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1 Introduction

In 2003, the National Football League established the “Rooney Rule,” a policy requiring

teams to interview minority candidates for head coaching vacancies.1 This policy, versions

of which have been applied across various industries2, is an example of “soft” affirmative

action (SAA), a term used to refer to policies designed to change the composition of the

candidate pool, rather than the criteria used during the hiring process. Contrary to “hard”

affirmative action requiring direct consideration of minority status as a part of the hiring

decision (e.g., employment quotas), such policies involve taking steps to increase the share

of minority candidates considered for a position, but subsequently treating candidates

impartially (Schuck, 2002).3

This paper studies the effects of SAA on minority recruitment. Indeed, while some

SAA policies have proved successful (Heilman, 1980), others, such as the Rooney Rule,

have been deemed ineffective, or even counterproductive. One possible explanation is the

presence of implicit bias. We show that, even in the absence of bias, SAA policies, while

meant to increase the likelihood of hiring minority candidates, may in fact lead to the

opposite outcome. This may occur even if qualified minority candidates are at least as

valuable as qualified non-minority ones, and minority candidates are ex-ante at least as

likely to be qualified.

We consider SAA policies tilting the search technology in favor of minorities, while

maintaining the discretion over when to expand the candidate pool based on the sequen-

tial evaluation of candidates already under consideration. Our results are driven by the

assumption that the evaluation of minority candidates is noisier than that of non-minority

ones. This assumption is a central feature in the literature on statistical discrimination4

building on Phelps’ (1972) seminal contribution (e.g., Aigner and Cain, 1977, Borjas and

Goldberg, 1979, Lundberg and Straz, 1983, Cornell and Welch, 1996, and more recently

Chambers and Echenique, 2018, and Bardhi et al., 2020).5 The literature has offered

various explanations for such differences in evaluation, including: (a) the more limited

1See DuBois (2015) for an empirical assessment of the Rooney Rule’s impact.
2Facebook recently adopted a similar policy (https://money.cnn.com/2018/05/31/technology/facebook-

board-diversity/index.html). In 2014, Senate Resolution (511) was introduced (though ultimately not
enacted) to encourage companies to voluntarily establish policies to identify and interview qualified
minority candidates for managerial openings.

3SAA policies are also common in academia (see, e.g., Columbia University’s “Guide to Best Practices
in Faculty Search and Hiring”).

4In contrast to taste-based theories of discrimination (Becker, 1957), statistical discrimination theories
explain group inequality without assuming prejudice or preference bias.

5An important exception is Arrow’s (1973) theory of statistical discrimination, which relies on coordi-
nation failures rather than differences in the evaluation of particular groups. See Fang and Moro (2011)
for an overview of the statistical discrimination literature.
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experience that recruiters have in evaluating minorities6; (b) differences in “background”

between minority candidates and recruiters, which may impede the assessment of intan-

gible qualities which are informal but nevertheless potentially relevant for the position

(Arrow, 1972, Cornell and Welch, 1996); and (c) differences in “language” (broadly de-

fined) between recruiters and minority candidates.7

The literature on affirmative action has studied its potential unintended effects with

regard to incentives for human capital investment, productivity stereotyping, wage differ-

entials, and occupational social status (see, e.g., Fryer and Loury, 2005).8 In an influential

article, Coate and Loury (1993) show that a “patronizing equilibrium” may arise in which

minorities’ incentives to invest in skills may be reduced when affirmative action is in place.

This paper complements this literature by illustrating the possible negative effects of SAA

directly on the dimension it is intended for – the enhancement of minority recruitment.

The mechanism we identify by which SAA policies may have an adverse effect on

minority recruitment is the following. Such policies, by tilting the search technology in

favor of minorities, also alter the desirability of expanding the candidate pool vis-a-vis a

more thorough examination of candidates already under consideration. Because minority

candidates are assumed to be more difficult to evaluate, they may suffer the most from

the change in the relative attractiveness of search. Importantly, this may happen both

when SAA increases the relative attractiveness of search, as when it decreases it.

Our results thus suggest that, without taking steps to improve the evaluation of mi-

nority candidates, attempts to shift the composition of the candidate pool in favor of

minorities may simply amount to “checking a box,” or even prove detrimental. Such steps

may include creating a sufficiently diverse recruiting committee and ensuring evaluation

is based on objective criteria with predetermined weights. In our model, if differences in

the evaluation of candidates were entirely eliminated – as in the case of “blind” auditions

6Aigner and Cain (1977) suggest that majority-group candidates face “a more homogeneous set of
environmental determinants of quality,” resulting in a lower variance in qualification, and hence less noisy
evaluation. It may be easier to assess a candidate’s history if it followed a well-known path, or to interpret
a candidate’s references when they come from familiar letter writers. Certain tests used in recruitment
were initially designed with a specific group in mind; e.g., it has long been argued that the SAT is more
informative about the abilities of White students than African-American students (Linn, 1973, Fleming
and Garcia, 1998). Further, recruiters often (implicitly) use recent hires with similar backgrounds as
benchmarks for evaluating new candidates. If most recent hires were majority-group candidates, such
benchmarking may be less effective for evaluating minority candidates.

