Taxation under Learning by Doing

Miltos Makris

Alessandro Pavan

March 2, 2018

Learning by Doing

- Learning-by-doing (LBD) :
 - positive effect of time spent at work on productivity
 - human capital investment side-product of labor supply
- LBD: significant source of productivity growth
 - Dustmann and Meghir (2005)
 - in first 2 years of employment, wages grow, on average, by 8.5% in 1th year and 7.5% in 2nd
 - Blundell and MaCurdy (1999) and Farber (1999)
 - overviews of effects of work experience on wage dynamics

This Paper

- Effects of LBD on optimal tax codes
- Dynamic Mirrleesian economy in which agents' productivity
 - their own private information
 - stochastic
 - evolves endogenously over lifecycle (due to LBD)
- Novel effects contributing to higher labor wedges
- Quantitatively significant impact on optimal codes
 - level
 - progressivity
 - dynamics
- Dynamic mechanism design with endogenous types

Related literature

- Optimal taxation: Mirrlees (1971), Diamond (1998), Saez (2001)...
 - static
 - exogenous productivity
- New Dynamic Public Finance: Albanesi and Sleet (2006), Kocherlakota (2010), Gorry and Oberfield (2012), Kapicka (2013), Farhi and Werning (2013), and Golosov et al. (2016)...
 - dynamic
 - exogenous productivity
- Taxation w. Human Capital Accumulation: Krause (2009), Best and Kleven (2013), Kapicka (2006, 2015a,b), Kapicka and Neira (2016), and Stantcheva (2016)
 - LBD: side-product of labor supply (cannot be controlled separately)
 - stochastic effect on future productivity
 - time-evolving private information

Road Map

- Simple texbook environment
- Risk aversion
- Utilitarian objective
- Quantitative analysis
- Conclusions

Simple Environment

- T=2 (case $T = \infty$: "Incentives for Endogenous Types")
- \bullet θ_t : productivity
 - privately observed by worker at beginning of period t
- \blacksquare F_1 : cdf of initial distribution (density f_1)
- $\blacksquare F_2(\cdot|\theta_1, v_1)$: cdf of θ_2
 - \blacksquare dependence on y_1 : LBD
- Example:

$$\theta_2 = Z_2(\theta_1, y_1, \varepsilon_2) = \theta_1^{\rho} y_1^{\zeta} \varepsilon_2$$

 ζ : intensity of LBD

Impulse Response

$$\boxed{I_1^2(\theta,y_1) = \left. \frac{\partial Z_2(\theta_1,y_1,\varepsilon_2)}{\partial \theta_1} \right|_{\varepsilon_2:Z_2(\theta_1,y_1,\varepsilon_2) = \theta_2} = \rho \frac{\theta_2}{\theta_1}}$$

where $\theta \equiv (\theta_1, \theta_2)$

Simple Environment

■ Worker's payoff:

$$U^A = \sum_t \delta^{t-1} \left(c_t - \psi(y_t, \theta_t) \right)$$

- $\Psi(y_t, \theta_t) = \frac{1}{1+\phi} \left(\frac{y_t}{\theta_t}\right)^{1+\phi}$
- Allocation rule $\chi(\theta) = (y_t(\theta^t), c_t(\theta^t))_{t=1,2}$
- Worker expected life-time utility

$$V_1(\theta_1) = \mathbb{E}^{\lambda[\chi]|\theta_1} \left[\sum_t \delta^{t-1} \left(c_t(\tilde{\theta}^t) - \psi(y_t(\tilde{\theta}^t), \tilde{\theta}_t) \right) \right]$$

where $\lambda[\chi]$ is endogenous distribution over $\Theta = \Theta_1 \times \Theta_2$ under χ

Principal's (dual) problem:

