159 (2015) 775–818 793
ξR
2 (θ) = 1 − γ

1 − F1 (θ1)

f1 (θ1)
. (19)

That these policies are implementable follows because f1 (θ1) /[1 − F1 (θ1)] is non-decreasing, 
which guarantees that ξR = (

ξR
1 , ξR

2

)
satisfies the monotonicity conditions (B)(i) and (B)(ii)

of Proposition 1. In this case, effort increases over time towards its first-best level, not just in 
expectation, but along any productivity sequence.

When the hazard rate f1 (θ1) /[1 − F (θ1)] of the period-1 distribution fails to be non-
decreasing, however, the above policies may violate the integral monotonicity constraints in (5). 
When this happens, the result in Part (d)(ii) of the above proposition is particularly useful, for 
it implies that expected effort continues to increase over time as long as the inverse hazard rate 
of the period-1 distribution is small enough and the conditional distribution F2 (·|·) satisfies the 
MLRP. Note that, when θt follows an autoregressive process, as assumed here, the latter require-
ment is a restriction on the distribution G of the innovation ε. That the conditional distribution 
F2 (·|·) satisfies the MLRP guarantees that, under any optimal contract, period-2 effort is non-
increasing in period-2 productivity θ2, for almost all θ1. As we show in Appendix A, this property, 
together with the fact that the inverse hazard rate of the period-1 distribution is small enough, 

guarantee that, under the optimal policies, ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃))
]

continues to be 
bounded away from zero from below with probability one, which in turn implies that expected 
effort must increase over time. To illustrate, consider the following example.

Example 1. Suppose that θ1 is drawn from an absolutely continuous distribution F1 with support 
[0, 1/4] and density

f1(θ1) =
{

32
5 (1 − 6θ1) 0 ≤ θ1 ≤ 1

8
32
5 (6θ1 − 1

2 ) 1
8 < θ1 ≤ 1

4

In addition, suppose that θ2 = γ θ1 + ε̃ with γ < 1 and with ε drawn from a Uniform distribution 
with support [−a, +a], for some a ∈ R++. Then the effort policy ξR = (

ξR
1 , ξR

2

)
that solves the 

relaxed program (as given by (21) and (22) above) fails to be part of an optimal mechanism, for 
it violates the integral monotonicity constraints in (5). Nonetheless, one can verify that the con-
ditions in Part (d)(ii) of Proposition 5 are satisfied. Hence expected effort necessarily increases 
over time.

Risk aversion. To understand how risk aversion affects the above conclusions, consider the 
following family of felicity functions. Let 

(
vρ

)
ρ≥0 be a collection of functions vρ : R→R with 

the following properties: (i) for each ρ > 0, vρ is surjective, continuously differentiable, in-
creasing, and strictly concave, with vρ (0) = 0 and v′

ρ (0) = 1; (ii) v0 is the identity function; 
(iii) v′

ρ converges to one, uniformly over c as ρ → 0. Hence, 
(
vρ

)
ρ≥0 captures a family of utility 

functions such that ρ indexes the level of the manager’s risk aversion and where the manager’s 
preferences over compensation converge to the risk-neutral ones as ρ → 0, uniformly over con-
sumption levels.25 Our key finding, however, is Proposition 7 below, which applies to arbitrary 
utility functions.

Proposition 6. Suppose there exist a, b ∈ R++ such that, for almost all θ1 ∈ �1, θ2 ∈ �2(θ1), 
a < f1 (θ1) , f2 (θ2|θ1) < b. Fix the level of persistence γ < 1 of the manager’s productivity, and 

25 An example is the family of utility functions (vρ)ρ≥0 given by
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assume that the manager’s preferences over consumption in each period are represented by the 
function vρ (·), with the function family 

(
vρ

)
ρ≥0 satisfying the properties described above. Then 

there exists ρ̄ > 0 such that, for any ρ ∈ [0, ρ̄], under any optimal contract:

∣∣∣Eθ̃
[
D2(θ̃)

]∣∣∣< ∣∣∣Eθ̃1 [D1(θ̃1)]
∣∣∣

with sign
(
E

θ̃
[
D2(θ̃)

])
= sign

(
E

θ̃1[D1(θ̃1)]
)

.

The result in the proposition thus establishes continuity of the dynamics of distortions in the 
degree of risk aversion, around the risk-neutral level. The role of the conditions in the propo-
sition (the uniform bounds on the densities and the assumption of uniform convergence of the 
derivatives of the vρ functions to the derivative in the risk neutral case) is to guarantee that, if 
the dynamics of distortions for small degrees of risk aversion were the opposite of those in the 
risk neutral case, then one could construct implementable policies that would improve upon the 
optimal ones for ρ = 0. Note that the assumptions in the Theorem of Maximum are violated in 
our setting (in particular, the set of implementable policies need not be compact and continuous 
in ρ), which explains the need for the additional conditions in the proposition (as well as the 
length of the proof in Appendix A).

Importantly, also note that while the result in Proposition 6 focuses on the dynamics of dis-
tortions, the same properties apply to the expected effort levels. Precisely, assume that, when 
ρ = 0 (that is, in the risk neutral case), expected effort is higher at date 2 than at date 1 (recall 
that Proposition 5 provides primitive conditions for this to be the case). Then, under the condi-
tions in the proposition, expected effort remains higher at date 2 than at date 1 also for ρ > 0
but small enough. Intuitively, this is because the dynamics of effort coincides with the dynamics 
of distortions when the manager is risk neutral, and are close to each other, when risk aver-
sion is small. The result in the proposition extends to the family of iso-elastic felicity functions 
vρ (c) = c1−ρ−1

1−ρ
for ρ ≥ 0 often considered in the literature, as long as effort under the optimal 

policies is bounded. In this case, the restrictions on the densities can be dispensed with.
The levels of risk aversion for which the result in Proposition 6 holds (i.e., how large one can 

take ρ̄) should be expected to depend on the persistence of initial productivity γ . For a fixed 
level of risk aversion, if γ is close to 1, i.e., if the initial productivity is highly persistent, then 
distortions increase, on average, over time, as stated in the next proposition. Thus, assuming 
period-1 distortions are positive, the above result about the dynamics of average distortions is 
completely reversed.

Proposition 7. Fix the productivity distributions F1 and G and assume that the felicity function 
v is strictly concave.

vρ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(

1 − ρ2
)

− ρ

x+ 1√
ρ

+ ρ3/2 if x ≥ 0

x
(

1 + 2ρ − ρ2
)

+ ρ

x− 1√
2−ρ

+ ρ
√

2 − ρ if x < 0

for ρ ∈ (0,1) and by vρ (x) = x for ρ = 0.
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(a) Suppose that γ = 1. Then, under any optimal contract, for almost all θ1,26

E
θ̃ |θ1

[
D2(θ̃)

]
≥ D1(θ1) (20)

(b) Suppose there exists b ∈ R++ such that, for all θ1 ∈ �1, θ2 ∈ �2(θ1), f2 (θ2|θ1) < b. 
Suppose also that there exists M ∈ R++ and γ ′ < 1 such that, for all γ ∈ [γ ′, 1], the optimal 
effort policy ξ∗ is uniformly bounded (in absolute value) by M . Finally, suppose that, for γ =
1, the inequality in (20) is strict.27 Then there exists γ̄ ∈ [γ ′, 1) such that, for all γ ∈ [

γ̄ ,1
]
, 

(20) holds as a strict inequality.

Consider Part (a), which assumes γ = 1. To ease the discussion, suppose that the effort asked 
by the firm in each period is strictly positive and that distortions are non-negative (note that the 
result in the proposition also applies to the case where the effort asked to certain types as well 
as the distortions are negative). Then note that, when the manager is risk averse, incentivizing 
high effort in period two is more costly for the firm. This is because a high effort requires a high 
sensitivity of pay to performance. This in turn exposes the manager to volatile compensation as 
a result of his own private uncertainty about period-2 productivity. Since the manager dislikes 
this volatility, he must be provided additional compensation by the firm. To save on managerial 
compensation, the firm then, on average, distorts period-2 incentives more than in period 1. To see 
this more formally, note that, when effort is bounded away from zero from below with probability 
one, the Euler conditions (10) and (11) in Proposition 2 must hold as equalities. It is then easy 
to see that the first two terms in the right-hand sides of these equations are identical. The key 
difference between the two periods is the third term in the right-hand side of (11) which is always 
positive and captures the effect of the volatility in the period-2 compensation on the surplus that 
the firm must give to the manager to induce him to participate. This volatility originates in the 
need to make period-2 compensation sensitive to period-2 performance to incentivize period-2 
effort. Such volatility can be reduced by increasing the wedge in the second period. Under any 
optimal contract, distortions in the provision of incentives thus increase over time to reduce the 
manager’s exposure to compensation risk.

One further way to understand why average distortions decline over time when the manager 
is risk averse and productivity is sufficiently persistent is as follows. Suppose that period-2 effort 
is restricted to depend only on period-1 productivity (that is, suppose both ξ1 and ξ2 depend only 
on θ1). The manager’s period-2 compensation can then be written as

w
(
ψ(ξ1(θ1)) + ψ (ξ2(θ1)) +

∫ θ1

θ1

{
ψ ′ (ξ1 (s)) + γψ ′(ξ2(s))

}
ds

+
(
θ2 −E

θ̃2|θ1 [θ̃2]
)

ψ ′(ξ2(θ1)) − v (c1 (θ1))
)
.

It is then easy to see that the volatility of the period-2 compensation is increasing in the period-2 
effort ξ2(θ1). When the manager is risk averse, w is strictly convex. By reducing ξ2, the firm then 

26 The inequality is strict provided that c∗
2 (θ1, ·) varies with θ2 over a subset of �2 of positive probability under 

F2(·|θ1). We expect that this condition holds in all but “knife-edge” cases. A sufficient condition, for instance, is that the 
hazard rate f1

(
θ1
)

1−F1
(
θ1
) is increasing and that the manager’s degree of risk aversion is not too large.

27 Again, this follows if there exists a positive measure set of types θ1 such that c∗
2 (θ1, ·) varies with θ2 over a subset 

of �2 of positive probability under F2(·|θ1).
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reduces the expected period-2 compensation, for any level of the period-1 productivity.28 When 
γ = 1, distortions thus increase, on average, over time.

Now, consider Part (b) of the proposition. One should expect that whether distortions (on av-
erage) increase over time should depend on the persistence parameter γ . The result suggests that 
the average distortion increases over time when the persistence parameter γ is sufficiently close 
to 1. As noted in the Introduction, we obtain this result assuming that the optimal effort policies 
in these cases are uniformly (almost surely) bounded. While we believe only mild conditions 
(such as boundedness of the inverse hazard rate 1−F1(θ1)

f1(θ1)
) are needed to guarantee the existence 

of a uniform bound, we were unable to find an argument to guarantee it.

