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Abstract

This document contains additional material as well as extended proofs of all the results in the
main text. Section 1 contains comparative statics of the equilibrium and efficient schedules with
respect to the quality of private information, when the latter is exogenous. Section 2 shows that ad
valorem taxes are suboptimal also when information is exogenous. Section 3 consider a fictitious
economy in which agents trade efficiently; it shows that information acquisition is inefficient but
the inefficiency can be corrected with simple policies. Section 4 contains detailed proofs for all
the results in the main text.

The numbering of the conditions in this document is independent from the one in the main
text and any cross-referencing is meant with respect to the numbering of the conditions in this
document, not the one in the main text.
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Figure 1: The blue solid line corresponds to a” whereas the orange dashed line represents the sum of the two
externalities Z(a”) + A(a”). The parameter values used for this simulation are A= 8 =7. =7, = 79 = 1, 7, = 30,
and 1 <y <5.

1 Comparative statics of equilibrium and efficient schedules with

respect to precision of private information

Using simulations, it is possible to nail down the effect of variations in the quality y of the traders’
private information on the two externalities and on the slope of the efficient schedules. Figure 1
depicts the sensitivity of the traders’ efficient schedules to their private information a’ (solid blue
curve) as well as the sum of the two externalities Z(a’) + A(a’) (dashed orange curve), as a function
of the quality y of the traders’ private information.

As y increases, the efficient response a” to the traders’ private information increases, reflecting
the higher value of responding to more accurate private information. Furthermore, because both =
and A increase with a’, a higher y contributes to a higher value of Z(a’) + A(a”) via the indirect
effect that y has on the two externalities through a”. In addition, holding a” fixed, we have that y
has a direct effect on both Z(a’) and A(al). Whereas Z(a?) is increasing in y, A(a’) is decreasing.
Combining the direct with the indirect effects, we then have that =Z(a”) unambiguously increases
with 3, whereas A(a”) is non-monotonic in y. For small values of y, the sum of the two externalities is
negative and decreasing in y, whereas, for sufficiently high values of y, the sum of the two externalities
is positive and increasing in ¥, as can be seen from Figure 1.

Next, we turn to the relationship between the two externalities and the slope of the efficient
demand schedules, ¢I'. Figure 2 depicts the sensitivity ¢/ of the efficient demand schedules to the
price (the solid blue curve) along with the sum of the two externalities Z(a’) + A(a”) (the orange

dashed curve), as a function of the quality y of the traders’ private information. The two curves
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Figure 2: The blue solid line corresponds to ¢T whereas the orange dashed line represents the sum of the two

externalities A(a”) + Z(a”). The two curves switch signs for the same value of y. The parameter values used for this

simulation are A\=f =T =7 =179 =1, 7 =30, and 1 <y < 5.

switch sign for the same value of y.

As explained above, when the traders possess high-quality private information (high values of y),
the marginal value of generating additional information through the price is low and the pecuniary
externality dominates over the learning externality, so that Z(a’) 4+ A(a’) is positive and increasing
in y. In this case, ¢! is positive meaning that the efficient demand schedules are downwards sloping,
as they would be in an economy in which the fundamental value of the asset # is known to the
traders. When, instead, the traders possess low-quality private information, the learning externality
dominates over the pecuniary externality so that Z(a”) + A(a”) is negative and first decreasing and

then increasing in y. In this case, ¢’

is negative meaning that the efficient demand schedules are
upwards sloping, reflecting the high sensitivity of the traders’ estimates of the fundamental value of

the asset 0 to the price, relatively to the sensitivity of the same estimates to their private information.

The above results thus suggest that, as technological progress makes information cheaper (that
is, the cost of information acquisition decreases), the economy is likely to eventually enter into a
regime of over-investment in information acquisition.

To further understand the implications of the above inefficiencies for asset-price variables, it is
helpful to introduce the following:

Definition A1l. Let market depth be the inverse of the sensitivity of the price to the supply
shock u: MD = (dp/du)™" =1+ Bé. Let the volatility of the price be: o, = (Var [p])% Finally, let

the informativeness of the price be the precision of the endogenous signal contained in the price: 7.
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Figure 3: The first panel depicts market depth, the second one price volatility, and the third one price informativeness.
In each panel, the blue solid curve corresponds to the laissez-faire economy, whereas the orange dashed curve corresponds
to the solution to the planner’s problem. The z-axis in all three panels represents the scalar B that parametrizes the

quadratic cost of information. The other parameter values are A = 3 =1.3, 7. = 0.8, 7, = 0.6, 79 = 0.1, and 7, = 30.

Figure 3 shows how the above asset-pricing variables are affected by changes in the cost of
information acquisition, both under the decentralized equilibrium of the laissez-faire economy and
under the efficient allocation (where both the acquisition and usage of information coincide with the
welfare-maximizing levels). The figure assumes a quadratic cost of information C(y) = By?/2; a
reduction in the cost of information corresponds to a reduction in the parameter B. As the cost of
information decreases (moving from right to left along the x-axis) market depth, price volatility, and

price informativeness all move from being inefficiently low to being inefficiently high.

We could also establish the following numerical result: When ¢ < 0 (i.e., when the efficient
demand schedules are upward sloping), the equilibrium in the absence of policy interventions is
such that the acquisition of private information, the sensitivity of the demand schedules to private
information, price volatility, market depth, and price informativeness are all inefficiently low. The
opposite is true when ¢ > 0 (i.e., when the efficient demand schedules are downward sloping). As
the cost of acquiring information decreases, the economy moves from the first regime to the second.

To obtain the result, we simulated the model 1,000 times drawing the parameters 7, 7, 7, 79, A,
and 3 uniformly from 1 to 30. The cost of acquiring information in the simulations is C(y) = By?/2,
with B drawn uniformly from 0 to 0.01. In all the simulations, the sign of ¢, y*—y”, and a*—a” is the
same, consistently with the analytical results in the main text (Proposition 3 in main text). Figure
4 illustrates the relationship between the cost of information, parametrized by B, the inefficiency
y* —yT in the acquisition of information, the slope ¢ of the efficient demand schedules, and the

inefficiency a* — a’ of the equilibrium limit orders under one of these simulations.
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Figure 4: The blue solid curve represents the slope of the efficient demand curve. The orange dashed curve represents
the inefficiency in information acquisition, where a positive number means inefficiently high acquisition, and a negative
number means inefficiently low acquisition. The yellow dotted curve represents the inefficiency in the sensitivity of the
demand schedules to private information, where a positive number means inefficiently high sensitivity, and a negative
number means inefficiently low sensitivity. The xz-axis is the value of B that parametrizes the cost of information

C(y) = By?/2. The parameter values in the simulations are A= =71, =7, = 7p = 1, and 7, = 30.

2 Sub-optimality of ad valorem taxes with exogenous information

Proposition Al. Suppose that y; = y for all i, with y exogenous. If a planner is constrained to
use ad valorem tazxes (that is, a policy that, given p and x;, charges each trader i a total taz bill equal

to T(p, ;) = typx;, for some t, € R) then the optimal policy is such that t, = 0.

Proof of Proposition Al. Given I; = (y;, s;), trader ¢’s demand schedule maximizes, for each

price p, the trader’s expected payoff
2
i
E (9 — (1 + tp)p) Tr; — )\?Zui,p .
The solution to this problem is the demand schedule given by
1
X(p:1i) = 5 ([0 15, p] — (1 +1p)p), (1)
where, as in the laissez-faire equilibrium, E[#|I;, p] denotes the trader’s expectation of § given I; and
P.
In any symmetric equilibrium in which the price is an affine function of (6,u,n), the equilibrium
trades are given by

x; = as; +b+cz (2)

for some scalars (a, b, c) that may depend on the level of the tax ¢, and on the quality y; = y of the

agents’ information.



When the individual trades are given by (2), the aggregate trade is equal to

:E:(a—i-c)z—i-%—i-b,
where we used the fact that z +u/(B8a) = 6 + f(y)n. Replacing & into the expression for the inverse

aggregate supply function, we then have that the equilibrium price
p=a+pBb+ pla+c)z (3)

can be expressed as a function of (a,b,c) and the endogenous public signal z, as in the laissez-fare

equilibrium. Furthermore,
E[0]1;, p| = 71(7w(a))si + 12(1w(a))z, (4)

with v1(-) and ~2(-) given by (20) and (21), respectively. Combining (1) with (3) and (4), we thus

have that the equilibrium trades satisfy

1
zi = 1 nlw(@)si = (1+1p) (@ +Bb) + (12(7w(a)) — (1 +p)Ba+c)) 2] (5)
We conclude that the sensitivity of the equilibrium trades to private information satisfies
. W (6)

That is, no matter the value of ¢,, the equilibrium level of a is given by a*, as in the laissez-fare
economy in which ¢, = 0. Furthermore, combining (5) with (6) and using (21), we have that the

equilibrium sensitivity of the trades to the endogenous public signal is given by

1 To + YTy Tw(a)
=—F——|(1-X —(1+¢ , 7
‘ Bl +1tp) + A [( ¢ YTy ) Tw(a) + 79 ( p)f ")
whereas the constant b in the equilibrium trades is given by
o
b=—-(14+1t) ——F—. 8
( ”)(1+tp)6+A ®)

Hence, any ad valorem tax t,, # 0 induces the same sensitivity a* of the equilibrium trades to private
information as in the laissez-faire equilibrium in which ¢, = 0 but different values of b and c. Because,
given a*, the values of b and ¢ (equivalently, of b and ¢) in the laissez-fare economy maximize welfare,
as shown in he main text, we conclude that any policy ¢, # 0 results in strictly lower welfare than
t, = 0. Q.E.D.

3 Inefficiency in information acquisition under efficient trading

Suppose that the traders submit the efficient schedules. Do they then collect private information in
society’s best interest? We first consider the case where efficiency in trading is imposed exogenously
and then the case in which it is induced through the policy in Proposition 4 in the main text. In

both cases, we find that the traders do not acquire information efficiently.

Proposition A2. Let y? denote the socially optimal quality of private information and sup-
pose that all traders submit the efficient schedules for information of quality y* (parametrized by

(a®,07, 7). When ¢ > 0 (i.e., when the efficient demand schedules are downward sloping), the



quality of private information acquired in equilibrium is higher than y*, whereas the opposite is true
when ¢T < 0 (i.e., when the efficient demand schedules are upward sloping).

When ¢ > 0, in the laissez-fare equilibrium, traders over-respond to private information. If they

were to respond efficiently, they would over-invest in information. When, instead, ¢ < 0, in equi-
librium, they under-respond to private information. If they were to respond efficiently, they would
collect too little information. In the special case in which ¢I' = 0 (that is, when the efficient demand
schedules are price-inelastic and hence can be implemented with market orders), if information were
exogenous, traders would trade efficiently. In this case, when information is endogenous, each trader
acquires information of quality y”, even in the absence of policy interventions.

The reason why traders do not collect information efficiently when expecting to trade efficiently
is that they do not internalize that, under the efficient schedules, changes in the quality of private
information affect the co-movement between the asset holdings and the various aggregate shocks.
Because of market incompleteness, such co-movements are not priced. As a result, private incentives
fail to properly account for the welfare effects of these changes. In particular, the same pecuniary
and learning externalities that create a wedge between the private and social value of responding to
private signals create a wedge between the private and social value of acquiring more information

under efficient trading.

Proof of Proposition A2. Let y” denote the socially optimal quality of private information and
(aT, BT, ¢T) the coefficients describing the efficient demand schedules when the precision of private
information is y”. Next, for any ¢, let E[W7; ] denote ex-ante gross welfare when all traders acquire
information of quality ¥ but then submit the efficient demand schedules for information of quality
y”' (that is, the schedules corresponding to the coefficients (a” b, ¢")). Such a welfare function is
gross of the costs of information acquisition. Finally, for any (y;, y), let E[?TZT ; Ui, y] denote the ex-ante
gross profit of a trader acquiring information of quality y; when all other traders acquire information
of quality gy, and all traders, including ¢, submit the efficient demand schedules for information of
quality y”' (that is, the schedules corresponding to the coefficients (a” T, ¢”) mentioned above). The
payoff is again gross of the cost of information acquisition. We start by establishing the following

result:

Lemma Al. Let y' denote the socially optimal quality of private information and suppose
that all traders submit the efficient demand schedules for information of quality y* (parametrized
by (a”, b, ¢)). When ¢ > 0 (i.e., when the pecuniary externality dominates over the information

externality so that the efficient demand schedules are downward sloping), for any g,

d
EWT;g]

Elrl; v, 0 > —
[ ] s

yi yim
whereas the opposite inequality holds when ¢ < 0 (i.e., when the learning externality dominates over

the pecuniary externality and, as a result, the efficient demand schedules are upward sloping).