Principal's Rawlsian problem

Maximizing expected tax revenues

$$R = \mathbb{E}^{\lambda[\chi]} \left[\sum_{t} \delta^{t-1} \left(y_{t}(\tilde{\theta}^{t}) - c_{t}(\tilde{\theta}^{t}) \right) \right]$$

subject to Rawlsian constraint

$$\min_{\theta_1} V_1(\theta_1) \geq \kappa$$

First Best: period-2 output

■ For any $\theta = (\theta_1, \theta_2)$:

$$\max_{\mathbf{y}_2}[y_2-\psi(y_2,\theta_2)]$$

FOC:

$$\psi_{V}(y_2^*(\theta),\theta_2)=1,$$

⇒ output driven by marginal production cost

First Best: period-1 output

■ For any θ_1 :

$$\max_{\mathbf{y}_1} \left\{ y_1 - \psi(y_1, \theta_1) + \delta \mathbb{E}^{\lambda[\chi]|\theta_1, y_1(\theta_1)} \left[y_2(\tilde{\theta}) - \psi(y_2(\tilde{\theta}), \tilde{\theta}_2) \right] \right\}$$

FOC:

$$1 + LD_1^{\chi}(\theta_1) = \psi_y(y_1(\theta_1), \theta_1)$$

where

$$LD_1^{\chi}(\theta_1) \equiv \delta \frac{\partial}{\partial y_1} \mathbb{E}^{\lambda[\chi]|\theta_1, y_1(\theta_1)} \left[y_2(\tilde{\theta}) - \psi(y_2(\tilde{\theta}), \tilde{\theta}_2) \right]$$

- ⇒ output driven **also** by LBD impact on future expected surplus via its effect on future conditional distribution
- \Rightarrow Higher output under LBD for any given θ_1 (due to FOSD and increasing period-2 surplus)

Second Best: Incentive Compatibility

■ Continuation utility (history $\theta = (\theta_1, \theta_2)$):

$$V_2(\theta) \equiv c_2(\theta) - \psi(y_2(\theta), \theta_2)$$

■ IC-2: for any θ_1 , $V_2(\theta_1, \cdot)$ Lipschitz continuous and s.t. (Mirrlees)

$$V_2(\theta_1, \theta_2) = V_2(\theta_1, \underline{\theta}_2) - \int_{\theta_2}^{\theta_2} \psi_{\theta}(y_2(\theta_1, s), s) ds$$

 \blacksquare IC-1: $V_1(\cdot)$ Lipschitz continuous and s.t. (Pavan, Segal, Toikka)

$$\begin{split} V_1(\theta_1) &= V_1(\underline{\theta}_1) \\ &- \int_{\underline{\theta}_1}^{\theta_1} \left\{ \psi_{\theta}(y_1(s), s) ds + \delta \mathbb{E}^{\lambda[\chi]|s} \left[I_1^2(\tilde{\theta}, y_1(s)) \psi_{\theta}(y_2(\tilde{\theta}), \tilde{\theta}_2) \right] \right\} ds \end{split}$$

■ In addition, IC also requires $y_1(\cdot)$ and $y_2(\cdot)$ satisfy integrability constraints (ignored and checked ex post)

Second Best: Handicaps

Expected tax revenues equal:

$$R = \mathbb{E}^{\lambda[\chi]} \left[\sum_{t} \delta^{t-1} \left(y_{t}(\tilde{\theta}^{t}) - \psi(y_{t}(\tilde{\theta}^{t}), \tilde{\theta}_{t}) - h_{t}(\tilde{\theta}^{t}, y^{t}(\tilde{\theta}^{t})) \right) \right] - V_{1}(\underline{\theta}_{1}),$$

first-period "handicap":

$$h_1(heta_1,y_1) \equiv -rac{1}{\gamma_1(heta_1)} \psi_{ heta}(y_1, heta_1)$$
 where $\gamma_1(heta_1) \equiv rac{f_1(heta_1)}{1-F_1(heta_1)}$

second-period "handicap":

$$h_2(\theta, y) \equiv -\frac{I_1^2(\theta, y_1)}{\gamma_1(\theta_1)} \psi_{\theta}(y_2, \theta_2)$$