7Lang (1986) proposes that noisier evaluation of minorities results from differences in “language” im-
peding communication. Recent research also suggests women tend to use language quite different from
men in job interviews (Leaper and Robnett, 2011).

8The literature on the economics of affirmative action includes Welch (1976), Lundberg and Straz
(1983), Chung (2000), Moro and Norman (2003), and Fryer and Loury (2013), and is too broad to be
succinctly discussed here. For evidence on the effectiveness of affirmative action, see Holzer and Neumark
(2000).
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– SAA would be guaranteed to increase the probability of hiring a minority candidate.

If differences in candidates’ evaluation cannot be sufficiently reduced, “hard” affirmative

action may be necessary to foster minority recruitment.

2 Model

The recruitment problem described below applies to a variety of environments. For con-

creteness, we focus on a university committee recruiting faculty, or students, for an avail-

able position. The recruitment of a candidate is subject to university approval standards.

There are two categories of candidates, A and B (race/gender/field of study). Candidates’

qualifications θ ∈ {L,H} are unknown and independent ex-ante. Let pj0 = Pr(θj = H)

denote the prior that a category-j candidate is qualified. The value of hiring a qualified

category-j candidate is vj > 0, whereas the value of hiring any non-qualified candidate is

zero. That is, the school wishes to hire only qualified candidates, but candidates of one

category may be preferred.

Candidates can be recruited only if they are in the school’s candidate pool. We assume

that at the outset there are only two candidates in the pool, one from each category.9 At

each period t = 0, 1, ..., the committee either chooses a candidate to evaluate among those

in the pool, or decides to expand the pool by searching for additional candidates. The

evaluation of a candidate generates new information, formally captured by a signal about

the candidate’s qualification. The evaluation of a qualified category-j candidate yields a

signal realization s = 1 with probability qjH ≡ Pr(s = 1|θj = H), whereas the evaluation

of a non-qualified category-j candidate yields a signal realization s = 0 with probability

qjL ≡ Pr(s = 0|θj = L), with qjH ≥ 1− qjL. Conditional on a candidate’s type, the signals

are iid draws from the above Bernoulli distribution.

Given a history σ = (s1, s2, ...) of signal realizations, the posterior probability that a

category-j candidate is qualified will be denoted by pj(σ). The null history is denoted by

σ = ∅. Each time the committee searches for new candidates, it identifies a category-j

candidate with probability µj , and no candidate with probability 1 − µA − µB. Beyond

the opportunity cost of not being able to evaluate one of the candidates in the pool while

searching, search entails no direct cost. Likewise, the only cost of evaluating a candidate

in the pool is the cost of postponing search and the evaluation of other candidates.10

9This assumption simplifies some of the derivations, but is not essential for the results.
10Most of the assumptions introduced above can be relaxed. For example, the results extend to more

general search technologies yielding a random number of candidates from each category. Likewise, the
assumption that the cost of each action is the time cost of postponing other actions can easily be amended
by introducing additional costs. Finally, that signal realizations take only two values is also not essential.
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The entire recruiting process ends when the committee finds a candidate “above the

bar,” i.e., whose (category-adjusted) expected quality is large enough. Formally, for any

j = A,B, there exists a threshold P̄ j ∈ (0, 1] such that each category-j candidate is given

the slot at history σ if and only if pj(σ) ≥ P̄ j . The threshold P̄ j can be thought of as

reflecting standards imposed by the university, which may, but need not, coincide with

the preferences of the recruiting committee. To avoid trivialities, assume pj0 < P̄ j , so that

each candidate must be evaluated at least once to be recruited.11

A recruitment rule specifies in each period either a candidate to evaluate among those

in the pool, or search for a new candidate. A recruitment rule is optimal if it maximizes the

expected discounted payoff E
(
δT ṽT

)
over all feasible recruitment rules, where δ ∈ (0, 1) is

the discount factor, T the (stochastic) time at which a selection is made, and ṽT the value

of the selected candidate.

Maintained assumptions. Throughout, we assume the following:

(i) The evaluation ofA-candidates is Blackwell less informative than that ofB-candidates:

qAk ≤ qBk , k = H,L, with at least one inequality strict;

(ii) A-candidates are more valuable to the organization: vA ≥ vB;

(iii) A-candidates are more likely to be qualified: pA0 ≥ pB0 ;

(iv) A-candidates have a lower acceptance threshold: P̄A ≥ P̄B.

Condition (i) means A is the minority category. Conditions (ii)-(iv) guarantee that the

potentially negative effects of SAA on the recruitment of minority candidates are not driven

by any bias in the evaluation process favoring non-minority candidates: A-candidates are

strictly better than B-candidates in all dimensions but the effectiveness of their evaluation.

