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Abstract
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that depends on the agents’ reciprocal bids and status. The matches maximizing the
sum of the bilateral scores are implemented. Under certain conditions, such auctions
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1 Introduction

In recent years, matching markets have been growing at an unprecedented rate, reflecting

the sharing economy’s role in the organization of modern business activities. In e-commerce,

for example, a sizable fraction of trade is mediated by business-to-business (B2B) platforms

matching vendors with procurers in search of business opportunities. Likewise, a sizable

fraction of online advertising is mediated by ad exchanges, search engines, media outlets,

online malls, and videogame consoles, matching advertisers with either consumers or content

providers (see, e.g., “Marketing in the digital age: A brand new game”, The Economist,

August, 2015). Platform-mediated matching also plays an important role in the growing

market for scientific outsourcing, where intermediaries such as Science Exchange match labs

with idle equipment with research units seeking to conduct experiments off-site (see, e.g.,

“Uber for experiments,” The Economist, December 6, 2014); project finance, where consulting

firms match startups with lenders; lobbying, where commercial firms match interest groups

with policy makers;1 the market for private medical-tourism services, where intermediaries

such as MEDIGO match patients outside of the US with US physicians providing specialized

treatments;2 and the market for organized events, where platforms such as meetings.com

match clients in search of hospitality services with providers of such services.

These markets are highly dynamic, with agents experiencing frequent changes to their

preferences for interacting with other agents, and with new agents arriving at the market

gradually over time. As a result, agents on both sides of the market are frequently re-matched.

For example, Science Exchange frequently re-matches the research units with the facilities

renting out their lab equipment. Such re-matching reflects the arrival of new labs and research

1See Allard (2008) and Kang and You (2016) for how lobbying firms provide tailored (many-to-many)
matching services and dynamically price-discriminate each side of the lobbying market. See Dekel, Jackson
and Wolinsky (2008) for a detailed account of how intermediaries help to buy and sell votes.

2See http://www.nytimes.com/2013/08/07/us/the-growing-popularity-of-having-surgery-overseas.html.
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units over time but also changes in the research units’ needs and preferences and in the

facilities’ equipment and staff. Frequent re-matching is also a prominent feature of markets

in which platforms mediate the interactions between advertisers and content providers.

Leveraging on recent technological advances, many platforms are also evolving from a non-

discriminatory business model in which each agent on board is granted access to any other

agent from the opposite side, to one where matching is customized (e.g., each advertiser is

matched only to a subset of the content providers in the ad exchange’s network). The same

technological advances have also expanded the scope for using auctions to select the appro-

priate matches (see, e.g., Pinker, Seidmann, and Vakrat, 2003). Because the match values

are typically the agents’ private information, and because platforms can entertain only a lim-

ited number of matches in each period due to individual (i.e., agent-specific) and aggregate

(i.e., platform-specific) capacity constraints, more and more platforms are contemplating us-

ing auctions to mediate the interactions between the different sides of the market (see, e.g.,

Martens (2016) where it is argued that search rankings and price auctions will soon become

the main tools to facilitate online matching). However, standard auction formats used for

physical goods or services (e.g., first-price, second-price, English, or clock auctions) need not

be appropriate for markets in which agents play the double role of buyers and inputs and

where the match values are expected to evolve frequently over time. Nor are those auctions

designed for the sale of multiple, but homogeneous, goods, such as the various versions of

the double auction used in financial markets to sell securities, or by the Government to issue

Treasuries.

In this article, we introduce and study auctions specifically designed for dynamic matching

markets in which agents arrive over time, experience frequent changes to their match values,

and are repeatedly re-matched in response to variations in market conditions. The goal of

the analysis is primarily normative: to identify practical mechanisms (auctions) that can be
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used in such markets and show that certain versions of such auctions maximize the platform’s

profits, welfare, or a combination of the two.

An important feature of the model is that agents have a demand for repeated interactions

with agents from the opposite side. The (flow) payoff that each agent derives from each possible

match is governed by two components: (i) a time-invariant vertical characteristic capturing the

overall importance the agent assigns to interacting with partners from the opposite side of the

market (the “vertical” type); and (ii) a vector of time-varying match-specific values capturing

the evolution of the agent’s information and preferences for specific partners (the “horizontal”

types). These values evolve (stochastically) over time and may turn negative, reflecting the

idea that certain agents may dislike certain interactions. Both the vertical and the horizontal

types are the agents’ private information. Agents learn their vertical types prior to joining the

platform and learn their horizontal types over time after discovering who is on board. The

model allows for limits on both the number of matches that each agent may participate in

within a period (individual capacity constraints), as well as on the total number of matches

the platform can accommodate within a period (aggregate capacity constraint). Such limits

may reflect time, resource, or facility constraints, but also capture certain non-separabilities

and decreasing returns to scale in the agents’ preferences.

The matching auctions we propose have the following features. When joining the plat-

form, each agent is asked to select a membership status. At any subsequent period, each

agent on board is then asked to submit a vector of bids, one for each possible partner from

the opposite side of the market (counterpart). Each bilateral match then receives a “score”

that depends on the two agents’ reciprocal bids, their membership status, and the platform’s

cost of implementing the match.3 Different scoring rules reflect different objectives of the

3We allow the platform’s costs to take on negative values, reflecting the possibility that the platform may
benefit from certain interactions (e.g., they may help promote the platform’s matching capabilities).
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platform, ranging from profit to welfare maximization. In each period, the platform imple-

ments those matches that maximize the sum of the bilateral scores, taking individual and

aggregate capacity constraints into account. As in the Vickrey-Clark-Groves (VCG) and Gen-

eralized Second Price (GSP) auctions, the payments the platform asks of each agent reflect

the externalities the agent imposes on others due to the individual and aggregate capacity

constraints. However, contrary to these auctions, such externalities may also account for the

effects of matching on the agents’ informational rents. In particular, the platform may find it

optimal to subsidize certain interactions and favor matches that generate lower surplus when

this permits the platform to raise more revenue. In addition to charging the agents for the

matches they receive over time, the platform also charges each agent a participation fee at

the time of joining that depends on the selected membership status. The pricing of status

reflects how the latter influences the intertemporal surplus expected by an agent at the time

of joining.

To the best of our knowledge, the specific auctions we propose are not used in any real-

world market. However, many of their features seem to play a role that has been recognized as

important in concrete markets. For example, the use of the agents’ status to distort matching

and pricing to favor more prominent agents, both within and across sides, is something that

resonates well with practices followed by many real-world platforms. In this respect, the

weighted scores in our auctions play a role similar to that played by the “compatibility scores”

used by various ad exchanges to select matches between advertises and content providers (see,

e.g., Chapter 6 in Moghaddam and Shimon, 2016). In fact, online ad exchanges such as

Google’s DoubleClick and Microsoft’s Exchange already use auctions to match advertisers with

content providers. In such auctions, as in ours, advertisers bid repeatedly over time to place

their ads on the website of multiple content providers and, over time, content providers ask

different ad-specific prices to display the ads (see, e.g., Mansour, Muthukrishnan, and Nisan,
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2012). Dynamic compatibility scores where the bids of agents from different sides of the market

are weighted so as to respond to changes in the fit and efficacy of the advertisement, without

damaging broadcaster reputation, play an important role in such auctions.4 Furthermore,

participating agents from both sides of the market are often re-matched and are charged fees to

join the platform. Auctions are also used in the market for personalized display ads by search

engines such as Yahoo! and Google. These intermediaries have originally used variations

of the second-price auction, the so-called GSP auction. In 2012, however, Google switched

from the GSP auction to a VCG auction on the grounds that dynamic bid re-optimization is

easier under the VCG protocol; see, e.g., Edelman, Ostrovsky, and Schwarz (2007), Gomes

and Sweeney (2014), Harris and Varian (2014), and Arnosti, Beck and Milgrom (2016).

In the auctions we propose, at all histories (including those off-path), equilibrium bidding

is truthful (Theorem 1). Bidding one’s myopic values for all matches is optimal because the

matches under truthful bidding maximize a weighted sum of all agents’ payoffs, net of the

platform’s matching costs and, in case of profit-maximization, net of the agents’ information

rents. This property, together with the fact that the auction’s payments reflect the imposed

externalities, guarantees that each agent finds it optimal to bid truthfully at all periods, irre-

spective of the agent’s beliefs about other agents’ current and past types, and independently

of past matches. As a result, the proposed auctions can be made fully transparent: At the

end of each period, all membership statuses, bids, matches, and payments are disclosed to all

agents on board.

That, once on board, agents find it optimal to bid truthfully at each period follows from

arguments similar to those in the literature on VCG mechanisms (but adjusted for the fact that

the induced matches need not be efficient). That agents find it optimal to join immediately

upon arrival and select the “right” membership status is not obvious and follows from the

4See, e.g., https://support.google.com/adxseller/answer/2913506?hl=en&ref topic=3376095.
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interaction of three novel monotonicities. First, the intertemporal match quality that each

agent expects from joining the auction declines over time. This property guarantees that

agents do not benefit from postponing their joining. Second, when all agents bid truthfully,

the net present value of the quality of the matches that each agent expects from selecting

the membership status designed for his true vertical type is nondecreasing in the agent’s true

vertical type. This property guarantees that if low types find it optimal to participate, so

do higher ones. Third, when all agents bid truthfully in all periods, the intertemporal match

quality that each agent expects at the time of joining is nondecreasing in the selected status.

This last property guarantees that agents find it optimal to select the status designed for their

vertical type.

In a matching environment, the above monotonicities should not be taken for granted. In

fact, contrary to standard screening problems, each agent plays the double role of a buyer and

of an input provider for the matches the platform sells to the other side. Furthermore, the

private information that each agent receives after joining the platform is multidimensional, and

although certain dimensions may contribute to higher match quality, others may contribute to

a lower one.5 Lastly, agents may dislike interacting with certain other agents (i.e., experience

a payoff below their outside option) and, for such interactions, a larger vertical type or a

higher status may imply a larger loss.6

We show that, under certain conditions, the matching auctions we propose include auctions

that maximize the platform’s profits, as well as auctions that maximize welfare, or a convex

combination between the two, over all possible mechanisms (Theorems 2 and 3). We then

use the results to shed light on distortions due to market power (Theorem 4). The last

few years have witnessed growing concerns about possible inefficiencies in matching markets

5In other words, a higher vertical type, or a higher status, may bring higher match quality when paired
with some dimensions but not with others.

6Technically, the agents’ payoffs at the time of joining need not satisfy the familiar increasing-difference
property.
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dominated by a few platforms with strong market power, spurring an active debate on how

to regulate such platforms.7 We show that, in markets where all agents assign a nonnegative

value to all interactions and none of the capacity constraints binds, in each period, each match

induced by a monopolistic profit-maximizing platform is welfare maximizing (however, many

welfare-maximizing matches need not be implemented under profit maximization). In the

presence of capacity constraints, instead, some of the matches induced by a profit-maximizing

platform may be socially inefficient. However, when the only binding capacity constraint is

the aggregate one (i.e., the platform’s), the total number of matches induced in each period

by a monopolistic profit-maximizing platform is always inefficiently low. Interestingly, these

conclusions do not extend to markets in which individual capacity constraints may be binding.

In this case, a platform enjoying strong market power may induce an inefficiently large number

of matches, for any number of periods. The same is true in markets in which certain agents

dislike certain interactions (that is, derive a payoff lower than their outside option from certain

matches). In such markets, simple policy interventions based on tax reductions or match

subsidies may prove counterproductive and yield lower welfare.

Outline. The rest of the article is organized as follows. The remainder of the introduction

briefly discusses the most pertinent literature. Section 2 describes the environment. Section

3 introduces the dynamic matching auctions and derives their equilibrium properties. Section

4 identifies auctions maximizing the platform’s profits, total welfare, or a convex combination

of the two, and uses the results to characterize the inefficiencies due to market power. Section

5 concludes with a brief discussion of the robustness of the insights and of lines of future

research. All proofs are in the Appendix at the end of the document.

7See, e.g., “Online Platforms: Nostrums for Rostrums” and “Regulating Technology Companies: Taming
the Beasts,” (The Economist, May 28, 2016).
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Related Literature

Markets where agents purchase access to other agents are the focus of a vast literature on

two-sided markets pioneered by Caillaud and Jullien (2003), Rochet and Tirole (2003, 2006)

and Armstrong (2006)—see Belleflamme and Peitz (2017) for a recent overview. This lit-

erature assumes that all agents on board interact with all other agents from the opposite

side (i.e., it restricts attention to a single network, or to mutually exclusive networks). Most

importantly, it focuses primarily on static environments (see Cabral (2011) for a dynamic

model with complete information, and Jullien and Pavan (2019) for a dynamic extension with

asymmetric information). In these works, match values are constant over time and there is

no customization.