Proof of Lemma A1l. When all traders other than i acquire information of quality ¥ and then
submit the demand schedules corresponding to (a”, l;T, ¢, irrespectively of the information acquired

by trader ¢ and of the demand schedule submitted by the latter, the equilibrium price is given by
p(0,u,m;9) = o+ b7 + Bla” +¢")2(0,u,m; ),
where b7 and ¢’ are the coefficients obtained from (a”, b7, ¢7) using the functions (17) and (18),
and where z(6,u,n;7) = 0 + f(§)n — u/Ba’.! Furthermore, the aggregate level of trade is equal
X(0,u,1;5) = a’ [0 + f(g)n] +b" + T 2(0,u,m; 7)
whereas the level of trade for agent ¢ when he acquires information of quality ¥; and then submits

the demand schedule corresponding to the coefficients (aT, Z;T, ¢l is equal to

Xi(0,u,m, €39, y:) = a’ [0+ f(yi)ei + fyi)n] +b" + T 2(0,u,m;9).

Si

It follows that, when all traders other than i acquire information of quality 7, trader ¢ acquires infor-
mation of quality y; and all traders, including trader ¢, submit the demand schedules corresponding

to (a”, T, ¢, trader i’s ex-ante gross payoff is equal to

_ _ _ A _
Elrl; 9, =E [(9 —p(0,u,n;y)) Xi(0,u,n, €39, y;) — §Xi2(97u, 7, ei;y,yi)] '

Using the fact that the market-clearing price must also be consistent with the inverse-supply function

and hence satisfy p = a — u + X (6, u,n; 7), we then have that
_ 5 _ _ A _

Elrl; 9, =E [(9 —a+u—BX(0,u,n; y)) Elwil,u, m:9,y:] = SE (27160, u,m; y,yi]]
or, equivalently,

E[W'LTa Y, yl] = E[ (9 —a+u-— BX(97 U, 75 y)) E[x2|97 u, 159, yl] - %VGT[.ZUZ"H, n,U; Y, yz]

_% (E[$1|9a 1, u; Y, yz])z :| )
where
E[zi|0,u,n; 9, y:] = E[X;(0,u,n, €59, vi)|0,u,m; 9, yil,
E[$%‘9) U, 15 ga yl] =E (Xl(ev U, 1, €43 ga y’b))2 ’07 u, 15 g) Yi|
and
Var(zil0,n,u; 7, yi| = El2?|0, u,n; 7, yi] — (Elw:l0,w,m;7, )
Using the fact that
a0, u, ;9,9 = a" [0+ f(yi)n] +b" + " 2(0, u, ;)
and
_ 2
Varlzil0,m,w; g,y = (a’ f(y:))" /7e

!Observe that the functions (17) and (18) do not depend on y and hence ¢’ and ¥ do not depend on .




we have that

) . (aT)?
ayiE[mT; U, Yi E [(9 —a+u—BX(0,u,n; 17)) an’(yz-)n] - A y Fa) f (i)

—AE [(a” [0+ f(yi)n] + 0" + " 2(0,u,m;9)) a” f'(yi)n]

; (a")’
= —a"BE [ X (6, umg)n] £ (i) = A f () ()
N (@) P ) =~ AaT R 0, 5] S (1),
n
Using the fact that

~ T U
E [X(H,u,n;@)n} _ o JG) g [2(6, u, m; 7))
and -
E [2(0,u, n;y)n] = 7(3)
we then have that
T\ 2
Swieliiul = a8 [0 + L] re -2 s re)
@) ) ) = = AT @)1 ) o)
n n
We conclude that
0 1 1 aT)2
R I U E R U PRSP S =S IOI )
Yi V=7 Tn Tn e
M@ @I @) = 2T f ) (5)
n n
Nty T a® T T 1
= @@t N+ G+ DT (10)
e 7

Next, observe that, when trader ¢ also acquires information of quality y and all traders submit

the demand schedules corresponding to (a”, b7, ey,

al f(y 2 ~
E[TFZT,Q’@]]ZE <0—a+u—6)2(9,u,77;g))X(Q,u,n;g)—;\(fT(y))—/Z\(X(G,u,n;g)>2].

Now observe that, when all traders acquire information of quality ¢ and submit the demand schedules
corresponding to (a’, l;T, ¢!, the ex-ante payoff of the representative supplier (which the planner

accounts for in the computation of welfare) is equal to

BlTig) = B |(p(0,u0) — -+ 0) X0, wm0) - § (XCwmn)

2
- 2
where we used the fact that p(6,u,n;7) = o —u+ X (0, u,n; 7). We thus have that, when all traders

acquire information of quality ¢ and submit the demand schedules corresponding to (aT,l;T,éT),



ex-ante welfare is equal to

EW"; 9 = El/;9,9] +E[ILy]
~ NG D N2
Hence,
- B oTV2 F(3) (7

d o (0 _a_'_u)aX(Oanf,n;y) _ /\( ) 7Jj(y)f (9)

gt =E o X () ’

Y —(A+ B)X (0, u, 1 5) 552
where

9 -
ang(&u,n;ﬂ) = (a" + ) f (g

It follows that

d NCAIOIAC
4 T = (a”)" f()f (9)
dy Te

Using the fact that

— (A +B)(a” + ) F (9)Eopu | X (0, u,m;9)0] -

B [X(0.umin] = (@ + ) o)

Tn

we thus have that

d . A a)’ F@)f @) 2 o L
EWTg = - ) —(A+8) (a" + ") @) (G) (11)
Y Te Tn
Comparing (10) with (11), we thus have that, when ¢’ < 0,
0 d
Elrl; 9, i) > —E[W7;q,
9y Yi=y dy
whereas the opposite inequality holds when ¢! > 0. Finally, use Condition (18) to observe that
el = _,B(a’ﬁiicT) and Condition (27), along with the formula for 7,,(a), to observe that a’ + ¢ > 0.

Jointly, the last two conditions imply that sgn(¢’) = —sgn(c!) thus completing the proof of the
lemma.

We now show that the result in Lemma A1l implies the result in the proposition. We start by
establishing the (global) concavity of E[rl;9,3;] and E[WT;4] in y; and g, respectively. Recall
that the coefficients defining the equilibrium trades as a function of the private signals s; and the
endogenous public signal z are kept constant in both cases at (a’,b”,c!), where (a”,b”,c") is the

vector defining the efficient trades when the quality of private information is y?. Using (9), we have

that
P ool = a8 L (a4 ™) ) — 2 (a2 T2+ L1 2 ) £
Sl ru] = B (0 + ) ) =3 @) | | S (0 0)
2T ) )
= @[5 )] ) =A@ ] () )
7—77 Te Tn Yi



Now observe that f”(y;) = 3,/7;/4y} > 0 and 8%1- (f(yi) f'(yi)) = 1/y3 > 0. Hence,

0° e T
T BT gy = —— |2V (5T N e) + aaT T
8:’./? [ﬂ-z ﬂy7y} y?'rn |:4\/?7 (/Ba +(B+ )C )+ a Te

Recall that, irrespective of the sign of ¢, a” > 0 and a’ + ¢’ > 0, where the last inequality is
established in the proof of Lemma Al. Hence, when ¢’ > 0, for any (7, y:), 0°E[x!;9,v:]/0y? < 0.
To see that the same inequality holds when ¢! < 0, recall that

e ! [(1 “al 2T ) o(a’) - ﬂaT] .

- B+ A yI'r, ) 1w(a®) + 79
Hence,
T T T T T8 Tw(aT)
A =(1—-Xa" — A .
fam +(B+A)e ( ¢ ¢ yTTn> Tw(al) + 19
Using

)= 2 (@) y
’ B2 (a")’ 7y + "y

we can rewrite the last condition as
2
52 (CLT) Tu

32 (aT)2 Tu (YT'1y + 79) + yTang.

Ba® + (B+A) el = [(1 - AaT) y'r, — Xa' 7]

Hence,
Ba’ + (B+N) " E (1= 2a") yTry — AaT .

Now recall that a® solves
r 1 1

© =X Ar(a) T E(aT) § A (12)
Using the definition of the A function, we have that the latter condition is equal to
ol = 1 TeyTTn(yTTn — 1w(a"))
A (YT)? 72 (7 + 79+ Tw(aT) — mu(aT)7e (70 + 297 7) + [E(aT) + A(aT)] 7y 7 (y 7y — m(glng))) ,

with 7. = (y'7er;) / (7e + ) and 7,(a) = B2a*ry’ 7,/ (B2a®7y + y*'y)). Observe that the numera-
tor in (13) is positive. Because a’ > 0, as shown above, this means that the denominator in (13) is

also positive. Furthermore, using (13), we have that

(1 — )\aT) yTTn —XaT'rg

yTTnQ
(U7) 72 (ret+7o+70(aT)) = 7w (aT)7e (rg+2y T ) +E(aT)+A(aT ) ey Ty (y 7y — 7 (aT))

where
Q= yTT77 (yTTT7 — 7'6) (7'9 + Tw(aT)) + [E(aT) + A(aT)} TEyTTn(yTT77 — Tw(CLT)).

We thus have that
(1= xa")y"'r, — NaT'mp £ Q.

10



Now, using the fact that 7. = (y?7.7,) / (e + 7;), we have that Q can be rewritten as

Q=(y"m)" - i — (o + 7u(a) + [2") + Ah)] - - (v"7)" (y" 7y — mla”)).

Because y'7, — 7,(a’) > 0, we conclude that sgn (Q) > 0 if E(a’) + A(a’) > 0. The latter

property holds because, as explained in the main text, when ¢/ < 0, then ¢/ > 0 in which case

Z(a’) + A(a’) > 0. We conclude that, no matter the sign of ¢?, for any g, E[r!;4,y;] is strictly
concave in ;.

Next, consider the concavity of E[W7; 7] in 3. Using (11), we have that

d? A (aT)2 21| 0

—EWT g = —|/———+(\ Ty —| =

Bl N A U X A=
< 0,

where again the inequality follows from the fact that a% (f(m)f'(5)) > 0. Hence E[WT; 7] is strictly

concave in . Because ]E[T(‘lT iU, yi] is strictly concave in y;, in equilibrium, all traders acquire infor-

mation of quality y* such that

0 «
5, Elmi 9, =C'(y").
Yi Yi=y=y*

Now recall that the socially-optimal quality of information satisfies
d _
fE[WT; Yl = C’(?JT)'
Y g=yT
Because E[WT; y] is strictly concave in g, the result in Lemma 2 then implies that, when ¢ <o,

y? > y*, whereas, when ¢ > 0, y7 < y*. Q.E.D.

Next, we characterize policies inducing the traders to acquire information efficiently when they

submit the efficient schedules.

Proposition A3. Let yT denote the socially optimal quality of private information and
(a®, l;T,éT) the coefficients describing the efficient schedules (for quality of information y* ). Sup-
pose that, no matter the information collected, the traders submit the efficient demand schedules
(parametrized by (aT,i)T,éT)). The planner can then induce the traders to acquire information of
quality yT through an ad valorem tax/subsidy equal to T(p,x;) = fppxi, with fp >0i4fél >0

downward-sloping demands) and t, < 0 if ¢ < 0 (upward-sloping demands).
p
Hence, a planner who trusts the traders to submit the efficient demand schedules can induce

them to collect information efficiently by using a simple “ad valorem” tax on total asset purchases

similar to those discussed in the policy debate.

Proof of Proposition A3. Under the proposed policy, each trader i’s ex-ante gross expected payoff
when all traders other than 7 collect information of quality , trader ¢ collects information of quality

yi, and all traders (including ) submit the efficient demand schedules (parametrized by (a”, b7, éT))

11



is equal to

- A
Bl ()il = B |60~ (U dplpos - 507

= E[@xi—(1+fp)(a—u+ﬁa~:)xi—;\xf]

with

Si

p:P(97u>nvy) :a_u+BX(97u777;g)a

and
& =X(0,u,m;y) =a’ 0+ f@)n) +b" +c" <0 + f(@)m — /;;T) :

and where b7 and ¢! are the coefficients describing the equilibrium trades obtained from b and &7
using (17) and (18). Hence,
S Vo M Y &
\/37\/@7'77 \/?j\/@Tn 2 YiTy 2 yiTe ’
where N is a function of all variables that do not interact with y;. It follows that
0 T, - B(1 +t,)(a” + cT)aT AaT al T A (aT)2
5y, Elmi (9, 51)s )] = + —=
Vi 2Ty YYi 2Tyi/Yi \VY% VU

Because E[7] (4, y:);t,] — C(y;) is concave in y;, for y; = § = yT to be sustained in equilibrium it is

Elr} (7,yi)itp] = N—B(a" +c")a

2yi27'e '

both necessary and sufficient that

0 A
ayiE[mT "y )it =C'(y")

which is equivalent to
B+ ) + 3] (a7 +<T)a” A (aT)?
21y, 27Te

Using the fact that y” satisfies
(ﬂ+)\)(aT _|_CT)2 N A (aT)2

=C'" "),

27, 27,
n e
we have that the proposed policy implements the efficient acquisition of private information when
;- (B + A)CT
P BT

Using the fact that

= 541_)\ (72 (Tw(@T)) - ﬂaT)

we then have that the optimal fp is equal to

- 72 (Tw(aT)) - ﬂaT
P /BCLT

12



where 79 is the function defined in the proof of Proposition 1 in the main text. Q.E.D.