■ Handicaps: costs to planner due to asymmetric information

Second Best: period-2 output

■ Given $\theta = (\theta_1, \theta_2)$,

$$1 = \psi_{y}(y_{2}, \theta_{2}) - \frac{1}{\gamma_{1}(\theta_{1})} I_{1}^{2}(\theta, y_{1}(\theta_{1})) \psi_{y\theta}(y_{2}, \theta_{2})$$

- Value of distorting period-2 output at $\theta = (\theta_1, \theta_2)$: smaller rents to (period-1!) types $\theta_1' > \theta_1$
 - impulse responses

Second Best: period-1 output

■ Given θ_1 .

$$1 + LD_1^{\chi}(\theta_1)$$

$$= \psi_{y}(y_1(\theta_1), \theta_1) - \frac{1}{\gamma_1(\theta_1)} \psi_{y\theta}(y_1(\theta_1), \theta_1)$$

$$+\delta\frac{\partial}{\partial y_1}\mathbb{E}^{\lambda[\chi]|\theta_1,y_1(\theta_1)}\left[\frac{I_1^2(\tilde{\theta},y_1(\theta_1))}{\gamma_1(\theta_1)}\psi_{\theta}(y_2(\tilde{\theta}),\tilde{\theta}_2))\right]$$

- Value of distorting period-1 output: smaller rents to higher (period-1) types
 - smaller rents in future periods
- Two channels through which LBD affects cost of future rents:
 - change in distribution of θ_2
 - change in impulse response of θ_2 to θ_1 (hence handicaps)

Second Best: Labor Wedges

Definition

Labor wedges:

$$W_1(\theta_1) \equiv 1 - rac{\psi_y(y_1(\theta_1), \theta_1)}{1 + LD_1^{\chi}(\theta_1)} \text{ and } W_2(\theta) \equiv 1 - \psi_y(y_2(\theta), \theta_2).$$

■ Relative wedges:

$$\widehat{W}_t \equiv \frac{W_t}{1 - W_t}$$

Second Best: Wedges

Proposition

Under risk neutrality and Rawlsian objective,

$$\widehat{W}_t \equiv \hat{W}_t^{RRN} + \Omega_t$$

where

$$\hat{W}_{t}^{RRN} \equiv -\frac{I_{1}^{t}(\theta^{t}, y^{t-1}(\theta^{t-1}))}{\gamma_{1}(\theta_{1})} \frac{\psi_{y\theta}(y_{t}(\theta^{t}), \theta_{t})}{\psi_{y}(y_{t}(\theta^{t}), \theta_{t})}$$

are wedges without LBD and

$$\Omega_1 \equiv \delta \frac{\frac{\partial}{\partial y_1} \mathbb{E}^{\lambda[\chi]|\theta_1, y_1(\theta_1)} \left[h_2(\tilde{\theta}, y^t(\tilde{\theta})) \right]}{\psi_y(y_1(\theta_1), \theta_1)}$$

and

$$\Omega_2 \equiv 0$$

are corrections due to LBD

Effects of LBD on wedges

■ Suppose
$$\psi(y_t, \theta_t) = \frac{1}{1+\phi} \left(\frac{y_t}{\theta_t}\right)^{1+\phi}$$
 and $\theta_2 = \theta_1^{\rho} y_1^{\zeta} \varepsilon_2$

- Then
 - $\hat{W}_1(\theta_1) > \hat{W}_1^{RRN}(\theta_1)$
 - $\hat{W}_1(\theta_1) \hat{W}_2(\theta) > \hat{W}_1^{RRN}(\theta_1) \hat{W}_2^{RRN}(\theta)$
- When, in addition F_1 has a Pareto tail progressivity of $\hat{W}_1(\theta_1)$ higher than progressivity of $\hat{W}_{1}^{RRN}(\theta_{1})$ at tail