Damiano and Li (2007) and Johnson (2013) consider the mechanism-design problem of

a profit-maximizing platform facing agents with private information on their vertical types.

Hoppe, Moldovanu and Ozdenoren (2011) quantify the benefit of a coarse matching scheme in

terms of matching surplus, revenue, and welfare. In these articles, in equilibrium, matching is

one-to-one. In contrast, Board (2009) considers the problem of a profit-maximizing platform

allocating agents to mutually exclusive groups (e.g., teams), whereas Gomes and Pavan (2016,

2018) study a problem similar to the one in Board (2009) but where agents differ both in

their preferences and in their attractiveness, and where matching is non-partitional. Hoppe,

Moldovanu and Sela (2009) show that assortative matching can arise in a Bayesian equilibrium

of a bilateral (costly) signaling game. Dizdar and Moldovanu (2016) study a model where

agents are characterized by private, multi-dimensional, attributes which jointly determine the

surplus from a match, and give a possible explanation for the prevalence of rules that divide

surplus in a fixed proportion. Matching in all of these articles is static. Fershtman and Pavan

(2017) study a simple model of dynamic matching in which valuations change only once, after
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the first interaction, a single match is formed in each period, and the new private information

agents receive in each period is uni-dimensional.

Contrary to these works, in the present article, agents arrive stochastically over time, expe-

rience multiple shocks to their match values, which are privately observed, and are repeatedly

re-matched.

The article is also related to the literature on scoring auctions. In this literature, scores

are used by the procurers to aggregate the various dimensions of the suppliers’ offers (price,

product design, delivery time). See, for example, Che (1993) and Asker and Cantillon (2008).

Our matching auctions share with this literature the idea that the desired allocations can be

induced through an appropriate design of the bilateral scores. Contrary to this literature,

however, the scores in our auctions aggregate the preferences of different agents from different

sides of the market, instead of the various dimensions of each seller’s own offer.

Another related literature is the one studying auctions for sponsored links by search engines

and for contextualized ads by ad exchanges. For example, Varian (2007), Edelman, Ostrovsky

and Schwarz (2007), and Gomes and Sweeney (2014) study the properties of the GSP auction

used by online search engines to allocate ads, whereas Mansour, Muthukrishnan, and Nisan

(2012), Harris and Varian (2014), and Arnosti, Beck and Milgrom (2016) study auctions used

by ad exchanges to match advertisers with content providers.8 Our matching auctions are

relevant also for these markets, modulo the fact that, in online search, searchers typically do

not pay for the matches (or, more precisely, the “currency” used for the services they receive

is the release of their privacy). In ad exchange auctions, instead, it is becoming customary

for content providers to specify dynamic reservation prices for different types of ads, which is

a form of dynamic bidding. In these auctions, both sides thus repeatedly bid for all matches,

bids are aggregated into bilateral compatibility scores, and participating bidders are charged

8See also Athey and Ellison (2011), Börgers, Cox, Pesendorfer and Petricek (2013), and Gomes (2014).
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upfront fees at the time of joining, as in our model. The key contribution of our article vis-a-

vis this literature is the characterization of simple auctions maximizing the platform’s profits

when agents arrive over time and experience frequent changes to their preferences, as well as

the discussion of the inefficiencies due to market power.

Most of the recent literature on centralized dynamic matching focuses on markets without

transfers, in which matching is irreversible and dynamics originate entirely in the arrival

and departure of agents at and from the market. In the context of kidney exchange, for

example, Ünver (2010) studies optimal mechanisms for exchanges minimizing total waiting

costs.9 Optimal dynamic matching is also the focus of Anderson, Ashlagi, Gamarnik, and

Kanoria (2017), Akbarpour, Li, and Oveis Gharan (2020), and Baccara, Lee, and Yariv (2020).

A central trade-off in these articles is between avoiding waiting costs and waiting for the market

to thicken. The key differences with respect to the present article are that, in this literature,

agents are not re-matched (matching is irreversible), match values are constant over time, and

payments are absent.

From a methodological standpoint, we draw from recent developments in the dynamic

mechanism design literature. In particular, the conditions for incentive compatibility in the

present article build on results in Pavan, Segal, and Toikka (2014), adapted to our matching

environment.10 The key difference is that, in this article, agents arrive stochastically over time,

strategically choose the time at which they join the platform, and receive multi-dimensional

private information in each period, after learning the identities of the other agents on board.

9See Damiano and Lam (2005), and Doval (2019), and Kurino (2020) for appropriate stability concepts for
such environments.

10See Baron and Besanko (1984), Besanko (1985), Courty and Li (2000), Board (2007), Eso and Szentes
(2007), and Bergemann and Valimaki (2010) for some earlier contributions, and Gershkov and Moldovanu
(2014), Börgers (2015), Bergemann and Pavan (2015), Pavan (2017) and Bergemann and Valimaki (2019) for
overviews of this literature.
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2 The Environment

Arrivals, Match Values, and Payoffs. A platform matches agents from two sides of a

market, A and B. Agents arrive at the market stochastically over time. As usual, an agent’s

arrival can be interpreted as the agent becoming aware of the platform, or developing an

interest for the platform’s services. To simplify the exposition, we assume that, once an agent

arrives, he stays forever. This assumption, however, is inconsequential for the results. The

case where some of the agents depart from the market is formally equivalent to one where all

agents stay forever but some agents, after a certain (possibly stochastic) number of periods,

experience sufficiently negative payoffs from that moment onwards for interacting with all

agents from the opposite side, making it optimal for the platform to exclude them from all

future interactions. This is a special case of the environment we consider.

The time at which the agents arrive at the market is their own private information. Hence

agents can strategically choose the time at which they join the platform. The market is ex-

ante anonymous, that is, individual names bear no information to the platform about match

values.11 Each agent learns about the identities of the agents who are on-board already, from

both sides of the market, only after joining the platform.

Time is discrete and indexed by t = 0, ...,∞. For each t, and each side k = A,B, nkt ∈

N denotes the number of side-k agents who joined the platform prior to period t (i.e., in

periods 0, ..., t − 1). We use natural numbers to denote the positions occupied by the agents

in the platform, and assume that positions are occupied in the order of arrival. The set of

side-k positions occupied at the beginning of period t is denoted by Nk
t ≡ {1, ..., nkt }, with

Nk
0 = ∅. The set of new positions occupied in period t is therefore given by Nk

t+1 \ Nk
t ={

nkt + 1, ..., nkt+1

}
. If multiple agents join the platform at the same time, the new positions

11This assumption is not essential to the results but simplifies the exposition by permitting us to describe
the platform’s mechanisms in an anonymous way (that is, by dropping the conditioning of the allocations and
payments on individual names).
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are assigned randomly to the newly arrived agents according to a uniform distribution. Denote

by NAB
t ≡ NA

t ×NB
t the collection of possible matches that can be formed in period t, given

the positions that have been filled. As we explain below, not all such matches are, however,

feasible, as both the platform and the agents may face capacity constraints—more below.

Agents arrive at the market according to the process P . For example, the arrival of each

agent could be governed by a Poisson process, with draws independent across agents. The

details of P do not play a role for our results and hence no specific structure on P is imposed.

To ease the exposition, hereafter we often refer to the generic agent occupying the i-

th position on side k as the side-k i-th agent. Below we describe various features of the

environment focusing on the i-th agent from side A, with the understanding that a similar

description applies to any of the side-B agents.

The period-t flow payoff vAijt that the side-A i-th agent derives from interacting with the

side-B j-th agent depends on t, and on the identities of the two agents, but not on the time

at which the two agents arrived at the market, and is given by

vAijt = θAi ε
A
ijt. (1)

The term θAi denotes the average (unconditional) payoff that the side-A i-th agent derives from

interacting with any of the side-B agents, before doing any profiling, i.e., before learning the

identity of the side-B j-th agent. Agent i learns θAi prior to joining the platform. In contrast,

the term εAijt denotes the (time-varying) attractiveness of the side-B j-th agent in the eyes

of the side-A i-th agent. Naturally, εAijt depends on the identities of the two individuals and,

as such, is learned by the side-A i-th agent only after joining the platform. Each εAijt evolves

over time reflecting the accumulation of information, or simply variations in the environment

affecting the profitability of the match.
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The representation in (1) permits us to interpret θAi as the agent’s “vertical type,” that

is, the overall importance that the side-A agent assigns to interacting with the side-B agents,

and εAit ≡ (εAijt)j∈NB
t

as the agent’s period-t “horizontal types,” that is, the agent’s preferences

over the specific agents occupying the various positions on side B in period t. Hereafter, we

refer to vAit ≡ (vAijt)j∈NB
t

as the agent’s period-t “match values” which combine the vertical

and the horizontal types.

For any t ≥ 1, and any pair of positions (i, j) ∈ N2 , let Xijt ≡ {0, 1}, with xijt = 1 in case

the pair (i, j) is matched in period t, and with xijt = 0 otherwise. The ex-post payoff that

the side-A i-th agent derives from joining the platform in period t is given by

UA
it =

∞∑
s=t+1

δs−t
∑
j∈NB

s

xijsv
A
ijs −

∞∑
s=t+1

δs−tpAis − fAit , (2)

where δ ∈ (0, 1] is the common discount factor, fAit is the fee paid by the agent to the

platform at the time of joining, and (pAis)
∞
s=t+1 are the payments made to the platform in all

subsequent periods. Note that, although the agent’s first match does not occur prior to period

t + 1, the agent’s first payment to the platform, fAit , occurs at the time the agent joins the

platform. Payments in each period can be negative, reflecting the possibility that (a) agents

may dislike interacting with other agents and ask to be compensated, or (b) the platform’s

cross-subsidization of the two sides.

The platform’s ex-post payoff (its profit) is given by

U0 =
∞∑
t=0

δt

∑
i∈NA

t

pAit +
∑
j∈NB

t

pBjt +
∑

i∈NA
t+1\NA

t

fAit +
∑

j∈NB
t+1\NB

t

fBjt

− ∞∑
t=1

δt

 ∑
(i,j)∈NAB

t

cijtxijt

 .

The platform’s payoff is thus equal to the discounted sum of the payments collected from the

two sides of the market, net of possible costs of implementing the matches, where cijt ∈ R is the
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period-t "cost" of matching the pair (i, j) ∈ NAB
t . We allow these costs to take on negative

values so as to capture the possibility that the platform may derive positive benefit from

certain matches. These costs may also incorporate auxiliary services the platform provides to

the agents, over and above matching the agents from the two sides.

All agents, as well as the platform, are expected-utility maximizers.

Evolution of Match Values. Each θAi is drawn from an absolutely continuous cumulative

distribution function GA with density gA such that gA(θAi ) > 0 if and only if θAi ∈ ΘA =

[θA, θ
A

], with θA > 0. Vertical types are drawn independently across agents, independently

of the time at which the agents arrive at the market, and independently of the horizontal

types. The horizontal types, ε ≡ (εkijt)
k=A,B
i,j,t∈N , instead, are possibly correlated across agents

and over time. Importantly, although we restrict the vertical types to be nonnegative, we

allow the horizontal types to take on negative values, reflecting the possibility that certain

agents may dislike certain interactions; that is, certain agents may derive a payoff lower than

their outside option, which is assumed to be equal to zero, from interacting with certain

agents.12 Although not essential to the results, we find it convenient to think of each εkijt as

being drawn from a set Ekijt ⊆ R which either coincides with the entire real line, or with a

compact and connected subset of it. To guarantee that each agent’s expected payoff is well

defined at all histories, we assume that, for each, i ∈ N, and t ∈ N, and any feasible matching

rule χ specifying who is matched with whom at each period (formally described below),

E
[∑∞

s=t+1 δ
s−t∑

j∈NB
s
χijs|εAijt|

]
≤ EA

i , for some constant EA
i > 0. A similar condition applies

to side B.

Both the vertical and the horizontal types are the agents’ private information.

Capacity Constraints. At each period t, each side-k agent who has joined prior to

12Under the specification in (1), allowing the vertical types to also take on negative values would introduce
confusion, given that the horizontal types εkijt are already allowed to take on negative values.
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period t can be matched to at most mk
t of the agents from the opposite side, among those

who have also joined prior to period t. Such constraints admit as special cases the case of

one-to-one matching (mk
t = 1 for all t, k = A,B) and the case of many-to-many matching

with no binding individual constraints (mk
t =∞ for all t, k = A,B).