3 Myopic Recruitment Rule

We start by assuming the recruitment process is conducted under a myopic rule. Given

a history of signal realizations σ, denote by λj(σ) the probability that a category-j can-

didate with history σ is recruited after a single additional evaluation (λj(σ) = Pr(s :

pj(σ, s) ≥ P̄ j |j, σ)). The myopic value the committee attaches to an additional eval-

uation of a category-j candidate with history σ is equal to uj(σ) = λj(σ)vj . Like-

wise, the myopic value it attaches to an additional search is equal to the expected value

What matters is that signals about minority candidates are noisier, as shown below.
11That the selection of a candidate is governed by a threshold rule guarantees that the optimal evaluation

and search policy is indexable. Allowing for arbitrary selection rules would (in most cases) preclude a
tractable representation of the optimal policy.
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uS = δ
(
µAuA(∅) + µBuB(∅)

)
of bringing a “blank-slate” candidate to the pool. Under a

myopic rule, in each period, the committee selects the alternative (evaluation of a candi-

date from the pool, or search) with the highest myopic value. To avoid trivialities, assume

uA(∅), uB(∅) > uS , so that, once added to the pool, each candidate has a greater myopic

value than search.

Given v ≡ (vA, vB), p0 ≡ (pA0 , p
B
0 ), µ ≡ (µA, µB), q ≡ (qAL , q

A
H , q

B
L , q

B
H), and P̄ ≡

(P̄A, P̄B), denote by γj(v, p0, µ, q, P̄ ) the ex-ante probability a category-j candidate is

selected under a myopic rule.

Our first result pertains to SAA policies promoting the expansion of the candidate

pool. Formally, such policies can be captured by an increase in µA and µB (with µA

increasing more than µB). To ease the exposition, and without any important implication

for the results, we assume that, prior to the introduction of the policy, µ = (0, 0).

To further simplify the derivations, suppose that

qAH ∈ (0, 1) and qAL = qBH = qBL = 1. (1)

That is, the evaluation of B-candidates is perfectly revealing, whereas the evaluation of A-

candidates takes the typical“no-news-bad-news”form. Under this technology, λB(∅) = pB0 ,

λA(∅) = qAHp
A
0 and λA(0) = qAHp

A(0), with

pA(0) =
(1− qAH)pA0

(1− qAH)pA0 + 1− pA0
.

Status-quo (µ = (0, 0)). Assume the A-candidate is evaluated first:

pA0 q
A
Hv

A︸ ︷︷ ︸
uA(∅)

> pB0 v
B︸ ︷︷ ︸

uB(∅)

. (2)

Then γA(v, p0, (0, 0), q, P ) = pA0
(
1− pB0 + pB0 q

A
H

)
. That is, the minority candidate is se-

lected if and only if she is qualified and either (a) the non-minority candidate is unqualified,

or (b) she is qualified and the initial evaluation of the minority candidate yields a positive

result.

Search under SAA (µ = (µA, µB) with µA ≥ µB = 1− µA). Further assume

pB0 v
B > δ

(
µApA0 q

A
Hv

A + µBpB0 v
B
)︸ ︷︷ ︸

uS

. (3)
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and

δ
(
µApA0 q

A
Hv

A + µBpB0 v
B
)
>

(1− qAH)pA0 q
A
Hv

A

(1− qAH)pA0 + 1− pA0︸ ︷︷ ︸
uA(0)

. (4)

Jointly, (1)-(4) imply that evaluation of any “blank-slate” candidate is preferred to search,

whereas search is preferred to a second evaluation of an A-candidate whose initial evalu-

ation yielded a negative result.

Let

γAS = µA
(
λA(∅) + (1− λA(∅))γAS

)
+ µB(1− pB0 )γAS

denote the probability an A-candidate is selected after search is carried-out.12 Rearranging

and using µA + µB = 1, we have that

γAS =
µAλA(∅)

µAλA(∅) + µBpB0
.

Hence, the ex-ante probability of selecting a minority candidate under SAA is

γA(v, p0, µ, q, P ) = λA(∅) + (1− λA(∅))(1− pB0 )

(
µAλA(∅)

µAλA(∅) + µBpB0

)
.

Comparison. Under (1)-(4), for any µ = (µA, µB) with µA+µB = 1, γA(v, p0, µ, q, P ) <

γA(v, p0, (0, 0), q, P ) if and only if

qAH
1− qAH

<
µBpB0

µA(1− pA0 )
. (5)

The left-hand side of (5) is a measure of the effectiveness of the evaluation of minority

candidates, whereas the right-hand side is the ratio between the probability that search

brings a qualified non-minority candidate and an unqualified minority one.

Proposition 1. Suppose Conditions (1)-(5) hold.13 SAA policies promoting the expansion

of the candidate pool reduce the ex-ante probability that minority candidates are selected:

γA(v, p0, µ, q, P̄ ) < γA(v, p0, (0, 0), q, P̄ ), for any µ = (µA, µB) with µA ≥ µB = 1− µA.