4 Extended Proofs of Results in Main Text

4.1 Proof of Proposition 1 in main text (equilibrium trading).

As explained in the main text, when the traders submit affine demand schedules with parameters

(a, b, ¢), the equilibrium price is equal to

o+ b Ba
= 14
P=11g: T 11pe” (14)
where
z=0+w, (15)

with w = f(y)n — u/(Ba). The information about # contained in the equilibrium price is thus the

same as the one contained in a public signal whose noise w has precision”

B2a’yr,T,
B2a’r, +ymy

Tu(a) (16)

In turn, this implies that the equilibrium trades z; = as; + b— ¢p are affine functions of the traders’
exogenous private information s; and the endogenous public information z contained in the price.
That is, when the endogenous public information contained in the price is equivalent to z, a trader

with private signal s; purchases an amount of the asset equal to

T =as; +b+cz

where )
~ L a+ (b
b="b— 17
“1+pe (7)
and
Baé
= — . 1
‘T T1+ype (18)

For each vector (a, b, ¢) describing the traders’ demand schedules, there exists a unique vector (a, b, ¢)
describing the traders’ equilibrium trades as a function of their (exogenous) private information, s;,
and the (endogenous) public information, z, and vice versa. Hereafter, we find it more convenient
to characterize the equilibrium use of information in terms of the vector (a,b,c) describing the
equilibrium trades. When the individual trades are given by x; = as; + b + cz, the aggregate trade

is equal to
= /azidi =a(@+ f(y)n) + b+ cz.

Using the fact that z =0 + f(y)n — u/(Ba), we thus have that
u
Ba

*To derive 7,,(a) we use the fact that f(y) = 1/,/7.

)+b—|—cz:(a+c)z+%+b.

Z=a(z+

13



Using the expression for the inverse aggregate supply function p = o — u + 8%, we then have that

the equilibrium price can be expressed as follows:
p=a+Bb+Blatc) (19)
Next, observe that

-1
E[6|1;,p] = E[f]s;, 2] = [ Cov(8,s;) Cov(d,z) } C‘Zzgsi) C;";fg;)z) ] ! SQ:EZ] ]
o ] o i Swre - [ s~ Elsi]
o "o ag + f(y)Za% ag +02(a) z — E[z] ’

1

where 02 = 7,1, 02(a) = 1u(a)7!, o =7

o Substituting for the inverse of the

variance-covariance matrix, we have that

1
(77 + o2)(0F + 02 (@) = (7F + FWPoR)?
(o3 o] ! o +odla) (o3 + f(w)’oy) ] [ i — E[si)
—(of + f(y)?o7) oj +0? z—E[2]
Expanding the quadratic form, we have that
oj (02(a) — f(y)*07)

(0§ +02)(0f + 03(a)) — (07 + f(y)?07)?
+ % (0 = fW)°0y) (= — E[2)).

(05 + 02)(o5 + 02(a)) — (0F + f(y)?07)?
Using the fact that E[s;] = E[2] = 0, and replacing o with 7, ', 02(a) with 7,(a)~}, oy with 7,71,
o2 with 77!, and f(y) = 1/,/y, we have that

E[0]s;, 2]

E[0]s;, z]

(si — E[si])

Elfsi,z] = m(rw(a))si +12(1w(a))z
where, for any 7,
_ TeYTy (YTy — To)
To) = 20
71( W) ?/27'7? (Tw + 7 + T@) — TwTe (TG + 23/7-77) ( )
and
2,2
T (y Ty~ TEyTn) ( T + yTn) T
72(7) Y272 (T + Te + 79) — TwTe (79 + 2yTy)) () YTy Tw + To (21)

Now recall that optimality requires that the equilibrium trades satisfy

1
Ti= (E[0]s, 2] — ).
Using the fact that p = a+ b+ B(a+ ¢)z, and the characterization of E[f|s;, z] above, we thus have
that

v = %[yl(Tw(a))si—(a—&—ﬁb)—l—(%(m(@)—5(a+c))z]~

14



The sensitivity of the equilibrium trades to private information must thus satisfy

_ n(rw(a)
a=-—" " (22)

The sensitivity of the equilibrium trades to the endogenous public signal contained in the equilibrium

price must satisfy

1
¢ =5 (2(r(a)) = Bla+c)). (23)
The constant b in the equilibrium trades must satisfy
b
p= -t bo (24)

Replacing the expression for 7i(7,(a)) in (20) into (22), we thus conclude that the sensitivity a*
of the equilibrium demand schedules to the traders’ private information must solve the following

equation )
a = 7AA—(TUJ(G*)), (25)

where 5 o
Yo7y (Tw + Te + 79) — TwTe (7o + 2yTy)

Alr,) =
(7) TeYTy (YTy — Tu)

. (26)

Using (21), (23), and (22), we have that the sensitivity of the equilibrium trades to the endogenous

public signal contained in the equilibrium price must satisfy

! Kl—)\a—/\am>7—w(a)—ﬁa . (27)

c=——
B+ A yty ) Tw(a)+ 19
Using (24), in turn we have that the constant b in the equilibrium trades is given by
«
b= — . 28
B+ A (28)

Finally, inverting the relationship between b and b and ¢ and ¢ using (17) and (18), we have that,
given a*, the values of ¢ and b* satisfy ¢ = C(a*) and b* = B(a*), where, for any a, the functions

C and B are given by
A Tw(a)yTy (1 — Xa — Ba) — Aatp7,(a) — Bayt,y

@) = = Bayr, (ra(a) + 79 = 7om(@)) + Fra(@yry (29)
and
Bla) = 5 :"_ < <Aé(a) . 1) : (30)

The formula for C'(a) in the main text is obtained from (29) after replacing the formula for 7,(a).
To complete the proof, it thus suffices to show that equation (25) admits a unique solution and that
such a solution satisfies 0 < a* < 1/X. To see this, use the fact that 7. = y7.7,/(7 + 7,) to observe
that this equation is equivalent to

\3% 7, (ymy + 79) a®+ My [yTemy + T0(Te + )] @ — TeTny2 =0. (31)

Clearly, because the left-hand side is strictly increasing in a, the above cubic equation has a unique

15



real root, which is strictly positive. Furthermore, when a = 1/, the left-hand side is equal to
ﬁ27—u

2
We conclude that a* € (0,1/X). Q.E.D.

(ym + 710) + T0(Te + )y > 0.

4.2 Derivation of FB allocation in main text.

/01 (27) di > </019:idi>2

we have that W is maximal when z; = x° for all ¢, with
0—a+u
B+

Because

xO

Q.E.D.

4.3 Derivation of welfare losses in main text.

Ex-post welfare is equal to

We = 62°—

g(aro)Q - (a —u+ 6?) x° = 5 (z°)2.

It follows that

-9 1
wr = e[y -5 |0-a+we-sT -5 [ otal.

Replacing z° = Gg,‘f)f“ into the above expression and using the fact that E [ fol xfdz} = E [E[2?|z]],

we have that

1
= TEAR (0] 4 B [(8 4+ N — 22°(8 + 3) — A2 + AE[? ]
- ?E[(@ —2%)?) + %E[(:vz - 7).

Q.E.D.

4.4 Proof of Lemma 1 in main text (efficiency of demands for given sensitivity

to private information)

The same arguments as in the proof of Proposition 1 imply that, when the traders submit demand
schedules of the form z; = as; + b— ¢p, for some (a, 13, ¢), the trades induced by market clearing can
be expressed as a function of the endogenous public information z generated by the market-clearing

price by letting x; = as; + b+ cz where z = 0 + f(y)n — u/(Ba) is the endogenous information about

16



0 contained in the equilibrium price, and where the noise in the endogenous signal has precision
Tu(a) = (B2a2y7'u7'n) / (B2a27'u + yTn).

Furthermore, the values of b and ¢ are given by (17) and (18). Using the above representation, we
have that the aggregate volume of trade when the demand schedules are given by (a, l;, ¢) is given by

T =a(0 + f(y)n) + b+ cz and hence ex-ante welfare is given by
2
EW]=E {(9 —a+u)(a@+ f(y)n) +b+cz) — 5(a(9+f(y);7)+b+cz) — fol % (as; + b+ cz)2 di| .

Note that
81539[?/] =E[(0 —a+u)—Ba@+ fly)n) +b+cz) — A(as+b+cz)] = —a— (B+ \)b,
O*E[W
ab[z]Z—(BJrA) <0,
GI%[ZV] =E[z(0 —a+u)—B(al@+ fly)n) +b+cz) 2z — Az (as + b+ cz)],
(W =FE [—522 —)\ZQ] <0,

and 0?E[W]/0cob = 0. Hence E[W] is concave in b and ¢ . For any a, the optimal values of b and c are
thus given by the FOCs 9E[W]/0b = 0 and OE[W]/0c = 0 from which we obtain that b = —a//(5+ )
and
E[2(0+u) — B(a(d+ f(y)n)) z — Bez? — Aazs — Aez?] = 0.
The last condition can be rewritten as
Cov|[(@+u—pal@+ f(y)n)),z] — (B+ A cVar(z) — AaCov(z,s) =0

from which we obtain that

Cov (0 +u—pal@+ f(y)n)), 2] AaCov(z, s)

c = —

(B+ X)) Var(z) (B+ X)) Var(z)
Using the fact that z =60 + f(y)n — 5; and s =6 + ﬁ(n + e), we have that
1 1
Var(z) = — + = 0j + 05 (a),

TO TolQ
where 02 = 1/75 and 02 (a) = 1/7,(a). Furthermoie,)
Cov[(6+u— Ba(0+ F(y)m) 2] = Cov [0+ u— Ba(0 + Fly)m) .0+ Fly)n — 4
= Cov[6(1 — a), 6] + Cov |u, | = Cov[Baf (y)n. f ()]
= (1 - Ba)of — % — Baf(y)*o,
and Cov [z,s] = 0§ + f(y)*o2. Hence,
(1—Ba)og — % — Baf(v)*0%  Aa(od + f(y)?02)

c= -

(B+ ) (07 + 02(a)) (B+A) (07 + 02(a))
_ Y g e
_B‘l‘)‘[(l A )\yTn>Tw(a)+70 ﬁ]
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We conclude that, given a, the optimal values for ¢ and b are given by the same functions in (27)
and (28) that characterize the parameters ¢ and b as a function of a under the equilibrium usage of
information. To go from the optimal trades to the demand schedules that implement them, it then
suffices to use the functions defined by (17) and (18). We thus conclude that, for any choice of a,
the optimal values of ¢7 and b7 are given by the functions (29) and (30), as claimed. Q.E.D.

4.5 Derivation of formula for welfare losses as a function of (a,7,(a)) in main text.

As shown above, the welfare losses can be expressed as

B4+, . o A -
WL = T]E[(a: —2°)% + §E[(x, —1)?,
where 20 is given by
o_ O0+u—«a

We have also shown above that, for any vector (a, 3, ¢) describing the demand schedules, there exists
a unique vector (a, b, ¢) describing the induced trades z; = as; + b+ cz at the market-clearing price,
and vice versa, where z = 0 + f(y)n — % is the endogenous signal contained in the market-clearing
price. This also means, when the traders submit the demand schedules corresponding to the vector
(a, 13, ¢), the aggregate volume of trade at the market-clearing price can be expressed as a function of
(0,m, z) as follows: & = a(0 + f(y)n) + b+ cz. Therefore, the dispersion of individual trades around
the aggregate trade can be expressed as

2

- a
E[(z; — 7)°] = E[a*f (y)*¢}] = —.

YTe

Next, use the fact that, for any a, the optimal values of ¢ and b are given by (27) and (28),

along with the fact that z =6 + f(y)n — %, and the fact that f(y) = 1/,/y, to obtain that

z = al@+ fly)n)+b+cz=

N0+ Fly)m) +u—a+ (1= Aa— At ) el
B+A '

Combining the expression for Z derived above with the expression for z° in (32), we have that
2

/\a(9+f(y)77)+u—a+<1—)\a—AaT—9> Twla) 0—atu

Yy ) Tw(a)+7e

B+ B+ A

E[E -2 = E

Simplifying, we have that

2
7 Tw(a) T Tw(a)
E[(j _ xO)Q] _r ()\af(y)n + (17)\a7)\aﬁ) o ()47 (2—0) _ [17)\a7 (17)\a7/\aﬁ> Tw(a)+7'g]9>

B+A B+ B+

Using the fact that f(y) = 1/,/y, and that E[wf] = E[nf] = 0, we then have that
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((1—)\a—)\a7—9) My )\2(124_2)\@(1_)\@_)\@ Te)M

EERFOCIE s Tl T
(B+X)" 1(a) (B+A)ym
v (1 . T ru(@) )2
X (1=2a=(1-2a— o) 2l )
B+ )27

Replacing the expressions for E[(z; — #)?] and E[(Z — 2°)?] derived above into the formula for the
welfare losses, we then have that, for any a, when b and é are set optimally, the welfare losses can

be expressed as

[(1—)\(1—)\(1&) Tw(a) ]2 /\2a2+2)\a<1_)\a_/\aﬂ> 7 (a)

_ Y™y ) Tw(a)+Te yTa ) Tw(a) 4T
WL(C% Tw(a)) = 9 (/B 4 )\) Tw(a) + 2 (6 + )‘) YTn
2
. [1-a— (1-de—da) 2", (33)
2(,84‘)\)7'9 2y7-e.

as claimed in the main text. Q.E.D.