Effects of LBD on wedges – Intuition

- LBD contributes to higher expected period-2 handicaps
 - \Rightarrow extra benefit of lowering y_1
 - ⇒ higher wedges
- **E**xpected period-2 rents increasing in θ_1
 - \Rightarrow benefit of distorting y_1 downwards stronger for higher θ_1
 - ⇒ more progressivity
- Effects of LBD declining with t
 - ⇒ wedges declining over life-cycle

Pareto a-la Kapicka (2013)

Figure: Period-1 wedges: risk-neutral Rawlsian Pareto case

Pareto-log-normal a-la Diamond (1998)

Figure: Period-1 wedges: risk-neutral Rawlsian Pareto-lognormal case

Risk Aversion

- Agent's utility from consumption: $v(c_t)$, with $v''(\cdot) < 0$
- One util compensation requires $1/v'(c_t)$ units of consumption
- Risk aversion increases cost of future information rents
- Effect of LBD: $RA(\theta_1)\Omega(\theta)$ where

$$RA(\theta_1) \equiv v'(c_1(\theta_1)) \int_{\theta_1}^{\overline{\theta}_1} \frac{1}{v'(c_1(s))} \frac{dF_1(s)}{1 - F_1(\theta_1)}$$

is correction due to risk-aversion

- Risk aversion contributes to amplification of LBD level effect
 - risk aversion increases benefit of shifting future distribution towards lower types
- Risk aversion contributes to amplification of LBD progressivity effect
 - benefit more pronounced for high period-1 types: their expected future rents are higher
- BUT, risk aversion leads also to an alleviation of LBD level and progressivity effects
 - higher cost of future rents \rightarrow lower future incomes (hence lower Ω_1)

Risk Aversion

Figure: RA correction term: Rawlsian Pareto-lognormal case

Risk Aversion

Figure: LBD term Ω : Rawlsian Pareto-lognormal case

Risk Aversion

Figure: Period-1 wedges: risk-averse Rawlsian Pareto-lognormal case

Utilitarian

Redistribution constraint:

$$\int_{\underline{\theta}_1}^{\theta_1} V_1(\theta_1) dF_1(\theta_1) \geq \kappa$$

■ Increasing lifetime utility by $v'(c_1(\theta_1))\Omega_1(\theta_1)$ now relaxes redistribution constraint

$$oxed{\widehat{W}_1(heta_1) = \hat{W}_1^{\mathit{URA}}(heta_1) + [\mathit{RA}(heta_1) - \mathit{D}(heta_1)] \, \Omega(heta_1)},$$

where

$$D(\theta_1) \equiv v'(c_1(\theta_1)) \int_{\underline{\theta}_1}^{\overline{\theta}_1} \frac{1}{v'(c_1(s))} dF_1(s)$$

is novel correction term reflecting higher Pareto weights assigned to types above $\underline{\theta}_1$

Novel effect reduces amplification effect of risk aversion

Utilitarian

Figure: RA – D correction term: Utilitarian Pareto-lognormal case

Utilitarian

Figure: LBD term Ω : Utilitarian Pareto-lognormal case

Utilitarian

Figure: Period-1 wedges: Utilitarian Pareto-lognormal case

Lognormal

Figure: Period-1 wedges: Utilitarian Lognormal case

Quantitative Analysis

- Calibrate 40-working-years model with productivity changing at year 21
- \blacksquare Annual discount factor β
- LBD active in each of first 20 years (weights β^{s-1})
- $\beta = 1/(1+r)$
- Isomorphic to 2-period model with $\delta=\beta^{20}$ and $V_t=\frac{\hat{V}_{20(t-1)+1}}{\nabla^{20},\beta^{s-1}}$, t=1,2.
- U.S. income tax estimation from Heathcote et. al. (2016)

$$T(y) = y - e^{\tau_0} y^{1-0.181}$$

Arr r = 0.04, v = log, $\phi = 2$ $\theta_1 = h_1 \varepsilon_1$, and ε_t iid Pareto-Lognormal (λ, σ) with mean 1