12Note that, once search is launched, candidates already in the pool are never evaluated again.
13These conditions, together with the maintained assumptions (i)-(iv), hold for a non-empty open set of

parameters. For example, they hold when δ = 0.9, pA0 = 0.8, pB0 = 0.7, vA = 1.5, vB = 1, qAH = 0.6, and
µA = 2/3 = 1 − µB .
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Proof. The result follows from the arguments preceding the proposition.

When µA > µB , under such SAA policies, the expected number of minority candidates

considered for a position, and their share relative to non-minority candidates, increase.

However, such policies also reduce the length of the evaluation of candidates whose early

evaluation yields negative results. As minority candidates are more difficult to evaluate,

they suffer more from the truncation in the evaluation process, which may lead to a

reduction in the ex-ante probability of selecting a minority candidate.

Note that the probability of selecting A-candidates is reduced not only relative to the

probability of selecting B-candidates, but overall; that is, promoting the expansion of

the candidate pool may reduce the ex-ante probability of recruiting minority candidates,

despite increasing the overall probability of filling the slot.

Next, consider SAA policies tilting the search technology in favor of minorities at the

expense of non-minorities (formally captured by an increase of ζ > 0 in µA with an equal

reduction in µB). Let

qAL = qBL = 1 and 1 > qBH > qAH > 0. (6)

Under (6), the evaluation of either type of candidate takes the familiar“no-news-bad-news”

form. Consequently, λj(∅) = pj0q
j
H , pj(0) = (1− qjH)pj0/(1− q

j
Hp

j
0), and λj(0) = qjHp

j(0).

Status-quo (µ = (µA, µB) with µA = 1− µB < 1). Suppose that

uB(∅)︷ ︸︸ ︷
λB(∅)vB >

uA(∅)︷ ︸︸ ︷
λA(∅)vA >

uS︷ ︸︸ ︷
δ
(
µAλA(∅)vA + µBλB(∅)vB

)
(7)

>
(1− qAH)λA(∅)vA

1− qAHpA0︸ ︷︷ ︸
uA(0)

,
(1− qBH)λB(∅)vB

1− qBHpB0︸ ︷︷ ︸
uB(0)

. (8)

Conditions (6)-(8) imply the evaluation of any blank-slate candidate is preferred to search,

whereas the latter is preferred to the evaluation of any candidate whose first evalua-

tion yields a negative result. The probability of selecting an A-candidate after search is

launched is then equal to

γAS (0) = µA
(
λA(∅) + (1− λA(∅))γAS (0)

)
+ µB

(
1− λB(∅)

)
γAS (0),
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or

γAS (0) =
µAλA(∅)

µAλA(∅) + µBλB(∅)
.

The ex-ante probability of selecting an A-candidate under the status-quo search protocol

is then equal to

γA
(
v, p0, (µ

A, µB), q, P
)

= (1− λB(∅))
(
λA(∅) + (1− λA(∅))

(
µAλA(∅)

µAλA(∅) + µBλB(∅)

))
.

Search under SAA (µ = (µA + ζ, µB − ζ), with ζ > 0). Assume that

(1− qBH)λB(∅)vB

1− qBHpB0
> δ

(
(µA + ζ)λA(∅)vA + (µB − ζ)λB(∅)vB

)
>

(1− qAH)λA(∅)vA

1− qAHpA0
. (9)

Condition (9) implies that, after a single negative evaluation, search is preferred to a

second evaluation if the candidate is an A-candidate, whereas the opposite is true for

B-candidates. Denote by γAS (ζ) the probability of selecting an A-candidate after search is

launched, under the search protocol promoted by SAA. Conditions (6)-(9) imply that

γAS (ζ) ≤ (µA + ζ)
(
λA(∅) + (1− λA(∅))γAS (ζ)

)
+ (µB − ζ)(1− λB(∅))(1− λB(0))γAS (ζ),

where the inequality follows from the fact that a B-candidate may be evaluated more than

twice before search is launched. Rewriting this inequality, we have that

γAS (ζ) ≤ (µA + ζ)λA(∅)
(µA + ζ)λA(∅) + (µB − ζ) (λB(∅) + λB(0) (1− λB(∅)))

.

Therefore, the ex-ante probability of selecting an A-candidate under the search protocol

promoted by SAA satisfies

γA
(
v, p0, (µ

A + ζ, µB − ζ), q, P
)

≤ (1− λB(∅))
(
λA(∅) + (1− λA(∅))(1− λB(0))γAS (ζ)

)
= (1− λB(∅))λA(∅)

(
1 +

(1− λB(0))(1− λA(∅))(µA + ζ)

(µA + ζ)λA(∅) + (µB − ζ) (λB(∅) + λB(0) (1− λB(∅)))

)
.

