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Proof of Proposition 1.

As explained in the main text, when the traders submit affine demand schedules with parameters
(a, b, ¢), the equilibrium price is equal to

o+ b Ba
p= -+ N
1+p5¢ 14 6¢

(1)
where

z=0+4w, (2)
with w = f(y)n — u/(Ba). The information about # contained in the equilibrium price is thus the
same as the one contained in a public signal whose noise w has precision'

B2a297u7—n

YT Pa— 3)
B2acTy +ymy,

In turn, this implies that the equilibrium trades z; = as; + b— ¢p are affine functions of the traders’

Tu(a)

exogenous private information s; and the endogenous public information z contained in the price.
That is, when the endogenous public information contained in the price is equivalent to z, a trader

with private signal s; purchases an amount of the asset equal to

r; =as; + b+ cz

where A
- o+ b
=b— 4
b= s )
and
B Baé
T 1t 5)

For each vector (a, b, ¢) describing the traders’ demand schedules, there exists a unique vector (a, b, ¢)
describing the traders’ equilibrium trades as a function of their (exogenous) private information, s;,
and the (endogenous) public information, z, and vice versa. Hereafter, we find it more convenient
to characterize the equilibrium use of information in terms of the vector (a,b,c) describing the
equilibrium trades. When the individual trades are given by x; = as; + b + cz, the aggregate trade

is equal to

= /l’idi =a(@+ f(y)n) + b+ cz.
Using the fact that z =60 + f(y)n — u/(Ba), we thus have that
u u
—)+b+cz=(a+c)z+ - +b.
i) (@t s+

Using the expression for the inverse aggregate supply function p = o — u + 8%, we then have that

Z=a(z+

the equilibrium price can be expressed as follows:

p=a+ b+ B(a+c)z. (6)

'To derive 7., (a) we use the fact that f(y) = 1/,/%.



Next, observe that

-1
Var(s;) Cov(si,z) si — E[s]
E[0|I;,p]| = E|f]s;, z] = ov(0, s; ov(0, z
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where 02 = 7,71, 02(a) = 1u(a)7}, @ = 7, 1. Substituting for the inverse of the

variance-covariance matrix, we have that

1
(7F + o2)(0F + 02 (@) = (7F + FWPoR)
(o3 o] [ oh+ole)  —(of+ ) o) ] [ st~ Elsi]
—(0 + f(y)?o7) o + ot z—E[2]
Expanding the quadratic form, we have that
oj (0%(a) — f(y)*o7)

(0§ +02)(0f + 03(a)) — (07 + f(y)?07)?
+ % (00— I)oy) (z - E[2]).

(0f + 02)(05 + 02(a)) — (0F + f(y)?07)?
Using the fact that E[s;] = E[2] = 0, and replacing o with 7,7, 02(a) with 7,(a)~}, o with 7,71,
o2 with 771, and f(y) = 1/,/y, we have that

E[G!si,z]

E[0]s;, z] (si — Elsi])

E[flsi, 2] = m(rw(a))si +72(ru(a))z

where, for any 7,
TeYTy (YT — Tw)
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Now recall that optimality requires that the equilibrium trades satisfy
1
Ti = X\ (E[f]si, 2] — p)-

Using the fact that p = a+ b+ B(a+ ¢)z, and the characterization of E[f|s;, z] above, we thus have
that

1
zi = 5 [nrw(a)si — (a+Bb) + (2(rw(a)) — Bla+c)) 2]
The sensitivity of the equilibrium trades to private information must thus satisfy
o= W 9)

The sensitivity of the equilibrium trades to the endogenous public signal contained in the equilibrium



price must satisfy

1
¢ =5 (2(rla)) = Bla+c)). (10)
The constant b in the equilibrium trades must satisfy
b
po ot (11)

A
Replacing the expression for 71 (7,(a)) in (7) into (9), we thus conclude that the sensitivity a* of the

equilibrium demand schedules to the traders’ private information must solve the following equation
1
af- = ————r, 12
A (7, (a*)) (12)
where
Y270 (T + Te + 79) — TwTe (o + 2y79)

TeYTy (3/7'77 - Tw)

A1) = : (13)