4.4. Further discussion of optimal policies

Conditions (10) and (11) are obtained by maximizing the firm’s profits over all implementable
policies. As noted above, an alternative (and more canonical) approach involves maximizing 
the firm’s profits subject only to certain “local incentive constraints”. In our environment, this 
amounts to maximizing (8) over all possible effort and compensation policies, thus ignoring the 
possibility that policies that maximize (8) need not be implementable by a contract which is 
individually rational and incentive compatible for the manager. One advantage of this alterna-
tive approach is that (when validated) it provides a characterization of the optimal policies at 
all possible histories. In our environment, this means that one can derive conditions analogous 
to (10) and (11) which hold ex-post, i.e. for each possible productivity history, as opposed to in 
expectation.

Proposition 8. Suppose that the policies 
(
ξR

1 , ξR
2 , cR

1

)
maximize (8) and let cR

2 be the period-2
compensation given by (7) for K = 0. Then, with probability one, the policies 

〈
ξR, cR

〉 =〈(
ξR

1 , ξR
2

)
,
(
cR

1 , cR
2

)〉
must satisfy Condition (12) as well as the following conditions:

1 − ψ ′ (ξR
1 (θ1)

)
w′ (v (cR

1 (θ1)
))

= ψ ′′ (ξR
1 (θ1)

)
f1 (θ1)

∫ θ̄1

θ1

w′ (v (cR
1 (r)

))
f1 (r) dr, (21)

and

1 − ψ ′ (ξR
2 (θ)

)
w′ (v (cR

2 (θ)
))

= γ
ψ ′′(ξR

2 (θ))

f1 (θ1)

∫ θ̄1

θ1

w′
1

(
v
(
cR

1 (r)
))

f1 (r) dr

+ ψ ′′(ξR
2 (θ))

f2 (θ2|θ1)

∫ θ̄2

θ2

{
w′ (v (cR

2 (θ1, r)
))

− w′ (v (cR
1 (θ1)

))}
f2 (r|θ1) dr. (22)

The effort policy ξR is essentially unique. If v is strictly concave, then the compensation policy 
cR is also essentially unique.

28 If we restrict attention to effort policies that depend only on period-1 productivity, then the result in Proposition 7
applies not only to the dynamics of distortions but also to the dynamics of expected effort: i.e., expected effort declines 
over time under the assumptions of the proposition. When we do not impose this restriction, however, we have been 
unable to disentangle the effect of risk aversion on expected effort from its effect on the expected distortions. This appears 
difficult because of the need to control for the correlation between second-period compensation and second-period effort, 
conditional on the period-1 productivity.
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Observe that, when the manager is risk neutral, given that the disutility of effort is quadratic, 
Conditions (21) and (22) reduce to Conditions (18) and (19) above. Recall from the discussion 
of Proposition 5 that these policies also solve the full program (and hence are sustained under 
optimal contracts) when the inverse hazard rate of the period-1 distribution is non-increasing and 
strictly smaller than (1 +γ )/(1 +γ 2). An implication is that managers whose initial productivity 
is high are asked to exert higher effort than those managers whose initial productivity is low. The 
reason for this finding relates once again to the effect of effort on managerial rents. When the 
inverse hazard rate of the period-1 distribution is non-increasing, the weight the firm assigns to 
rent extraction relative to efficiency (as captured by the inverse hazard rate [1 − F1(θ1)]/f1(θ1)) 
is smaller for higher types (recall that asking type θ1 to exert more effort requires increasing 
the rent of all types θ ′

1 > θ1). As a result, the firm asks higher effort to those managers whose 
initial productivity is high. When it comes to the dynamics of effort, we then have the following 
comparison across types.

Corollary 1. Suppose that the manager is risk neutral and that the inverse hazard rate of the 
period-1 distribution is (weakly) decreasing and strictly smaller than (1 +γ )/(1 +γ 2). Then the 
increase in effort over time is larger for those managers whose initial productivity is low.

The result reflects the fact that period-1 effort is more downward distorted for those man-
agers whose initial productivity is low, implying that, over time, the correction is larger for those 
types. The result in the corollary thus yields another testable prediction: because productivity is 
positively correlated with performance and because, under risk neutrality, higher effort requires 
a higher sensitivity of pay to performance, the econometrician should expect to find a negative 
relationship between early performance and the increase in the sensitivity of pay to performance 
over time. Note that this prediction is not shared by the alternative theories (mentioned in the 
Introduction) which explain increases in the sensitivity of pay to performance over time.

Next, consider the case of a risk-averse manager. In this case, verifying that the policies 〈
ξR, cR

〉
that solve the relaxed program are implementable is more difficult. This is typically 

done for numerical examples on a case-by-case basis. Below we illustrate the implications of 
Proposition 8 for the case of a risk-averse manager whose preferences over compensation are de-
scribed by a CRRA felicity function with risk aversion parameter equal to η ∈ [0, 1/2] (meaning 
that, for all c ≥ 0, v (c) = (c1−η − 1)/(1 − η)).29 We consider the case where θ1 is drawn from a 
uniform distribution over 

[
0,1/2

]
and where the period-2 shock ε is drawn from a uniform dis-

tribution over 
[−1/2,1/2

]
. We solve numerically for the policies 

(
ξR

1 , ξR
2 , cR

1

)
that maximize (8)

and then verify that these policies, along with the corresponding period-2 compensation policy 
cR

2 given by (7) for K = 0, satisfy all the implementability conditions of Proposition 1 (see the 
Supplementary material for details). In the discussion below, we focus on how distortions under 
the optimal policies 

(
ξR

1 , ξR
2 , cR

1

)
depend on the coefficient of productivity persistence γ , and on 

the coefficient of relative risk aversion, η.

29 Note that, contrary to what assumed in the model setup in the main text, this felicity function is not surjective and 
Lipschitz continuous over the entire real line. However, the numerical results do not hinge on the lack of these properties. 
In fact, under the optimal policies identified in the numerical analysis, consumption is bounded away from zero from 
below. One can then construct extensions v̂ of the assumed felicity function v such that (a) v̂(c) = v(c) for all c > c0 > 0, 
(b) the numerical solutions under v̂ coincide with those under v, and (c) v̂ satisfies all the conditions in the model setup.
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Fig. 1. Optimal distortions: η = 1/2, γ = 1/2 and γ = 1.

Fig. 1 shows how period-1 distortions D1(θ1) and expected period-2 distortions Eθ̃ |θ1

[
D2(θ̃)

]
vary with the initial productivity level θ1, when η = 1/2 and γ = 1/2 and γ = 1.

When productivity is fully persistent (i.e., for γ = 1), for any θ1, period-1 distortions are 
higher than the expected period-2 distortions, thus illustrating the analytical finding in Part (a) of 
Proposition 7. For γ = 1/2, instead, whether the expected period-2 distortions are higher or lower 
than the corresponding period-1 distortions depends on the initial productivity level. For high θ1, 
expected distortions increase over time, whereas the opposite is true for low θ1. These differences 
reflect the trade-off between reducing the managers’ exposure to risk, which calls for reducing 
the sensitivity of pay to performance and effort at later periods, and reducing the managers’ 
expected rents, which calls for higher distortions early on followed by smaller distortions later in 
the relationship. The effect of distortions on expected rents is similar across the two periods when 
either (i) productivity is fully persistent (γ = 1), or (ii) the initial productivity is high, in which 
case the effect of distortions on rents is negligible. In these cases, the firm optimally increases 
the expected distortion over time so as to reduce the risk the manager faces when it comes to his 
future compensation.

Next consider the effect of different levels of persistence on period-1 effort, ξR
1 (θ1) and ex-

pected period-2 effort, Eθ̃ |θ1

[
ξR

2 (θ̃)
]
, across different period-1 productivity levels. As Fig. 2

below shows, when η = 1/2 and γ = 1/2, expected period-2 effort is higher than period-1 effort 
for all types, except the highest. When, instead, η = 1/2 but γ = 1, expected period-2 effort is 
lower than period-1 effort, across all period-1 types. The figure also reveals that, for γ = 1/2, the 
increase in effort over time is larger for those managers whose initial productivity is the lowest, 
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Fig. 2. Optimal effort: η = 1/2, γ = 1/2 and γ = 1.

thus extending to the risk-averse case under examination here the result in Corollary 1 for risk 
neutral managers.

Next, recall that Part (b) of Proposition 7 indicates that expected distortions should increase 
over time, across all θ1, for sufficiently large values of γ . How large γ has to be obviously 
depends on the degree of risk aversion η. In Fig. 3 below, we continue to assume that η = 1/2 and 

plot the difference Eθ̃ |θ1

[
D2(θ̃ )

]
− D1(θ1) between period-2 expected distortions and period-1 

distortions across different θ1, for three different levels of persistence, γ = 0.9, γ = 0.95, and 
γ = 1. As proved in Proposition 7, Part (a), when productivity is perfectly persistent (γ = 1), 
the difference is strictly positive for all θ1. When, instead, γ = 0.95 or γ = 0.9, the difference 
continues to be positive, but only for sufficiently high values of θ1. That, for low values of θ1, the 
difference is negative reflects the fact, for these types, period-1 effort is small. The firm can then 
afford to ask these types a higher period-2 effort without imposing them significant additional 
compensation risk.

The above results illustrate the effects on the dynamics of distortions of different persis-
tence levels, for given level of managerial risk aversion (η = 1/2 in each of these figures). 
Fig. 4 below, instead, fixes the level of persistence to γ = 0.95 and shows how the difference 

E
θ̃ |θ1

[
D2(θ̃ )

]
− D1(θ1) between period-2 expected distortions and period-1 distortions for dif-

ferent values of θ1 is affected by the degree of managerial risk aversion, η. As one may expect 
from the results in Propositions 6 and 7, higher degrees of risk aversion imply a higher differential 
between period-2 expected distortions and period-1 distortions. In particular, Fig. 4 reveals that, 
when η = 0.05 (that is, when the manager is close to being risk neutral) the expected period-2 dis-
tortions are smaller than period-1 distortions, for all but the very highest period-1 types, which 
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Fig. 3. Differential between period-2 and period-1 distortions: η = 1/2, γ = 0.9, γ = 0.95 and γ = 1.