Comparison. Given the arguments above, we have that γA
(
v, p0, (µ

A + ζ, µB − ζ), q, P
)
<
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γA
(
v, p0, (µ

A, µB), q, P
)

if

µA

µAλA(∅) + µBλB(∅)
>

(1− λB(0))(µA + ζ)

(µA + ζ)λA(∅) + (µB − ζ) (λB(∅) + λB(0) (1− λB(∅)))
. (10)

Proposition 2. Suppose Conditions (6)-(10) hold.14 SAA policies tilting the search tech-

nology in favor of minorities reduce the ex-ante probability of selecting a minority candi-

date: γA
(
v, p0, (µ

A + ζ, µB − ζ), q, P
)
< γA

(
v, p0, (µ

A, µB), q, P
)
, for any ζ > 0.

Proof. The result follows from the arguments preceding the proposition.

Under such SAA policies, A-candidates are more likely to be included in the candidate

pool at the expense of B-candidates. However, because A-candidates are more difficult to

evaluate, such policies, contrary to those examined above, reduce the overall attractiveness

of search relative to a lengthier evaluation of existing candidates. The committee may

therefore substitute search primarily with the evaluation of B-candidates, as they are

easier to evaluate. When strong enough, the latter effect may trigger a reduction in the

ex-ante probability that minority candidates are selected.

4 Optimal (forward-looking) Rule

We now show that the effects identified above are not a mere consequence of the committee

following a myopic rule.

4.1 Preliminaries

We first establish that the optimal rule is an index rule. That is, each candidate is assigned

an index V j that depends only on the candidate’s category, j, and the candidate’s history

of signal realizations, σ. The indices take the form

V j(σ) ≡ sup
τ j>0

E
[
δφ

j
(

1− δτ j−φj
)
1{φj<τ j}ṽ

j |j, σ
]

1− E
[
δτ j |j, σ

] , (11)

where τ j is a (stochastic) stopping-time, φj is the (stochastic) time at which pj(σ) exceeds

the acceptance threshold P̄ j for the first time, and ṽj ∈ {0, vj} denotes the candidate’s

14Conditions (6)-(10), along with the maintained assumptions (i)-(iv), hold for a non-empty open set of
parameters. For example, they hold when δ = 0.9, pA0 = 0.8, pB0 = 0.64, vA = 1.5, vB = 1, qAH = 0.2,
qBH = 0.75, µA = 0.9 = 1 − µB , and ζ = 0.04.
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value to the organization.15

The indices defined by (11) are forward-looking, and have an intuitive interpretation.

They represent the maximal average expected discounted payoff (averaging over discounted

time) from the sequential evaluation of the candidates, ignoring the existence of the other

candidates.

Next, let

V S ≡ sup
τA,τB>0

δ
∑

j∈{A,B} µ
jE
[
δφ

j
(

1− δτ j−φj
)
1{φj<τ j}ṽ

j |j, ∅
]

1−
∑

j∈{A,B} µ
jE
[
δτ j |j, ∅

] (12)

be the index of search, where τ j , φj and ṽj are as defined above. This index represents

the maximal average expected discounted payoff from the sequential evaluation of the first

candidate that arrives as the result of search.

Under the optimal rule described below, the value the committee assigns to the ad-

ditional evaluation of any candidate in the pool takes into account the effects of this

evaluation on the desirability of all further evaluations. Likewise, the value the committee

assigns to search accounts for the fact that the new candidates may be evaluated multiple

times. Note that V S is directly linked to the indices of the candidates expected to be

identified by search. Specifically, the optimal stopping-time in (12) is the first time at

which the index of any candidate that arrives as a result of search drops below V S .

Lemma 1. The optimal recruitment rule consists in evaluating in each period one of the

candidates in the pool with the highest index, as defined in (11), provided this index is

greater than V S , and searching for new candidates otherwise.

Proof. Consider the following fictitious environment in which, contrary to the problem

under consideration, the recruitment of a candidate is reversible. Let the flow payoff from

the evaluation of each candidate for whom pj(σ) < P̄ j be equal to zero (recall that these are

candidates who, given the University’s rules, are not acceptable yet for the position). Let

the flow payoff from hiring a candidate for whom pj(σ) ≥ P̄ j be equal to pj(σφ
j
)vj(1− δ),

where φj is the first time at which the candidate is found acceptable, and where σφ
j

is the

history of signal realizations at that time. In accordance with the primitive environment,

assume that, after the φj-th evaluation, no further information is gathered about the

candidate’s qualification. Contrary to the primitive environment, however, assume that,

at any point in time, the committee can reverse its decision. That is, once an acceptable

15The stopping decision is measurable with respect to the filtration induced by the process governing
the arrival of information about the candidate’s qualification. Because no new information arrives after

φj , any stopping occurring after φj must be based on the information σφ
j

available in period φj .
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candidate is found (i.e., for whom pj(σ) ≥ P̄ j), the committee is not obliged to hire that

candidate indefinitely, and the temporary recruitment of such a candidate (which yields a

flow payoff pj(σφ
j
)vj(1− δ)) does not preclude subsequent evaluation and recruitment of

other candidates.