In addition to such individual capacity constraints, in each period t, the platform may

face an aggregate capacity constraint imposing that no more than Mt matches be formed. In

each period, the platform can discontinue any of the previously formed matches and create

new ones. The total number of existing matches, however, cannot exceed Mt in each period.

For example, the number of ads and articles jointly displayed on a given outlet may be

naturally limited by the outlet’s physical capacity, which may evolve over time. More generally,

these limits may reflect space, time, and resource constraints, but also capture certain non-

separabilities, i.e., decreasing returns, in payoffs (in the case of individual constraints). For

simplicity, we assume the individual capacity limits are the same for all agents on a given

side. All key results, however, extend to settings in which such limits are individual-specific

and are the agents’ private information.13

A period-t matching allocation xt ∈
∏

(i,j)∈N2 Xijt is feasible if (a) xijt = 1 only if (i, j) ∈

NAB
t , and (b) none of the capacity constraints, individual or aggregate, are violated.14 We

denote by Xt the set of feasible period-t allocations, and by X ≡
∏∞

t=1Xt the set of sequences

of feasible allocations.

Matching Mechanisms. We are interested in mechanisms that take the form of simple

auctions in which agents, after paying a membership fee, repeatedly bid for the interaction

with other agents from the opposite side. We describe such auctions in the next section. In

13When the capacity limits are the agents’ private information, and possibly evolve over time, the agents
must be asked to report them at the beginning of each period. In this case, all the qualitative predictions
continue to hold, provided that agents learn their capacities after joining the platform and selecting their
status.

14The constraint xijt = 1 only if (i, j) ∈ NAB
t simply means that the match between the i-th position from

side A and the j-th position from side B is formed only if the two positions have been filled.
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Section 4, we then show that a certain version of such auctions maximizes the platform’s

profits, whereas another maximizes total welfare, across all possible mechanisms. To establish

these results, below we define arbitrary matching mechanisms.

An arbitrary matching mechanism comprises a payment, a matching, and a disclosure rule,

with the latter specifying the information revealed to the agents over time (for example, such

a rule may disclose the identities of the agents involved in the matches implemented in the

past, the payments made by the agents, or some coarser statistics of such information). Under

the assumptions discussed below, the optimal matching mechanisms will turn out to be fully

transparent.

Formally, a matching mechanism Γ ≡ (M,S, χ, ψ, ρ) consists of: (i) a collection of message

setsM≡ (Mt)
∞
t=0, where, for each t,Mt ≡MA

t ×MB
t , withMk

t =
∏

i∈NMk
it, and with each

Mk
it denoting the set of messages for the side-k i-th position; (ii) a collection of sets of signals

S ≡ (St)∞t=0 that the platform may disclose to the agents, where, for each t, St ≡ SAt × SBt ,

with Skt =
∏

i∈N Skit, and with each Skit denoting the set of signals the platform may disclose

to the agent occupying the side-k i-th position; (iii) a matching rule χ ≡ (χt)
∞
t=1 describing,

for each t ≥ 1, the matches xt ∈ Xt implemented given the history of received messages, with

Mt =
∏t

s=0Ms and χt :Mt → Xt; (iv) a payment rule ψ ≡ (ψt)
∞
t=0 describing, for each t ≥ 0,

the payments (positive or negative) asked to the agents who joined the mechanism prior to,

or in, period t; and (v) a disclosure policy ρ ≡ (ρt)
∞
t=0 specifying the information disclosed

to the agents over time, with ρt : Mt → ∆(St). Each ρt must reveal to each agent his own

matches and payments. It may also reveal additional information, but it cannot conceal the

matches the individual is involved in, or the payments from/to the individual. We assume

that the sets Mk
it and Skit contain elements m̄k

it ∈ Mk
it and s̄kit ∈ Skit such that, when the i-th

position is not occupied in period t, the default message sent by the position is m̄k
it and the

default information disclosed to the position is s̄kit.
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Note that, because the matches implemented in each period, the payments collected from

the agents, and the information disclosed to the agents, depend on the entire history of

messages sent in current and past periods, and because the history reveals when agents arrived,

the allocations implemented under such mechanisms may naturally condition on the timing

of the agents’ arrivals.

Once an agent arrives at the market, he chooses when to join the mechanism, after observ-

ing his vertical type but before observing the number and identities of the agents who joined

in previous periods. Upon joining the mechanism, at each subsequent period, after learning

his own position, the identities of the other agents on-board, and his horizontal types, the

agent sends a message from the set Mk
it. In the auctions we introduce in the next section,

such messages correspond to the selection of a membership status (at the period at which the

agent joins) and a collection of bids, one for each occupied position on the opposite side (in

the subsequent periods). A matching mechanism Γ is feasible if, for any sequence of messages

m ∈M, the implemented allocations are feasible.15

Solution concept. We use perfect Bayesian equilibrium (PBE) as our solution concept.

Discussion of the model.

Private information before joining. The assumption that agents possess some private

information prior to joining the platform, and that such information is independent among

the agents, guarantees that the matching dynamics under profit maximization differ from their

counterparts under welfare maximization. In environments in which the platform maximizes

welfare, the information the agents possess at the time they join the platform plays no role.

When, instead, the platform maximizes profits, the private information the agents possess at

15Note that the matching rule χ is deterministic. This is because, in this environment, the platform never
gains from inducing random matches.
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the time they join plays a fundamental role. If the agents possess no private information, the

platform can extract the entire surplus. If the agents’ private information is multidimensional,

the optimal mechanisms can be more complicated to characterize (for example, it may be

impossible to determine which participation constraints bind). In this respect, the assumption

that the agents do not know the identities of those agents already on board is made only to

guarantee that their private information at the moment of joining is unidimensional, and can

easily be dispensed with if one assumes that the match-specific values are learned only after

joining the platform.

Non-separability in payoffs. The assumption that the value each agent derives from

interacting with any other agent is invariant to the composition of the two agents’ matching

set favors a certain simplicity in the description of the scoring rules. Note, however, that the

individual capacity constraints already capture non-separabilities in payoffs. The analysis can

be extended to accommodate for richer non-separabilities, albeit at the cost of an increase in

the complexity of the scores.

Assortative matching. The assumption that each agent’s utility is invariant to other

agents’ vertical types guarantees that the payoffs feature private values. Allowing for interde-

pendent values complicates the structure of the auctions; as is well known, with interdependent

values, payments linked to the (virtual) externalities agents impose on others are not guar-

anteed to induce truthful bidding. The model can nevertheless accommodate for assortative

matching. Because ε are allowed to be correlated across agents, heterogeneity along a vertical

dimension can be captured not only through θ but also through ε (in particular, an attractive

agent j from side B can always be captured as someone delivering a high εAij to most if not

all agents i from side A).

Multiplicative structure of match values. The multiplicative structure of the match

values v permits us to accommodate for a rich multi-dimensionality of the horizontal types ε
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(an alternative convenient structure is one in which the match values are additively separable

in θ and ε). In particular, a multiplicatively-separable structure (alternatively, an additively-

separable one) implies that the flow “virtual surplus” in each period (which controls for the

cost to the platform of leaving rents to the agents to induce them to reveal their initial private

information) is multiplicatively-separable (alternatively, additively-separable) in the agents’

initial private information, θ. Such a separability in turn permits us to use VCG-type of

payments to induce truthful bidding not only in the case of welfare maximization but also in

the case of profit maximization. Without such a separability, the optimal mechanisms may

be more complicated, due to the multi-dimensionality of the private information ε the agents

receive in each period, after joining the platform.

If each agent’s horizontal type in each period is uni-dimensional (that is, εAijt = εAit for

all j), then one can accommodate for a general function vAijt

(
θAi ,
(
εAi
)t)

of the vertical and

horizontal types. In this case, however, to capture heterogeneity in the match values, one

would need the match value functions to be identity-specific (that is, each vAijt to depend on

the identity j of agent i’s period-t partner), thus losing the convenience of the anonymity of

the matching mechanisms assumed throughout.16

Endogenous capacity constraints. The capacity constraints capture sharp non-linearities

in the costs of the implemented matches. We assume for simplicity that such constraints are

exogenous. In practice, the platform could control the number of slots it can accommodate in

each period. This would amount to a smoother cost of the implemented matches. The analysis

below already accommodates for match-specific costs in addition to the exogenous capacity

constraints, but assumes such costs are linear in the implemented matches. One could envision

richer cost specifications. However, such costs could interfere with the possibility of writing

16In this case, the flow payments implementing the desired allocations would have a structure similar to the
one in Pavan, Segal, and Toikka (2014).
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the platform’s flow payoff in terms of the sum of the bilateral scores of the implemented

matches, thus making the structure of the optimal mechanisms more complicated.

We see the combination of the above assumptions as a convenient way to retain tractability,

permitting us to capture key trade-offs in the design of matching auctions.

3 Matching Auctions

We now introduce a class of matching mechanisms in which (a) upon joining the platform,

agents are invited to select a membership status; (b) in each subsequent period, after learning

the identities of the agents occupying the various positions, each agent is asked to submit

a vector of bids, one for each position on the opposite side; (c) bids are aggregated into a

collection of bilateral scores , one for each possible match, with each score depending only on

the pair of agents’ reciprocal current bids and their membership status; (d) in each period,

the matches maximizing the sum of the bilateral scores are implemented, subject to individual

and aggregate capacity constraints. Formally, matching auctions are defined as follows.

Definition 1 (Matching Auctions). In a matching auction:

• Each agent, upon joining the platform, is asked to select a membership status. This

status determines the weight the platform assigns to the agent’s bids in the subsequent

auctions, with a higher status corresponding to a higher weight. Because different sta-

tuses are meant for agents with different vertical types (recall that agents with a higher

vertical type are agents who value interacting with agents from the opposite side more),

we find it convenient to label the statuses directly with the vertical types they are meant

for. We thus assume there exist functions β ≡
(
βk(·)

)
k=A,B

, with βk : Θk → R++,

k = A,B, such that each agent from side k selecting the status meant for type θk is

assigned the weight βk(θk).
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• Each agent from side k joining the platform in period t and selecting the status meant

for type θk is asked to make an upfront payment equal to fkt = ψ̄kt (θk), where ψ̄kt ≡(
ψ̄kt (·)

)
k=A,B

are non-decreasing functions. The payment fkt should be interpreted as an

“entry fee” which naturally depends on the selected status.17

• In each period following the one at which the agent joined the platform, after learning

the identities of those other agents on board and the positions they occupy, the agent is

asked to submit a vector of bids, one for each filled position on the opposite side of the

market. Each pair of filled positions (i, j) ∈ NAB
t is then assigned a “score”

Sijt ≡ βAi b
A
ijt + βBj b

B
ijt − cijt, (3)

where βAi = βA(θAi ) and βBj = βB(θBj ) represent the statuses of the side-A i-th agent

and of the side-B j-th agent, respectively. The auction then implements the matches

maximizing the sum of the bilateral scores subject to individual and aggregate capacity

constraints, with ties broken arbitrarily.18

• All agents who joined prior to period t and who are unmatched in period t pay nothing

in period t. Agents who joined prior to period t and are matched to some of the agents

from the opposite side in period t make (or receive) payments in period t according to

the rule ψβ described as follows. Let

St ≡
∑

(i,j)∈NAB
t

Sijtxijt (4)

17The reader may wonder why the fee fkt does not depend on the information revealed by those agents (from
each side) who already joined the platform. As we show below, conditioning on such information does not
help the platform attain higher profits, or higher welfare.

18The specific tie-breaking rule plays no role in the analysis. For concreteness, assume ties are broken at
random, from a uniform distribution, independently over time.
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denote the sum of the implemented scores. Similarly, let S−i,kt denote the sum of the

implemented scores under the same matching rule but in a fictitious environment in

which all bilateral scores involving agent i from side k are identically equal to zero.

Each agent i ∈ NA
t from side A who, in period t, is matched to some of the side-B

agents is asked to make a payment equal to

ψAit =
∑
j∈NB

t

bAijtxijt −
St − S−i,At

βAi
. (5)

The payments for the side-B agents are defined in a similar manner.

• In each period, the platform discloses to each agent on board (i.e., who joined prior to

that period) all information collected in previous periods (i.e., the status selected, the

bids submitted, and the payments made by any of the agents who joined in previous

periods).