Using (8), (10), and (9), we have that the sensitivity of the equilibrium trades to the endogenous

public signal contained in the equilibrium price must satisfy

1 To Tw(a)
c=——Il1-Xa—a— | ———— — Ba| . 14
B+A K ?ﬂn) Tw(a) + 79 ’ 19
Using (11), in turn we have that the constant b in the equilibrium trades is given by
o
b= — . 15
B+ A (1)

Finally, inverting the relationship between b and b and ¢ and ¢ using (4) and (5), we have that, given
a*, the values of ¢ and b* satisfy ¢ = C(a*) and b* = B(a*), where, for any a, the functions C' and

B are given by
. Tw(a)yy (1 — Xa — Ba) — Aatp7,(a) — Payt,Te

Cla) = - ABayty (1w(a) + 19 — 970 (a)) + BT (a)yT, "
and
Bla) = 3 - (¢@-1). "

The formula for C(a) in the main text is obtained from (16) after replacing the formula for 7,,(a).
To complete the proof, it thus suffices to show that equation (12) admits a unique solution and that
such a solution satisfies 0 < a* < 1/X. To see this, use the fact that 7. = y7.7,/(7. + 7,) to observe

that this equation is equivalent to

\3%7, (ymy + 70) a®+ \y [yTeTy + T9(Te + )] @ — Te’l’ny2 =0. (18)

Clearly, because the left-hand side is strictly increasing in a, the above cubic equation has a unique
real root, which is strictly positive. Furthermore, when a = 1/, the left-hand side is equal to

ﬁz'ru
~z (ym) + 70) + To(7e + 7y)y > 0.

We conclude that a* € (0,1/)). Q.E.D.



Derivation of welfare under FB allocation.

/01 (x7) di > </01xidi>2

we have that W is maximal when z; = x° for all ¢, with
0—a+u
B+ A

Because

xO

Q.E.D.

Derivation of welfare losses.

Ex-post welfare is equal to

We = 0z°—

g(a:")Q - (a —u+ Bg) x° = 5 (z°)2.

It follows that

~9 1
we = P2e(ep)-5|0-a+we-sT -3 [ otal.

Replacing z° = ezﬁr’;“ into the above expression and using the fact that E [ fol mfdz} = E [E[2?|z]],

we have that

1
= PEAR (@] 4 B [(8 4+ N — 22°(8 + 3) — A0 + AEL2 ]
- ?E[(@ —2%)?) + %E[(xz- - 7).

Q.E.D.

Proof of Lemma 1.

The same arguments as in the proof of Proposition 1 imply that, when the traders submit demand
schedules of the form z; = as; + b — ¢ép, for some (a, I;, ¢), the trades induced by market clearing can
be expressed as a function of the endogenous public information z generated by the market-clearing
price by letting x; = as; + b+ cz where z = 0 + f(y)n — u/(Ba) is the endogenous information about
@ contained in the equilibrium price, and where the noise in the endogenous signal has precision
Tw(a) = (BPa®yrymy) | (B*aTy + y1y).

Furthermore, the values of b and ¢ are given by (4) and (5). Using the above representation, we

have that the aggregate volume of trade when the demand schedules are given by (a, 3, ¢) is given by



7 =a(0+ f(y)n) + b+ cz and hence ex-ante welfare is given by
2
EW]=E [(9 —a+u)(a@+ fly)n) +b+cz) — B(“(9+f(y)g)+b+cz) — fol 2 (asi +b+cz)’dil .

Note that
OIE(;[ZV] =E[0—a+u)—Ba@+ fy)n) +b+cz) —Nas+b+cz)] = —a — (B8+ A)b,
O’E[W
ab[z]z—(ﬂJr/\) <0,
81%[?/] =E[z(0 —a+u)—B(a@+ f(y)n) +b+c2)z — Az (as + b+ cz)],
62236[21/[/} =E [—622—)\22] <0,

and 0?E[W]/0cdb = 0. Hence E[W] is concave in b and ¢ . For any a, the optimal values of b and ¢ are
thus given by the FOCs 0E[W]/0b = 0 and OE[W]/0c = 0 from which we obtain that b = —a//(5+ )
and

E[2(0+u) — B(a(d+ f(y)n)) z — Bez? — Aazs — Acz?] = 0.