The committee’s problem in this fictitious environment is a multi-armed bandit prob-

lem with an endogenous set of arms, satisfying all the conditions in Fershtman and Pavan

(2020) (see also the literature on branching bandits, e.g., Weiss, 1988, and Weber, 1992).

Fershtman and Pavan (2020) show that the optimal rule for such problems is an index

rule, with a special index for search. The latter index is the maximal expected average

discounted payoff from searching for new arms and pulling any of the new arms that arrive

as the result of search, where the maximization is over both a stopping-time and a rule

that chooses among search and the pull of the new arms that arrive as the result of search.

In the fictitious environment described above, the index of search is equal to

V S = sup
τ,π

δEπ,τ
[∑τ−1

s=1 δ
srπs

]
1− Eπ,τ [δτ ]

, (13)

where τ is a stopping-time, π is a rule governing the alternation between the evaluation

of one of the new candidates brought in by search and further search, and rπs is the flow

payoff under the rule π. The latter flow payoff is equal to zero when π selects search or one

of the candidates that are not acceptable yet (i.e., for whom pj(σ) < P̄ j) and is equal to

pj(σφ
j
)vj(1−δ) when π selects an acceptable candidate (i.e., one for whom pj(σ) ≥ P̄ j).16

Importantly, note that the index of search is independent of any information regarding the

candidates already in the pool. Fershtman and Pavan (2020) also show that the optimal

rule π in (13) is in fact the same index rule characterizing the solution to the entire decision

problem, and that the optimal stopping-time τ in (13) is the first time at which the search

index and the index of all newly arrived arms fall below the index of search when the

latter was launched. In the context of the fictitious environment described above, because

the search technology is stationary, τ coincides with the first time at which the index of

the first candidate identified through search falls below the index of search. Given these

features, (13) can be rewritten as

V S = sup
τA,τB>0

δ
∑

j∈{A,B} µ
jE
[∑τ j−1

s=φj δ
spj(σφ

j
)vj(1− δ)|j, ∅

]
1−

∑
j∈{A,B} µ

jE
[
δτ j |j, ∅

] ,

16Recall that, after the φj-th evaluation, there is no further information that can be gathered about the
candidate.

12



which coincides with the formula in (12). Fershtman and Pavan (2020) also show that, in

multi-armed bandit problems with an endogenous set of arms, the index of any arm other

than search coincides with the standard Gittins index (Gittins and Jones, 1974). In the

fictitious problem, the arms are candidates and the Gittins index of each candidate is

V j(σ) = supτ j>0

E
[∑τ j−1

s=φj δ
svjpj(σφ

j
)(1− δ)|j, σ

]
1− E

[
δτ j |j, σ

] ,

which coincides with the formula in (11). Hence, the optimal rule in the fictitious envi-

ronment consists in selecting in each period the candidate in the pool for whom V j(σ) is

the highest, provided that such index is greater than V S , and in expanding the pool by

searching for new candidates if V S is greater than the index of any candidate in the pool.

Now consider the primitive problem where recruitment is irreversible. In general,

index policies are not optimal in the presence of irreversible decisions. However, this

is not the case for the specific problem under consideration. To see this, observe that

in the fictitious environment, once an arm is pulled for which pj(σ) ≥ P̄ j , its index

V j(σ) = pj(σφ
j
)vj(1− δ) remains the same at all subsequent periods. Because the indices

of the other arms and of search also remain the same, under the optimal rule in the fictitious

environment, once the evaluation of a candidate yields a posterior pj(σ) exceeding the

acceptance threshold P̄ j , that candidate is selected in each subsequent period. Because

the fictitious environment is a relaxation of the primitive one, it follows that the optimal

rule in the primitive environment coincides with the one in the fictitious environment.

4.2 Soft affirmative action

We now show that the possible negative effects of SAA policies on the recruitment of

minorities may also arise under optimal (forward-looking) policies.

Consider first SAA policies akin to those in Proposition 1. Let Γj(v, p0, µ, q, P ) denote

the ex-ante probability of selecting a category-j candidate under the optimal rule. Consider

the same “no-news-bad-news” evaluation technology as in (1). Using the results in the

previous subsection, the index of a blank-slate j-candidate is equal to

V j(∅) =
λj(∅)vj

1− δ(1− λj(∅))
. (14)

This is because, under the assumed evaluation technology, the optimal stopping-time τ j

in the definition of the index in (11) specifies stopping immediately (τ j = 1) following

a negative signal s = 0, and never stopping (τ j = ∞) following a positive signal s = 1,
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j = A,B. Also recall that, under the assumed evaluation technology, λB(∅) = pB0 and

λA(∅) = pA0 q
A
H . Hence, V B(0) = 0 and V A(1) = V B(1) = vj . It is also easy to see that,

after a single negative evaluation, the index of any A-candidate is equal to

V A(0) =
λA(0)vA

1− δ(1− λA(0))
. (15)

Status-quo (µ = (0, 0)). In this case, the search index equals V S = 0, as search does

not bring candidates. Assume the B-candidate is evaluated first:

pB0 v
B

1− δ(1− pB0 )︸ ︷︷ ︸
V B(∅)

≥
pA0 q

A
Hv

A

1− δ(1− pA0 qAH)︸ ︷︷ ︸
V A(∅)

. (16)

It follows that, under Conditions (1) and (16), ΓA(v, p0, (0, 0), q, P ) = (1− pB0 )pA0 .

