Daniel Fershtman Alessandro Pavan

MATCH-UP 2017

Motivation

- Mediated matching central to "sharing economy"
- Most matching markets intrinsically dynamic re-matching
 - shocks to profitability of existing matching allocations
 - gradual resolution of uncertainty about attractiveness
 - preference for variety
- Re-matching, while pervasive, largely ignored by matching theory

This paper

- Dynamic matching
 - mediated (many-to-many) interactions
 - evolving private information
 - payments
 - capacity constraints
- Applications
 - scientific outsourcing (Science Exchange)
 - lobbying
 - sponsored search
 - internet display advertising
 - lending (Prospect, LendingClub)
 - B2B
 - health-care (MEDIGO)
 - organized events (meetings.com)
- Matching auctions
- Profit vs welfare maximization

Plan

Model

- Matching auctions
- Profit maximization

Distortions

Conclusions

• Profit-maximizing platform mediates interactions between 2 sides, A, B

- ullet Profit-maximizing platform mediates interactions between 2 sides, A, B
- ullet Agents: $N_A=\{1,...,n_A\}$ and $N_B=\{1,...,n_B\}$, $n_A,n_B\in\mathbb{N}$

• Profit-maximizing platform mediates interactions between 2 sides, A, B

- ullet Agents: $N_A=\{1,...,n_A\}$ and $N_B=\{1,...,n_B\},\ n_A,n_B\in\mathbb{N}$
- ullet Period-t match between agents $(i,j) \in N_A imes N_B$ yields gross payoffs

$$v_{ijt}^A = \theta_i^A \cdot \varepsilon_{ijt}^A$$
 and $v_{ijt}^B = \theta_j^B \cdot \varepsilon_{ijt}^B$

 θ_i^k : "vertical" type

 ε_{ijt}^k : "horizontal" type (time-varying match-specific)

• Profit-maximizing platform mediates interactions between 2 sides, A, B

- ullet Agents: $N_A=\{1,...,n_A\}$ and $N_B=\{1,...,n_B\},\ n_A,n_B\in\mathbb{N}$
- ullet Period-t match between agents $(i,j) \in N_A imes N_B$ yields gross payoffs

$$v_{ijt}^{A} = \theta_{i}^{A} \cdot \varepsilon_{ijt}^{A}$$
 and $v_{ijt}^{B} = \theta_{j}^{B} \cdot \varepsilon_{ijt}^{B}$

 θ_i^k : "vertical" type

 ε_{ijt}^k : "horizontal" type (time-varying match-specific)

• Agent i's period-t (flow) type $(i \in N_A)$:

$$v_{it}^{A} = (v_{i1t}^{A}, v_{i2t}^{A}, ..., v_{in_{B}t}^{A})$$

• Profit-maximizing platform mediates interactions between 2 sides, A, B

- ullet Agents: $N_A=\{1,...,n_A\}$ and $N_B=\{1,...,n_B\},\,n_A,n_B\in\mathbb{N}$
- ullet Period-t match between agents $(i,j) \in \mathcal{N}_A imes \mathcal{N}_B$ yields gross payoffs

$$v_{ijt}^A = \theta_i^A \cdot \varepsilon_{ijt}^A$$
 and $v_{ijt}^B = \theta_j^B \cdot \varepsilon_{ijt}^B$

 θ_i^k : "vertical" type

 $arepsilon_{ijt}^k$: "horizontal" type (time-varying match-specific)

• Agent i's period-t (flow) type $(i \in N_A)$:

$$v_{it}^{A} = (v_{i1t}^{A}, v_{i2t}^{A}, ..., v_{in_{B}t}^{A})$$

• Agent *i*'s payoff $(i \in N_A)$:

$$U_i^A = \sum_{t=0}^{\infty} \delta^t \sum_{j \in N_B} v_{ijt}^A \cdot x_{ijt} - \sum_{t=0}^{\infty} \delta^t p_{it}^A$$

with $x_{ijt} = 1$ if (i, j)-match active, $x_{ijt} = 0$ otherwise.