Fig. 4. Differential between period-2 and period-1 distortions: γ = 0.95, η = 0.05, η = 0.25 and η = 0.5.
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Fig. 5. Unconditional difference between period-2 expected distortions and period-1 distortions.

is consistent with the findings in Proposition 6. For higher degrees of risk aversion, expected 
period-2 distortions are smaller than period-1 distortions over a smaller set of initial types θ1.

We conclude by showing how the unconditional difference between period-2 expected distor-
tions and period-1 distortions is affected by different combinations of productivity persistence 
and risk aversion. In other words, we integrate over different values of θ1 and show how the 

unconditional difference Eθ̃
[
D2(θ̃) − D1(θ̃1)

]
is affected by γ and η. The results are illustrated 

in Fig. 5. As the figure reveals, average distortions are higher in period 2 than in period one for 
sufficiently high combinations of persistence and risk aversion, which is consistent with the an-
alytical results of Proposition 7 (see also Fig. 6, which helps interpreting the finding in Fig. 5 by 
focusing on a restricted subset of parameter values).

We finally note that, in all numerical exercises, distortions are positive and effort is downward 
distorted and bounded away from zero in both periods.

5. Concluding discussion

We investigate the optimal dynamics of incentives for a manager whose ability to generate 
profits for the firm changes stochastically over time.

When the manager is risk neutral, we show that it is typically optimal for the firm to induce, 
on average, higher effort over time, thus reducing the expected distortions due to incomplete 
information. The above dynamics can be reversed under risk aversion. In future work, it would 
be interesting to calibrate the model so as to quantify the relevance of the effects identified in the 
paper and derive specific predictions about the combination of stocks, options, and fixed pay that 
implement the optimal dynamics of incentives.
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Fig. 6. Unconditional difference between period-2 expected distortions and period-1 distortions.

We conclude with a few remarks about the applicability of the approach developed in the 
present paper (which involves tackling the full program directly) to richer specifications of the 
contracting problem. First, Euler inequalities like (10) and (11) in Proposition 2 can be obtained 
for settings with arbitrarily many periods and richer stochastic processes; these inequalities hold 
as equalities provided that optimal effort is not too small. When the manager is risk neutral, 
these equalities provide closed-form expressions for expected effort in each period (analogous to 
Eqs. (16) and (17) in the paper). Interestingly, these expressions can be obtained without any of 
the conditions typically imposed in the dynamic mechanism design literature (e.g., log-concavity 
of the period-1 distribution, monotonicity of the impulse responses of future types to the initial 
ones). This is because the predictions identified by this approach apply to the “average” dynam-
ics, where the average is over all possible realizations of the type process, as opposed to ex-post. 
Equations relating average distortions across periods, like the one in Proposition 3, can also be 
obtained for arbitrarily many periods. While no restriction on the shape of the effort policy is 
needed to establish such equations, the assumption that the process is autoregressive plays a role 
in the derivation of these equations and is more difficult to relax. This is because such equations 
are obtained by combining perturbations to the effort policy in one period with perturbations to 
the effort policy in other periods that preserve incentives, while also leaving the manager’s ex-
pected payoff unchanged. Identifying such multi-period perturbations for more general processes 
appears difficult.

Note also that, while we find the restriction to two periods helpful for drawing conclusions 
from the aforementioned Euler conditions, we expect our predictions for the dynamics of effort 
and expected distortions to extend to longer horizons. In particular, when the manager is risk neu-
tral, and when the productivity process is imperfectly persistent (e.g., for a persistence parameter 



D.F. Garrett, A. Pavan / Journal of Economic Theory 159 (2015) 775–818 803
less than 1 in the autoregressive setting), we anticipate distortions to decrease on average over 
time under any optimal mechanism. Conversely, when the process is highly persistent (say close 
to a random walk), and when the manager is risk averse, then we expect distortions to increase 
over time. In this setting, the principal seeks to shield the manager from productivity risk later 
in the relationship when, from the perspective of the time of contracting, he faces the greatest 
uncertainty about his productivity. Shielding the manager from risk requires reducing the sensi-
tivity of pay to performance, thus distorting the incentives for effort downwards relative to the 
first-best.

While our approach can be extended to longer relationships and richer stochastic processes, 
the assumption that the disutility of effort is quadratic is more difficult to relax. This assump-
tion plays no role in the traditional approach (consisting in solving a “relaxed program” and 
then validating its solution). However, when tackling directly the “full program,” this assump-
tion permits us to identify a simple class of perturbations that preserve incentive compatibility 
which can be used to arrive at the Euler equations in Propositions 2 and 3. In this respect, this 
assumption plays in our environment a role similar to that of the linearity of payoffs in Rochet 
and Choné’s (1998) analysis of multidimensional screening. There are two difficulties with more 
general effort disutility functions. The first one is in identifying appropriate perturbations of the 
effort policies that preserve incentive compatibility (see footnote 27). The second difficulty is in 
evaluating the marginal effects of such perturbations on the principal’s payoff. With more gen-
eral effort disutility functions, the analogs of the Euler-type conditions that we used in the present 
paper appear less amenable to tractable analysis.

Appendix A

Proof of Proposition 1. Given the effort and compensation policies 〈ξ, c〉, let x be the compen-
sation scheme defined, for each t , by

xt (θ,π) =
{

ct (θ) if πt = πt (θ)

−Lt(θ) otherwise
(23)

with Lt(θ) > 0. It is easy to see that if the policies 〈ξ, c〉 are implementable, then there exists 
a compensation scheme x as given by (23) such that (i) the contract � = 〈ξ, x〉 is incentive 
compatible and individually rational and (ii) the compensation that the manager receives on-path 
under x is the one prescribed by the policy c. Hereafter, we thus confine attention to contracts in 
which the compensation scheme is of the form given by (23).

Necessity. Recall that, by definition, if 〈ξ, c〉 are implementable, then there must exist a com-
pensation contract x such that (i) the contract � = 〈ξ, x〉 is incentive compatible and individually 
rational and (ii) the compensation that the manager receives on-path under x is the one prescribed 
by the policy c. In particular, incentive compatibility of � = 〈ξ, x〉 requires that a manager of 
period-1 productivity θ1 prefers to follow a truthful and obedient strategy in each period than 
lying about his period-1 productivity by reporting θ̂1, then adjusting his period-1 effort so as to 
hide the lie (i.e., choosing effort e1 = π1(θ̂1) − θ1 so as to generate the same cash flows as the 
type θ̂1 being mimicked), and then lying again in period two by announcing, for any true period-2 
type θ2 = γ θ1 + ε, a report θ̂2 = γ θ̂1 + (θ2 − γ θ1), and finally adjusting his period-2 effort so as 
to hide again the new lie (i.e., choosing effort e2 = π2(θ̂1, γ θ̂1 + θ2 − γ θ1) − θ2 so as to generate 
the same cash flows as those expected from someone whose true type history is θ̂ = (θ̂1, θ̂2), with 
θ̂2 = γ θ̂1 + (θ2 − γ θ1)). Note that, for any θ1, θ̂1 ∈ �1, the expected payoff
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U1(θ1, θ̂1) ≡ E
ε̃
[
c1(θ̂1) + c2(θ̂1, γ θ̂1 + ε̃) − ψ

(
π1(θ̂1) − θ1

)
− ψ

(
π2(θ̂1, γ θ̂1 + ε̃) − γ θ1 − ε̃

)]
that the manager obtains from following such a strategy corresponds to the one that the manager 
obtains by lying in period 1 and then reporting the true shock ε truthfully in period two (and 
choosing effort in each period so as to generate the same cash flows as the ones expected from 
the reported types).

Likewise, let

U2(θ, θ̂ ) ≡ c1(θ̂1) + c2(θ̂ ) − ψ
(
π1(θ̂1) − θ1

)
− ψ

(
π2(θ̂) − θ2

)
denote the ex-post payoff of a manager whose true productivity history is θ = (θ1, θ2), who 
reported θ̂ = (θ̂1, θ̂2), and whose effort choices are made to perfectly hide the lies in each period.

The lemma below establishes monotonicity properties of the equilibrium-cash flows which 
in turn will permit us to establish that, for any (θ1, θ̂1), U1(θ1, θ̂1) is differentiable and equi-
Lipschitz continuous in θ1 and that, for any (θ, θ̂ ), U2(θ, θ̂ ) is differentiable and equi-Lipschitz 
continuous in θ2.

Lemma 2. Suppose that the policies 〈ξ, c〉 are implementable and let 〈πt (θ)〉 be the equi-
librium cash flows under such policies. Then necessarily π1 (θ1) + γEε̃

[
π2 (θ1, γ θ1 + ε̃)

]
is 

non-decreasing in θ1 and, for any θ1, π2(θ1, θ2) is non-decreasing in θ2.

Proof. That, for any θ1, π2(θ1, θ2) is non-decreasing in θ2 follows directly from the fact that the 
manager’s flow payoff ct − ψ (πt − θt ) satisfies the increasing difference property with respect 
to (πt , θt ). That π1 (θ1) + γEε̃

[
π2 (θ1, γ θ1 + ε̃)

]
must be non-decreasing in θ1 can be seen by 

combining any pair of IC constraints

U1(θ1, θ1) ≥ U1(θ1, θ̂1) and U1(θ̂1, θ̂1) ≥ U1(θ̂1, θ1).

From these constraints one obtains that

ψ(π1 (θ1) − θ̂1) +E
ε̃
[
ψ(π2 (θ1, γ θ1 + ε̃) − γ θ̂1 − ε̃)

]
−
{
ψ(π1 (θ1) − θ1) +E

ε̃
[
ψ (π2 (θ1, γ θ1 + ε̃) − γ θ1 − ε̃)

]}
≥ ψ(π1(θ̂1) − θ̂1) +E

ε̃
[
ψ(π2(θ̂1, γ θ̂1 + ε̃) − γ θ̂1 − ε̃)

]
−
{
ψ(π1(θ̂1) − θ1) +E

ε̃
[
ψ(π2(θ̂1, γ θ̂1 + ε̃) − γ θ1 − ε̃)

]}
.

From the fundamental theorem of calculus, we can rewrite the above inequality as∫ θ1

θ̂1

ψ ′ (π1 (θ1) − y) + γEε̃
[
ψ ′ (π2 (θ1, γ θ1 + ε̃) − γy − ε̃)

]
dy

≥
∫ θ1

θ̂1

ψ ′(π1(θ̂1) − y) + γEε̃
[
ψ ′(π2(θ̂1, γ θ̂1 + ε̃) − γy − ε̃)

]
dy.