Search under SSA (µ = (µA, µB) with µA ≥ µB = 1 − µA). From Lemma 1, the

optimal stopping-time τ in the definition of the search index (12) is the first time at which

the index of the candidate identified through search drops below V S . Now suppose that

V A(∅), V B(∅) >
δ
(
µApA0 q

A
Hv

A + µBpB0 v
B
)

1− δ2 + δ2
(
µApA0 q

A
H + µBpB0

) > V A(0), (17)

with V j(∅), j = A,B, and V A(0) as in (14) and (15), respectively. We argue that the

search index is then equal to

V S =
δ
(
µApA0 q

A
Hv

A + µBpB0 v
B
)

1− δ2 + δ2
(
µApA0 q

A
H + µBpB0

) . (18)

To see this, recall that the optimal stopping-times τ j in (12) are the first times at which

the index of the arriving candidate drops weakly below V S . Condition (17), along with the

fact that V B(0) = 0, guarantee that τ j coincides with the first time at which an evaluation

yields a negative signal realization s = 0, and is otherwise equal to τ j = +∞. That the

search index is equal to (18) then follows from these properties along with the definition

of the search index in (12).

Given Lemma 1 and the stationarity of the search index, if search is preferred to the

evaluation of a candidate at some history, this continues to hold at all future periods. Let

ΓAS denote the probability of selecting an A-candidate once search is launched. Given the
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above conditions,

ΓAS = µA
(
λA(∅) + (1− λA(∅))ΓAS

)
+ µB

(
1− pB0

)
ΓAS ,

or

ΓAS =
µAλA(∅)

µAλA(∅) + µBpB0
.

Therefore, under Conditions (1), (16), and (17), for any µ = (µA, µB) with µA+µB = 1,

the ex-ante probability of selecting an A-candidate under SAA is equal to

ΓA(v, p0, µ, q, P ) = (1− pB0 )

(
λA(∅) + (1− λA(∅))

(
µAλA(∅)

µAλA(∅) + µBpB0

))
.

Comparison. Under Conditions (1), (16)-(17), for any µ = (µA, µB) with µA+µB = 1,

ΓA(v, p0, µ, q, P ) < ΓA(v, p0, (0, 0), q, P ) if and only if (5) holds. Hence,

Proposition 3. Suppose Conditions (1), (5), (16), and (17) hold.17 SAA policies pro-

moting the expansion of the candidate pool reduce the ex-ante probability that minority

candidates are selected: ΓA(v, p0, µ, q, P ) < ΓA(v, p0, (0, 0), q, P ), for any µ = (µA, µB)

with µA ≥ µB = 1− µA.

Proof. The result follows from the arguments preceding the proposition.

The intuition is similar to the one for the myopic rule. Qualified minority candidates

whose initial evaluation yields negative results due to noise in the evaluation process may

not have the opportunity to prove themselves when search is an attractive alternative to

further evaluation. When this is the case, SAA policies promoting improvements in the

search technology may reduce the ex-ante probability that a position is given to a minority

candidate. Importantly, this may occur even if such improvements bring more minority

candidates to the pool than non-minority ones (that is, even if µA > µB).

Next, consider SAA policies tilting the search technology in favor of minorities at

the expense of non-minorities (formally, an increase in µA along with a reduction in

µB). Consider the same evaluation technology as in (6). Arguments identical to those

for SAA policies promoting improvements in the search technology imply that V j(∅) =

17These conditions, along with the maintained assumptions (i)-(iv), hold for a non-empty open set of
parameters. For example, they hold when δ = 0.9, pA0 = 0.75, pB0 = 0.7, vA = 1.2, vB = 1, qAH = 0.19, and
µA = 0.52 = 1 − µB .
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λj(∅)vj/
(
1− δ(1− λj(∅))

)
and V j(0) = λj(0)vj/

(
1− δ(1− λj(0))

)
, with λj(∅) = pj0q

j
H

and

λj(0) = pj(0)qjH =
(1− qjH)pj0q

j
H

1− qjHp
j
0

,

j = A,B. Assume the B-candidate is evaluated first:

pB0 q
B
Hv

B

1− δ(1− pB0 qBH)︸ ︷︷ ︸
V B(∅)

>
pA0 q

A
Hv

A

1− δ(1− pA0 qAH)︸ ︷︷ ︸
V A(∅)

. (19)