4.6 Proof of Proposition 2 in main text (efficient trading).

As shown above, once b and c are set optimally as a function of a to minimize the welfare losses,
the latter can be expressed as a function of a and 7,(a), with the formula for W L(a, 7,(a)) given by
(33), with 7,(a) = (B%a*rumyy)/(B%a*7, + y7y). The socially optimal level of a is thus the one that
minimizes W L(a, 7,(a)) and is given by the FOC

dWL(a,1,(a))  OWL(a,7,(a)) +8WL(a,Tw(a)) O1u(a) 0

da B da 07,(a) oa
Note that
T Tw(a) Yn+7o  Tw(a)
OW L(a,1,(a)) _ <1 —Aa — Aaﬁ) T (@) F7o ()\ 577; ’ Tw(a)+T9>
da </3 + )\) Tw(a)
2 T Tw(a) 2 ym+T19  Tw(a)
(B+AN) YTn
15\ _Tw(a) _ Y+ \ _ Tw(a)
. [1=2a— (1-2a -2y ) ] (-a+ (in) el ) gy
(B+A) 79 yTe
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and that

2
OW L(a, 1,(a)) B (1—)\(1—)\(1;7‘97]) 79 — 7(a) . a (1—/\a—)\ay%l) o
O70(a) a 23+ (ru(a) +79)° B+Nym  (u(a) + 1)
_[1—)\a— (1—)\a—/\ay7fn> Tw?;gi)m] <1_)\a_)\a7_9) T
(B+A)7 ) (r(a) +19)*
Also note that
oru(a) 2526@27'3%
Oa (BT, +ymy)?

Using the expressions above, we obtain that

T Tw(a) yy+70  Tw(a)
dWL(a,7(a)) _ (1 — Aa — Aaﬁ) 7o(a)+7o (/\ o m(a)m) N Aa \ H(a)
da (ﬁ + )‘) Tw(a) YTe
2 T\ _Twla) 2 ymtTe  Tw(a)
+)\ a+ A (1 —Aa - Aalﬂ;) Tw(a)+T7e Aa 737'77 Tw(a)+79
(5 + )‘) YTn
T Tw(a) Tn+T, Tw(a)
. [1=da— (1-da—dagz) el ] (x4 (rzin) )
(B+A)9
where
2
iy Pt (1=ra=re) o ) | P (1-ra=2a)
a) =
(82027, + y7)? (B+A) (1w(a) +7p)? (B+X)ymy (Tw(a) + 79)?
o — (1 — N — N ) _Twl(a)
2 [1-2a = (1= 2a—ragz) | <1 _M_MTO> .
(B+ )7 yTn) (ru(a) +79)?
Hence, the first-order-condition dW L(a, 7,,(a))/da = 0 is equivalent to
2 Tu(a)
0 = Xar | (ym +79) 7@(@) e + AaymyTe (Tw(a) + 19) — 2Xat (ym; + 79) Tw ()
(1w(a) + 79) 7.(a) 2 YTn (1w(a) +79) (B +A)
+ate - y1y — (Y7 + 79) PP @ + 79 + Aaym, T Vs
+ A (tw(a) + 1) ymH (a
‘HJTnTe (ﬂ ) ( ( ))\ 6) u ( ) — YTnTe (yTn - Tw(a’)) ,
from which we obtain that
yTyTe (Y — Tw(a)) = Aa {yQTgTe — 1(a) e (19 + 2y7) + (Tw(a) + 79) yQTg
YTy (Tw(a) + 79) B (B+A) (rw(a) + 19) ymyH (a)
+YTyTe 1 Y + YTy Te 2a U .

Using the definitions of the A(-), A(+), and Z(-) functions in the main text, we then have that that
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a® must solve

It is straightforward to verify that

dW L(a, 1,(a))
da

B ATy YTy
a=1 BRCESY) YTy (1w (a) + 19) B2a’T, + ymy

B2a’t, To > Aa
1-— X + — >0,
< (B2t +ymy)  (1w(a) + 7o)

and that

W)  mois (Nt aois) M)
da w—o (B4 ) 1w(a) (B+ ) ymy
(1- 228 ) (—r () o)
B+ N0
Tw(a) 1= YTy
YTy B2a’r, + ymy,
which implies that 0 < a” < 1/, as claimed in the proposition. Q.E.D.

_l’_

x < 0,

4.7 Optimal sensitivity to private information when agents do not learn from

prices (as per cursed equilibrium in main text).

In the cursed economy, each trader receives a private signal s; = 0 + f(y)n+ f(y)e; and a public
—_——
=€;
signal z = 0 + f(y)n + x, and believes p to be orthogonal to (9, n, (ez)zzé) Following steps similar
—

=
to those leading to Proposition 1 in the main text, we have that E[f|s;, z] = J15; + 722, where
5 = TeYTy (yTﬂ - TC)
Y272(7¢ + Te + 7o) — TcTe(T9 + 2yTy)

and
I YTnTe (Y — 7o) _ _To T YTy 7¢
Y212(1¢ + Te + 7o) — Tetc (T + 2yTy) YTy ¢+ To
Observe that the cursed-equilibrium demand schedules must satisfy
1
T = 5 (E[0]si, 2] — p) . (34)

Now let z; = a*,,s; + b*,, — & ,,p + d*,,z denote the cursed-equilibrium demand schedules. From

= J2/\. Using the

~

the derivations above, we have that a*,, = 31/, b%,, = 0, &5, = 1/, and d*

ETO EXO EXO

*
exro

1
aZxo = ) (35)
AA(7¢)

formula for 4; above we have that the formula for o, is equivalent to
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as claimed in the main text.
Now suppose that, given a, the planner is constrained to choose (l;, ¢, cZ) to maintain the same

and (b%,,, ¢, d*,.) in the cursed equilibrium.

. . 7 ~ 7 *
relationship between a and (b, ¢, d) as between a, 203 Conos Ao

Using the fact that

o

_ _ T+ YT, T
72=<1—71 n> -
YTn Tc+ 7o

and the fact that 71 = Aa},,, we have that, in the cursed equilibrium, the relationship between a,,

and (b*,,, &0, d*,,) is given by b, =0, &, = 1/A, and

exro’ “exo’ 'exo EXO EXTO

d: —1<1—)\a* Teﬂﬂ”) s

EXO )\ EXO yTn TC + 7_07

The above properties imply that, in the cursed economy, for any choice of a, the planner is constrained

to select demand schedules of the form

— (Aasi + (1 _ dalm + ym) s —p> . (36)

z
A YTy T+ To
The planner then chooses a to minimize the welfare losses

WL = (B;A)Em — %)% + %EK%’ - 2)’]

under the the above demand schedules, taking into account the market-clearing condition.

Following steps similar to those in the baseline economy, and using the market-clearing condition,

we have that, when the traders’ demand schedules are given by (36),

(B+N) E[(7 — mO)Q] _ ((1 _ Aa(y;;yn—i-re)) T )2 A2a2 + 2)\a (1 _ Aa(yrn+79)) T

T¢+To YTn T¢+To
2 (B+A) 7 B+Nym
. . . Aa(ymy+7o) T¢ 2
n (1 Aa (1 y';]n ) TC+7'9>
(B+A)m

and
AE[(z; — ©)%]  Aa?

2 - 2yTe

This means that, for any a, the welfare losses are equal to

[(1 _ /\a(yTn+To)) s ]2 2242 + 2)\a (1 _ /\a(yTnJr-re)) 7

W I = YTn T¢+To + YTn T¢+To
2(8+\) ¢ 2(8+ X))y,
Aa(ytn+79) T 2
n {1 —Aa — (1 - yy:n ’ ) T(-‘ng:| a2
2(B+ )Ty 2yTe

Following steps similar to those in the proof of Proposition 2, we then have that the value of a that

minimizes the above welfare losses is equal to

22



- 1 1

Aexo = X

TnB(Te+T
Are) + 5 é,;_ff)

as claimed in the main text. Q.E.D.

4.8 Proof of Proposition 3 in main text (externalities and slope of demand sched-
ules).

We start by establishing the first two equalities. Observe that the function F given, for all a, by
1

A (7 (a))
is strictly increasing. To see this, recall that, for any 7.,, A(7,) = 1/71(7,). Then note that

F(a) =a—

TeYTn (YTn — Tw)
Y272 (10 + Te + 79) — TwTe (T + 2y7)
n \Tw € 0 wle\70 Yty

Y1(7w) =

is decreasing in 7, if and only if 7,y > 7.. Because
Te

Te + Ty

Te = ™Y,

we have that ~1(7,) is decreasing in 7,,. Because 7,(a) is increasing in a, we conclude that F is
strictly increasing.

Next, let F” be the function given, for any a, by

1 1

Ta)=a—-= .
F () A A(1u(a)) + Ala) + E(a)

Because A and = are both increasing, F7 is strictly increasing.
The first two equalities follow from the above monotonicities along with the fact that a* solves
F(a*) = 0 whereas a” solves F”(a”) = 0. Indeed, when A(a”) + Z(a”) > 0,
F(a”) =+ L
A A, (™)) + A(aT) + Z(aT)  AA(7(aT))
implying that a* > a”. If a* > a”, then
1 1 1 1 1
M (@) ~ A Aro(@D)) + AaT) + E(aT) ~ A Mro(a)) + Aa) + Z(a")
which implies that A(a*) + Z(a*) > 0. That A(a*) + Z(a*) > 0 in turn implies that
1 1 1

<0,

FT(a*) = - >0
(a”) M (1o(@) N A(m(a®) + A(a*) + Z(a”)
which implies that a* > a”. Finally, that a* > a” implies that
1 1 1
F(aT) = - — 0
(@) =3 Al T AT + 2@ M@ =%

which implies that A(aT) +Z(a’) > 0. Replicating the arguments above for the case in which the

23



inequalities are reversed then permits us to establish that
a* —a? "L 2T + A(a") £ Z(a*) + Aa”).

Next, consider the last two equalities in the proposition. In the proof of Lemma 1, we established
that, for any sensitivity a of the efficient trades to private information, the sensitivity of the efficient
trades to the endogenous signal z contained in the market-clearing price is given by

1 a
o L (1_M_MT@>%(>_BG
B+ A Yty ) Tw(a) + 19
and coincides with the sensitivity of the equilibrium trades to z when the sensitivity of the equilibrium
trades to private information is a. Using the formula for 7,(a), we then have that a + ¢ > 0. Now
use Condition (18) to observe that
c

=Gt (37)

Because a + ¢ > 0, we conclude that sgn(¢) = —sgn(c). Combining this property with Condition
(27), we conclude that

¢ "2 Ba - <1 —Xa-— )\am> _wl@
Yyt ) Tw(a) + 19

Next observe that

2
o By rfa) 4 BT (120 = dag)
Ala) +Z(a) = A (ymy — Tw(a)) Te A (B2a%T, + yTn)2 (twla) +75) | (38)

Because y7, — 1(a) > 0,

Sin

2
Afa) +Z=(a) A (ﬂQCLQTu + yTn)2 (Tw(a) + 7'9)2 — TeﬁyngTu <1 —da — )\am) .

YTy

Si’l’b ~

It is then easy to see that A(a) + Z(a) = ¢. The above derivations hold no matter whether a is the

sensitivity of the equilibrium schedules (equivalently, trades) to private information, or the sensitivity
of the efficient schedules (equivalently, trades) to private information. Hence, & "£" Z(a*) + A(a*)
and ¢ L' Z(aT) + A(a”). Because Z(a*) + A(a*) "L Z(a”) + A(a”), we then have that

Z(a*) + Aa*) "L e LT

Q.E.D.