Using the fact that ψ is quadratic, we can in turn rewrite the above inequality as
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(
θ1 − θ̂1

)(
π1 (θ1) − π1(θ̂1) + γEε̃

[
π2 (θ1, γ θ1 + ε̃) − π2(θ̂1, γ θ̂1 + ε̃)

])
≥ 0,

which holds only if π1 (θ1) + γEε̃
[
π2 (θ1, γ θ1 + ε̃)

]
is non-decreasing in θ1.

The monotonicities of the cash flows in the lemma, along with the compactness of �1 and �2, 
in turn imply that (a), for any (θ, θ̂ ), U2(θ, θ̂ ) is differentiable and Lipschitz continuous in θ2 with 
Lipschitz constant

M2(θ̂1) = max
θ̂2∈�2

{|π2(θ̂1, θ̂2)|} + max
{∣∣γ θ1 + ε

∣∣ , ∣∣γ θ̄1 + ε̄
∣∣}

uniform across (θ2, θ̂2) and (b) for any (θ1, θ̂1), U1(θ1, θ̂1) is differentiable and Lipschitz contin-
uous in θ1 with Lipschitz constant

M1 = max
θ̂1∈�1

{|π1(θ̂1) + γEε̃
[
π2

(
θ̂1, γ θ̂1 + ε̃

)]
|}

+ max
{∣∣θ1

∣∣ , ∣∣θ̄1
∣∣}+ γ max

{∣∣γ θ1 + ε
∣∣ , ∣∣γ θ̄1 + ε̄

∣∣}
uniform across (θ1, θ̂1). Using results from the recent dynamic mechanism design literature, one 
can then show that the following conditions are necessary for incentive compatibility: (1) for any 
(θ1, θ2), the manager’s ex-post equilibrium payoff satisfies

V (θ1, θ2) = V (θ1, θ2) +
∫ θ2

θ2

ψ ′(ξ2(θ1, s))ds; (24)

and (2) for each θ1, the expectation of the equilibrium payoff satisfies (6), where V (θ1, θ2) =
U2((θ1, θ2) , (θ1, θ2)) and V1(θ1) ≡ E

θ̃ |θ1[V (θ̃)] = U1(θ1, θ1). Note that Condition (24) is analo-
gous to the static condition in Laffont and Tirole (1986). The necessity of (6), instead, follows 
from adapting to the environment under examination the result in Theorem 1 in Pavan et al.
(2014).

Combining (24) with (6), we then obtain that, under any contract that is individually ratio-
nal and incentive compatible, the equilibrium utility that each manager derives from his lifetime 
compensation must satisfy Condition (3) for all θ = (θ1, θ2), with K = E

θ̃ |θ1[V (θ̃)] ≥ 0 sat-
isfying Condition (4). This establishes the necessity of Condition (A) in the proposition. The 
necessity of Condition (B)(ii) follows directly from Lemma 2 above.

Finally, to see that Condition (B)(i) is also necessary, let � = 〈ξ, x〉 be any contract imple-
menting the effort and compensation policies 〈ξ, c〉. Then let V �(θ1, θ̂1) be the payoff that, under 
such a contract, a manager whose period-1 productivity is θ1 obtains when he reports θ̂1, then 
chooses period-1 effort e1 = π1(θ̂1) − θ1 optimally so as to attain the target π1(θ̂1), and then 
behaves optimally in period 2 (which means following a truthful and obedient strategy30). Then 
observe that

30 Note that the optimality of truthful and obedient behavior at all period-2 histories follows from the combination of 
the fact that the environment is Markov along with the fact that, for any θ1, (a) the equilibrium cash flows π2(θ1, ·) are 
nondecreasing in θ2, and (b) the effort and compensation policies satisfy the envelope condition (24), which is implied 
by (3). The result then follows directly from Laffont and Tirole (1986).
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V �(θ1, θ̂1) = V �(θ̂1, θ̂1) + ψ(ξ1(θ̂1)) − ψ
(
ξ1(θ̂1) + θ̂1 − θ1

)

+E
θ̃2|θ1

[∫ θ̃2

θ2

ψ ′(ξ2(θ̂1, s))ds

]
−E

θ̃2|θ̂1

[∫ θ̃2

θ2

ψ ′(ξ2(θ̂1, s))ds

]

= V �(θ̂1, θ̂1) +
∫ θ1

θ̂1

{
ψ ′ (ξ1(θ̂1) + θ̂1 − s

)
+ γEθ̃2|s

[
ψ ′(ξ2(θ̂1, θ̃2))

]}
ds. (25)

Because the policies 〈ξ, c〉 implemented under the contract � must satisfy (3), we have that

V � (θ1, θ1) = V �(θ̂1, θ̂1) +
∫ θ1

θ̂1

{
ψ ′ (ξ1(s)) +E

θ̃2|s
[
ψ ′ (ξ2(s, θ̃2)

)]}
ds. (26)

A necessary condition for incentive compatibility is that V �(θ1, θ̂1) ≤ V � (θ1, θ1) for all 
θ1, θ̂1 ∈ �1. Using (25) and (26), the latter condition is equivalent to the integral-monotonicity 
condition (5).

Sufficiency. Suppose that the policies 〈ξ, c〉 satisfy all the conditions in the proposition. Con-
sider the scheme x given by (23) with Lt(θ) > 0 for each t . Because, for any t , any θ̂ , πt (θ̂) is 
finite and because �t is bounded, it is easy to see that there exist finite penalties Lt(θ) such that, 
faced with the above scheme, for any history of reports θ̂ and any history of true types θ , the 
period-t optimal choice of effort is πt(θ̂) − θt , irrespective of past effort choices. It is also easy 
to see that, under such a scheme, the manager finds it optimal to follow a truthful and obedient 
strategy in the second period, irrespective of his period-1 true and reported type, and irrespective 
of the effort exerted in period one (the arguments for this result are similar to those in Laffont 
and Tirole, 1986 and hence omitted).

To establish the result, it then suffices to show that, under the proposed scheme, a manager of 
period-1 productivity θ1 prefers to follow a truthful and obedient strategy in both periods than 
lying by reporting θ̂1 �= θ1 in period one, then optimally choosing effort e1 = π1(θ̂1) − θ1 so as to 
attain the target π1(θ̂1), and then following a truthful and obedient strategy in period two. Under 
the scheme x, the payoff that the manager expects from a truthful and obedient strategy in both 
periods is given by (26), whereas the payoff that he expects by lying in period one and then fol-
lowing the optimal behavior described above is the one in (25). That V �(θ1, θ̂1) ≤ V � (θ1, θ1) for 
all θ1, θ̂1 ∈ �1 then follows from the fact that the policies 〈ξ, c〉 satisfy the integral-monotonicity 
condition (5). �
Proof of Proposition 2. The proof is in two steps. Step 1 identifies a family of perturbations that 
preserve incentive compatibility and then uses this family to identify necessary conditions for 
the proposed effort and compensation policies 〈ξ∗, c∗〉 to be sustained under an optimal contract. 
Step 2 establishes the uniqueness of 〈ξ∗, c∗〉.

Step 1 (Euler equations). We want to establish that Conditions (10), (11), and (12) are nec-
essary optimality conditions for the policies ξ∗ and c∗. To see this, consider the perturbed effort 
policy ξ = (

ξ∗
1 (·) + a, ξ∗

2 (·) + b
)

for some constants a, b ∈ R+. Then consider the perturbed 
compensation policy c given by c1(θ1) = c∗

1(θ1) and c2(θ) = w(W (θ; ξ)+K − v
(
c∗

1 (θ1)
)

all θ , 

where K = E
θ̃ |θ1[V (θ̃)] is the lowest period-1 type’s expected payoff under the original policies 

〈ξ∗, c∗〉.
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It is easy to see that, if the policies 〈ξ∗, c∗〉 are implementable (which, by virtue of Proposi-
tion 1, means that they satisfy the conditions in Proposition 1), then so are the perturbed policies 
〈ξ, c〉.

Now consider the firm’s expected profits under the perturbed policies. For the original policies 
〈ξ∗, c∗〉 to be optimal, the expected profits must be maximized at a = b = 0. Using (8), we 
have that the right-hand derivative of the firm’s expected profits with respect to a, evaluated 
at a = b = 0 is non-positive only if the policies ξ∗ and c∗ satisfy Condition (10) (to see this, 
it suffices to take the right-hand derivative of E 

[
UP

]
with respect to a and then integrate by 

parts). Likewise, the right-hand derivative of E 
[
UP

]
with respect to b, evaluated at a = b = 0, 

is non-positive only if the policies satisfy (11).

Next observe that, when the policy ξ∗ is such that ψ ′(ξ∗
1 (θ1)) +γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃))
]

is (almost 
surely) bounded away from zero from below, then perturbations like the ones described above 
but with a, b ∈ R−, with |a| and |b| small to guarantee that the resulting policies continue to 

satisfy ψ ′(ξ1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ2(θ̃))

]
≥ 0 for (almost) all θ1, also yield implementable poli-

cies (that such perturbations preserve integral monotonicity is obvious; the role of the bound 

on ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃ ))
]

is to guarantee that such perturbations leave the participa-

tion constraints of all types satisfied). Also note that, in this case, the left-hand derivatives of 
the firm’s expected profits with respect to a and b, evaluated at a = b = 0 coincide with their 
right-hand analogs. Optimality of the policies 〈ξ∗, c∗〉 then requires that such derivatives vanish 
at a = b = 0, which is the case only if the inequalities in (10) and (11) hold as equalities.

The argument for the necessity of (12) is similar. Fix the effort policy ξ∗ and consider a 
perturbation of the period-1 compensation policy so that the new policy satisfies v(c1(θ1)) =
v
(
c∗

1 (θ1)
) + aη (θ1) for a scalar a and some measurable function η (·). In other words, 

c1 (θ1) = w
(
v
(
c∗

1 (θ1)
)+ aη (θ1)

)
. Then adjust the period-2 compensation so that c2(θ) =

w (W (θ; ξ∗) + K − v (c1 (θ1))) all θ . It is easy to see that the pair of policies 〈ξ∗, c〉 contin-
ues to be implementable. The firm’s expected profits under the perturbed policies are

E

[
UP

]
= E

[
θ̃1 + ξ∗

1 (θ̃1) + θ̃2 + ξ∗
2 (θ̃) − w

(
v(c∗

1(θ̃1)) + aη(θ̃1)
)

− w
(
W(θ̃; ξ∗) − v(c∗

1(θ̃1)) − aη(θ1)
)]

.

Optimality of c∗ then requires that the derivative of this expression with respect to a vanishes at 
a = 0 for all measurable functions η. This is the case only if Condition (12) holds.