- ullet In each period $t\geq 1$, platform can match up to M pairs of agents
 - space, time, services constraint

- ullet In each period $t\geq 1$, platform can match up to M pairs of agents
 - space, time, services constraint
- Many-to-many matching

- In each period t ≥ 1, platform can match up to M pairs of agents
 space, time, services constraint
- Many-to-many matching
- Platform's profit:

$$\sum_{t=0}^{\infty} \delta^{t} \left(\sum_{i \in N_{A}} p_{it}^{A} + \sum_{j \in N_{B}} p_{jt}^{B} - \sum_{i \in N_{A}} \sum_{j \in N_{B}} c_{ijt}(x^{t-1}) \cdot x_{ijt} \right)$$

ullet Each $heta_I^k$ drawn independently from (abs cont.) F_I^k over $\Theta_I^k = [\underline{ heta}_I^k, \overline{ heta}_I^k]$

- ullet Each $heta_I^k$ drawn independently from (abs cont.) F_I^k over $\Theta_I^k = [\underline{ heta}_I^k, \overline{ heta}_I^k]$
- $\bullet \text{ Period-}t \text{ horizontal type } \epsilon^k_{ijt} \text{ drawn from cdf } G^k_{ijt}(\epsilon^k_{ijt} \mid \epsilon^k_{ijt-1}, \mathbf{x}^{t-1}) \\$

- ullet Each $heta_I^k$ drawn independently from (abs cont.) F_I^k over $\Theta_I^k = [\underline{ heta}_I^k, \overline{ heta}_I^k]$
- $\bullet \text{ Period-}t \text{ horizontal type } \epsilon^k_{ijt} \text{ drawn from cdf } G^k_{ijt}(\epsilon^k_{ijt} \mid \epsilon^k_{ijt-1}, \mathbf{x}^{t-1})$
- ullet Agents observe $heta_i^k$ prior to joining, but learn $(arepsilon_{ijt}^k)$ over time

- Exogenous processes:
 - G^k_{ijt} and c_{ijt} independent of x^{t-1}

• Exogenous processes:

- G^k_{ijt} and c_{ijt} independent of x^{t-1}

Endogenous processes:

- when $\emph{x}_{ijt-1} = \emph{0}, \ \emph{\varepsilon}^\emph{k}_{ijt} = \emph{\varepsilon}^\emph{k}_{ijt-1}$ a.s.
- when $x_{ijt-1}=1$, dependence of G_{ijt} on x^{t-1} through $\sum\limits_{s=1}^{t-1}x_{ijs}$
- $c_{ijt}(x^{t-1})$ depends on x^{t-1} through $\sum\limits_{s=1}^{t-1} x_{ijs}$
- example 1: experimentation in Gaussian world $(\epsilon_{ijt}^k = \mathbb{E}[\omega_{ij}^k | (z_{ijs}^k)_s])$
- example 2: preference for variety

• Exogenous processes:

- G^k_{ijt} and c_{ijt} independent of x^{t-1}

Endogenous processes:

- when $x_{ijt-1}=$ 0, $arepsilon_{ijt}^k=arepsilon_{ijt-1}^k$ a.s.
- when $x_{ijt-1}=1$, dependence of G_{ijt} on x^{t-1} through $\sum\limits_{s=1}^{t-1}x_{ijs}$
- $c_{ijt}(x^{t-1})$ depends on x^{t-1} through $\sum\limits_{s=1}^{t-1} x_{ijs}$
- example 1: experimentation in Gaussian world $(\epsilon_{ijt}^k = \mathbb{E}[\omega_{ij}^k | (z_{ijs}^k)_s])$
- example 2: preference for variety
- ε drawn independently across agents and from θ (given x)

Plan

Model

Matching auctions

Profit maximization

Distortions

Conclusions

- At t=0 (i.e., upon joining the platform), each agent $l \in N_k$ purchases membership status $\theta_{l0}^k \in \Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status \rightarrow more favorable treatment in subsequent auctions

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status \rightarrow more favorable treatment in subsequent auctions
- At any $t \ge 1$:

- At t=0 (i.e., upon joining the platform), each agent $l \in N_k$ purchases membership status $\theta_{l0}^k \in \Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status \rightarrow more favorable treatment in subsequent auctions
- ullet At any $t\geq 1$:
 - ullet agents adjust membership status to $heta_{lt}^k \in \Theta_l^k$

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status \rightarrow more favorable treatment in subsequent auctions
- At any $t \geq 1$:
 - \bullet agents adjust membership status to $\theta^k_{lt} \in \Theta^k_l$
 - ullet agents $bid\ b_{lt}^k \equiv (b_{lit}^k)_{j \in N_{-k}}$, one for each partner from side -k

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status ightarrow more favorable treatment in subsequent auctions
- At any $t \geq 1$:
 - \bullet agents adjust membership status to $\theta^k_{lt} \in \Theta^k_l$
 - \bullet agents bid $b_{lt}^k \equiv (b_{ljt}^k)_{j \in N_{-k}},$ one for each partner from side -k
 - ullet each match $(i,j) \in N_A \times N_B$ assigned **score** $S_{ijt} \in \mathbb{R}$