Quantitative Analysis

Definition	Symbol	Value	As in
CRRA parameter	η	1	FW, K, GTT, S, KN
Frisch elasticity of labor	$1/\phi$	0.5	FW, GTT, S, BK
Annual interest rate	r	4%	KN
Annual discount factor	β	1/(1+r)	FW, K, GTT, S, BK
Working years per period	_	20	BK, KN
Cutoff year	_	21	BK

Table: Exogenous parameters

Quantitative Analysis

Using estimated moments in (Huggett et. al. 2011)

Symbol	Value	alue Target Moment		Abs Perc. Deviation
ρ	0.4505	mean earnings ratio	0.868	0.0015%
ζ	0.2175	Var. log-earnings young	0.335	1%
h_1	0.4795	Var. log-earnings old	0.435	0.009%
σ	0.5573	Gini earnings young	0.3175	1.7%
λ	5.9907	mean-to-median earnings young	1.335	1.25%

Table: Calibrated Parameters

Quantitative Analysis

- Optimal reform: 4.0348% increase in consumption at all histories
- For some histories, wedges decreasing over time
- For other histories, wedges are increasing over time
- Conditional average period-2 wedge higher than period-1 wedge
- Unconditional average period-2 wedge (0.4854) higher than unconditional period-1 wedge (0.3733)
- Inverse U-shape wedges as functions of (conditional) income percentile
 - shock distribution close to Lognormal
 - very high risk aversion
 - low-end LBD factor
 - moderate skill persistence

Quantitative Analysis

Figure: Optimal wedges for selected histories

Quantitative Analysis

Figure: Period-1 wedges and conditional period-2 wedges as a function of period-1 income percentile.

Quantitative Analysis

Figure: Period-1 optimal wedge. Vertical lines indicate period-1 income percentiles corresponding to low, middle, and high earnings.

Quantitative Analysis

Figure: Period-2 wedges as function of period-2 earnings percentiles for (a) low, middle and high period-1 earnings, and (b) weighted average of period-1 productivities.

Taxes

 Optimal allocations implemented arbitrarily well by age-dependent taxes invariant in past incomes:

$$T_1(y_1) = -B + y_1 - e^{\tau_{0,1}}y^{1-\tau_1}$$

and

$$T_2(y_2) = y_2 - e^{\tau_{0,2}} y^{1-\tau_2}$$

- Loss in consumption (relative to SB): 0.1489%
- Optimal **linear** age-dependent taxes $t_1 = 38\%$ and $t_2 = 46\%$
 - loss in consumption (relative to SB): 0.1506%
- Optimal linear age-independent linear tax rate: 41.25%
 - loss in consumption (relative to SB): 0.2361%

Taxes

Figure: Tax rates as functions of income

Importance of LBD

Similar calibration but with exogenous productivity

$$\theta_2 = h_2 \theta_1^{\widehat{\rho}} \varepsilon_2$$

- Calibrated (conditional) distributions very close to those under LBD
- Optimal allocations implemented arbitrarily well by age-dependent taxes invariant in past incomes
- Ignoring LBD: 15% overestimation of benefits of reforming US tax code

Importance of LBD

Figure: First-period wedges with and without LBD

Importance of LBD

Figure: Quasi-optimal income tax rates with and without LBD

Conclusions

- LBD: important qualitative and quantitative implications
 - level
 - progressivity
 - dynamics
 - benefits of reforming US tax code
- Ongoing work
 - arbitrary horizons (recursive approach)
 - general wedge decomposition
- Future work:
 - hidden savings
 - political economy constraints
 - partial commitment
 - . . .

THANKS!