Step 2 (Uniqueness of the optimal policies). We first show that the optimal effort pol-
icy is essentially unique (i.e., unique up to a zero-measure set of productivity histories). 
Suppose, towards a contradiction, that there exist two pairs of optimal (implementable) poli-
cies, 

〈
ξ#, c#

〉
and 

〈
ξ##, c##

〉
respectively, and that ξ# and ξ## prescribe different effort lev-

els over a set of productivity histories of strictly positive probability measure. Pick α ∈
(0,1) and let ξα ≡ αξ# + (1 − α) ξ## be the policy defined by ξα

t (θ) = αξ#
t (θ) + (1 −

α)ξ##
t (θ) for all θ and t = 1, 2. Then let cα

1 be the policy defined, for all θ , by cα
1 (θ) ≡

w
(
αv

(
c#

1 (θ)
)+ (1 − α)v

(
c##

1 (θ)
))

. Finally, let cα
2 be the policy defined, for all θ , by cα

2 (θ) ≡
w
(
W (θ; ξα) + αK# + (1 − α)K## − v

(
cα

1 (θ1)
))

, where K# and K## denote type θ1’s expected 
payoff under the policies 

〈
ξ#, c#

〉
and 

〈
ξ##, c##

〉
, respectively. Note that the new policies 〈ξα, cα〉

are implementable (to see this, note that they satisfy the conditions of Proposition 1).
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Next, note that (8) is strictly concave in the effort policy ξ (recognizing that the policy ξ enters 
(8) also through W (θ; ξ), as defined in (2)) and weakly concave in K and v (c1).31 This means 
that the firm’s expected profits E 

[
UP

]
under the new policies 〈ξα, cα〉 are strictly higher than 

under either 
〈
ξ#, c#

〉
or 
〈
ξ##, c##

〉
, contradicting the optimality of these policies.

Now consider the uniqueness of the compensation policy. Suppose that v is strictly concave 
and let 

〈
ξ#, c#

〉
and 

〈
ξ##, c##

〉
be two pairs of implementable policies such that c#

1 (θ1) �= c##
1 (θ1)

over a set of positive probability measure. Then consider the policies 〈ξα, cα〉 constructed above. 
Note that such policies yield strictly higher profits than both 

〈
ξ#, c#

〉
and 

〈
ξ##, c##

〉
, irrespective 

of whether or not ξ# �= ξ##. This in turn implies that, when v is strictly concave, the optimal 
compensation policy is also (essentially) unique. �
Proof of Proposition 3. We establish the result by considering perturbations of the effort policy 
given by

ξ#
1 (θ1) = ξ∗

1 (θ1) + aq (θ1) and ξ#
2 (θ) = ξ∗

2 (θ) − a

γ
q (θ1)

for some measurable function q(θ1). Note that such perturbations leave period-1 expected pay-
offs unchanged and are implementable. Optimality of the policies 〈ξ∗, c∗〉 then requires that the 
derivative of the firm’s expected payoff with respect to a, evaluated at a = 0 must vanish, for all 
possible q(·). This leads to the following new Euler equation, for each θ1:

0 = 1 − ψ ′′ (ξ∗
1 (θ1)

)
f1(θ1)

θ̄1

θ1

w′ (v (c∗
1 (r)

))
f1 (r) dr − ψ ′ (ξ∗

1 (θ1)
)
w′ (v (c∗

1(θ1)
))

− 1

γ

(
1 − γEθ̃ |θ1

[
ψ ′′

(
ξ∗

2 (θ̃)
)

f1(θ̃1)

θ̄1

θ̃1

w′ (v (c∗
1 (r)

))
f1 (r) dr

]

−E
θ̃ |θ1

[
ψ ′ (ξ∗

2 (θ̃)
)

w′ (v(c∗
2(θ̃))

)]

−E
θ̃ |θ1

[
ψ ′′

(
ξ∗

2 (θ̃)
)

f2(θ̃2|θ̃1)

∫ θ̄2

θ̃2

{
w′ (v(c∗

2(θ̃1, r))
)

− w′ (v(c∗
1(θ̃1))

)}
f2(r|θ̃1)dr

])
,

which is equivalent to (13) in the proposition. �
Proof of Proposition 4. The result follows from the arguments in the main text. �
Proof of Proposition 5. The proof for Parts (a), (b), and (c) follows from the arguments in 
the main text. Thus consider Part (d)(i). In this case, the optimal effort policies are those that 
solve the relaxed program, as given in (18) and (19); that is, ξ∗

1 (θ1) = 1 − 1−F1(θ1)
f1(θ1)

and ξ∗
2 (θ) =

1 − γ
1−F1(θ1)

f1(θ1)
. Hence,

31 By strict concavity we mean with respect to the equivalence classes of functions which are equivalent if they are 
equal almost surely.
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ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃ ))
]

= ξ∗
1 (θ1) + γEθ̃ |θ1

[
ξ∗

2 (θ̃ )
]

= 1 − 1 − F1(θ1)

f1(θ1)
+ γ

(
1 − γ

1 − F1(θ1)

f1(θ1)

)

≥ 1 − 1 − F1(θ1)

f1(θ1)
+ γ

(
1 − γ

1 − F1(θ1)

f1(θ1)

)
> 0

where the first inequality follows from the assumption that [1 −F1(θ1)]/f1(θ1) is non-increasing, 
and where the second inequality from the assumption that [1 − F1(θ1)]/f1(θ1) < (1 + γ )/

(1 + γ 2), for all θ1.
Next consider Part (d)(ii). Suppose that sup {[1 − F1 (θ1)]/f1(θ1)} < (1 + γ )/(1 + γ 2) −(

θ̄1 − θ1

)
and F2(·|·) satisfies the monotone-likelihood-ratio property (that is, for all θ ′

1 ≥ θ1, 
f2
(
θ2|θ ′

1

)
/f2 (θ2|θ1) is non-decreasing in θ2 over �2

(
θ ′

1

) ∩ �2 (θ1)). We want to show that 

ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃))
]

is bounded away from zero from below with probability one. 
We proceed in two steps. Step 1 establishes four lemmas that jointly imply that it is without loss 
of optimality to restrict attention to effort policies such that, for all θ1, ξ2(θ1, ·) is non-increasing 
in θ2. Step 2 then use this property to establish that, under the conditions in Part (d)(ii) in the 

proposition, if 〈ξ∗, c∗〉 is such that ψ ′(ξ∗
1 (θ1)) + γEθ̃ |θ1

[
ψ ′(ξ∗

2 (θ̃))
]

fails to be bounded away 

from zero from below with probability one, then there exists another pair of policies 
〈
ξ̂ , ĉ

〉
that is 

also implementable and yields strictly higher profits, thus contradicting the optimality of 〈ξ∗, c∗〉.
Step 1. Before proceeding, note that we can restrict attention to effort policies ξ = 〈ξ1, ξ2〉

such that

ξ2 (θ1, θ2) =
{

ξ2
(
θ1, θ2 (θ1)

)+ (
θ2 (θ1) − θ2

)
if θ2 < θ2 (θ1)

ξ2
(
θ1, θ̄2 (θ1)

)− (
θ2 − θ̄2 (θ1)

)
if θ2 > θ̄2 (θ1) ,

and where ξ2
(
θ1, θ2 (θ1)

) = limθ2↓θ2(θ1) ξ2 (θ1, θ2) and ξ2
(
θ1, θ̄2 (θ1)

) = limθ2↑θ̄2(θ1)
ξ2 (θ1, θ2). 

To see this, consider any implementable effort and consumption policy 〈ξ, c〉, and con-

sider the policy 
〈
ξ̂ , ĉ

〉
which specifies, for all θ1, ξ̂1 (θ1) = ξ1 (θ1), ξ̂2 (θ) = ξ2 (θ) for θ2 ∈(

θ2 (θ1) , θ̄2 (θ1)
)
, ξ̂2

(
θ1, θ2 (θ1)

) = limθ2↓θ2(θ1) ξ2 (θ1, θ2), ξ̂2
(
θ1, θ̄2 (θ1)

) = limθ2↑θ̄2(θ1)
ξ2(θ1,

θ2), and

ξ̂2 (θ1, θ2) =
{

ξ̂2
(
θ1, θ2 (θ1)

)+ (
θ2 (θ1) − θ2

)
if θ2 < θ2 (θ1)

ξ̂2
(
θ1, θ̄2 (θ1)

)− (
θ2 − θ̄2 (θ1)

)
if θ2 > θ̄2 (θ1) .

Finally, let ĉ1 = c1 and then let ĉ2 be determined by (7), using ξ̂ and ĉ1. The policy 
〈
ξ̂ , ĉ

〉
is 

implementable and generates the same payoff for the firm as the original policy 〈ξ, c〉 (imple-
mentability can be checked with respect to the conditions in Proposition 1). Note hence that, 
for the policies we consider, ξ2 (θ1, ·) is decreasing in θ2 for θ2 ≤ θ2 (θ1) and θ2 ≥ θ̄2 (θ1). It 
is thus left to show that we can restrict attention to policies such that, for each θ1, ξ2(θ1, ·) is 
non-increasing in θ2 over θ2 ∈ �2 (θ1).

We next establish the following result.

Lemma 3. Fix any θ1. Consider any function h : �2 (θ1) → R which is continuous at the end-
points θ2 (θ1) and θ̄2 (θ1) and such that h (θ2) + θ2 is non-decreasing on �2 (θ1). Suppose that 
h fails to be non-increasing on �2 (θ1); in particular, there exist θ ′ , θ ′′ ∈ �2 (θ1), θ ′ < θ ′′ such 
2 2 2 2
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that h 
(
θ ′

2

)
< h 

(
θ ′′

2

)
. Take any h̄ ∈ (h (θ ′

2

)
, h
(
θ ′′

2

))
. There exists θ#

2 , θ##
2 ∈ �2, with θ#

2 ≤ θ##
2 , and 

δ#, δ## > 0 such that (i) for all θ2 ∈ (
θ#

2 − δ#, θ#
2

)
, h (θ2) < h̄, and for all θ2 ∈ (

θ##
2 , θ##

2 + δ##
)
, 

h (θ2) > h̄; and (ii) limθ2↓θ#
2
h (θ2) ≥ h̄ and limθ2↑θ##

2
h (θ2) ≤ h̄.