An agent’s status thus determines the importance the platform assigns to the agent’s bids,

relative to those of others. Suppose that, in period t, the agent occupying the side-A i-th

position submits a positive bid for the side-B agent occupying the j-th position, whereas the

latter agent submits a negative bid for the same match, thus asking to be compensated. For

given bids (bAijt, b
B
ijt), a higher status of the side-A i-th agent implies a higher score for the

match (i, j), tilting the allocation in favor of the side-A i-th agent. Symmetrically, a higher

status for the side-B j-th agent reduces the score for the match (i, j), tilting the allocation in

favor of the side-B j-th agent. A higher status thus grants an agent preferential treatment,

both with respect to the competition the agent faces from other agents from his own side

(when the capacity constraints bind) and with respect to the competition the agent faces

from agents from the opposite side, shifting the matching to his benefit.
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As far as the payments are concerned, the agent occupying the side-A i-th position is asked

to make a payment equal to the total value the agent derives from all matches implemented

in period t in which the agent is involved (this value is naturally computed using the agent’s

own bids), net of a discount proportional to the agent’s contribution to the total score, with

a coefficient of proportionality inversely related to the agent’s membership status. As in

standard VCG auctions, these payments reflect the flow externalities the agents impose on

other agents from both sides of the market, as well as the costs (or benefits) they impose on the

platform. Such externalities may be positive or negative, and therefore the payments may be

positive or negative. For example, if an agent is valued highly by the agents he is matched to,

he may receive a positive transfer from the platform, reflecting cross-subsidization. Contrary

to standard VCG auctions, however, such externalities are not computed with respect to a

standard welfare aggregator; they are calculated with respect to the aggregate score they

induce. In particular, due to the different statuses the agents may hold, in contrast to a

standard VCG mechanism, the implemented matches need not be efficient, that is, need not

maximize the sum of the agents’ and the platform’s payoffs.19 Furthermore, multiple agents

(from both sides of the market) may be charged for the same externality they impose on

others. The following example illustrates:

Example 1 (Many-to-Many Matching with Aggregate Capacity Constraints). Sup-

pose that, in period t, the only relevant capacity constraint is the aggregate one, i.e., the

one pertaining to the platform. Consider an agent from side A in the i-th position (a similar

description applies to the side-B agents). The agent’s period-t payment to the platform is

19As shown in Section 4, β functions different from the identity one may permit the platform to imple-
ment allocations that maximize objectives other than welfare maximization (such as profit maximization or a
combination of profit and welfare).
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equal to

ψAit =
1

βAi

BA
it(K) +

∑
j∈NB

t

(cijt − βBj bBijt)xijt

 ,

where K ≤ nBt is the number of agents from side B with whom agent i is matched, and

BA
it(K) is the sum of the K highest nonnegative scores among the pairs that are unmatched

in period t and that do not include agent i. In the special case in which the platform’s costs

are identically equal to zero for all matches and βkj = 1 for all agents, the above payments

reduce to ∑
l∈NA

t \{i}

∑
j∈NB

t

(
bAljt + bBljt

)
x−i,Aljt −

∑
j∈NB

t

bBijtxljt,

where

x−i,Aljt ∈ arg max
x̃t∈Xt

 ∑
(l,j)∈NAB

t

(bAljt + bBljt)x̃lj :
∑

(l,j)∈NAB
t

x̃lj ≤Mt, xij = 0 all j ∈ NB
t


are the matches that maximize the sum of bilateral scores in the absence of agent i (in this

case, such a rule also maximizes total surplus, in the absence of agent i). �

Immediate Participation and Truthful Bidding

Definition 2 (Straight-forward equilibrium). A strategy profile σ for the above matching

auctions is straight-forward if (a) each agent joins the platform as soon as he arrives at the

market and never leaves thereafter, (b) upon joining, the status that each agent selects is

the one designed for his vertical type, and (c) at each period following the one at which the

agent joined, the agent submits bids that coincide with his true match values for all agents

from the other side who are on board (i.e., for each (i, j) ∈ NAB
t , bkijt = vkijt, k = A,B). A

straight-forward equilibrium is a PBE in which the agents’ strategies are straight-forward.
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For any β ≡
(
βk(·)

)
k=A,B

, let χβ be the matching rule that obtains under a straight-

forward equilibrium of an auction with weights β. Then, for any t and any k = A,B, let20

Dk
t (θ

k; β) ≡

 E
[∑∞

s=t+1 δ
s−t∑

j∈NB
s
εAijsχ

β
ijs | θk

]
if k = A

E
[∑∞

s=t+1 δ
s−t∑

i∈NA
s
εBijsχ

β
ijs | θk

]
if k = B

(6)

denote the “quality” of the matches expected under such a straight-forward equilibrium by

any side-k agent with vertical type θk when joining the platform in period t, before learning

the identities of the agents already on board. Note that the expectation is with respect to the

agent’s own position in the platform, the identities and arrival times (and hence the positions)

of all other agents on board, the arrival of new agents in future periods, all other agents’ vertical

types, and the evolution of all agents’ horizontal types. Finally, let ψβ ≡ (ψk,βls (·))k=A,Bl,s∈N be the

payment rule defined in (5) when the weights are given by β.

Theorem 1. A matching auction with weights β ≡
(
βk(·)

)
k=A,B

admits a straight-forward

equilibrium if (a) the functions βk(·) are non-decreasing, k = A,B, and (b) there exist non-

negative scalars (Qk
t )
k=A,B
t=0,...,∞ such that, for any t ≥ 0, θk ∈ Θk, and k = A,B, the price the

agent pays for each status θk is given by

ψ̄k,βt (θk) = θkDk
t (θ

k; β)−
∫ θk

θk
Dk
t (y; β)dy − E

[
∞∑

s=t+1

δs−tψk,βls | θ
k

]
−Qk

t (7)

and the dynamics of the match quality satisfies

∫ θk

θk
Dk
t (y; β)dy +Qk

t ≥ δ

[∫ θk

θk
Dk
t+1(y; β)dy +Qk

t+1

]
≥ 0. (8)

20The reason why we distinguish between the case in which k = A and the one in which k = B is that the
order in the subscripts of the allocations χβijs, as well as the order in the subscripts in the horizontal types

εkijs, is not permutable. The first index always refers to side A, whereas the second to side B.
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The formal proof is in the Appendix. Here we illustrate the key ideas heuristically. The

payments in (5) are such that, at each period t ≥ 1, any agent on board who expects all other

agents on board to bid truthfully has incentives to do the same. To see this, observe that,

under such payments, regardless of the membership status selected by any of the agents (both

those already on board and those joining in subsequent periods), the bids that maximize each

agent’s continuation payoff (net of the payments) are invariant to the bids the same agent

submitted in previous periods and those he will submit in subsequent periods. Furthermore,

under such payments, the agent’s period-t flow net payoff is proportional to his flow marginal

contribution to the total score (with the latter defined as in (4), and with the coefficient of

proportionality given by 1/βki ). Because, given the received bids, the matches implemented

maximize the flow total score at all histories (including those off the equilibrium path), agents

have incentives to remain on board and bid truthfully at all histories, irrespective of the

beliefs they may have about past and current types of other agents, the status selected by

other agents, and the bids submitted by the other agents in the current period and in the

past. In other words, remaining on board and bidding truthfully is periodic ex-post optimal

for each agent after he joins the platform, at any history. Periodic ex-post means optimal

for an agent who expects other agents to follow straight-forward strategies, regardless of the

agent’s beliefs over the past and current types of any of the other agents on board. Straight-

forward strategies need not be (weakly) dominant though because bidding truthfully need not

be optimal when other agents’ strategies condition on the (information that other agents may

have about) agent i’s own behavior and/or the allocations induced by agent i’s behavior.21

The key difficulty is in showing that all agents find it optimal to join the platform imme-

21By making the price each agent pays for the selected status depend on the status selected by the other
agents (equivalently, by making fki depend on θk−i) the platform can guarantee that the mechanism is periodic
ex-post IC and IR also in period t = 0 (meaning that each agent finds it optimal to participate in the
mechanism and choose the status designed for his true vertical type, regardless of his beliefs over the other
agents’ vertical types).
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diately upon arrival and select the membership status designed for their true vertical type. In

the Appendix, we show that this follows from the following properties. First, we show that,

when all other agents follow straight-forward strategies, the match quality

∞∑
s=t+1

δs−t
∑
j∈NA

s

εAijsxijs

expected by each agent from side A of vertical type θA who arrives at the market in period t,

joins the platform immediately upon arrival, selects the membership status designed for type

θ̂A, and then bids truthfully at all periods, is nondecreasing in the selected status θ̂A (a similar

property applies to the side-B agents). Together with the fact that bidding truthfully at all

subsequent periods is optimal for the agent irrespective of the selected status (as explained

above), such monotonicity in turn implies that, when the price of status is given by (7), the

agent prefers to select the status designed for his true type to any other status. This is true

irrespectively of the time at which the agent joins.

Next, we show that, when all other agents follow a straight-forward strategy, the payoff

that a side-A agent of vertical type equal to θA obtains by joining the platform in period

t, selecting the status θA designed for his true vertical type, and bidding truthfully in each

subsequent period is equal to
∫ θA
θA
DA
t (y; β)dy+QA

t , and that the latter is non-decreasing in θA.

Because the agent receives no information while waiting outside the platform, the inequality

in (8) then implies that the agent prefers following a straight-forward strategy to waiting

an arbitrary number of periods before joining the platform, selecting the status designed for

his true type upon joining, and then bidding truthfully. Jointly, the above properties imply

that, under the conditions in the theorem, the agent maximizes his payoff by following a

straight-forward strategy.

In standard dynamic mechanism design, incentive compatibility is established by selecting
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the payments so that the payoffs in all periods satisfy an appropriate envelope formula, and

by showing that the allocations satisfy an “integral monotonicity” condition in each period

(cf. Pavan, Segal, and Toikka, 2014). As anticipated above, such a characterization holds for

settings where the private information in all periods is unidimensional, and need not extend to

settings where the agents’ private information is multi-dimensional. Incentive compatibility

is established here by using VCG-type of transfers in all periods (other than the one at which

the agent joins) that link the payments to the externalities the agents impose on one another,

weighted by their membership statuses. Incentive compatibility at the time of joining cannot

be established with VCG-type of payments because the initial membership choices determine

the relative weights the platform assigns to the agents’ utility in the subsequent periods. In

other words, the endogeneity of the weights introduces interdependencies in the agents’ payoffs,

which are known to conflict with the VCG arguments. Incentive compatibility at the time of

joining is established by showing that the cross derivative of each agent’s discounted expected

payoff with respect to the agent’s true vertical type and the selected status is non-decreasing

in the selected status. Under the assumed multiplicative structure of the agents’ flow payoffs,

such a property coincides with the requirement that an agent’s expected match quality be

nondecreasing in the agent’s status. That the latter property holds in turn follows from the

fact that the matches implemented in each period maximize the sum of the scores. Lastly,

because arrivals are the agents’ private information, incentive compatibility also requires that

each agent’s expected payoff from joining the platform be non-increasing in time, accounting

for discounting. Whether such a property binds or not depends on the process governing the

agents’ arrivals. �

The following example illustrates the workings of the matching auctions in a simple setting.

Example 2. Matching occurs only in period 1. To ease the notation, we therefore drop the

time index from all the relevant functions. There are two agents on side A and one agent on
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side B, and this is common knowledge (that is, NA = {1, 2} and NB = {1}). The platform

incurs no costs from matching any of the agents (that is, ci1 = 0, i = 1, 2) and matching

is one-to-one.22 The vertical types of the two side-A agents are drawn from ΘA = [1.5, 2.5],

with GA uniform over ΘA. For the side-B agent, ΘB = {1}, meaning that the side-B agent’s

vertical type is commonly known. Likewise, the horizontal types of each of the two side-A

agents are known and equal to εAi1 = 1, i = 1, 2. For the side-B agent, instead, εB11 is drawn

uniformly from {2, 3}, and εB21 = 5− εB11.

The weights are given by βk(θk) = 1 −
[
1−Gk(θk)

]
/gk(θk)θk, k = A,B, implying that

βA(θA) =
(
2θA − 5

2

)
/θA and βB(θB) = 1. Using (5), we then have that each side-A agent’s

payment at the end of period 1 is equal to zero if the agent is not matched, and otherwise is

equal to ψA1 =
[
−βB1 bB11 + βA2 b

A
21 + βB1 b

B
21

]
/βA1 . In a straightforward equilibrium, agent 1 from

side A is matched only if the side-B agent is of horizontal type εB11 = 3, implying that, in case he

is matched, his payment at the end of period 1 is uniquely determined by his own vertical type

and the vertical type of the other side-A agent, and is equal to ψA1 = θA1
[
2θA2 − 7

2

]
/
[
2θA1 − 5

2

]
.

Note that for θA2 > 1.75, ψA1 is positive and decreasing in the agent’s own status, θA1 , but

increasing in the other side-A agent’s status, θA2 , reflecting the fact that a higher θA2 implies a

higher externality imposed by agent 1 on agent 2. When θA2 < 1.75, ψA1 is negative, i.e., the

agent is compensated for the interaction. A similar payment applies to agent 2 from side A.