4.9 Proof of Proposition 4 (policy inducing efficient trading with exogenous in-

formation)

Under the proposed policy, each trader’s demand schedule must satisfy the optimality condition

Xi(p; I;) = Nis (E[0]L;,p] — (1 +tp)p + to) -

For any vector (a,I;, ¢), when all traders submit affine demand schedules x; = as; + b— ¢p, the

equilibrium price then continues to satisfy the same representation as in (14) but with (a*,b*, &*)
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replaced by (a, 5, ¢). This also means that the equilibrium trades can be expressed as a function of the
endogenous public signal z, as in the laissez-faire equilibrium with no policy. Letting x; = as; +b+cz
denote the trades generated by the demand schedules z; = as; + b— ¢p (with z representing the
endogenous public signal contained in the market-clearing price), we then have that the functions
that map the coefficients ¢ and b in the demand schedules into the coefficients ¢ and b in the induced
trades continue to be given by (18) and (17). Using the fact that E[f]s;, 2] = v1(7w(a))si +7v2(1w(a))z,
with the functions 1 (-) and v2(-) as defined in (20) and (21), along with the fact that the market-
clearing price satisfies p = a + b + B(a + ¢)z as shown in (19), we then have that the equilibrium

trades must satisfy

v = s P (@)si + @)z — (14 tp)a— (1+6)8b = (1+ 1) B0 + )z + 1o
= s n@)si— (4 1) (a4 50 + Pa(ml@) — (1+1,)5(0 + )2 + 1o}

The sensitivity of the equilibrium trades to private information s; under the proposed policy thus
satisfies a = v1(7(a))/(A + 7). Using the formula for 4, in (20), we then have that the equilibrium
value of a under the proposed policy is the unique solution to the following equation:
1 T5y27'$ — Tw(a)Teym,
A 40 Y212 (1,(a) + Te + 79) — Tw(a)Te (To + 2yTy;)’
Using the fact that, for ant 7,

y%ﬁ(m + Te + 79) — TwTe (9 + 2yTy)

TeyTn(yTn - Tw)
we thus have that the equilibrium value of a is given by
1 1

a4 = ——

A+ A(1,(a))

A(r,) =

)

The equilibrium value of b is given by the unique solution to
—(1+ tp) (a+ Bb) + to

b=
A+6

which is equal to
_ b=+t
A0+ (1+1t,)8

The equilibrium value of ¢, instead, is given by the unique solution to

¢ =1 [r(w(a) = (1+t,)8(a+ )]

which is equal to
_ p(m(@) — (1L+t)5a
A+o+(1+1,)8

Now recall that the sensitivity a’ of the efficient trades to private information is given by the unique

solution to

a =

l 1
AA(1,(a)) + Z(a) + Aa)
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Therefore, the equilibrium value a under the proposed policy coincides with the efficient level a”' if
and only if ¢ satisfies
(A +8)A(7(a"))
= A [A(rw(a”)) + E(a”) + A(a")]
from which we obtain that
A [E(aT) + A(aT)]
A(r(a”))

Now recall that, given a’, the other two coefficients ¢! and b7 describing the efficient trades are

0 =

given by the functions in (27) and (28), implying that
1 T 7 (aT)
T T T 760 w T
=—((1=-Xa" —Xa — | ———"F"— —
‘ ﬁ+A<< © o ym) mu(al) + 19 Ba)
and b = —a/(B + )\). Hence, for the equilibrium levels of ¢ and b under the proposed policy to

coincide with the efficient levels it must be that
” Y\ _ 1 T 1 . T
Y2(1w(a’)) — (1 +tp)Ba _ ((1_)\GT_)\CLT TG) TT(G ) _ﬁaT>
A+d+(1+1,)8 B+ A\ yty ) Tw(al) + 19

and
to—(1+ty)a a
Ato+(1+6)8 B+N
It is easy to see that the above two equations are satisfied when

T

VQ(Tw(aT)) - A}-i—‘,)-\ﬂ |:(1 —Xal — )\aTT—G) % BaT] _ ﬂaT

YTy

t, =

1 T Tw(aT)

B{atx (1= A" - xaT 2 ) e — Ba | o
and
aA+8+ (1+1t,)8]
= 1 —

to=(1+1t)a S

Q.E.D.

4.10 Proof of Proposition 5 in main text (equilibrium in full game).

The proof is in four steps. Step 1 shows that, for any y € [0,400), when all other agents acquire
information of quality ¥ and submit the equilibrium limit orders for information of quality y, each
agent’s net private marginal benefit N(y) of increasing the quality of his information at y; = y
(and then trade optimally) is a strictly decreasing function of y. Step 2 uses the result in step 1 to
show that, when C’(0) is small enough, there is one, and only one, value of y for which N(y) = 0.
Step 3 shows that, when the cost of information is sufficiently convex, then if all other agents
acquire information of quality y* (where y* is the unique solution to N(y) = 0) and then submit the
equilibrium limit orders for information of quality y*, the payoff V#(y*, y;) that each agent obtains
by acquiring information of quality y; and then trading optimally is strictly quasi-concave in y;.
Jointly, the above properties establish the claim in the proposition.

Step 1. First observe that, when all other agents acquire information of quality y and then
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submit the equilibrium limit orders for information of quality y, the maximal payoff that agent ¢ can

obtain by acquiring information of quality y; and then trading optimally is given by

V#(y,51) = supy) {Elnf (0,0 9())] — Cwa) |
with

Efrf (090 = B |09(512) = (a-+ 80+ Ba+ 002) 9(509) = 5 (o659

where ¢ is an arbitrary (measurable) function of the agent’s private signal s; and the public signal
z =0+ f(y)n —u/(Ba) contained in the equilibrium price, with noise w = f(y)n — u/Ba of precision
Tw(a) = B*(a)?ytuy/ (B*(a)?7y + y7y), describing the amount of the good traded by agent ¢ under
the limit orders he submits. Note that, in writing E[Trf(y,yi;g(-))], we used the fact that the
relationship between z and the equilibrium price is given by p = a+ b+ 3(a+c¢)z, where (a, b, ¢) are
the coefficients describing the equilibrium trades when the quality of information is y and all agents
submit the equilibrium limit orders for information of quality y. Also note that the dependence of
E[?TZ# (y,yi;9(+))] on y; is through the fact that the agent’s private signal is given by s; = 0+ f(y;)(n+
e;). Using the envelope theorem, we then have that

vi= WP _@rNetde, Mo, .

Vi lymy 2Ty 2y°7e

Next, use Conditions (16) and (27) to verify that N(y) = F(a,y) — C'(y), where, for any (a,y),

1, a’B* Ayt + 4y [)\aQBQTuTn + A7 + 1) 9 + ﬁzTeTua]
“a .
2 Y27e [yToTy + a?B21y (1o + y14y)]

F(a,y) = (40)

As shown in the proof of Proposition 1, the equilibrium value of a (given y) is given by the unique

real root to the cubic equation in (31). Equivalently, letting Z = a/y and
R(Z,y) = Z3yB*\ry (19 + yty) + ZX (TeTp + ToTy) + YTeTy) — TeTy,
we have, for any y, the equilibrium level of Z is given by the unique positive real solution to the

equation R(Z,y) = 0, and is such that Z < 7./A7,. Furthermore,

%R(z, Y) = ZA (remy + Z28%Tumo + 2922 821umy) > 0.
Now let Z*(y) be the equilibrium value of Z, given y. From the Implicit Function Theorem, we thus
have that Z*(y) is decreasing in y.

Next, let G(y) = F(Z*(y)y,y), where F(a,y) is the function defined in Condition (40) above,
and where we used the fact a = Z*(y)y.

Now use the fact that the equilibrium value of a is given by

Tn
A (y (7'57'0 + 9Ty + yTeTn) + a?pB%7y, (TG + ?/7'77))

a =y’

or, equivalently,
3 Y2TeTy — ay (TeTy + ToTy + YTeTn)
a =
/62>\Tu (TG + yTn)
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to express the function F(a,y) as follows:
—YTy + aATg + ayATy,
(ymo7y + a? 827y (79 + y7)) A (70 + Y1)

1
F(a,y) = 5 (Te + aATy)

The latter expression can be simplified to

1 a(7r, + alT,
Fla,y) = 3 20e+0XT0).
2y7e (19 + Y1)
We thus have that

1 o, \Te Tty *(y))‘Tn
Gly) = S z%(y) e T YZ WAT,

Note that
d6W) _ 1y —nt 200 | 1t 220\ d2°()
dy 2 K Te (19 + yﬂ,)z 2 T (9 +ymy) dy
where the inequality follows from the fact that Z*(y) < 7./A1, and dZ*(y)/dy < 0. Because N (y) =

G(y) — C'(y), we conclude that N(y) is a strictly decreasing function of y.

<0,

Step 2. Next, consider the limit properties of N(y). Because

. % TeTn
limZ =
y—0 (y) ATy (Te + Tn)
we have that .
. TeTn
IimG(y) = =——5———,
SO = 2 )
and hence
lm N (y) = =< ' (0)
y—0 Y=5 Mg (Te + ) '
Furthermore,

lim N(y) = lim G(y) — lim C'(y).

Yy—00 Yy—00 Yy—00

Because lim Z*(y) = 0, we have that ILm G(y) = 0. Hence,
Yy—00

Y—00

lim N(y) = — lim C'(y) < 0.

Yy—00 Yy—00
Letting
TeTn

1
[ =—___Tem
2 )\7'92 (Te + 1)’

we conclude that, when C'(0) < L, there exists one, and only one, value of y for which N(y) = 0.
Step 3. Assume C'(0) < L and let y* be the unique solution to N(y) = 0. Suppose that
all other agents acquire information of quality y* and then submit the equilibrium limit orders for

information of quality y*. Let (a*,b*,¢*) denote the coefficients describing the equilibrium trades
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under the equilibrium limit orders for information of quality y* (these coefficients are given by
Conditions (25), (28), and (27), applied to y = y*). Let 7, = 7,(a*) denote the precision of the
endogenous signal z = 6+ f(y*)n —u/(Ba*) contained in the equilibrium price when all other agents
acquire information of quality y¥* and then submit the equilibrium limit orders for information of
quality y*.

We show that, when C is sufficiently convex, V#(y*,v;) is strictly quasi-concave in y;. To see
this, first recall that optimality requires that, for any y;, any (s;,p), the trades that the agent induces

through his limit orders given (s;,p) are equal to
1
zi = 3 (E[]si pyi] —p) -
Equivalently, for any y;, the function ¢*(+; y;) that maximizes the agent’s payoff E[ﬂz# (v*,vi; 9(:))] —

C(y;) is such that, for any (s;, 2),

9" (si,239i) = ~ (B[0]si, 2;95] — (a4 Bb*) — B(a” + ¢*)z2).

>| =

Observe that
E[0|si, z;yi] = [ Cov(0,s;;y;) Cov(0, z;y;) ] X
1
Var(si;yi) — Cou(si, 2;9i)
L Cov(si,z:y;)  Var(zy)
2 2 2 9 171
o +o:(yi) o5+ W) f(y)o, s; — E[si]
o5 + (W) f(i)os oh + 02 z — E[z]

where o2(y;) = 77 (y;). Substituting for the inverse of the variance-covariance matrix, and using

s; — E[si; yi] ]
z—E[z;y]

_ [ 2 2

the fact that, for any y;, E[s;; v;] = E[2; y;] = 0, we have that

1
(03 +02(y) (03 + 02) — (03 + () [ (wi)oD)?
[0} o] [ o+ ~(0F + (") fwi)o?) ] [ ] |
©0 | =@+ F ) f o) o3 + o2 (yi)
Expanding the quadratic form, we have that

E[9|3’L7z,yl]

» o5 (02 = f(y*) f(yi)oy)
Holszvl = A @+ ) — (o + He T
og (02 = f(y*) f(yi)or)
(07 + 02(:)) (07 + 02) — (07 + f(y*) [ (yi)o2)?
Simplifying, and using the fact that 03 = 7-9_17 02 = 7':;)717 0727 = 7'17_17 (oe(yi)” = (e(yi)) ' we
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have that

1 (L :
El0]si,z51] = CRNE o 5
(G + wta) (5 55 = (5 o+ F0y2
1 ( 1 f(y*)f(yi)>
+ 7o \ Te(yi) Tn .
1 1 DI S B i (A F AR M
(TG +7—6(y1))(7'0 +T:;) (7-0 + n )
or, equivalently,
Te(Yi) Ty <Tny*?/i - T7“)
E[9|Si, 2 yi] Fly*) fi) 55

T2y yi(re(yi) + 75 + 70) — 757 (yi) (f(y o T T")

* 2, k0, Te (Yi) T
Tw (Tny yi 7f(y*)f(z7¢)>
27y

T2y yi(Te(yi) + 75 + 7o) — 757 (Y1) ( RN 7'9)
Using the fact that 7(y;) = 7emyyi/(7e + 1), f(y*) = 1//y*, and f(y;) = 1/\/yi, we conclude that

+ z.

Elf]si, z;9i] = F1(yi)si +F2(yi)z

where
Toy* [TeTnyi + (75 + 79) (Te + Tn)] (2TWy Yi + 1)
and
- 7570 [(Te + o) Y — Ter /Y Y
'YQ(yi) = n [( 77) ] (42)

Toy* [TeTnyi + (75 + 70) (Te + )] — T57e 2T/ Y yi + 79)
In other words, for any y;, the function g*(-;y;) is given by ¢*(s;, z; yi) = a(yi)si +b(yi) + (y; )z, with
a(y:) = F1(4i) /A, b(yi) = = (o + B0) /A, and &(yi) = [Fa(ys) — Bla” + )] /.
Now note that, given any affine strategy g(s;,z) = As; + B + Cz, where A, B, C' are scalars,
Elrf (v, i 9()] = E[6 (s + B+ C2) |y
—E[(a+ Bb* + B(a* + ¢*)z) (As; + B+ C2z) |y

“E [g (As; + B+ Cz)? yyz-] .