Proof. It suffices to take

θ#
2 = sup

{
θ2 : h(θ̃2) < h̄ ∀θ̃2 ∈ (θ ′

2, θ2
)}

and θ##
2 = inf

{
θ2 : h(θ̃2) > h̄ ∀θ̃2 ∈ (θ2, θ

′′
2

)}
,

and then let δ# = θ#
2 − θ ′

2 + h̄−h
(
θ ′

2

)
2 and δ## = θ ′′

2 − θ##
2 + h

(
θ ′′

2

)−h̄

2 . That limθ2↓θ#
2
h (θ2) exists 

follows from the fact that limθ2↓θ#
2
(h (θ2) + θ2) exists, which in turn follows from the fact that 

h (θ2) + θ2 is non-decreasing. That limθ2↓θ#
2
h (θ2) ≥ h̄ follows from the fact that, if this was not 

true, then there would exist θ̂2 > θ#
2 such that h(θ̃2) < h̄ for all θ̃2 ∈ (θ ′

2, θ̂2), thus contradicting the 
definition of θ#

2 . The proof of the fact that limθ2↑θ##
2

h (θ2) exists and is such that limθ2↑θ##
2

h (θ2) ≤
h̄ follows from similar arguments. �
Lemma 4. Fix θ1 and let F2 be a distribution on �2 (θ1). Consider any function h : �2 (θ1) →R

which is continuous at the end-points θ2 (θ1) and θ̄2 (θ1) and such that h (θ2) + θ2 is non-
decreasing on �2 (θ1), and suppose that h fails to be non-increasing. Take h̄, θ#

2 , θ##
2 , δ#, δ##

as defined in the previous lemma. For arbitrary δ∗ ∈ (
0, δ#

)
and δ∗∗ ∈ (

0, δ##
)
, define the 

function h∗ (θ2; δ∗, δ∗∗) by h∗ (θ2; δ∗, δ∗∗) = h̄ for θ2 ∈ [
θ#

2 − δ∗, θ#
2

] ∪ [
θ##

2 , θ##
2 + δ∗∗], and 

h∗ (θ2; δ∗, δ∗∗) = h (θ2) otherwise. (i) For any δ∗ ∈ (0, δ#
)

and δ∗∗ ∈ (0, δ##
)
, h∗ (θ2; δ∗, δ∗∗) +

θ2 is non-decreasing over �2 (θ1). (ii) There exist δ∗ ∈ (
0, δ#

)
and δ∗∗ ∈ (

0, δ##
)

such that 

E
F2

[
h∗
(
θ̃2; δ∗, δ∗∗

)]
= E

F2

[
h(θ̃2)

]
, where the expectation is taken under F2; equivalently,

E
F2
[
h(θ̃2)|θ̃2 ∈ [θ#

2 − δ∗, θ#
2

]∪ [
θ##

2 , θ##
2 + δ∗∗]]= h̄.

Moreover, we can choose δ∗ and δ∗∗ so that θ#
2 − δ∗, θ##

2 + δ∗∗ ∈ �2 (θ1).

Proof. To prove (i) one need only to verify that h∗ (θ2; δ∗, δ∗∗) + θ2 is non-decreasing at θ#
2 and 

at θ##
2 . By the definition of θ#

2 , θ##
2 and of the h∗ function, it is easy to see that

lim
θ2↓θ#

2

(
h∗ (θ2; δ∗, δ∗∗)+ θ2

)≥ θ#
2 + h̄ = θ#

2 + h∗ (θ#
2 ; δ∗, δ∗∗) ,

and

lim
θ2↑θ##

2

(
h∗ (θ2; δ∗, δ∗∗)+ θ2

)≤ h̄ + θ##
2 = θ##

2 + h∗ (θ##
2 ; δ∗, δ∗∗) .

The proof for Part (ii) follows from the fact that h∗ (θ2; δ∗, δ∗∗) = h (θ2) for all θ2 /∈[
θ#

2 − δ∗, θ#
2

] ∪ [
θ##

2 , θ##
2 + δ∗∗], h∗ (θ2; δ∗, δ∗∗) > h (θ2) for all θ2 ∈ [

θ#
2 − δ∗, θ#

2

]
, and h∗(θ2;

δ∗, δ∗∗) < h (θ2) for all θ2 ∈ [θ##
2 , θ##

2 + δ∗∗]. �
Now consider any θ1 for which ξ2(θ1, θ2) +θ2 is non-decreasing in θ2, as required by incentive 

compatibility, but for which ξ2(θ1, ·) fails to be non-increasing over �2 (θ1). Letting h (θ2) =
ξ2(θ1, θ2), the above two lemmas permit us to establish the following result.
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Lemma 5. Consider any θ1 for which ξ2(θ1, θ2) + θ2 is non-decreasing in θ2, but for which 
ξ2(θ1, ·) fails to be non-increasing over �2 (θ1). Suppose that the distribution F2(·|·) satisfies 
the MLRP (that is, for all θ ′

1 ≥ θ1, f2
(
θ2|θ ′

1

)
/f2 (θ2|θ1) is non-decreasing in θ2 over �2

(
θ ′

1

) ∩
�2 (θ1)). Then there exists a function ξ̂2(θ1, ·) : �2 → R such that (a) E

θ̃2|θ1

[
ξ̂2(θ1, θ̃2)

]
=

E
θ̃2|θ1

[
ξ2(θ1, θ̃2)

]
, (b) ξ̂2(θ1, θ2) + θ2 is non-decreasing in θ2, (c) for all s < θ1,

E
θ̃2|s

[
ξ̂2(θ1, θ̃2)

]
≥ E

θ̃2|s
[
ξ2(θ1, θ̃2)

]
, while, for all s > θ1, Eθ̃2|s

[
ξ̂2(θ1, θ̃2)

]
≤ E

θ̃2|s
[
ξ2(θ1, θ̃2)

]
, 

and (d)

−
∫
�2

(
ξ̂2(θ1, θ2)

2

2
− ξ2(θ1, θ2)

2

2

)
dF2 (θ2|θ1) > 0. (27)

Proof. Take any θ1 for which the properties in the lemma hold. Let h (θ2) = ξ2(θ1, θ2), and 
ξ̂2(θ1, θ2) = h∗ (θ2; δ∗, δ∗∗), where the function h∗ (and hence the values h̄, θ#

2 , θ##
2 , δ∗ and δ∗∗) 

are as defined as in the previous lemma. That ξ̂2(θ1, θ2) satisfies properties (a) and (b) follows 
directly from the above two lemmas.

Next consider property (c). Consider s > θ1 (the proof for s < θ1 is symmetric and hence 
omitted). We have that

E
θ̃2|s

[
ξ̂2(θ1, θ̃2)

]
−E

θ̃2|s
[
ξ2(θ1, θ̃2)

]
=

∫
(
θ#

2 −δ∗,θ#
2

)
(
ξ̂2(θ1, θ2) − ξ2(θ1, θ2)

)
f2 (θ2|s) dθ2

+
∫

(
θ##

2 ,θ##
2 +δ∗∗)

(
ξ̂2(θ1, θ2) − ξ2(θ1, θ2)

)
f2 (θ2|s) dθ2

=
∫

(
θ#

2 −δ∗,θ#
2

)
(
ξ̂2(θ1, θ2) − ξ2(θ1, θ2)

) f2 (θ2|s)
f2 (θ2|θ1)

f2 (θ2|θ1) dθ2

+
∫

(
θ##

2 ,θ##
2 +δ∗∗)

(
ξ̂2(θ1, θ2) − ξ2(θ1, θ2)

) f2 (θ2|s)
f2 (θ2|θ1)

f2 (θ2|θ1) dθ2

≤
∫

(
θ#

2 −δ∗,θ#
2

)
(
ξ̂2(θ1, θ2) − ξ2(θ1, θ2)

) f2
(
θ#

2 |s)
f2
(
θ#

2 |θ1
)f2 (θ2|θ1) dθ2

+
∫

(
θ##

2 ,θ##
2 +δ∗∗)

(
ξ̂2(θ1, θ2) − ξ2(θ1, θ2)

) f2
(
θ#

2 |s)
f2
(
θ#

2 |θ1
)f2 (θ2|θ1) dθ2

= f2
(
θ#

2 |s)
f2
(
θ#

2 |θ1
) (Eθ̃2|θ1

[
ξ̂2(θ1, θ̃2)

]
−E

θ̃2|θ1
[
ξ2(θ1, θ̃2)

])
= 0,

where, for the inequality, we used the fact that, by construction of the function ξ̂2(θ1, ·), 
ξ̂2(θ1, θ2) ≥ ξ2(θ1, θ2) for θ2 ∈ (θ# − δ∗, θ#

)
and ξ̂2(θ1, θ2) ≤ ξ2(θ1, θ2) for θ2 ∈ (θ##, θ## + δ∗∗), 
2 2 2 2
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along with the fact that f2 (θ2|s) /f2 (θ2|θ1) is increasing in θ2 by the MLRP, while, for the equal-
ity, we used the property in Part (a).

Finally, property (d) follows from Jensen’s inequality after noting that, for any

θ2 ∈ S ≡ (
θ#

2 − δ∗, θ#
2

)∪ (
θ##

2 , θ##
2 + δ∗∗) ,

ξ̂2(θ1, θ2) = E
θ̃2|θ1

[
ξ2(θ1, θ̃2)|θ2 ∈ S

]
, while ξ̂2(θ1, θ2) = ξ2(θ1, θ2) for θ2 /∈ S. �

We then have the following result.

Lemma 6. Suppose that F2(·|·) satisfies the MLRP. For any pair of implementable policies 〈ξ, c〉
such that ξ2 (θ1, ·) fails to be non-increasing in θ2 (on �2 (θ1)) over a positive measure subset 

of �1, there exist implementable policies 
〈
ξ̂ , ĉ

〉
such that the principal’s expected profits under 〈

ξ̂ , ĉ
〉

are strictly higher than under 〈ξ, c〉.