Status-quo (µ = (µA, µB) with µA = 1 − µB < 1). As in the case of SAA policies

promoting improvements in the search technology, assume

V A(∅), V B(∅) >
δ
(
µApA0 q

A
Hv

A + µBpB0 q
B
Hv

B
)

1− δ2 + δ2
(
µApA0 q

A
H + µBpB0 q

B
H

) > V A(0), V B(0), (20)

and observe that this condition implies that the optimal stopping-time in the formula for

V S is the first time at which an evaluation yields a negative realization s = 0, which in

turn implies the search index is equal to

V S =
δ
(
µApA0 q

A
Hv

A + µBpB0 q
B
Hv

B
)

1− δ2 + δ2
(
µApA0 q

A
H + µBpB0 q

B
H

) .
Search under SAA (µ = (µA + ζ, µB − ζ), ζ > 0). Now assume

V A(∅), V B(0) >
δ(µA + ζ)λA(∅)vA + δ(µB − ζ)vB

(
λB(∅) + δ(1− λB(∅))λB(0)

)
1− δ2 ((µA + ζ) (1− λA(∅)) + (µB − ζ)(1− λB(∅))(1− λB(0))δ)

(21)

> V A(0), V B(0, 0), (22)

where V A(∅) and V B(0) are as defined above and where

V B(0, 0) =
λB(0, 0)vB

1− δ(1− λB(0, 0))
,

with λB(0, 0) = pB(0, 0)qBH and

pB(0, 0) =
(1− qBH)pB(0)

1− qBHpB(0)
.
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Conditions (21)-(22) imply that it takes one negative signal realization s = 0 for the index

of an A-candidate to drop below

δ(µA + ζ)λA(∅)vA + δ(µB − ζ)vB
(
λB(∅) + δ(1− λB(∅))λB(0)

)
1− δ2 ((µA + ζ) (1− λA(∅)) + (µB − ζ)(1− λB(∅))(1− λB(0))δ)

(23)

and two negative signal realizations s = 0 for the index of a B-candidate to drop below

the value in (23). These properties in turn imply the search index is equal to the value in

(23).18

Comparison. Now observe that when (10) holds in addition to the conditions assumed

above,

ΓA
(
v, p0, (µ

A, µB), q, P
)
> ΓA

(
v, p0, (µ

A + ζ, µB − ζ), q, P
)
.

Proposition 4. Suppose Conditions (6), (10), and (19)-(22) hold.19 SAA policies tilting

the search technology in favor of minorities reduce the ex-ante probability of selecting a

minority candidate: ΓA
(
v, p0, (µ

A + ζ, µB − ζ), q, U
)
< ΓA

(
v, p0, (µ

A, µB), q, U
)
, for any

ζ > 0.

Proof. The result follows from the arguments preceding the proposition.

The mechanism behind this result is similar to the one under the myopic rule. Such

policies reduce the overall attractiveness of search relative to a more careful evaluation

of the candidates already in the pool. Because minority candidates are more difficult to

evaluate, the committee may then respond to such policies by substituting search with the

evaluation of non-minority candidates at the expense of minority ones. When this effect is

strong enough, such policies may thus have the unintended effect of reducing the ex-ante

probability of selecting a minority candidate.

5 Discussion

The Rooney rule was adopted in 2003. Yet in 2020, there are only three African-American

head coaches, the same number as in 2003, prompting criticism viewing the rule as merely

a means of “checking a box”.20 Similar hesitations about the effectiveness of other SAA

18The arguments are similar to those for the SAA policies promoting improvements in search technology.
19These conditions, along with the maintained assumptions (i)-(iv), hold for a non-empty open set of

parameters. For example, they hold when δ = 0.9, pA0 = 0.69, pB0 = 0.68, vA = 1.01, vB = 1, qAH = 0.4,
qBH = 0.8, µA = 0.15 = 1 − µB , and ζ = 0.01.

20See the Washington Post, Jan 5, 2020: “The dearth of black coaches in the NFL is a problem that
somehow still hasn’t been fixed”.
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policies have recently been raised in contexts ranging from academic recruitment to CEO

hiring.

Why are many SAA policies unsuccessful? This paper suggests a possible explanation

based on differences in the effectiveness of evaluating minority and non-minority candi-

dates, which does not presume any bias in decision making. SAA policies promoting the

expansion of the candidate pool or tilting the search technology in favor of minorities

(while retaining discretion over when to expand the pool) do increase the percentage of

minority candidates considered for a position, but also alter the desirability of searching

for new candidates relative to evaluating those already under consideration. The purpose

of this article is to show that such policies may lead to a reduction in the probability

a position is assigned to a minority candidate. Unless accompanied by steps to reduce

difficulties in the evaluation of minorities, such SAA policies thus do not guarantee their

desired effects; they may indeed amount to “checking a box,” or even prove counterpro-

ductive. In such circumstances, “hard” affirmative action may be necessary to enhance

minority recruitment.
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