Hence, fixing the affine strategy g(s;,z) = As; + B + Cz, and using the fact that

si =0+ f(yi)(n + ei)

and
U

pa*

=0+ f(y")n—
we have that

OE[Y (v, yi:9())] . 9 Ao d oy
9 =—A[B(a" + ) + \C] 0 E [siz|yi] — §A a—yzE [si |yz] ,

where 5 .
E[sizlyi] = f'(yi) f(y*) —

6yi Ty
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and

0 E [s7lyi] = 2f (i) f' (vs) <1 - 1) .

Jy; Ty Te
Using the Envelope Theorem, we thus have that

OVH#(y*ys) _ OBl (v*,yis 9" (50)] e

0y; 0y; i)

with
PRI sy ot + )+ et /) 10°) = At ) (- + ).

ayZ Ty Tn Te
Observe that

B(a™ +c*) + Ne(yi) = Yo (i)-
It follows that
H(ax o).
W) 30 () 7 ) F ) — M) F ) (1) (1 T 1) ().

i T Ty Te
Next, observe that

2V (0% o).
OVIWLU) i (yayinyn) ) F )~
ayi Ty
) T2 1040 14%) T — a0 ) ()
Yi Tn Tn
—ONa(y:)al () (i) (1) (1 T 1)
N (1) (5 + ) = a1 0r" o) (- + 1) - ¢
n € n e
We thus have that, at any y; at which OV # (y*,y;)/0y; = 0,
2V (0% o).
IVIWL 1) ynyn) £ w) f ()~
83/@ Tn
_ o d(Yi) 1 W) rry
—a(y;) i f(yz)f(y)ﬂ7 T [C'(yi)]
X)) £ (1) (1) (1 " 1)
N 2 (gt 2 i I Y.L
satw)? (£)’ -+ )~

The above can be rewritten as
oy?

L) ) 5o ) 0)

n

(<7 (5 + 7)) 5 Pat2r)

Ty Te
f"(yi)
f'(yi)

+ [C'(yi)] = C" (yi).
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Using the fact that a(y;) = 71(v;)/A, we have that, at any point y; at which V# (y*, ;) /0y; = 0,

20 A (K
PV~ (1) o )

n

oy? A

(2

>0

+§ (—f/(yi) (Tl + Tle>> dd% {(%(%))2 f(yi)}

n

~~

>0

L) oy —er). (13)
~—

f' (i)
<0
Using the fact that f(y) = 1/,/y and letting J : Ry — R be the function defined by

1 1 1 1 1 1 1 d 1
=3 (5= ) o a0} + 5 |5 (= G =
we thus have that, at any point y; at which av#(y*, y;)/0y; = 0,

aQV#(y*ayl) 3 / 17
oz~ W) 5 Clw) ).

)

Now observe that

1) = 5 (g ) i) + 31005 w0}

% [ 1 NG ( ] {271 yi) Y1 (s) 1% - (%(%))22%1\/%}

1‘2%1\/@\/»7' {’71 yi) Y2 (yi) + 71 (y:)y (yl)}

S ) {onin - w0 5 |

Next observe that
Hw) = {r” lremyi + (054 7) (4 7)) = o (20 4 m0) ) x
X {(Tny* [TeTnyi + (10 + 79) (Te + )] — T57e (2777\/1;*7% + 7'9)) X
s (e (/= 72))

d N . .
T (Tny [TeTnyi + (725 + 70) (Te + 1)] — T57e (27,,\/@—1— 7-9>) X
1

(e (/i =) ) -
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Expanding the derivatives,
-2
%(?JZ) = {Tn?/* [TeTnyi + (75 + 70) (Te + Tn)] — ToTe (2Tn VY Y + 7'0)} X
X { (Tny* [TeTnyi + (7—:; + 7'0) (Te =+ 7'71 : (27'77 VY Y + 7'6))
1
TeTo VY | ToV/Y* — =Tw——
[ VY < (A ﬁﬂ
* * 1
_ [Tny TeTn — Ty Te <2Tn‘ /y*W)] (7_67-77\/9 Yi ( VY Y — T, ))}
(A

Simplifying, we have that

7-67—7]\/?? (Tn\/yi* - %th j@)

~/

N(y) =

1) = T F () (e F )l =7 @5 70)
v :

- - - Y1 (yi)-
y* [Tnyi + (75 + 79) (1 + %)} -7 (2\/ﬁ+ i)

Simplifying further,

~/ 2
Ylyi) = - -
y* [Tnyi + (75 + 79) (1 + 7")}

Using again the fact that

A1 (i) ™Y = Tw g

Yoyt g ) (14 2)] - (2 + 2)

we have that

* * Vy*
» Y wzm (i) (wi)
Tny — \F Yi Yi
T — % A1 (ys)
1 ~
= P 2 — (ys)
oYY — T Yi
Similarly,
~/ 17-*7-@7-77\/;
Y2\Y = * * * *
) = T ¥ (7 ) (7o + )] — e (i 4 70)

sz*Te T, 7‘67',,‘/;
- Y
o e & (75 & 70) (e 4 )] = e G+ 70) 2

Simplifying, we have that

Yolyi) = - -
v [ri+ (1) (14 2)| = 7 (2vw + 2)
T
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Using the fact that

* _ xY*
N(yi) Y T Tw

Yi y* | Thyi + (15 4 9) (1 + )} T (2@4— ;f])

we have that
VT

. Tw Yy) Ny~
Yalyi) = \/Tf ) _ (AZ Yo (yi)
ToY* — 73 = Yi Yi
and hence
% ) W),
~l _ 9 i 7
Ya(yi) S TRTHSE i Y2(yi)
¥ Y1 (yi)
~ 2 i
= — | Aa(y) + :
(’Y () wﬁ—m) ”
Replacing the above derivatives in the expression for J we obtain that
1 1 1 1
Jyi) = —m————=—F—=—X
R N R
* L y by T %2
WYY — % )2 y) |- 5 i (i)
= — () = | P2Wi) + =y
{(Tn\/y vi — T Z ) i VY- )
_1_1 1 1 <1 + 1) 92 VY Yi — %] _ ﬁl(y) :Y%(yl) . :V%(yl)
/\2.%\/,% \/yi T Te TN Y Yi — T ) 2y
_ l 1 ’Yl(%) %
)‘2 YiYi VY Tn Yi
7_*
™TWYYi — 5 ~ - 5 -
——19‘ Y2 \Yi) — 20Yi) + ——F———— | (Wi
{(Tn T — T ’7(2)) (vi) (7(1) Tnm_ﬂj) (1)}
! L1 5i(y) < Tn> T A 71 (1)
- 1+ 2 ) Qo Y222 5 (y, ) — .
A2yzx/lﬁ VYT Yi Te VY Y — T ilon) o) =
Hence

) 11 1 171(%){ WYY — o % %(yi)}

Yi — o
Yo(vi) = 21 (yi) 2 (Yi) — —F—=———
)‘ 2%\/@ VY Ty Y VY Y — 7’:5 ’ ’ ’ TV Y Yi — T
n

1 1 11 5(ys) T\ VY ) VY i — 5. N ox20 oy (i)
)‘2«%\/@an Yi <1+ >ﬁ{ Ny 1) Y1 (yi) — 2% (y:) 5 }

In other terms,

N
o

() = H(y) R(y:)

where, for any y;, 1 1 11 A1 (y)
. Y1\Yi
H(y; 3 =
(vi) A2y Y VY Ty Ui
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and

~ T — % ~
R(y;) = - 2 —2 :
(yz) Tn\/ﬂ 7_:; '}’2(:%) ’Yl(yl)’m(yl) Tn\/ﬁ_ g 71(3/2)

( ) wf{Q y*yi—%(yi)_myi)_myn}‘

VY | VY- T 2
Now observe that

TV Y i (T VY Y — 705)

_ B 750 [(Te + Tn) Y* — TeN/Y Vi
(yi) = D) and Fo(y;) = < ( )

where, for any y;,

D(y;) = Tny* [TeTnyz‘ + (75 + 7o) (Te + Tn)} — ToTe (2777 VY Yi + 79) .
Hence i} .
o) = el ATV~ Tev il ()
1) — 1
TeTnV Y Y (Tnv Yy Yy — T:;)
Replacing these terms in the formula for R, we have that
. 75\ T (T + ™) Y — Te vy Yl
R(y;) = (rn yyz‘—;) e ()
TeTo VY Yi (TyVY*yi — 75)
™1, (e + 1) y* — T, *i] - L -
Tl < )y vy i ﬁ(yz')——*g 1 (yi
T VY Yi (VY yi — 75) VY Y —
T\ VY [ 2m /Yy — Y1(ys)
+ 11+ n) { Y 27 .
(1+2) Y2 5 () — 233 (w)

ToVY*Yi — T3 2

Te

This means that
J(yi) = H(y:)7(yi) W (y:)

where, for any y;,
W(y) = <T Yy — Tj) 78T [(Te + T0) Y™ = TeV/y*vi
‘ a K ! * * *)2
2 TeTo VY Yi (g Y yi — 75)

N ‘E\‘*

_27—:17—77 [(Te + Tn) y* — Tev Z/*yi] TeTnV Y Y; (Tn Y Yy — T:;) _
TeToVY*Yi (Ty VY i — 705) D(y:) TV Y Y — T3
(EEE) (12) %
Tnm -5
T VY Y Ty — 7) <1+ > VY*
D(yz) Te
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Hence,

e TN 75 |(Te +Tn) Y™ — Te VY i
Wi(yi) = (rm/y*yz-—rﬁ“) o [(re 7)Y~ Tev/yy:

2
2 Te\/M(Tn\/M - 73)
_9 T T [(Te + Tn) Y — y*yz] TﬁJ
D(Z/z) Tn Yy — TS
n <2Tn Yy — T*Zj ( ) VY*
Tn VY Y — T Vi
* _ 1 *
oY (VY7 Y w)(TeJrTn)_(lJrTn) vy
D(yz) 2 Te \/@
Equivalently,
Wiy — ellet ) Vir = re /5
' Te\/@ (Tnv Yy Y — 7':;)
i (7':;)2 [(Te + Tn) \/3/»* - Te\/@]
2
27e /Ui (T VY Y — 755)
_2723777 [(Te + ) " — Te VY yi] _ %w
D(yi) TN Y — T
+<1+ Tn\/*y Yi ) (1+Tn> vyt
-\ ) Vi
) * foEa 1 Ve
_ ™Y (7—77 Y'yi Tw) (Te—|—7'77)_<1+7-n> Yy .
D(yz) 2 Te \/@

Simplifying further
W(yz) T [(Te + 7) VY* — Te\/E]
Te\/Yi (Tp VY yi = 75)
1 (T:;)2 [(Te + 7'77) \/37 - Te\/@}
27e /i (T Ys — 73

_2755777 [(Te + ) ¥* — Te /Y Y] _ %w
D(yi) oV Y Yi — T4

T, Toy*
< Te Tnvy*yz’ - 7':,
2 * ¥, K *
&My (T VY Y — 75) (7e + 1) —i—% <1+ 7};) VY

D(yi)
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Putting all pieces together we thus have that

Sy = [(n+m)¢z?—u¢@]{1 11 117373y*yi(7n¢y*yi—rs>2}

TeA/Yi (Tn\/ Yy — T5) A 2Yi\/Yi \/??7—77 Yi D2(yi)
* * . *ag. 2
+(Tw)2 [(Te + Tn) VYF - Te\/@] l 1 1 lngTgy*yz (Tnvy Yi — T:S)
27en/Ui (T /T Yi — 735)° A 29i/Yi VYT Ty Yi D2 (y;)
* * * 2
2t )y — VYl [1 1 11 1 Ryt (T - )
D(y;) A 2UiN/Yi Y Ty i D2 (y;)
¥ 111 1Ry (i - 1)
VY Y — 75 | A 20V VY Ty Y D2(y;)
. (1 ™ ) ( Ty’ ) 101 111y (Vo — )
Te ) \TaVY* i — 75 ) | A 29ivYi VYT T Yi D2 (y;)

* * * 2
2y (VY ) )L L ] 112y Y (VYT — )
D(y;) T N 2y /Y VY Ty i D2 (y;)

41 <1 + T) 11 L1 Ry (VY - )
2 Te ) VUi | A 20i/¥i VYT T Yi D2 (y;) .
Simplifying,
J(y‘) _ 7—:;7'67'17\/3/7 (Tn\/m —75) [(Te + Tn) \/3/»* - Te\/@]
' 2\y2D?(y;)
I (75)2 TeTn\/f [(Te + Tn) N Te\/E]
Ay? D?(y;)
* * * *\2 * *
TN (VY — 75)” (e + ) T — Te VYl
MY/ D3 (i)
T TN (oYY — )
AN/yiyi D? (y;)
i (Tn + Te) TeTg\/sz* (Tn VY Y — 7_:;)
22yi/YiD?(yi)
_ 3
_ (Te + 777) 75277?\/??3/* (Tnm —75)
AYin/Yi D3 (i)
* * * 2
+ (Te + Tn) TeTnlY (Tnv Yy — Tw) '
4\y? D2 (y;)
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Simplifying further, we have that
Sy = TR G = 1) [ ) VT - e
2\y; D?(ys)
+<Tn + 7e) Te T YN YY Ty YTy — 7))
22y; D2 (y:)
(7':5)2 7'67'77\/37 [(Te + Tn) VY* = Te\/@]
ANy D (ys)
T ) ey (VY = 73)° — T TG (Y — 7)
ANy D (ys)
220 (T — 75) (e + ) ¥ — Te /YY)
Nyin/Yi D3 (y:)
B (Te + Tn) 73773\/3?1/* (Tnm - 75)3
AYin/Yi D3 (y;) .