Proof. Let ξ̂1 = ξ1. For any θ1 such that ξ2 (θ1, ·) is non-increasing in θ2, let ξ̂2 (θ1, ·) = ξ2 (θ1, ·), 
while for any θ1 for which ξ2 (θ1, ·) fails to be non-increasing in θ2 (on �2 (θ1)), take ξ̂2(θ1, θ2)

as in the previous lemma. Then let ĉ1(·) = c1(·) and for any θ , let ĉ2(θ) = W(θ; ξ̂ ) +K − ĉ1(θ1), 
where K = E

θ̃ |θ1[V (θ̃); 〈ξ, c〉] is the lowest period-1’s type expected payoff under the original 
policies 〈ξ, c〉. From the properties (a)–(c) of ξ̂2 in the previous lemma, it is easy to see that, 

for each type θ1, Eθ̃ |θ1 [V (θ̃); 
〈
ξ̂ , ĉ

〉
] = E

θ̃ |θ1 [V (θ̃); 〈ξ, c〉], and that the policies 
〈
ξ̂ , ĉ

〉
satisfy all 

the conditions in Proposition 1 and hence are implementable (in particular, note that if (ξ1, ξ2)

satisfy all the integral monotonicity conditions, so do (ξ̂1, ξ̂2)). Now, recall that the principal’s 
payoff when the manager is risk neutral is given by the expression in (9). It is then easy to see 
that, for any θ1 for which ξ2 (θ1, ·) fails to be non-increasing in θ2, the difference in expected 

profits under 
〈
ξ̂ , ĉ

〉
relative to 〈ξ, c〉 is given by (27), which is strictly positive. To establish the 

result it then suffices to note that, for each θ1 for which the original policy ξ2 (θ1, ·) fails to be 
non-increasing in θ2, one can choose (δ∗, δ∗∗), as a function of θ1, so as to guarantee that the 
new policy ξ̂2 remains integrable over � = �1 × �2. �

Step 2. Given Step 1, assume without loss of optimality that ξ∗
2 (θ1, ·) is non-increasing, for 

all θ1. Next recall that incentive compatibility requires that π1 (θ1) + γEθ̃2|θ1

[
π2(θ1, θ̃2)

]
be 

non-decreasing in θ1; i.e. ξ∗
1 (θ1) + θ1 + γEθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2) + γ θ1

]
must be non-decreasing. Fur-

thermore, from (13), at the optimum, for almost all θ1, Eθ̃ |θ1

[
ξ∗

2 (θ1, θ̃2)
]

= γ ξ∗
1 (θ1) + 1 − γ , 

where we used the fact that ψ ′(ξ) = ξ . It follows that ξ∗
1 (θ1) + θ1 must be non-decreasing. Now 

suppose that the claim in the proposition is not true. Using again the fact that ψ ′(ξ) = ξ , we then 
have that, for any η > 0, there is a positive-measure set of θ1 such that

ξ∗
1 (θ1) + γEθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

= ξ∗
1 (θ1) + γ

[
γ ξ∗

1 (θ1) + 1 − γ
]
< η, (28)

or, equivalently, ξ∗
1 (θ1) <

[
η − γ (1 − γ )

]
/(1 + γ 2). We use this observation to show the fol-

lowing.
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Lemma 7. Suppose that sup {[1 − F1 (θ1)]/f1(θ1)} < (1 + γ )/(1 + γ 2) − (
θ̄1 − θ1

)
and that 

F2(·|·) satisfies the monotone-likelihood-ratio property. Let

L1 ≡ −γ (1 − γ )

1 + γ 2
+ 1

4

(
1 − (

θ̄1 − θ1

)+ γ (1 − γ )

1 + γ 2
− sup

{
1 − F1 (θ1)

f1 (θ1)

})

and

L2 ≡ 1 − sup

{
1 − F1 (θ1)

f1 (θ1)

}
− 1

4

(
1 − (

θ̄1 − θ1

)+ γ (1 − γ )

1 + γ 2
− sup

{
1 − F1 (θ1)

f1 (θ1)

})
.

Suppose that, for any η > 0, there exists a positive-measure set �̂1 (η) ⊂ �1 such that ξ∗
1 (θ1) +

γEθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

< η for all θ1 ∈ �̂1(η). Then, there exists θ#
1 ∈ [

θ1, θ̄1
]

and e# ∈ [L1, L2]
such that, for all θ1 < θ#

1 , ξ∗
1 (θ1) ≤ e#, while for all θ1 > θ#

1 , ξ∗
1 (θ1) ≥ e#.

Proof. First note that the assumptions in the lemma imply that there exists a positive-measure 
set �′

1 ⊂ �1 such that ξ∗
1 (θ1) < L1 for all θ1 ∈ �′

1. To see this, let

η = 1 + γ 2

4

(
1 − (

θ̄1 − θ1

)+ γ (1 − γ )

1 + γ 2
− sup

1 − F1 (θ1)

f1 (θ1)

)

in (28) and note that η > 0 under the assumptions in the lemma. Next observe that, for ξ∗ to 
be optimal, there must exist a positive-measure set �′′

1 ⊂ �1 such that ξ∗
1 (θ1) ≥ ξR

1 (θ1) = 1 −
1−F1(θ1)

f1(θ1)
> L2 for all θ1 ∈ �′′

1. If this was not the case, the principal could increase her payoff 
by increasing ξ∗

1 (θ1) uniformly across �1 by ε > 0, leaving c1(·) and ξ2(·) unchanged, and 
then adjusting the period-2 compensation c2 so as to satisfy (3) while continuing to give the 
lowest period-1 type the same payoff K = E

θ̃ |θ1[V (θ̃); 〈ξ∗, c∗〉] as under the original policies 
〈ξ∗, c∗〉. This would relax the participation constraints (use (6) to see it), would not affect integral 
monotonicity, and would bring the period-1 policy closer to the one ξR

1 that maximizes virtual 
surplus, thus improving the principal’s expected payoff, as given by (9).

In what follows, we show that, since ξ∗
1 (θ1) + θ1 is non-decreasing, there exists θ#

1 ∈ [θ1, θ̄1
]

and e# ∈ [L1, L2] such that, for all θ1 < θ#
1 , ξ∗

1 (θ1) ≤ e#, while for all θ1 > θ#
1 , ξ∗

1 (θ1) ≥ e#. We 
establish the result by contradiction. Suppose the claim in the lemma is not true. This means that 
the following result must instead be true:

Claim A. For all e ∈ [L1, L2], all θ#
1 ∈ [

θ1, θ̄1
]
, there exists θ1 < θ#

1 such that ξ∗
1 (θ1) > e, or 

θ1 > θ#
1 such that ξ∗

1 (θ1) < e.

Now suppose Claim A is true. Let [·]− : R → R be the function defined by [a]− =
max {−a,0}. Our goal is to construct a partition {y0, y1, . . . , ym}, m ∈ N, θ1 = y0 < y1 < · · · <

ym−1 < ym = θ̄1, of �1 such that 
∑m−1

k=0

[
ξ∗

1 (yk+1) − ξ∗
1 (yk)

]−
> θ̄1 − θ1, establishing that the 

negative variation of ξ∗
1 over �1, i.e., the supremum of 

∑m−1
k=0

[
ξ∗

1 (yk+1) − ξ∗
1 (yk)

]− over all 
partitions of �1, exceeds θ̄1 − θ1. We know this to be incompatible with the fact that ξ∗

1 (θ1) + θ1
is non-decreasing over �1, establishing that Claim A must be false.

For any e ∈ [L1, L2], let θ#
e = inf

{
θ1 : ξ∗

1 (θ̃1) ≥ e for all θ̃1 > θ1

}
. By the definition of θ#

e , 

for all ε > 0, there must exist θ1 ∈ (
θ#
e − ε, θ#

e

)
such that ξ∗(θ1) < e. Furthermore, again by 
1
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definition of θ#
e , for all θ1 > θ#

e , ξ∗
1 (θ1) ≥ e. Hence, for Claim A to hold, there must exist θ ′

1, θ
′′
1 <

θ#
e , θ ′

1 < θ ′′
1 , such that ξ∗

1 (θ ′
1) > e > ξ∗

1 (θ ′′
1 ). Now, for each e ∈ [L1, L2], let

be ≡ sup
{
ξ∗

1 (θ1) : θ1 < θ ′
1 for some θ ′

1 for which ξ∗
1

(
θ ′

1

)
< e

}= sup
{
ξ∗

1 (θ1) : θ1 < θ#
e

}
and

le ≡ inf
{
ξ∗

1 (θ1) : for all ε > 0, θ1 > θ ′
1 for some θ ′

1 with ξ∗
1

(
θ ′

1

)
> be − ε

}
.

Note that C = {(le, be) : e ∈ [L1,L2]} is an open cover for [L1, L2]. To see this, note that, for 
each e ∈ [L1, L2], le < e < be . By the Lindelof property of the real line, there exists a countable 
sub-cover D = {(

lei
, bei

) : i ∈ N
}

of C, where (ei)
∞
i=1 is a sequence of points in [L1, L2]. Now 

let λ (·) be the Lebesgue measure. Then λ 
(∪∞

i=1

(
lei

, bei

)) ≥ L2 − L1 and, for any ε > 0, there 
exists n such that λ 

(∪n
i=1

(
lei

, bei

))
> L2 − L1 − ε. The following must then also be true.

Property A. Suppose that Claim A is true. Then for any n ∈N, any ε > 0, there exists a partition 
{y0, y1, . . . , ym}, m ∈ N, θ1 = y0 < y1 < · · · < ym−1 < ym = θ̄1, of �1 such that

m−1∑
k=0

[
ξ∗

1 (yk+1) − ξ∗
1 (yk)

]− ≥ λ
(∪n

i=1

(
lei

, bei

))− ε. (29)

Proof of Property A. Fix n ∈N and ε > 0. Note that there is no loss in assuming that the cover 
D comprises only distinct sets; i.e., bei

�= bei′ for all i �= i′. Since n is finite, we can take the 
values of ei to be ordered: i.e., e1 < · · · < en−1 < en. Let y0 = θ1. Choose y1 such that y1 < θ#

e1

and ξ∗
1 (y1) > be1 − ε/2n, together with y2 ∈ (

y1, θ
#
e1

)
such that ξ∗

1 (y2) < le1 + ε/2n. It should 
be clear from the definitions of le and be that these choices are possible. If the partition has been 
determined up to y2k , then take y2k+1 ∈ [θ#

ek
, θ#

ek+1
) such that ξ∗

1 (y2k+1) > bek+1 − ε/2n and 

y2k+2 ∈
(
y2k+1, θ

#
ek+1

)
such that ξ∗

1 (y2k+2) < lek+1 + ε/2n. Proceeding this way, the partition is 

determined up to y2n, and we then let y2n+1 = θ̄1 (so that m = 2n + 1). Then it is easy to see that

m−1∑
k=0

[
ξ∗

1 (yk+1) − ξ∗
1 (yk)

]− ≥
n∑

i=1

(
bei

− lei
− ε

n

)
=

n∑
i=1

(
bei

− lei

)− ε

≥ λ
(∪n

i=1

(
lei

, bei

))− ε.