Second Best: Incentive Compatibility

Continuation utility (history $\theta = (\theta_1, \theta_2)$):

$$V_2(\theta) \equiv c_2(\theta) - \psi(y_2(\theta), \theta_2)$$

- For any θ_1 , IC-2 requires that
 - $V_2(\theta_1,\cdot)$ Lipschitz continuous and s.t. (e.g., Mirrlees)

$$V_2(\theta_1,\theta_2) = V_2(\theta_1,\underline{\theta}_2) - \int_{\underline{\theta}_2}^{\theta_2} \psi_{\theta}(y_2(\theta_1,s),s)ds,$$

 $y_2(\theta_1,\cdot)$ nondecreasing

Second Best: Incentive Compatibility

IC-1 requires that

$$\begin{split} V_1(\theta_1) &= V_1(\underline{\theta}_1) \\ &- \int_{\underline{\theta}_1}^{\theta_1} \left\{ \psi_{\theta}(y_1(s), s) ds + \delta \mathbb{E}^{\lambda[\chi]|s} \left[I_1^2(\tilde{\theta}, y_1(s)) \psi_{\theta}(y_2(\tilde{\theta}), \tilde{\theta}_2) \right] \right\} ds \end{split}$$

and

$$\begin{split} &\int_{\hat{\theta}_{1}}^{\theta_{1}} \left\{ \psi_{\theta}(y_{1}(s),s) + \delta \mathbb{E}^{\lambda[\chi]|s,y_{1}(s)} \left[I_{1}^{2}(\tilde{\theta},y_{1}(s)) \psi_{\theta}(y_{2}(s,\tilde{\theta}_{2}),\tilde{\theta}_{2}) \right] \right\} ds \\ &\leq &\int_{\hat{\theta}_{1}}^{\theta_{1}} \left\{ \psi_{\theta}(y_{1}(\hat{\theta}_{1}),s) + \delta \mathbb{E}^{\lambda[\chi]|s,y_{1}(\hat{\theta}_{1})} \left[I_{1}^{2}(\tilde{\theta},y_{1}(\hat{\theta}_{1})) \psi_{\theta}(y_{2}(\hat{\theta}_{1},\tilde{\theta}_{2}),\tilde{\theta}_{2}) \right] \right\} ds \end{split}$$

Sufficient Statistics

Let

$$egin{aligned} \hat{\mathcal{E}}_1(y_1) &\equiv rac{1 - au_1(y_1)}{y_1} rac{\partial \widehat{y}_1(1 - au_1(y_1), heta_1(y_1))}{\partial (1 - au_1)} \ e_{\mathscr{T}_2|y_1} &\equiv rac{\partial \mathbb{E}[ilde{\mathscr{T}}_2|y_1]}{\partial y_1} rac{y_1}{\mathbb{E}[ilde{\mathscr{T}}_2|y_1]} \end{aligned}$$

Proposition

Under the optimal tax code

$$\frac{\tau_1(y_1)}{1-\tau_1(y_1)} = \frac{1-H_Y(y_1)}{y_1\hat{h}_Y(y_1)} \frac{1}{\hat{E}_1(y_1)} \left[\frac{1}{1+\delta e_{\mathscr{T}_2|y_1}} \frac{\mathbb{E}[\tilde{\mathscr{T}}_2|y_1]}{\tau_1(y_1)y_1} \right].$$

Sufficient Statistics

Let

$$\hat{E}_2(y_1, y_2) \equiv \frac{1 - \tau_2(y_1, y_2)}{y_2} \frac{\partial \widehat{y}_2(1 - \tau_2(y_1, y_2), \theta_2(y_1, y_2))}{\partial (1 - \tau_2)}$$

Proposition

Under optimal tax code

$$\frac{\tau_2(y_1, y_2)}{1 - \tau_2(y_1, y_2)} = \left[\frac{\partial \widetilde{H}_O(y_2|y_1)}{\partial y_1} - \frac{\partial H_O(y_2|y_1)}{\partial y_1}\right] \frac{1 - H_Y(y_1)}{h_Y(y_1)y_2\hat{h}_O(y_2|y_1)} \frac{1}{\hat{E}_2(y_1, y_2)}$$

 Results established with novel perturbations (reforms) accounting for endogeneity of period-2 productivity