Turning to the side-B agent, if she is not matched her payment at the end of period 1 is equal

to zero. If, instead, she is matched, her payment is equal to ψB1 = bB11 −
(
βB1 b

B
11 + βA1 b

A
11

)
/βB1 .

Using the fact that, under truthful bidding, the side-B agent is matched with one of the two

side-A agents only if her horizontal type for that agent is 3, ψB1 reduces to ψB1 = −
[
2θA − 5

2

]
.

As a result, each of the two side-A agents is matched with probability 1/2 and the match

22In this example, that matching is one-to-one may either reflect an aggregate capacity constraint of M = 1,
or individual capacity constraints.
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qualities are equal to DA
0 (θA; β) = 1

2
and DB

0 (θB; β) = 3.

Using (7), with Qk
t = 0, k = A,B, we then have that the price for status for the side-A

agents is equal to

ψ
A

0 (θA) = θA
1

2
−
∫ θA

1.5

1

2
dy − E

[
ψA1 | θA

]
=

1

2

(
5θA − 7.5

)
/
(
4θA − 5

)
,

whereas the price for status for the side-B agent is equal to ψ
B

0 (θB) = ψ
B

0 = 4.5. Note that

ψ
A

0 (θA) is increasing in θA.

Hence, each side-A agent’s interim expected payoff from participating in the auctions is

equal to

1

2

[
θA −

(
6θA − 7.5

)
/
(
4θA − 5

)]
,

which is positive and (linearly) increasing in θA, whereas, for the side-B agent, her interim

expected payoff is equal to zero, because she possesses no private information prior to joining

the platform. As we show in Section 4, the auction described above not only admits a straight-

forward equilibrium, but is in fact profit-maximizing among all possible matching mechanisms.

�

Comments. At this point, the reader may wonder whether the matching auctions de-

scribed above are just a complicated description of standard direct-revelation mechanisms.

The answer is no. The matches sustained under the straight-forward equilibria of matching

auctions are selected by comparing bilateral scores. As a result, many matching allocations

cannot be sustained under the proposed auctions, despite being implementable with other

direct-revelation mechanisms. In the next section, however, we show that, under certain con-

ditions, a specific version of the proposed auctions maximizes the platform’s profits whereas

another version maximizes welfare, over all possible mechanisms.
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Due to the assumption that the processes governing the match values are exogenous, the

payments in the straight-forward equilibria are history-independent. In the online Supplemen-

tary Material, we show how the results extend to certain environments in which the match

values evolve endogenously over time, as a function of past matches (e.g., reflecting experi-

mentation or habit formation).23 In such environments, the payments in the corresponding

matching auctions are history-dependent.

4 Profit- and Welfare-Maximizing Auctions

Hereafter, when we say that a feasible mechanism, paired with a specific equilibrium it in-

duces, is profit maximizing we mean that the platform’s profits under the equilibrium of the

proposed mechanism are as high as under any equilibrium of any other feasible mechanism.

A welfare-maximizing mechanism is defined in a similar way, with welfare replacing profits in

the platform’s objective.

Let βP ≡ (βk,P (·))k=A,B be the weights given by

βk,P (θk) = 1− 1−Gk(θk)

gk(θk)θk
, (9)

k = A,B. We then have the following result:

Theorem 2 (Profit-Maximizing Auctions). Consider the matching auctions in which the

weights are given by βP and the access fees are given by (7) with Qk
t = 0 all t, k = A,B.

Suppose that the functions βk,P are strictly increasing and satisfy βk,P (θk) > 0, k = A,B, and

23Endogenously evolving match value can also capture a form of satiation in the agents’ preferences. See
the online Supplementary Material for the details.
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that, for any t, any k = A,B, (a) Dk
t (θ

k; βP ) ≥ 0 and (b) for any θk ∈ Θk,

∫ θk

θk
Dk
t (y; βP )dy ≥ δ

[∫ θk

θk
Dk
t+1(y; βP )dy

]
.

The matching auctions in which the weights are given by βP and the access fees are given by

(7), with Qk
t = 0 all t, k = A,B, along with the straight-forward equilibria they induce, are

profit maximizing.24

The monotonicity of the weights βP guarantees that the agents’ “virtual” match values

βk,P (θk)vkijt =
(
θk −

(
1−Gk(θk)

)
/gk(θk)

)
εkijt respect the same rankings as the true match

values, vkijt = θki ε
k
ijt. Conditions (a) and (b) in the theorem, instead, are joint conditions on

the capacity constraints and the process governing the arrivals of the agents and the evolution

of their match values over time. Note that Condition (a) is vacuously satisfied if horizontal

types ε are nonnegative, that is, if no agent dislikes interacting with any other agents from the

opposite side. Condition (b) requires that each agent’s expected discounted match quality at

the time of joining be non-increasing with time. The condition is satisfied, for example, when

the disutility that an agent derives from interacting with certain agents from the opposite side

does not decline too fast due to the arrival of other agents from either side of the market. It

is also satisfied when the positive utility the agent expects from interacting with some of the

agents already on board declines with time due to the competition the agent expects from

other agents from his own side joining in subsequent periods.

The proof in the Appendix is in three steps. First, we show that, given any matching

mechanism Γ ≡ (M,S, χ, ψ, ρ) and any Bayes Nash equilibrium (and hence any PBE) σ of

the game induced by Γ, the interim expected payoff Ũk
t (θk; Ikt ) of any agent arriving in period

t with vertical type θk and receiving information Ikt about the number, the identity, the arrival

24Note that the proposed auctions may admit multiple straight-forward equilibria, which differ in the agents’
out-of-equilibrium beliefs. However, the platform’s profits are the same under any such equilibrium.
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date, and the past messages of all other agents arriving prior to, or at, period t, is given by

Ũk
t (θk; Ikt ) = Ũk

t (θk; It) +

∫ θk

θk
D̃k
t (y; Ikt )dy. (10)

Here

D̃k
t (θ

k; Ikt ) ≡

 E
[∑∞

s=t+1 δ
s−t∑

h∈NB
s
εAlhsχ̃lhs | θA, IAt

]
if k = A

E
[∑∞

s=t+1 δ
s−t∑

h∈NA
s
εkhlsχ̃lhs | θB, IBt

]
if k = B

denotes the match quality expected by an agent arriving in period t with a vertical type equal

to θk who receives information Ikt , with χ̃ denoting the matches induced in period t under σ.

Next, we use the above representation of the agents’ equilibrium interim expected payoffs

to show that, given any mechanism Γ and any BNE σ of Γ, the platform’s profits are given by

E

[
∞∑
t=1

δt
∑

(i,j)∈NAB
t

(
βA,P (θAi )θAi ε

A
ijt + βB,P (θBj )θBj ε

B
ijt − cijt

)
χ̃ijt (11)

−
∞∑
t=0

∑
k=A,B

∑
l∈Nk

t+1\Nk
t

δtŨk
t (θk; Ikt )

]
,

where the weights βP are as in (9). Finally, we show that, under the straight-forward equi-

libria of the proposed auctions, (a) the induced state-contingent matches maximize the first

component of the function in (11), and (b) for each t, Ũk
t (θk; Ikt ) = 0. Together, the above

properties imply that, provided the agents find it optimal to join the auctions upon arrival,

select the status designed for their true vertical type, and bid truthfully, the proposed auc-

tions are profit maximizing. Conditions (a) and (b) in the theorem, along with the results in

Theorem 1, guarantee that this is indeed the case.

We now turn to welfare maximization. Let βW ≡ (βk,W (·))k=A,B be the weights given by

βk,W (θk) = 1, all θk, k = A,B.
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Theorem 3 (Welfare-Maximizing Auctions). (i) Any matching auctions in which the

weights are given by βW and the participation fees satisfy the properties of Theorem 1, along

with the straight-forward equilibria they induce, are welfare maximizing. (ii) Suppose that (a)

Dk
t (θ

k; βW ) ≥ 0 for all t, all k = A,B, and (b) for any t ≥ 0, θk ∈ Θk, and k = A,B,

∫ θk

θk
Dk
t (y; βW )dy ≥ δ

[∫ θk

θk
Dk
t+1(y; βW )dy

]
.

The matching auctions in which the weights are given by βW and the participation fees are

given by (7) with Qk
t = 0 all t, k = A,B, admit straight-forward equilibria. Furthermore, the

platform’s profits under the straight-forward equilibria of these auctions are as high as under

any equilibrium of any mechanism implementing welfare-maximizing matches at all periods

and inducing the agents to join as soon as they arrive at the market.

The result in part (i) follows from the fact that, when the weights are given by βW , the

matches sustained under the straight-forward equilibria of the auctions under consideration

maximize welfare after each history. The conditions in part (ii) guarantee that, when the

payments are as in (5), with weights βW , and the participation fees are given by (7) with

Qk
t = 0 all t, k = A,B, each agent finds it optimal to join upon arrival. This follows from the

fact that the payoff expected by each agent with vertical type θk when joining the platform

in period t is given by

Uk
t (θk; βW ) =

∫ θk

θk
Dk
t (y; βW )dy,

along with the fact that Dk
t (·; βW ) is non-decreasing. That the straight-forward equilibria

of the proposed auctions maximize the platform’s profits over all equilibria of all feasible

mechanisms implementing welfare-maximizing matches and inducing the agents to join upon

arrival then follows from arguments similar to those establishing the optimality of the matching
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auctions in Theorem 2 above. To see this, note that the platform’s profits under any BNE

(and hence under any PBE) of any feasible mechanism implementing the welfare-maximizing

matches in each period and inducing the agents to join upon arrival are given by (11), with

χ̃ representing the efficient assignment rule, and with Ũk
t (θk; Ikt ) ≥ 0, for all t. Under the

straight-forward equilibria of the proposed auctions, for each t, the payoff Ũk
t (θk; Ikt ) expected

by an agent arriving in period t with the lowest vertical type is exactly equal to zero. Hence,

the platform’s profits under the straight-forward equilibria of the proposed matching auctions

are at least as high as under any equilibrium of any feasible mechanism inducing the agents

to join upon arrival and implementing the efficient matches.

Remark 1. The above results are for the two polar cases of profit and welfare maximization. It

should be clear that similar results apply to the case of a platform maximizing a combination

of these two objectives. Formally, suppose that the platform maximizes a convex combination

between profits and welfare, with the weight on profit equal to α and the one on welfare equal

to 1− α. Then let βα ≡ (βk,α(·))k=A,B be such that βk,α(θk) = αβk,P (θk) + 1− α, for all θk,

k = A,B. Suppose that Dk
t (θ

k; βα) ≥ 0 for all t, all k = A,B, and for any t ≥ 0, θk ∈ Θk,

and k = A,B, ∫ θk

θk
Dk
t (y; βα)dy ≥ δ

[∫ θk

θk
Dk
t+1(y; βα)dy

]
.

The matching auctions in which the weights used to compute the scores are given by βα and

the participation fees are given by (7), with Qk
t = 0 all t, k = A,B, admit straight-forward

equilibria. Furthermore, under such equilibria, the combination of the platform’s profits and

welfare is as high as under any equilibrium of any other mechanism.

We conclude by discussing the distortions brought in by market power under profit max-

imization. Suppose the conditions in Theorems 2 and 3 hold and let χP =
(
χPt (θ, ε)

)∞
t=1

and

χW =
(
χWt (θ, ε)

)∞
t=1

denote the profit- and the welfare-maximizing matches implemented un-
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der the straight-forward equilibria of the auctions of Theorems 2 and 3, respectively, in state

(θ, ε), where (θ, ε) is a complete description of the vertical and horizontal types of all agents

arriving to the platform over time. Because (θ, ε) is exogenous, we drop it from the arguments

of χP and χW below to ease the notation. We then have the following result25:

Theorem 4 (Dynamic inefficiencies). Suppose that all agents derive a nonnegative utility

from interacting with all other agents from the opposite side.

1. If none of the capacity constraints bind, then at any period t ≥ 1 and for any pair of

agents (i, j) ∈ NAB
t , χPijt = 1 implies χWijt = 1.

2. If only the platform’s aggregate capacity constraint is potentially binding, then at each

period, certain matches active under profit-maximization need not be active under welfare

maximization. However, for all t ≥ 1,
∑

(i,j)∈NAB
t
χWijt ≥

∑
(i,j)∈NAB

t
χPijt.

3. If some of the individual capacity constraints may bind then it need not be the case

that the total number of matches active under welfare maximization is at least as large

as under profit maximization. However, for all t ≥ 1,
∑

(i,j)∈NAB
t
χPijt > 0 implies∑

(i,j)∈NAB
t
χWijt > 0.