+

Equivalently,
J(u) — 27 VT (Ta VI ¥ =75 ) { e+ ) VYT [T+ Vyiy™ | T e /Ui
(i) = 4\y7 D2 (yi)
FiEpst |07 (e + 1) VI =7 () VB
D2 D2 (y;) Tw) Te ™M) VY Te \Ty \/@
+ s (T = 75) (e + 7) VI (5570 = 75) = 7T /]

2
Tyt (VT Yi—75) " [(Tetm0)y* o =75 7]
Ayi D3 (y;) ’

We conclude that

J(y) = % ”;(*5;) {(Te + 7)) v 1y BV Yyt — 275 — 3T Te Ty YTy + 27 (75)2}

2
272y (Vg Y =) [(e7)y* o —, Te]
/\yzDB(Zh)

Next, observe that

yhglo D(y;) = myy" (1, + 79) (Te + ) — T TeTp-

Using this limit, we have that

hm J(yi) = lim
Yi— yi—0

TeTyTo N Y [Tqy™ (Te + ) — TeT))] <\/@> } .

2N [Ty (Te + 1) (T35 + 79) — 7'67;57'9]2
(7,

. { 3 2Ry [y (7 +7) = 77 1}

¥i—0 NYi [Tqy* (Te + 1) (75 + T9) — 7'67';57'9]3 Yi
= lim < — A1 (yi) <\/@> _ A2<yi) 1}
yi—0 2XAp(y;)? yf AyiAo(yi)3 yi ’

where, for any y;,

Ao(yi) = [Tny* (Te +79) (70 +79) — TeTTo)
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Ar(yi) = Temy oV Y Tgy" (e + 1) — TeT)
and
Aa(ys) = (r5) 2y’ [y (e + 1) — 7).
Using the fact that
i 520*2?;*%7‘77

T, = -7
w B2a*27-u + y*Tn7

we have that

Al(yz) =z Tny* (Te + Tn) - 7—67-:;

= Te(Tny* —7,) + Tny*Tn

. 620«*2:9*7'117'77 ) .

= Te|\TWY — 3 ) TTY T

e<n B2a*?1, + y*1y, ngn

. 52a*27.u .
=TTy <1 — —52a*27u iy + Ty T
> 0.
Similarly,
sg

As(yi) Y™ (Te + ) — Te1, > 0.

Observe that

Ao(yi) o< Y™ (Te + 1) (705 + T9) — TeTosTo
= (my* —15) TeTo + Ty (TeT), + T Tl + THTo)
> 0.

Therefore lim,, .0 J(y;) < 0. It is straightforward to see that lim,, ,o J(y;) = 0. Finally, we check
for asymptotes (namely, for values of y; for which D(y;) = 0). Suppose that D(y;) = 0 for some y;.
That is, there exists ¥; such that

T,?y* [TeTnyi + (Tw + 79) (Te + )] — TwTeTy (QTn\/y*yi + 7'0) = 0.

The expression in the above equation is quadratic in |/y; so we can calculate the determinant to be:
47‘37‘627'33/* - 4767'33/* (Tny™ (Tw + 70) (Te + 7)) — TwTeTp) 7'37‘6 — (Y™ (1w + 19) (Te + 7)) — TwTeTp)

X Te (T —Ty") — Tgy*.

Using the definition of 7, we then get that the determinant is proportional to
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/82a*2y*7-u7-77 . B2a*27_u
_y*Tﬁ

which is strictly negative. Therefore there is no real value of ,/y; for which D(y;) = 0. Because y; is

-1

non-negative, this means that there are no vertical asymptotes for J(y;; y*).

Jointly, the properties that (a) limy, 0 J(ys; y*) = —o0, (b) limy, 5400 J(yi) = 0, and (c) J(yi; y*)
does not have vertical asymptotes, imply that J(y;;y*) is bounded from above by a constant M > 0.
Hence, when 2%16/ (yi) + C"(y;) > M for all y; > 0, the payoff is quasi-concave. Note that, when
Cly) = %yQ, the above condition becomes B > %M , which holds for B large enough, as claimed in
the main text.

The above results imply that, under the conditions in the proposition, choosing quality of in-
formation y; = y* and then submitting the limit orders defined by the coefficients (a*,l;*,é*) in
Proposition 1 (for quality of information y*) is a symmetric equilibrium in the full game. That there
are no other symmetric equilibria in affine strategies follows from the uniqueness of the solution to

N(y) = 0 established in Step 2. Q.E.D.

4.11 Proof of Proposition 6 in main text (impossibility to induce efficiency in

both information acquisition and trading with standard contingencies).

Assume that all traders other than i acquire information of quality y” and then submit the efficient
demand schedules (that is, those corresponding to the coefficients (a’, BT, ¢ for quality of informa-
tion y7). Given any policy T(z;,p), the expected net payoff for trader i when he chooses information

of quality y; and then selects his demand schedule optimally is equal to

V(y",yi) = supyy {E[T(y", wi); 9()] — Clyi) }
where g : R? — R is a generic function specifying the amount of shares x; = g(s;, z) that the trader
purchases as a function of his private signal s; and the endogenous signal z = 6 + f(y*)n — u/(Ba™)
contained in the market-clearing price, and where
Elf(7,9):90)] = E[0g(si2) = (0= u+ B)g(si,2) = 3 9(si,2))’]
—E[T (9(si,2), 0 —u+ Bz)].

Note that the definition of E[7;(y”,v:); g(+)] uses the fact that the market-clearing price is given by
p=a—u+pF with =a’ (0 + f(y")n) +b" +c’'z, where b and ¢! are the coefficients describing
the equilibrium trades obtained from b7 and ¢ using (17) and (18). It also uses the fact that, when
all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,

any mapping from (s;, p) into z;) can be expressed as a function g(s;, z) of (s;,2).*

3Tt suffices to use (19) to observe that p = a + 8bT + B(a” + c7)z.
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For the policy T'(z;,p) to implement the efficient acquisition and usage of information, it must
be that, when y; = 37, the function g(-) that maximizes the trader’s payoff is equal to g(s;,2) =
a®'s;+bT +cT 2. Using the fact that the equilibrium price can be expressed as p = a+pb7 +5(a’ +c!)z,
and the fact that E[0]s;, 2] = y1(rw(a’))s; + v2(7,(a’))z where 41 and 72 are the functions defined
in the proof of Proposition 1, we thus have that, for the policy 1" to implement the efficient trades,

it must be that T is differentiable in x; and satisfies

Y1 (1w(a”))s; + y2(rw(al))z — [a+ BbT + Bla® + cT)z] — A (al's; + b7 + ¢T2)

— 27 (aTs; + b7 + Tz, a+ BbT + Blal +¢T)z) =0
for all (s;,z). Next, observe that, when trader i trades efficiently, the quantity that he purchases is
given by z; = a’'s; + b + ¢ 2. Expressing s; as a function of z; using the last expression, and using

the relationship p = a + b7 + B(a” + ¢')z to express z as a function of p, we have that
o] (Tw(aT))si + yg(Tw(aT))z — [oz + BvT + ﬁ(aT + CT)Z] - (aTsi +ol + cTz)

= Pnrua”)) = A7) B2 | [o(m,(aT)) — Bla +T) - AeT] B
— (a + 8bT + )\bT) = [71 (1 (a)) — /\aT] a:a—#

+ [’yg(rw(aT)) — Bla® + ) = Ach — (i (1w(aT)) — AaT) 2—;] % — (o + BoT + T .
Note that the term above is the discrepancy between the trader’s marginal benefit and marginal cost
of expanding his demand evaluated at the efficient trade. But this means that, for the policy T'(z;, p)
to implement the efficient use of information, it must be that T'(z;, p) is a polynomial of second order
of the form

) -
T(xi,p) = 51’? + (tpp — to) zi + K (p), (44)

for some vector (d,t,,tp) and some function K(p) which plays no role for incentives and which
therefore we can disregard. In the proof of Proposition 4, we showed that there exists a unique
vector (6, tp,tp) that induces the traders to submit the efficient demand schedules when the precision
of their private information is y” (the vector in Proposition 4 applied to y = y*). Thus, if a policy
T induces efficiency in both information acquisition and information usage, it must be of the form in
(44) with (3,t,,t0) as in Proposition 4 applied to y = y*. When the policy takes this form, for any
yi, the optimal choice of g(-) is affine and hence can be written as g(s;, z) = as; + b + cz, for some

(a,b, c), implying that

El#i(y7,4:); 9()] = E| (0 + to) (asi + b+ cz) — 25 (as; + b+ cz)?

—(1+tp) (a—u+B[al 0+ fly")n) + b7 +cT'2]) (as; +b+cz) |.

Letting M be a function of all variables that do not interact with y;, we then have that, when
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g(si, z) = as; + b+ cz, for some (a,b,c),
E[7i(y",4i); 9()] = M — B(L+tp)(a” + cT)a
(Md)ca A6 a2 A5 a2
\/y?\/ﬁﬂ'n 2 YTy 2 yiTe”
The optimal g when y; = y? is g(z;,2) = a’'s; + b" + 2. Hence, using the envelope theorem, we
then have that

1
VT Vi

o 1 B+t A+ @ +Da” | (A+0) (o),
oy, W) T e S e Cy")-

Recall that the efficient y” is given by the solution to the following equation

(B+N) (@l +cT)? | Afa”)”
27, (y7)? 27, (y7)’
Hence, for the policy of Proposition 4 in the main text (applied to 4 = y?) to implement the efficient

= C'(y").

acquisition of private information, it must be that

B+ Nl +cD)2 A(aD)? [B(1+t,) + A=+ 6] (aT +cT)a” . (A +6) (aT)?

Tn Te Ty Te

or, equivalently, (a” + ¢T)7. [(B8+ A)c! — (Bt 4+ 0)a’] =6 (aT)2 7. One can verify that the values
of 0 and t, from Proposition 4 do not solve the above equation except for a non-generic set of

parameters. Q.E.D.

4.12 Proof of Proposition 7 in main text (policy inducing efficiency in both

information acquisition and trading when acquisition is verifiable).

Paralleling the derivations in the proof of Proposition 6, we have that, when the policy takes the
proposed form and all traders other than i acquire information of quality y” and then submit the
efficient demand schedules (that is, the affine orders corresponding to the coefficients (aT,l;T,éT)
for quality of information y”), the expected net payoff for trader i when he chooses information of
quality y; is maximized by submitting an affine demand schedule x; = as; + b— ¢p which induces
trades z; = as; + b + cz that are affine in (s;, 2), where z = 0 + f(y7)n — u/Ba” is the endogenous
signal contained in the market-clearing price.

Using this result, let

Viy",y) = sup {El7 (", vi);a,b,c] — Cly;) + Ay; }

a,b,c
denote the maximal payoff that trader ¢ can obtain by acquiring information of precision y; when all
other traders acquire information of precision 4’ and then submit the efficient demand schedules for

information of quality y¥”. As shown in the proof of Proposition 9, the expected gross payoff that
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trader 7 obtains by inducing the affine trades x; = as; +b-+ cz when he chooses information of quality

y; is equal to

- _ 1 A+ 0)ca A+65 a? A+ a?
El7i(y", yi);a,b,c] = M = B(1+ 1) (a+ c)a—= _ - Jea _ e
VYT YTy, YiTy YiTe

where M is a term collecting all variables that do not interact with y;. Using the envelope theorem,

we have that

o 1+t)+A+6] (@ +cNa? (A+6) (a7)?