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status ightarrow more favorable treatment in subsequent auctions
- At any $t \geq 1$:
 - \bullet agents adjust membership status to $\theta^k_{lt} \in \Theta^k_l$
 - ullet agents bid $b^k_{lt} \equiv (b^k_{ljt})_{j \in N_{-k}}$, one for each partner from side -k
 - ullet each match $(i,j) \in \mathcal{N}_{A} imes \mathcal{N}_{B}$ assigned **score** $\mathcal{S}_{ijt} \in \mathbb{R}$
 - matches with highest (nonnegative) score implemented (up to capacity)

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status ightarrow more favorable treatment in subsequent auctions
- At any $t \geq 1$:
 - \bullet agents adjust membership status to $\theta^k_{lt} \in \Theta^k_l$
 - ullet agents bid $b^k_{lt} \equiv (b^k_{ljt})_{j \in N_{-k}}$, one for each partner from side -k
 - ullet each match $(i,j) \in \mathcal{N}_A imes \mathcal{N}_B$ assigned **score** $\mathcal{S}_{ijt} \in \mathbb{R}$
 - matches with highest (nonnegative) score implemented (up to capacity)
 - unmatched agents pay nothing

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status ightarrow more favorable treatment in subsequent auctions
- At any $t \geq 1$:
 - \bullet agents adjust membership status to $\theta^k_{lt} \in \Theta^k_l$
 - ullet agents bid $b^k_{lt} \equiv (b^k_{ljt})_{j \in N_{-k}}$, one for each partner from side -k
 - ullet each match $(i,j) \in \mathcal{N}_A imes \mathcal{N}_B$ assigned **score** $\mathcal{S}_{ijt} \in \mathbb{R}$
 - matches with highest (nonnegative) score implemented (up to capacity)
 - unmatched agents pay nothing
 - matched agents pay $p_{t}^{k}(\theta_{0}, \theta_{t}, b_{t}, x^{t-1})$

- At t=0 (i.e., upon joining the platform), each agent $l\in N_k$ purchases membership status $\theta_{l0}^k\in\Theta_l^k$ at price $p_l^k(\theta_0)$
 - higher status → more favorable treatment in subsequent auctions
- At any $t \geq 1$:
 - \bullet agents adjust membership status to $\theta^k_{lt} \in \Theta^k_l$
 - ullet agents bid $b^k_{lt} \equiv (b^k_{ljt})_{j \in N_{-k}}$, one for each partner from side -k
 - each match $(i,j) \in N_A \times N_B$ assigned **score** $S_{ijt} \in \mathbb{R}$
 - matches with highest (nonnegative) score implemented (up to capacity)
 - unmatched agents pay nothing
 - ullet matched agents pay $p_{lt}^k(heta_0, heta_t, b_t, x^{t-1})$
- Each bilateral score S_{ijt}
 - depends on information about (i,j) only
 - independent of past bids

- At t=0 (i.e., upon joining the platform), each agent $l \in N_k$ purchases membership status $\theta_{10}^k \in \Theta_1^k$ at price $p_1^k(\theta_0)$
 - higher status → more favorable treatment in subsequent auctions
- At any t > 1:
 - agents adjust membership status to $\theta_{I}^k \in \Theta_I^k$
 - ullet agents bid $b_{lt}^k \equiv (b_{lit}^k)_{j \in N_{-k}}$, one for each partner from side -k
 - each match $(i,j) \in N_A \times N_B$ assigned **score** $S_{iit} \in \mathbb{R}$
 - matches with highest (nonnegative) score implemented (up to capacity)
 - unmatched agents pay nothing
 - matched agents pay $p_{t}^{k}(\theta_{0}, \theta_{t}, b_{t}, x^{t-1})$
- Each bilateral score S_{iit}
 - depends on information about (i, j) only
 - independent of past bids
- Full transparency bids, payments, membership, matches all public.