As in other screening problems, distortions are introduced under profit maximization to

reduce the agents’ information rents (that is, the surplus the platform must leave to the

agents to induce them to reveal their private information). When all agents value positively

interacting with all other agents from the opposite side and none of the capacity constraints

binds, in each period, a profit-maximizing platform induces fewer interactions than a welfare-

maximizing one. In particular, any match that is active under profit maximization is also

25To facilitate the comparison between profit and welfare maximization, we assume that, in each period,
both the profit- and the welfare-maximizing auctions match all pairs for which the bilateral score is zero when
the capacity constraints are not binding.

36



active under welfare maximization. This is because, when none of the capacity constraints

binds, both under profit and under welfare maximization, the platform implements in each

period all matches for which the score is non-negative. The result then follows from the fact

that, at each period, and for each match, the score under profit maximization is smaller than

under welfare maximization due to the handicaps [1−Gk(θk)]/gk(θk)θk the platform applies

to the scores under profit maximization to account for the cost of leaving rents to the agents.

When, instead, some of the capacity constraints potentially bind, certain matches active

under profit maximization need not be active under welfare maximization. Yet, when the only

potentially binding constraints are the platform’s, at any point in time, the total number of

matches under welfare maximization is at least as high as under profit maximization. This

property follows again from the fact that each score under welfare maximization is at least as

large as the corresponding one under profit maximization, along with the fact that the total

number of matches active under both profit and welfare maximization is the minimum between

the number of matches for which the score is non-negative and the platform’s aggregate

capacity. That some of the matches active under profit maximization need not be active

under welfare maximization follows from the fact the ranking of the scores when the weights

are given by βP need not coincide with the ranking of the scores given the weights βW .

Interestingly, in markets in which some of the individual capacity constraints potentially

bind, it need not be the case that the total number of matches active under welfare maxi-

mization is at least as large as under profit maximization. To see this, suppose, in period t,

there are 2 agents on each side of the market, that matching is one-to-one, and that Mt > 4,

so that the only relevant capacity constraints in period t are the individual ones. Let SPijt

and SWijt be the period-t scores under the weights βP and βW , respectively. Further suppose

that SW22t < 0, and that SPijt > 0 for any (i, j) 6= (2, 2). Lastly, assume that SW11t > SW12t + SW21t,

whereas SP11t < SP12t + SP21t. Then, despite all scores being higher under welfare maximization
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than under profit maximization, the welfare-maximizing auction implements a single match

in period t, the one corresponding to (1, 1), whereas the profit-maximizing auction imple-

ments two matches in the same period, (1, 2) and (2, 1). The reason is that, once the match

(1, 1) is formed, the matches (1, 2) and (2, 1) become infeasible, due to the individual capacity

constraints. In this case, what remains true though is that, if matching is not completely

shut down under profit maximization (i.e., at least one match is active), matching is also not

completely shut down under welfare maximization (part 3 in Theorem 4).

The above conclusions need not extend to settings in which certain agents dislike certain

interactions (formally, the horizontal types may take on negative values for certain pairs). In

such settings, a profit-maximizing platform may induce an inefficiently high number of matches

within each period and, over time, each pair may experience a larger number of matches under

profit maximization than under welfare maximization, irrespective of the capacity constraints.

Formally, when certain interactions may generate negative match values, a pair’s score under

profit maximization may be greater than its counterpart under welfare maximization, which

implies that the total number of interactions under profit maximization may exceed the efficient

level. The reason why a profit-maximizing platform may induce an inefficiently high number

of interactions is that this may discourage the agents from purchasing a lower membership

status. By locking agents selecting a low status into unpleasant interactions, the platform

makes it costly for those agents with a high vertical type to pretend to have a low type.

In turn, this permits the platform to extract more surplus from the high-type agents. The

following example illustrates.

Example 3 (Upward Distortions under Negative Values). Consider the following en-

vironment where NA
t = NB

t = {1}, M = 1, and c11t = 0, all t ≥ 1. The vertical types are

given by ΘB = {1} and ΘA = [1 + ς, 2 + ς], ς > 0, with GA uniform over ΘA. At each

period t ≥ 1, regardless of past realizations, εB11t = 1, whereas εA11t is drawn uniformly from

38



{−3,+3}. Suppose the realized vertical type of agent 1 from side A is equal to 1 + ς, in

which case the weights used under profit maximization to scale the two agents’ bids are given

by βA,P1 (θA1 ) = ς
1+ς

and βB,P1 (θB1 ) = 1. Furthermore, consider a realized sequence (εA11t)
∞
t=1 of

horizontal types for agent 1 from side A such that εA11t = −3, all t ≥ 1. Then, for sufficiently

small ς and δ, the pair is matched in each period under profit maximization, despite matching

being inefficient.

Finally, note that the familiar result of “no distortion at the top” from standard screening

problems does not apply to a matching environment. A profit-maximizing platform may

distort the matches of all agents, including those “at the top” of the distribution, for whom

the vertical type is the highest. The reason is that, contrary to standard screening problems in

which the cost of procuring inputs is exogenous, in a matching market, the cost of “procuring”

agents-inputs from the opposite side of the market is endogenous and is higher than under

welfare maximization, due to the informational rents the platform must provide to such agents-

inputs to induce them to reveal their private information.

The above results bear certain implications for government intervention in matching mar-

kets, a topic that is receiving increasing attention in recent years. In markets in which capacity

constraints are unlikely to be binding and agents are unlikely to suffer losses from interact-

ing with others, platforms should be encouraged to implement more matches. Importantly,

though, even if platforms could be induced to run welfare-maximizing auctions (more gen-

erally, to implement the welfare-maximizing matches), such auctions are not guaranteed to

yield positive profits to the platforms (despite the fact that they minimize the platforms’

losses over all mechanisms implementing the welfare-maximizing matches, as established in

part (ii) of Theorem 3). As a result, subsidizing such markets may be necessary. On the

other hand, in markets where certain agents may incur a cost for interacting with certain

agents from the opposite side and/or where binding capacity constraints are prominent fea-
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tures, profit-maximizing platforms may implement too many matches in each period, and

those implemented need not be the most valuable from a welfare standpoint. Policy makers

may thus need to discourage certain interactions but inducing the platforms to implement the

right allocations with simple taxes and subsidies may be impossible. It may be easier for the

government to take over the private sector and provide directly the matching services.

5 Conclusions

This article studies dynamic matching markets in which agents arrive stochastically over time,

experience shocks to their match values, and are repeatedly re-matched with the help of a

platform. We introduce a class of auctions that are specifically designed for such markets

and that are fairly simple to operate. Upon joining the platform, agents are asked to select

a membership status which determines the weight assigned to their bids in the subsequent

auctions. They then bid repeatedly for potential partners from the opposite side of the

market. In each period, the platform computes bilateral scores, one for each match, and

implements those matches that maximize the scores, subject to individual and aggregate

capacity constraints. We show that, under certain conditions, such auctions admit as special

cases auctions maximizing profits, welfare, or a convex combination of the two, over all possible

mechanisms. The analysis also sheds light on the inefficiencies that arise when platforms enjoy

strong market power, which can be useful to guide government interventions in platform

markets.

In the online Supplementary Material, we show how similar auctions can be used in mar-

kets in which the evolution of the match values is endogenous, be it the result of experimen-

tation (whereby agents learn the attractiveness of their partners by interacting with them), a

preference for variety (whereby agents gradually lose interest in those partners they already

40



interacted with, reflecting various forms of satiation), or habit formation (whereby match

values increase with the number of past interactions). In these markets, the bilateral scores

take the form of forward-looking “indices” that account for (a) the benefit of generating new

information (in the case of experimentation), (b) the opportunity cost of reducing future

match values (in the case of a preference for variety), or (c) the value of enhancing future

match values (in the case of habit formation). With endogenous processes, the conditions

under which such matching auctions are fully optimal (i.e., profit- or welfare-maximizing) are

more restrictive. In particular, they require the match values to evolve independently across

matches, each match value to remain frozen when the match is not active, and the capacity

constraints to satisfy a certain separability condition, which always holds when none of the

capacity constraints binds or when a single match is formed in each period, but is restrictive

in more general environments. Such conditions are typical in dynamic problems with endoge-

nous processes. Notwithstanding these limitations, the insights are similar to those for the

case of exogenous processes. Importantly, even when such conditions are not satisfied, the

proposed auctions (in which the bilateral scores take the form of indexes) continue to admit

straight-forward equilibria. Furthermore, in many problems of interest, such auctions yield

the platform a reasonable fraction of the maximal profits, even if they are not fully optimal.26

In future work, it would be interesting to study how the auctions must be adapted if one

side cannot bid for the matches, as is currently the case in sponsored search auctions. It

would also be interesting to consider markets in which the platform must incur a cost only

when it matches a pair that was not matched in the preceding period. Such costs introduce

additional non-separabilities in the matching allocations that translate into a certain form of

inertia and give rise to a trade-off between improving the quality of the existing matches and

26When the aforementioned conditions are violated, it is typically impossible to identify either the profit-
maximizing or the welfare-maximizing mechanisms. Nonetheless, using approximation results, one can show
that the match allocations under the straight-forward equilibria of the proposed auctions yield a decent fraction
of the maximal profits (alternatively, of maximal welfare).
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economizing on future re-matching costs, which is absent in the present analysis.

It would also be interesting to endogenize the process governing the arrival of the agents, for

example by allowing the platform to invest in marketing activities that promote its services as

a function of the evolution of the match values of those agents already on board. It would also

be interesting to investigate whether distortions are more pronounced for “young” platforms

with a small base or for “more mature” ones with many agents on board.

Another interesting direction would be to consider dynamic competition between plat-

forms. Finally, it would be interesting to compare the matching dynamics in centralized

markets such as those investigated in the present article to their counterparts in decentralized

markets, where agents match with other agents without the help of a platform. To the best

of our knowledge, there is no tractable model of decentralized matching where agents perform

on-the-job search and re-match over time. Developing such a model is challenging but is an

important next step for this literature.

Appendix

Proof of Theorem 1. The proof is in two steps. Step 1 shows that, for any period t ≥ 1

and any period-(t − 1) history, any agent who is on board at period t and who expects

all other agents to follow a straight-forward strategy, finds it optimal to remain on board

and bid truthfully. Step 2 first shows that the matches implemented under straight-forward

strategies satisfy two key monotonicity conditions (defined below). It then shows that such

monotonicities imply that joining the platform immediately upon arrival and selecting the

membership status corresponding to an agent’s true vertical type are optimal for any individual

who expects all other individuals to follow straight-forward strategies.

Step 1. We start by establishing the following result:
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Lemma 1 (Optimality for t ≥ 1). Consider an agent who joined the platform at any period

t′ < t and who expects all other agents to follow straight-forward strategies. It is periodically

ex-post optimal for the agent to bid truthfully in period t.27

Proof of Lemma 1. Consider an agent from side A occupying the l-th position (in short,

agent l from side A)—the problem for any side-B agent is analogous and hence not considered).

Suppose that the profile of vertical types of all agents who arrived prior to period t is θt ≡

(θki )
k=A,B

i∈Nk
t

, and that the history of horizontal types for such agents is εt ≡ (εkijs)
k=A,B
(i,j)∈NAB

s ,s=1,...,t
.

Observe that, in the proposed auctions, the matches and the payments at each period s > t

are invariant to the period-t bids. Likewise, the period-t matches and payments are invariant

to the bids submitted and the matches implemented in previous periods. Furthermore, when

all other agents follow straight-forward strategies, their behavior in the continuation game

starting with period t does not depend on their past behavior or on agent l’s bids. To prove

the result, it thus suffices to show that the flow payoff the agent obtains in period t by bidding

truthfully is higher than the flow payoff he obtains by submitting any other vector of bids.

Below we show that this is the case, no matter the status of the agents who are on board at

period t and of the period-t bids submitted by the other agents.

Fix the status of all agents on board and let
(
βk(θ̂kl )

)
k=A,B

l∈Nk
t

denote the vector of corre-

sponding weights. Because these weights are kept constant, throughout, to ease the notation,

we drop the statuses from the arguments of all relevant functions and denote all the simplified

functions (which thus depend only on bids) with hats.