This establishes Property A. �
We therefore conclude that, for any ε > 0, there exists a partition {y0, y1, . . . , ym}, m ∈ N, 

θ1 = y0 < y1 < · · · < ym−1 < ym = θ̄1, of �1 such that 
∑m−1

k=0

[
ξ∗

1 (yk+1) − ξ∗
1 (yk)

]−
> L2 −

L1 − 2ε. Because L2 − L1 > θ̄1 − θ1, there then exists a partition such that 
∑m−1

k=0 [ξ∗
1 (yk+1) −

ξ∗
1 (yk)]− > θ̄1 − θ1. This shows that the negative variation of ξ∗

1 over �1 must be strictly larger 
than θ̄1 − θ1, as desired. �

Now suppose that, for any η > 0, there exists a positive-measure set �̂1 (η) ⊂ �1 such that 

ξ∗
1 (θ1) + γEθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

< η for all θ1 ∈ �̂1(η). The result in the previous lemma implies 

that there exists θ#
1 ∈ [θ1, θ̄1] and e# ∈ [L1, L2] such that, for all θ1 < θ#

1 , ξ∗
1 (θ1) ≤ e#, while 

for all θ1 > θ#, ξ∗ (θ1) ≥ e#. It is also easy to see that θ# > θ , and that ξ∗ (θ1) < e# for a 
1 1 1 1 1
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positive-measure subset of [θ1, θ
#
1 ] (both properties follow from the fact that, if they were not 

true, then ξ∗
1 (θ1) + γEθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

would be bounded away from zero from below with 

probability one, along with the fact that Eθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

= γ ξ∗
1 (θ1) + 1 − γ ). Then consider 

the alternative effort policy ξ̂ defined by

ξ̂1 (θ1) =
{

ξ∗
1 (θ1) if θ1 > θ#

1

e# if θ1 ≤ θ#
1

and ξ̂2 (θ1, θ2) =
{

ξ∗
2 (θ1, θ2) if θ1 > θ#

1

1 − γ + γ e# if θ1 ≤ θ#
1

along with the compensation policy ĉ defined by ĉ1(θ1) = c∗
1(θ1) all θ1, and ĉ2(θ1, θ1) =

W(θ; ξ̂ ) + K − ĉ1(θ1), where K = E
θ̃ |θ1

[
V (θ̃); 〈ξ∗, c∗〉

]
is the lowest period-1 type’s expected 

payoff under the original policies 〈ξ∗, c∗〉. Now recall that the principal’s payoff under any pair of 
implementable policies is given by (9). Further notice that the expression in (9) is strictly concave 
in the policies ξ and recall that (9) reaches its maximum at the policy ξR given by (18) and (19). 
Now note that, for all θ1 ≤ θ#

1 , ξ∗
1 (θ1) ≤ ξ̂1 (θ1) ≤ ξR

1 (θ1), with the first inequality strict over a 
positive measure set of θ1. (That ξ̂1 (θ1) ≤ ξR

1 (θ1) follows from the fact that ξ̂1 (θ1) = e# ≤ L2, 
along with the fact, by definition of L2 and of ξR

1 (θ1), L2 < ξR
1 (θ1).) Also, for all θ1 ≤ θ#

1 , all θ2,

E
θ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

= γ ξ∗
1 (θ1) + 1 − γ ≤ ξ̂2(θ1, θ2) = γ ξ̂1 (θ1) + 1 − γ

≤ ξR
2 (θ1, θ2) = γ ξR

1 (θ1) + 1 − γ,

where, again, the first inequality is strict over a positive measure set of θ1. For all θ1 > θ#
1 , 

instead, ξ̂1 (θ1) = ξ∗
1 (θ1) and ξ̂2(θ1, ·) = ξ∗

2 (θ1, ·). It is then clear that, if the policies 
〈
ξ̂ , ĉ

〉
are 

implementable, they lead to higher expected profits than the policies 〈ξ∗, c∗〉. In what follows 
we show that indeed, they are implementable. To see this, note that, for all θ1,

E
θ̃ |θ1

[
V (θ̃);

〈
ξ̂ , ĉ

〉]
≥ E

θ̃ |θ1

[
V (θ̃); 〈ξ∗, c∗〉]

which implies that 
〈
ξ̂ , ĉ

〉
satisfy all the participation constraints. Next observe that, for all θ1, 

π2(θ1, ·) is non-decreasing in θ2 and that,

π1 (θ1) + γEθ̃2|θ1
[
π2

(
θ1, θ̃2

)]
= θ1 + ξ̂1(θ1) + γ

{
1 − γ + γ ξ̂1(θ1) +E

θ̃2|θ1
[
θ̃2

]}
is non-decreasing in θ1 (these properties follow directly from the way ξ̂ is constructed along 

with the fact that, to be optimal, the policy ξ∗ must satisfy the condition Eθ̃2|θ1

[
ξ∗

2 (θ1, θ̃2)
]

=
γ ξ∗

1 (θ1) + 1 − γ ). Next, observe that, by construction, the compensation policy ĉ satisfies Con-
dition (3). It thus suffices to show that the new effort policy ξ̂ satisfies the integral monotonicity 
constraints of Proposition 1. That is, for all θ1, θ̂1 ∈ �1,∫ θ1

θ̂1

{
ξ̂1(θ̂1) − s + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]}
ds ≤

∫ θ1

θ̂1

{
ξ̂1 (s) + γEθ̃2|s

[
ξ̂2(s, θ̃2)

]}
ds.

The only two cases which are not immediate are (i) θ̂1 ≤ θ#
1 < θ1, and (ii) θ1 ≤ θ#

1 < θ̂1. For 
Case (i), because ξ̂1(·) and ξ̂2(·) are constant over any (θ1, θ2) such that θ1 ≤ θ#

1 , it is enough to 
show that, for any s > θ#

1 ,

ξ̂1 (s) + s + γEθ̃2|s
[
ξ̂2(s, θ̃2)

]
≥ ξ̂1(θ̂1) + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]
.
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This follows from the fact that

ξ̂1 (s) + s + γEθ̃2|s
[
ξ̂2(s, θ̃2)

]
= ξ̂1 (s) + s + γ

(
γ ξ̂1(s) + 1 − γ

)
≥ ξ̂1

(
θ#

1

)+ θ#
1 + γ

(
γ ξ̂1(θ

#
1 ) + 1 − γ

)
≥ ξ̂1(θ̂1) + θ̂1 + γ

(
γ ξ̂1(θ̂1) + 1 − γ

)
= ξ̂1(θ̂1) + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]
,

where the inequalities follow from the fact that the original policy is such that ξ∗
1 (s) + s is 

non-decreasing, with ξ∗
1 (s) ≥ e# = ξ̂1(θ̂1) for all s > θ#

1 .
For Case (ii), note first that integral monotonicity requires that∫ θ̂1

θ1

{
ξ̂1(θ̂1) − s + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]}
ds ≥

∫ θ̂1

θ1

{
ξ̂1 (s) + γEθ̃2|s

[
ξ̂2(s, θ̃2)

]}
ds.

Because the original policy satisfies integral monotonicity, and because 
(
ξ̂1(θ̃1), ξ̂2(θ̃1, θ̃2)

)
co-

incides with the original policy 
(
ξ∗

1 (θ̃1), ξ
∗
2 (θ̃1, θ̃2)

)
for any (θ̃1, θ̃2) such that θ̃1 > θ#

1 , it suffices 
to show that∫ θ#

1

θ1

{
ξ̂1(θ̂1) − s + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]}
ds ≥

∫ θ#
1

θ1

{
ξ̂1 (s) + γEθ̃2|s

[
ξ̂2(s, θ̃2)

]}
ds.

To see this, it suffices to show that, for any s < θ#
1

ξ̂1 (s) + s + γEθ̃2|s
[
ξ̂2(s, θ̃2)

]
−
(
ξ̂1(θ̂1) + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

])
≤ 0. (30)

To prove that this is the case, first note that, for all s < θ#
1 , all θ ′

1 ≥ θ#
1 ,

ξ̂1 (s) + s + γEθ̃2|s
[
ξ̂2(s, θ̃2)

]
−
{
ξ̂1(θ̂1) + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]}
= e# + s + γ

[
1 − γ + γ e#]−

{
ξ̂1(θ̂1) + θ̂1 + γEθ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]}
≤ ξ̂1

(
θ ′

1

)+ θ ′
1+γ

[
1 − γ + γ ξ̂1

(
θ ′

1

)]−
{
ξ̂1(θ̂1) + θ̂1 + γEθ̃2|θ ′

1

[
ξ̂2(θ̂1, θ̃2)

]}
where the inequality follows from the fact that e# + s + γ

[
1 − γ + γ e#

]≤ ξ̂1
(
θ ′

1

)+ θ ′
1+γ

[
1 −

γ + γ ξ̂1
(
θ ′

1

)]
and from the fact that ξ̂2(θ̂1, ·) is non-increasing, which implies that

E
θ̃2|s

[
ξ̂2(θ̂1, θ̃2)

]
≥ E

θ̃2|θ ′
1

[
ξ̂2(θ̂1, θ̃2)

]
. Finally observe that, because 

(
ξ̂1 (·) , ξ̂2 (·)

)
coincides 

with the original policy 
(
ξ∗

1 (·) , ξ∗
2 (·)) for any (θ1, θ2) such that θ1 > θ#

1 , the fact that ξ∗ satisfies 
integral monotonicity implies that there must exist a θ ′

1 ∈ (θ#
1 , θ̂1) such that

ξ̂1
(
θ ′

1

)+ θ ′
1+γ

[
1 − γ + γ ξ̂1

(
θ ′

1

)]−
{
ξ̂1(θ̂1) + θ̂1 + γEθ̃2|θ ′

1

[
ξ̂2(θ̂1, θ̃2)

]}
= ξ̂1

(
θ ′

1

)+ θ ′
1 + γEθ̃2|θ ′

1

[
ξ̂2(θ

′
1, θ̃2)

]
−
{
ξ̂1(θ̂1) + θ̂1 + γEθ̃2|θ ′

1

[
ξ̂2(θ̂1, θ̃2)

]}
≤ 0.

We conclude that, for all s < θ#
1 , the inequality in (30) holds. This completes the proof of the 

proposition. �
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Proof of Proposition 6. See Supplementary material. �
Proof of Proposition 7. See Supplementary material. �
Proof of Proposition 8. To establish the necessity of (21) and (22), consider the perturbed effort 
policy ξ1(θ1) = ξR

1 (θ1)+aν (θ1) and ξ2(θ) = ξR
2 (θ)+bω (θ) for scalars a and b and measurable 

functions ν (·) and ω (·). Then differentiate the firm’s profits (8) with respect to a and b respec-
tively. A necessary condition for the proposed policy ξR to maximize (8) is that these derivatives, 
evaluated at a = b = 0 vanish for all measurable functions ν (·) and ω (·). This is true only if ξR

satisfies (21) and (22) with probability one.
Uniqueness of ξR and cR , as well as the necessity of (12), follow from the same arguments as 

in the proof of Proposition 2. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.04.004.
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