Myopic score

Definition

A **myopic score** (with weights β)

$$S_{ijt}^m \equiv \beta_i^A(\theta_{i0}^A) \cdot b_{ijt}^A + \beta_j^B(\theta_{j0}^B) \cdot b_{ijt}^B - c_{ijt}(x^{t-1}),$$

Index

Definition

Index score (with weights β)

$$S_{ijt}^{l} \equiv \sup_{\tau} \frac{\mathbb{E}^{\lambda_{ij}|\theta_{0},\theta_{t},b_{t},x^{t-1}} \left[\sum_{s=t}^{\tau} \delta^{s-t} \cdot S_{ijs}^{m;\beta} \right]}{\mathbb{E}^{\lambda_{ij}|\theta_{0},\theta_{t},b_{t},x^{t-1}} \left[\sum_{s=t}^{\tau} \delta^{s-t} \right]}$$

- τ : stopping time
- $\lambda_{ij}|\theta_0,\theta_t,b_t,x^{t-1}$: process over myopic scores under truthful bidding, when $\varepsilon^k_{ijt}=\frac{b^k_{ijt}}{\theta^k_{it}}$

Payments (PST + BV)

 \bullet Payments for $t \geq 1$ designed to make payoffs proportional to marginal contributions to weighted surplus

ullet Membership fees for t=0 designed to induce agents to participate and select status designed for their vertical type.

Plan

Model

- Matching auctions
- Profit maximization

Distortions

Conclusions

Profit maximization

Consider the weights

$$\hat{\beta}_{I}^{k}(\theta_{I0}^{k}) \equiv 1 - \frac{1 - F_{I}^{k}(\theta_{I0}^{k})}{f_{I}^{k}(\theta_{I0}^{k})\theta_{I0}^{k}}$$

Theorem

(i) **Exogenous processes**: suppose, under myopic scoring rule with weights $\hat{\beta}$, all agents, at t=0, expect non-negative match quality. Then a myopic scoring rule with weights $\hat{\beta}$ is profit-maximizing.

(ii) **Endogenous processes**: suppose, under index scoring rule with weights $\hat{\beta}$, all agents, at t=0, expect non-negative match quality. In addition, suppose that either (a) M=1, or (b) $M \geq n_A \cdot n_B$, or (c) $1 < M < n_A \cdot n_B$ and environment is "separable." Then an index scoring rule with weights $\hat{\beta}$ is profit-maximizing.

Plan

Model

• Dynamic matching auctions

Profit maximization

Distortions

Conclusions

Welfare maximization

 Efficient auctions have same structure as profit-maximizing auctions, but with

$$\beta_I^k(\theta_I^k)=1$$

Distortions

Theorem

Assume horizontal types ε non-negative

(1) Suppose $M \geq n_A \cdot n_B$:

$$\chi^P_{ijt} = 1 \ \Rightarrow \ \chi^W_{ijt} = 1$$

(2) Exogenous processes with any M, or endogenous processes with M=1:

$$\sum_{(i,j)\in N_A\times N_B} \chi_{ijt}^W \ge \sum_{(i,j)\in N_A\times N_B} \chi_{ijt}^P$$

(3) Endogenous processes with $1 < M < n_A \cdot n_B$: if matching stops at $T < \infty$ under profit maximization, then

$$\sum_{t=1}^{\infty} \sum_{(i,j) \in N_A \times N_B} \chi^W_{ijt} \ge \sum_{t=1}^{\infty} \sum_{(i,j) \in N_A \times N_B} \chi^P_{ijt}$$

(*) Above conclusions can be reversed with negative horizontal types (upward distortions)

Conclusions

- Mediated (dynamic) matching
 - agents learn about attractiveness of partners over time
 - shocks to profitability of matching allocations
 - preferences for variety
- Matching auctions
 - similar in spirit to GSPA for sponsored search BUT
 - (i) value of experimentation
 - (i) costs of info rents
- Matching distortions → regulation
- Ongoing/future work
 - alternative indexes based on empirical distributions
 - population dynamics
 - no payments

Thank You!

Separable environments

Let

$$\underline{S}_{ijt} \equiv \inf_{s \le t} \left\{ S_{ijs}^{I} \right\}$$

Definition (separability)

Environment is *separable* under index rule with weights β if, for any $t \geq 1$, any $(i,j), (i',j') \in N_A \times N_B$, any $(\theta_0, \theta_t, \varepsilon^t, x^{t-1})$,

$$\underline{S}_{ijt} > \underline{S}_{i'j't} \ge 0 \implies \underline{S}_{ijt} \cdot (1 - \delta) \ge \underline{S}_{i'j't}$$

Separability imposes restrictions only on "downside risk"

Example (bad news)

Separability holds if period-1 indexes sufficiently apart for all pairs for which $S_{ij1}^{I;\beta} \geq 0$, and, at all $t \geq 2$, either $S_{ijt}^{I;\beta} \geq S_{ijt-1}^{I;\beta}$, or $S_{ijt}^{I;\beta} < 0$.