Let χ̂t(bt) denote the period-t matches that, given the period-t bids bt ≡ (bkijt)
k=A,B

(i,j)∈NAB
t

,

27As explained in the main text, “periodic ex-post optimal” means for any beliefs the agent may have about
the history at the beginning of period-t, i.e., the time at which the other agents present at the beginning of
period t joined, the history of the vertical and horizontal types of all such agents, and the behavior of such
agents in previous periods.
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maximize the aggregate period-t score

∑
(i,j)∈NAB

t

Ŝijt(bt)xijt (12)

subject to aggregate and individual capacity constraints, where, for any match (i, j) ∈ NAB
t ,

the period-t bilateral score for the match between position i from side A and position j from

side B is equal to

Ŝijt(bt) ≡ β̂Ai b
A
ijt + β̂Bj b

B
ijt − cijt. (13)

Similarly, let χ̂−l,kt (bt) denote the period-t matches that maximize the aggregate period-t score

(as defined in (12)) subject to individual and aggregate capacity constraints, when the period-

t bilateral score of any match involving position l from side k instead of taking the form in

(13) is identically equal to zero (in this case, χ̂−l,k can be assumed to implement no match

involving position l from side k). Let

Ŝt (bt) ≡
∑

(i,j)∈NAB
t

Ŝijt(bt)χ̂ijt (bt)

denote the aggregate period-t score induced by χ̂t(bt) and

Ŝ−l,kt (bt) ≡
∑

(i,j)∈NAB
t

Ŝijt(bt)χ̂
−l,k
ijt (bt)

the corresponding aggregate period-t score under χ̂−l,kt (bt). Finally, denote by ψ̂Alt (bt) the

period-t payment from the agent occupying the lth position on side A given bt, as specified

by the auction’s payment rule (5).

Given the arguments above, it suffices to show that, for all possible match values vAlt ≡

(θAl ε
A
ljt)j∈NB

t
and period-t bids bAlt ≡ (bAljt)j∈NB

t
by agent l from side A, any profile of bids
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b−l,At ≡
(

(bAijt)(i,j)∈NA
t \{l}×NB

t
, (bBijt)(i,j)∈NA

t ×NB
t

)
by all agents other than agent l from side A,

∑
j∈NB

t

vAljtχ̂ljt

(
vAlt , b

−l,A
t

)
− ψ̂Alt

(
vAlt , b

−l,A
t

)
≥
∑
j∈NB

t

vAljtχ̂ljt

(
bAlt , b

−l,A
t

)
− ψ̂Alt

(
bAlt , b

−l,A
t

)
, (14)

When the payments are given by the rule in (5), the left hand side of the above inequality is

equal to

1

β̂Al

[
Ŝt

(
vAlt , b

−l,A
t

)
− Ŝ−l,At

(
vAlt , b

−l,A
t

)]
. (15)

Furthermore, the period-t payment in the right-hand side of (14) is equal to

ψ̂Alt

(
bAlt , b

−l,A
t

)
=
∑
j∈NB

t

bAljtχ̂ljt

(
bAlt , b

−l,A
t

)
− 1

β̂Al

[
Ŝt

(
bAlt , b

−l,A
t

)
− Ŝ−l,At

(
bAlt , b

−l,A
t

)]
= − 1

β̂Al

∑
i∈NA

t \{l}

∑
j∈NB

t

Ŝijt(b
A
lt , b

−l,A
t )χ̂ijt

(
bAlt , b

−l,A
t

)
− 1

β̂Al

∑
j∈NB

t

(
β̂Bj b

B
ljt − cljt

)
χ̂ljt

(
bAlt , b

−l,A
t

)
+

1

β̂Al
Ŝ−l,At

(
bAlt , b

−l,A
t

)
.

This means that the right hand side of the inequality in (14) is equal to

1

β̂Al

∑
(i,j)∈NAB

t

Ŝijt(v
A
lt , b

−l,A
t )χ̂ijt

(
bAlt , b

−l,A
t

)
− 1

β̂Al
Ŝ−l,At

(
bAlt , b

−l,A
t

)
.

Next, observe that Ŝ−l,At is invariant to the bids by agent l from side A, meaning that

Ŝ−l,At

(
vAlt , b

−l,A
t

)
= Ŝ−l,At

(
bAlt , b

−l,A
t

)
.
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It follows that the inequality in (14) holds if and only if

Ŝt

(
vAlt , b

−l,A
t

)
≥

∑
(i,j)∈NAB

t

Ŝijt(v
A
lt , b

−l,A
t )χ̂ijt

(
bAlt , b

−l,A
t

)
. (16)

The inequality in (16) follows from the definition of the matching rule χ̂t (·). This means that

bidding truthfully yields the agent a payoff at least as high as under any other profile of bids.

Because the inequality holds no matter the period-t bids submitted by the other agents, the

period-(t− 1) history, and the period-t profile of vertical and horizontal types of all agents on

board, bidding truthfully is periodically ex-post optimal for agent l, as claimed. �

Next, we establish the following result:

Lemma 2. Consider an agent who joined the platform at any period t′ < t and who expects

all other agents to follow straight-forward strategies. It is periodically ex-post optimal for the

agent to remain in the auction in period t.

Proof of Lemma 2. To see that it is periodically ex-post optimal for the agent to remain

on board, note that, no matter the period-(t−1) history and the period-t profile of true vertical

and horizontal types, when all agents, including agent l from side A, follow straight-forward

strategies, in the continuation game starting with period t, agent l’s flow period-s payoff at

any period s ≥ t, and any period-s history, is proportional to his expected contribution to

the aggregate score, which is always nonnegative given that β̂Al > 0, and that at each period

τ ≥ t, Ŝτ (·)− Ŝ−l,Aτ (·) ≥ 0. �

Step 2. We now show that, when the membership fees are as in (7), joining immediately

upon arrival and selecting the membership status designed for the agent’s true vertical type

are optimal for any agent who expects all other agents to follow straight-forward strategies.
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Consider an agent from side k with vertical type θk. Let

D̂k
t (θ̂

k, θk; β) ≡

 E
[∑∞

s=t+1 δ
s−t∑

j∈NB
s
εAijsχ

β
ijs(θ̂

A
i , θ

−i,A
s , bs) | θk

]
if k = A

E
[∑∞

s=t+1 δ
s−t∑

i∈NA
s
εBijsχ

β
ijs(θ̂

B
j , θ

−j,B
s , bs) | θk

]
if k = B

,

denote the “match quality” the agent expects by joining in period t and selecting the status

designed for type θ̂k, when the agent plans to bid truthfully at all subsequent periods, and

expects all other agents to follow straight-forward strategies. Note that the expectation is

over the position occupied by the individual, the identities and vertical types of the other

agents on board, all future arrivals, the evolution of the agents’ match values, and all bids.

Note that when θ̂k = θk,

D̂k
t (θ̂

k, θk; β) = Dk
t (θ

k; β), (17)

with the functions Dk
t as defined in (6).

The next lemma, which is the key step in the proof, shows that, no matter the true type

θk, the expected match quality D̂k
t (θ̂

k, θk; β) is nondecreasing in the selected status θ̂k, and

that the match quality expected when selecting the status corresponding to the true vertical

type, Dk
t (θ

k; β), is non-decreasing in the true vertical type, θk. The first property guarantees

the optimality of selecting the status corresponding to the true vertical type. The second

monotonicity guarantees the monotonicity of the agents’ equilibrium payoffs in their true

vertical type, which in turn guarantees that when low types find it optimal to participate, so

do higher vertical types.

Lemma 3 (Key monotonicities). For any t ≥ 0, and any k = A,B, the following mono-

tonicities hold:

(i) For any θk, D̂k
t (θ̂

k, θk; β) is non-decreasing in θ̂k;

(ii) Dk
t (θ

k; β) is non-decreasing in θk.
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Proof of Lemma 3. Consider an arbitrary agent from side A who arrives at period t and,

upon joining the platform, occupies the i-th position (the arguments for the side-B agents are

analogous). Fix the profile of vertical types θ−i,At for the other agents on board.

We establish part (ii) first.

Part (ii). Take any agent from side A (the arguments for the side-B agents are analogous

and hence omitted) and take any pair θA, θ̂A ∈ ΘA, with θA < θ̂A. Denote by i the generic

position that the agent will occupy. Recall that the agent learns i only after joining and

selecting his status.

That, under straight-forward strategies, the matches implemented in each period maximize

the aggregate score, i.e., the sum of the individual bilateral scores (with the weights determined

by the agents’ statuses), subject to the aggregate and the individual capacity constraints,

implies that

E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θ̂A, θ−i,As

)
,

((
θ̂AεAijs

)
j∈NB

s

, b−i,As

))
|θ̂A


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θ̂A)

(
θ̂AεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θ̂A, θ−i,As

)
,

((
θ̂AεAijs

)
j∈NB

s

, b−i,As

))
|θ̂A


≥ E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θ̂A


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θ̂A)

(
θ̂AεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θ̂A


= E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θ̂A)

(
θ̂AεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA
 .

The left-hand side of the above inequality is the discounted sum of the aggregate score the

agent expects when his true vertical type is θ̂A and all agents follow straight-forward strategies.

Note that, no matter the position i the agent will occupy, the vertical type (and status)
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corresponding to his position is always equal to θ̂A . The vector θ−i,As denotes the vertical

types (and hence the statuses) of all positions occupied in period s, excluding position i from

side A. A similar notation applies to the bids b−i,As .

The right-hand side, instead, is the discounted sum of the aggregate score expected by the

same agent (of true vertical type θ̂A) when the following two properties hold:

1. The agent replicates the behavior of an agent from side A of vertical type equal to θA in

all periods (that is, he selects the membership status θA and then, at each subsequent

period, after learning his position i and his horizontal types εAis ≡ (εAijs)j=1,...,nB
s

, he

submits bids equal to bAijs = θAεAijs, as if his true vertical type was θA);

2. The weight the individual assigns to his own match values in the calculation of the

aggregate score in each period is βA(θ̂A).

The inequality follows from the fact that, when the individual (whose type is θ̂A) assigns a

weight βA(θ̂A) to his own match values in the computation of the aggregate score in each

period, the matches implemented by

χβs

(
(θ̂A, θ−i,As ),

(
(θ̂AεAijs)j∈NB

s
, b−i,As

))

maximize the aggregate score when the membership status selected by the individual coincides

with βA(θ̂A) and the bids the individual submits correspond to his true match values.

The equality in the above expression in turn follows from the independence of the horizontal

types from the vertical ones.

The above inequality is not to be confused with agent i’s incentive-compatibility con-

straints. As explained in the main text, the monotonicity of match quality in the lemma does

not follow from standard arguments in (both static and dynamic) screening models where the
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monotonicity of the allocations follows from the combination of incentive compatibility with

the supermodularity of the agents’ payoffs (between vertical types and allocations).

Now, inverting the role of θ̂A and θA in the above inequality, we have that

E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θA)

(
θAεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


≥ E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θ̂A, θ−i,As

)
,

((
θ̂AεAijs

)
j∈NB

s

, b−i,As

))
|θ̂A


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θA)

(
θAεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θ̂A, θ−i,As

)
,

((
θ̂AεAijs

)
j∈NB

s

, b−i,As

))
|θ̂A
 .

Combining the above two inequalities, and using the definition of the Dk
t (θ

k; β) functions, we

have that (
βA(θ̂A)θ̂A − βA(θA)θA

)
·
(
DA
t (θ̂A; β)−DA

t (θA; β)
)
≥ 0.

Because βA(·) is strictly positive and non-decreasing and θ̂A > θA, it must be that

DA
t (θ̂A; β) ≥ DA

t (θA; β).

Part (i). Because in each period the matches implemented under straight-forward strate-

gies maximize the sum of the scores subject to the aggregate and the individual capacity
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constraints, we have that, for any θ̂A, θA ∈ ΘA , with θA < θ̂A,

E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θ̂A, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θ̂A)

(
θAεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θ̂A, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


≥ E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θ̂A)

(
θAεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA
 .

The left-hand side of the above inequality is the discounted sum of the aggregate score expected

by an individual of true vertical type θA, when the weight the individual assigns to his own

match values in the computation of the aggregate score is βA(θ̂A) in each period, all other

agents follow straight-forward strategies, and the individual selects the membership status θ̂A

and then bids truthfully at all periods. The right-hand side, instead, is the discounted sum of

the aggregate score expected by the same individual, when the weight the individual assigns

to his own match values to compute the aggregate score continues to be βA(θ̂A) in each period,

but this time the individual selects the status designed for type θA and then bids truthfully

in all periods. Note that, in this latter case, the selection of the actual matches occurs by the

auction scaling agent i’s bids by βA(θA) given that the agent’s selected status is θA.