Dy = PAEAATA Dl QA0 () oy gy
Yi yi=yT 27, (y!) 27, (y1)

Again, in writing the above derivative we used the fact that, when 3; = y”, the optimal demand

schedule for trader i induces trades equal to a’'s; + b7 + ¢’ z. Using the fact that y” satisfies

2
(BN +c1)? M@)oy
2m 7))’ |
we thus have that the proposed policy induces the efficient acquisition of private information only if

the following condition holds

2
(8 + )‘)éi: +cT)2 N A (2(:—::) _ (B(1+1t,) + )\2—;75) (aT +cT)aT N (A + gz—e(aT) + A (yT)Q

from which we obtain that

B al 4+ ¢* T S 5(aT2
2T (B2 = Py 0)e] 27, (y7)*

T

Next, use Condition (18) to express ¢! as a function of ¢I' and rewrite A as follows

Ao (@) pB+NT o] ()
2, (u7)? [ (14 BT THBET | 2n o)

That the function V(yT, y;) is globally quasi-concave in y; under the conditions in the proposition
follows from arguments similar to those in the proof of Proposition 6. We conclude that the proposed

policy implements the efficient acquisition and usage of information. Q.E.D.

4.13 Proof of Proposition 8 in main text (policy inducing efficiency in both

information acquisition and trading when acquisition is non-verifiable).

Assume that all traders other than i acquire information of quality y” and then submit the effi-

cient demand schedules (that is, those corresponding to the coefficients (a’, I;T,éT) for quality of

information yT). Given any policy T'(z;, Z,p), the expected net payoff for trader i when he chooses
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information of quality y; and then selects his demand schedule optimally is equal to

V(y",yi) = supy) {BIFi(y", vi); 9()] — C(wi) }
where g : R? — R is a generic function specifying the amount of shares x; = g(s;, z) that the trader

purchases as a function of s; and z, with z = 0 + f(y*)n — u/(Ba’), and

Effi(y” yi)i 9()] = E [0g(si,2) — (@ —u+ 82)g(si, ) = 3 (9050, )]
—EI[T (9(si,2), T, a0 — u + fT)].

Note that, in writing E[7;(y”,v:); g()], we use the fact that the market-clearing price is given by
p=oa—u+ BT with Z =a’ (0 + f(y")n) + b7 +c’'z, where b and ¢! are the coefficients describing
the equilibrium trades obtained from b7 and ¢7 using (17) and (18). We also use the fact that, when
all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,
any mapping from (s;,p) into x;) can be expressed as a function g(s;, z) of (s;,z) by using (19) to
express p = a + BbT + B(a” + c')z as an affine transformation of z.

For the policy T'(z;,Z,p) to implement efficiency in both information acquisition and usage,
it must be that, when y; = y?, the function g(-) that maximizes the trader’s payoff is equal to
g(si,2) = al's; + b + 2. Using the expression for the equilibrium price p = a + b7 + B(a” + 1)z
and the fact that

E [0]si, 2 9i,y" | = n(1(a"))s; + 72(r(a”))z,

yi=yT
where ~v; and 9 are the functions defined in the proof of Proposition 1, we thus have that, for the
policy T to implement the efficient trades, it must be that T is differentiable in x; and, for all (s;, 2),
satisfy
1 (1w (a®))s; + 2 (1, (a”))z — [a + T + BaT + CT)z] —A (aTsi +ul 4+ cTz)
- E)%ZE [T (a¥si + b7 + T2, %, 0 — u+ BZ) |si, 2, yi, y" | ’ =0,

yi=yT

where & = a” (0 + f(y")n) + b7 + 'z, with 2 = 0 + f(y")n —u/(Ba’).
Next recall, when the individual trades efficiently,
1 (1 (a®))s; + 2 (1, (aT))z — [a + T + pB(aT + cT)z] —A (aTsi +ol + cTz)
= [n(raa”)) = 2a”] =+ |pa(ma(a”)) = Bla” +¢T) = AT~ (n(rufaT)) — MaT) £ | Bt
— (a + b7 + )\bT) .

This means that, for the policy T" to implement the efficient use of information, it must be that

T(xz;,Z,p) is a polynomial of second order of the form

T(a1,5.0) = Sa? 4 (ot th +25) 2, + K'(5.). (45)
for some vector (&', 1, ¢y, tz), where K'(Z,p) is a function that does not depend on w;, plays no role
for incentives, and hence can be disregarded. Furthermore, under any such a policy,

2B [T (2i,%,p) |si 0 vi, y"] = 6'wi + pty, — th + t:E [Esi, p; i, y" ]
= &'z + pt), — t + tzE [p_‘g*“lsz-,p; yi,yT] = &'z + pty, — to + F(p — a) + BE [ulsi, p; yi,y" |
= 0'wi + pty, — to + % (p — @) + G A* (yi,y")si + S BY (yi, " )p + BC*(yi, v,
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where we used the fact that p = o — v + BT and the fact that
E [ulsi,piyisy" ] = A% (yisy")si + B (yiny")p + C* (yiy")
where A% (y;,y7), B#(y;,yT), and C#(y;,y”) are the coefficients of the projection of u on (s;,p)
when all agents other than i acquire information of quality y” (and trade efficiently) whereas trader
1 acquires information of quality y;.
When trader i too acquires information of quality v; = y7 and trades efficiently, z; = a’'s; +
bT + Tz, with z = (p—a— BbT) / (B(a” + cT)). Using the last two conditions to express s; as a

function of z; and p, we then have that

zi—bT—cT(p7%73g>
E [ulsi, p; i, 7] = A*(yT,y7) AL 4 BHEYT, yTp + CF (YT yT)

_ AFQT YT T 7y _ A*@TyT)cT T 7y _ AF@T Tt | AF Ty ")t (o80T

=T T+ {B#@/ Y )—m}p—i-c#(y Y ) — ol + T BlaT+cT) .
Then let

FU NS
=—_ 7
B# — B#(yT yT) - A#(yT7yT>CT
= 9 aTﬁ(aT + CT) )

and

A (yT gyt ATy, yT) ! (o + BT

A# — # T Ty _
Cr=CTyy) al a’B(a” 4 cT)

We thus have that, when trader i acquires information of quality y; = y” and trades efficiently,

9 N
5 B [T (@i, p) [si,psy",y' | = 0mi 4 tpp — to
where
g
1+ B#
tp :t;,+ti+7, (47)
B
and t
[0 5 A
°TTB B (48)

In the proof of Proposition 4, we showed that, when agents acquire information of quality y*, for
them to trade efficiently, the values of (9, ,,tg) must coincide with those in Proposition 4 (applied
to y = y'). Thus, for the above policy to induce efficiency in both information acquisition and
information usage, it must be that the vector (&', 1, t), tz) satisfies Conditions (46)-(48) with (6, t,, to)
given by the values determined in Proposition 4 applied to y = y’. Note that, for any tz, there
exists unique values of (¢’ ,t;,t(’)) that solve the above three conditions. Abusing notation, denote
these values by (&'(tz), t,,(tz), to(tz))-

Next, note that, when the policy takes the form in (45), for any y;, the optimal choice of g(-) is
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affine and hence can be written as g(s;, z) = as; + b+ cz, for some (a, b, ¢). This implies that
E7i(y",y:); 9()) = B | (0 + th(t) — ta) (asi + b+ cz) — 22 (as; + b+ c2)?
—(1+t(tz) (a —u+ B [a? (0 + f(yT)n) + b7 4+ cT'2]) (asi + b+ cz) |.

Letting M be a function of all variables that do not interact with v;, we then have that, when

9(8i, 2) = as; + b+ cz, for some (a,b,c),

~ 9 (lT T )\ 6 a2 a2
B (7 90 90)] = M — [t + B+ ty(t))] GE2T) — Ao Mo ar  Agbar

Using the envelope theorem, we then have that

R [ BAH ) + A+ (@ + M (A +0) (D)
T — 27, (y7)" T o ) cw

Once again, in writing the above derivative, we used the fact that, when y; = y”, the optimal demand

schedule for trader 4 induces trades equal to the efficient trades a’'s; + b’ + ¢’ z. Finally, recall that

the efficient y” is given by the solution to the following equation

B+ N+ A(a)’ ,
P oty S

Hence, for the above policy to induce efficiency in information acquisition, it must be that

(6+)\)(2T+CT)2 n /\(iT)Q _ [ti-&-ﬁ(l-f—t;,(tj)):-)\-‘rﬁ](aT-i-cT)aT n (>\+57)—(aT)2. (49)
n e n e
Using (47), we have that
1+ B#
ty(ta) =tp — te—p—

with ¢, given by the unique value determined in Proposition 4 applied to y = y”. Because the
function H : R — R given by H(tz) = t; + Bty (tz) = Bty — tzB# is linear, there exists a (unique)
value of t; that solves (49).

Following steps similar to those in the proof of Proposition 6, one can show that there exist scalars
K,M € R+ such that, when the cost of information satisfies the properties in the proposition, the
function f/(yT,yi) is globally quasi-concave in y;. We conclude that, under the conditions in the
proposition, the policy in (45), with ¢z given by the unique solution to (49) and with (d',),,tg)
given by the unique solution (&'(tz), t,(tz), t5(tz)) to Conditions (46)-(48), induces efficiency in both

information acquisition and information usage. Q.E.D.
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4.14 Proof of Proposition 9 in main text (sub-optimality of ad valorem taxes

with endogenous information).

We establish the result by showing that the precision of private information y acquired in equilibrium
is invariant in ¢,. Namely, any ¢, # 0 results in an equilibrium in which the precision of private
information is y = y* and the sensitivity of the trades to the private signals is a = a*, where y*
and a* are as in the laissez-faire economy in which ¢, = 0. On the other hand, for any ¢, # 0, the
sensitivity ¢ of the equilibrium trades to the endogenous public signal z contained in the equilibrium
price, and the constant b in the equilibrium trades are different from the corresponding levels in the
laissez-faire economy. Because, given y* and a*, the sensitivity ¢* of the equilibrium trades to the
endogenous public signal z and the constant b* in the equilibrium trades in the laissez-faire economy
are welfare maximizing (by virtue of Lemma 1 in main text), we thus have that any ¢, # 0 results
in strictly lower welfare than ¢, = 0.

Hence, based on the arguments above, it suffices to show that any such a policy fails to change the
quality of information acquired in equilibrium. To see this, fix ¢,, and denote by y and (a,b,c) the
precision of private information acquired in equilibrium and the parameters defining the equilibrium
trades in the economy with ad valorem tax equal to .

For any v;, let

V¥ () = sup (B[l 00, 90)] - C) |
)

denote the maximal payoff that trader ¢ can obtain by selecting private information of quality y; when
all other traders acquire information of quality y and then submit the limit orders corresponding
to the parameters (a, b, c), where g : R> — R is a generic function specifying the amount of shares
x; = g(s;, z) the trader purchases as a function of s; and the endogenous public signal z contained in
the equilibrium price. Let (a, b, ¢) be the parameters defining the equilibrium trades when information

is of quality y and the tax rate is t,. Note that?

Elr];y,99()] = E|0g(si2) — (1+) (o + Bb+ Bla+¢)2) glsi, 2) — 3 (9(si,2)” [ys | -
is the trader’s expected payoff, gross of the information cost, when following the rule g(-) after
acquiring information of quality vy;. In writing ]E[?TZ# (yi; g(+)], we used the fact that the equilibrium
price is given by p = a+ b+ f(a + ¢)z with z = 0 + f(y)n — u/(Ba).

By the definition of equilibrium, if agent ¢ acquires information of quality y; = vy, the limit
order that maximizes his payoff must be the equilibrium ones (that is, the one corresponding to the
coefficients (a, b, c)). The envelope theorem then implies that

N(y) = aV%;(y% Yi) _ B+t atc)a N Aa(a + c) N A(a)? W) (50)

yi=y 27py? 27,y 2427,

Hence, the equilibrium value of y must satisfy N (y) = 0. Let M #(tp,a, ¢,y) denote the function

4As above, given (a,b,c), the sensitivity of the equilibrium limit orders ¢ to the price and the constant b in the
equilibrium limit orders are obtained from (a, b, c) using (17) and (18).
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defined by the right-hand-side of (50). Next, use the derivations in the proof of Proposition Al to
observe that, given (¢,,y), the equilibrium values of (a, b, ¢) are given by (6), (7), and (8). From the

implicit function theorem, we then have that

aM#(tP)avcvy) 8M#(tpaavcvy) @

dy a, T dc o
dt, ~  OME(pacy) | OMF(pacy)da | OMF(tpacy) o’
oy da oy dc dy

where we used the fact that, given y, the equilibrium level of a is invariant in ¢,. Note that dc/0t,
is the partial derivative of the equilibrium level of ¢ with respect to ¢,, holding y constant, whereas
da/dy and Oc/Jy are the partial derivatives of the equilibrium levels of a and ¢ with respect to y,
holding ¢, fixed.

Because 9 5 )
+c)a
— M# — plaTc)a
8tp (tp7 a7 Ca y) QTny2 9
) [B(1+t,) + N a
Z M _ P
8CM (tp’ a,c, y) 27'773/2 )
and
2 —Bla+o)
oty — Bl+ty) + N

we conclude that dy/dt, = 0, as claimed. Q.E.D.
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