The inequality follows from the fact that, when the agent computes the desirability of each

match that involves him by weighting his match values by βA(θ̂A), the aggregate score in each

period is higher when, for given bids, the matches are selected by a rule that assigns the same

weight βA(θ̂A) to the agent’s bids as the one used by the individual himself than when the

weight used by the rule is βA(θA) whereas the one used by the individual is βA(θ̂A).
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By the same arguments, inverting the role of θ̂A and θA we have that,

E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θA)

(
θAεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θA, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


≥ E

 ∞∑
s=t+1

δs−t
∑

r∈NA
s \{i}

∑
j∈NB

s

(
βAr b

A
rjs + βBj b

B
rjs − crjs

)
χβrjs

((
θ̂A, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA


+ E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

(
βA(θA)

(
θAεAijs

)
+ βBj b

B
ijs − cijs

)
χβijs

((
θ̂A, θ−i,As

)
,
((
θAεAijs

)
j∈NB

s

, b−i,As

))
|θA
 .

Combining the above two inequalities, we obtain that

(
βA(θ̂A)− βA(θA)

)
· θA ·

(
D̂A
t (θ̂A, θA; β)− D̂A

t (θA, θA; β)
)
≥ 0.

Because θA > 0 and because βA(·) is strictly positive and non-decreasing, we conclude

that D̂A
t (·, θA; β) is non-decreasing.28 �

We now show that when status is priced according to the formula in (7), the monotonicities

in the previous lemma imply that each agent finds it optimal to select the membership status

designed for his true vertical type. Without loss of generality, take an arbitrary agent from

side A (the arguments for the side-B agents are analogous), and let t denote again the period

in which the agent arrives. Let

ÛA
t (θ̂A, θA; β) ≡E

 ∞∑
s=t+1

δs−t
∑
j∈NB

s

θAεAijsχ
β
ijs

(
(θ̂A, θ−i,As ), bs

)
| θA


− E

[
∞∑
s=t

δs−tψA,βis

(
(θ̂A, θ−i,As ), bs

)
| θA

]
28Note that, because the only influence of the membership statuses on match quality is through their impact

on the weights, if βA(θ̂A) = βA(θA), then D̂A
t (θ̂A, θA;β) = D̂A

t (θA, θA;β).
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denote the intertemporal payoff that the agent expects when his true vertical type is θA, he

chooses the membership status designed for type θ̂A, he then bids truthfully at all periods,

and all other agents follow straight-forward strategies. Then let

UA
t (θA; β) ≡ ÛA

t (θA, θA; β) (18)

be the payoff expected by the same agent under straight-forward strategies by all agents,

including himself. Using the definition of the payments, it is easy to verify that

UA
t (θA; β) =

∫ θA

θA
Dk
t (y; β)dy +Qk

t . (19)

Recall from Step 1 that, irrespective of the selection of the membership status, once an

agent joins, remaining in the auctions and bidding truthfully is periodic ex-post optimal for

the agent in the continuation game starting from any period-s history, s > t (including those

reached off path, by previous deviations). Now consider a fictitious environment where the

agent is constrained to select the status θ̂A in period t but is otherwise free to choose any

strategy of his choice for the continuation game that starts with period t+1. The above results

imply that ÛA
t (θ̂A, θA; β) is a value function for the problem the agent faces in the fictitious

environment. Standard envelope arguments (see, e.g., Milgrom and Segal (2002)) then imply

that ÛA
t (θ̂A, θA; β) is Lipschitz continuous in the agent’s true vertical type and that it admits

the following representation

ÛA
t (θ̂A, θA; β) = ÛA

t (θ̂A, θ̂A; β) +

∫ θA

θ̂A
D̂A
t (θ̂A, y; β)dy. (20)
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Combining (19) with (20), we then have that

ÛA
t (θ̂A, θA; β) = ÛA

t (θ̂A, θ̂A; β) +

∫ θA

θ̂A
D̂A
t (θ̂A, y; β)dy

≤ ÛA
t (θ̂A, θ̂A; β) +

∫ θA

θ̂A
D̂A
t (y, y; β)dy

= Uk
t (θ̂A; β) +

∫ θA

θ̂A
DA
t (y; β)dy

= Uk
t (θA; β),

where the first equality follows from (20), the inequality follows from part (i) in Lemma 3,

the second equality follows from (17) and (18), and the last equality from (19).

Hence the results above imply that, for any period t, an agent arriving at period t prefers

following a straight-forward strategy to joining the platform in period t and then following

any other strategy. Provided that QA
t is large enough, the same property also implies that

the agent prefers following a straight-forward strategy rather than never joining the platform.

The existence of QA
t satisfying the above requirement in turn follows from the fact that DA

t

is uniformly bounded by EA
t , which guarantees that any QA

t ≥ (θ̄A − θA)EA
t is large enough.

Finally, observe that the maximal payoff that the agent can obtain by joining the platform

at any period s > t is attained by the agent selecting the status designed for his true vertical

type upon joining and then bidding truthfully in all subsequent periods. This means that the

maximal expected payoff he obtains by postponing his joining to any period s > t is equal to

δs−t

[∫ θk

θk
Dk
s (y; β)dy +Qk

s

]
≥ 0.

Condition (8), along with the other properties above, therefore implies that following a

straight-forward strategy is also better than joining at any subsequent period and then fol-
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lowing any arbitrary strategy upon joining. �

Proof of Theorem 2. Consider any feasible mechanism Γ and any BNE σ of the game

induced by Γ. Denote by χ̃ and ψ̃ the functions describing the matches and payments induced

by σ in Γ, as a function of the period-t exogenous state variables (θt+1, εt), where θt+1 ≡

(θki )
k=A,B

i∈Nk
t+1

is the collection of the vertical types of all agents who arrived prior to or in period t

(recall that Nk
t+1 is the set of agents present at the beginning of period t+ 1, i.e., who arrived

in period s = 0, ..., t) and where εt ≡ (εkijs)
k=A,B
(i,j)∈NAB

s ,s=1,...,t
is the history of horizontal types for

those agents who arrived before period t (recall that each agent arriving at period t learns his

horizontal types for the other agents already on board at the beginning of period t or who join

in period t only at the beginning of period t + 1). Also recall that the period-t matches can

involve only individuals already on board at the beginning of period t, whereas the period-t

payments can specify payments also for those agents joining in period t. Finally, note that we

are allowing here for any feasible mechanism; that is, the message and signal spaces may be

different than those in the matching auctions.

The platform’s profits under (Γ, σ) are equal to

E

 ∑
k=A,B

∞∑
t=0

δt
∑
l∈Nk

t+1

ψ̃klt −
∞∑
t=1

δt
∑

(i,j)∈NAB
t

cijtχ̃ijt

 . (21)

Alternatively, (21) can be rewritten as follows:

E

 ∞∑
s=1

∑
(i,j)∈NAB

s

δs
((
θAi ε

A
ijs + θBj ε

B
ijs − cijs

)
χ̃ijs
)
−
∞∑
s=0

∑
k=A,B

∑
l∈Nk

s+1\Nk
s

δsŨk
s (θkl ; Iks )

 , (22)

where Ũk
s (θk; Iks ) denotes the equilibrium payoff expected by any agent from side k with

vertical type θk joining at period s.
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Following steps similar to those in Pavan, Segal and Toikka (2014, Theorem 1), we can

then show that the equilibrium payoffs must satisfy the envelope condition

Ũk
t (θk; Ikt ) = Ũk

t (θk; Ikt ) +

∫ θk

θk
D̃k
t (y; Ikt )dy. (23)

where

D̃k
t (θ

k; Ikt ) ≡

 E
[∑∞

s=t+1 δ
s−t∑

h∈NB
s
εAlhsχ̃lhs | θA, IAt

]
if k = A

E
[∑∞

s=t+1 δ
s−t∑

h∈NA
s
εkhlsχ̃lhs | θB, IBt

]
if k = B

denotes the match quality expected by any individual from side k of vertical type θk when

joining at period t. The above envelope condition, together with integration by parts, yields

the following representation of the platform’s profits,

E

[
∞∑
s=1

δs
∑

(i,j)∈NAB
s

((
1− 1−GA(θAi )

gA(θAi )θAi

)
θAi ε

A
ijs +

(
1−

1−GB(θBj )

gB(θBj )θBj

)
θBj ε

B
ijs

− cijs

)
χ̃ijs

]
−
∞∑
s=0

∑
k=A,B

∑
l∈Nk

s+1\Nk
s

Ũk
s (θk; Iks ). (24)

Clearly, because such a representation applies to any BNE of any mechanism, it also applies

to the straight-forward equilibria of the matching auctions.

Now observe that, when the weights are given by βP , the matches implemented under

straight-forward strategies in the auctions with weights βP maximize

∑
(i,j)∈NAB

s

((
1− 1−GA(θAi )

gA(θAi )θAi

)
θAi ε

A
ijs +

(
1−

1−GB(θBj )

gB(θBj )θBj

)
θBj ε

B
ijs − cijs

)
xijs

in each period and each state.

Next, observe that, when the weights are given by βP and the access fees are given by

(7), with Qk
t = 0 all t, k = A,B, the payoff expected under straight-forward strategies by any
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agent joining the platform at each period t with the lowest vertical type is equal to zero. This

means that, under the straight-forward strategies of the matching auctions with weights βP

and with access fees given by (7), with Qk
t = 0 all t, k = A,B, the platform’s profits are as high

as under any BNE of any mechanism Γ. Provided that such auctions admit straight-forward

equilibria, we thus have that such auctions, with the associated straight-forward equilibria,

are profit-maximizing. Finally, as established in Theorem 1, the proposed auctions admit

straight-forward equilibria if and only if conditions (a) and (b) in the theorem hold. �

Proof of Theorem 3. As explained in the main text, part (i) follows directly from The-

orem 1. Part (ii) follows from arguments similar to those establishing the optimality of the

auctions of Theorem 2. In particular, it follows from the fact that, (a) under any BNE of

any mechanism Γ implementing the welfare-maximizing matches in all periods, the platform’s

expected profits satisfy the representation in (24), with Ũk
t (θk; Ikt ) ≥ 0, and (b) in the auctions

under consideration, when all agents follow straight-forward strategies, the payoff expected

by each agent with the lowest vertical type upon joining is equal to zero in all periods. The

above properties imply that, when the auctions under consideration admit straight-forward

equilibria, the platform’s profits under such equilibria are as high as under any BNE of any

mechanism implementing the efficient matches in all periods. As established in Theorem 1,

the proposed auctions admit straight-forward equilibria if and only if conditions (a) and (b)

in the theorem hold. �

Proof of Theorem 4. Let χPt and χWt denote the matches implemented in period t under

the straight-forward equilibria of the profit-maximizing and the welfare-maximizing auctions

of Theorems 2 and 3, respectively.

Similarly, let SPijt and SWijt denote the period-t scores under the straight-forward equilibria of

the profit-maximizing and the welfare-maximizing auctions of Theorem 2 and 3, respectively.
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First, observe that because βk,P (θk) ≤ 1 = βk,W (θk) for all θk ∈ Θk, k = A,B, when all

horizontal types are nonnegative, for any t ≥ 1 and any pair of agents (i, j) ∈ NAB
t , SPijt ≤ SWijt.

Part 1. When none of the capacity constraints are binding, in each period t ≥ 1, the

matches implemented under the straight-forward equilibria of the profit-maximizing auctions

(alternatively, the welfare-maximizing auctions) are all those for which the scores SPijt ≥ 0

(alternatively, SWijt ≥ 0). This property, along with the fact that for any t ≥ 1 and any

(i, j) ∈ NAB
t , SWijt ≥ SPijt, immediately yields the result.

Part 2. Next, consider the case in which only the aggregate capacity constraint is poten-

tially binding. The result then follows from the following two properties: (a) in each period

t ≥ 1, the set of matches for which SPijt ≥ 0 is a subset of the set of matches for which SWijt ≥ 0,

(b) the cardinality of the set of matches implemented in each period in a profit-maximizing

auction (alternatively, in a welfare-maximizing auction) is the minimum between M and the

cardinality of the set of matches for which SPijt ≥ 0 (alternatively, SWijt ≥ 0).

Part 3. Finally, consider the case in which some of the individual capacity constraints are

potentially binding, i.e., mk
t < n−kt , for some t, k = A,B. The fact that SWijt ≥ SPijt for all t ≥ 1

and all (i, j) ∈ NAB
t implies that, at any period t ≥ 1 at which |{(i, j) ∈ NAB

t : χPijt = 1}| > 0,

it must be the case that |{(i, j) ∈ NAB
t : χWijt = 1}| > 0. This is because χPijt = 1 implies that

SPijt ≥ 0, and hence SWijt ≥ 0. By matching the pair (i, j), the platform then weakly increases

welfare relative to the case in which no pair is matched in period t. �
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