The last condition can be rewritten as
Cov [0 +u—pal@+ f(y)n)),z] — (B+ ) cVar(z) — AaCov(z,s) =0

from which we obtain that

Cov (0 +u—Bald+ f(y)n)), 2] XaCov(z, s)

c = _

(B4 ) Var(z) (B+N)Var(z)
Using the fact that z =60 + f(y)n — 5; and s =60 + %(n + e), we have that
1 1
Var(z) = —+ =05 + 05 (a),

o Tw(a)
where 03 = 1/79 and 02 (a) = 1/7,(a). Furthermore,
Cov[(6+u — Ba(® + f(y)m) 2] = Cov [(0 +u ~ Bal0+ f(y)m) 0 + Fly)n— 4
= Cov [0(1 = Ba), 0] + Cov |u, 2| ~ Cov [Baf(y)n, f(y)1]
= (1 - Ba)of — % — Baf(y)*o,
and Cov [z, s] = o5 + f(y)Qa%. Hence,
(1= Ba)of — 5 — Baf(y)*ol (o] + f(y)*02)

Cc = —

(B+ ) (0f + 02(a)) (B+X) (0F + 02(a))

1 Ty Tw(a)
S [(1_M_Mw> T(a) + 79 _ﬂa] |

We conclude that, given a, the optimal values for ¢ and b are given by the same functions in (14)

and (15) that characterize the parameters ¢ and b as a function of a under the equilibrium usage of
information. To go from the optimal trades to the demand schedules that implement them, it then

suffices to use the functions defined by (4) and (5). We thus conclude that, for any choice of a, the



optimal values of ¢ and b7 are given by the functions (16) and (17), as claimed. Q.E.D.

Derivation of formula for welfare losses.

As shown above, the welfare losses can be expressed as
A A
WL = IR a2 + 2Rl - 27)
where 20 is given by
0+u—a
B+ A

:EO

(19)

We have also shown above that, for any vector (a, 13, ¢) describing the demand schedules, there exists
a unique vector (a, b, ¢) describing the induced trades z; = as; + b+ cz at the market-clearing price,
and vice versa, where z = 0 + f(y)n — ﬁ% is the endogenous signal contained in the market-clearing
price. This also means, when the traders submit the demand schedules corresponding to the vector
(a, 13, ¢), the aggregate volume of trade at the market-clearing price can be expressed as a function of
(0,m, z) as follows: & = a(f + f(y)n) + b+ cz. Therefore, the dispersion of individual trades around
the aggregate trade can be expressed as

2
- a
E[(z; — 7)’] = E[a*f(y)*¢}] = —.

YTe

Next, use the fact that, for any a, the optimal values of ¢ and b are given by (14) and (15),

along with the fact that z =60 + f(y)n — 4;, and the fact that f(y) =1/,/y, to obtain that

X0+ Fly)m) +u—a+ (1= Aa— i) el
T = al@+ fly)n) +b+cz=

YTy ) Tw(a)+Te
B+ A

Combining the expression for Z derived above with the expression for z° in (19), we have that

T Tw(a) 2
L /\a(¢9+f(y)77)+u—a+(1—)\a—)\aﬁ>m(aHng 0 ot
El@ =27 = E B+ RS

Simplifying, we have that

2
T Tw(a) T Tw(a)
E[(i‘ _ $0)2] _r ()\af(y)n + (17)\a7)\aﬁ) (D47 (z—0) _ [17)\a7 (17)\a7/\aﬁ> Tw(jz)+T9]9>
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Using the fact that f(y) = 1/\/y, and that E{wf] = E[nf] = 0, we then have that

((1 —Na-— AaLe) ru(a) )2 \2a2 + 20a (1 e MLG) rol(a)

E[(i’ xo)Q] — yZT’fI Tw (a)+7—9 5 YT Tw(a)+7e
(B+ )" 1(a) (B+ A ymy,
) _mw(@ )2
N (1 —Aa — (1 —\a — )\aﬁ) m(a)+Te)
(B+A)?m



Replacing the expressions for E[(z; — #)?] and E[(Z — 2°)?] derived above into the formula for the
welfare losses, we then have that, for any a, when b and é are set optimally, the welfare losses can

be expressed as

Tw(a)+79 ym ) Tw(a)+7o

a, Ty(a =

2(B+ ) 1(a) 2(B+ Ny
2
. [1 — \a — (1 — \a — )\ay%) TW(ZSJF)TJ a2 20)
2(B+ )Ty 2yTe

as claimed in the main text. Q.E.D.

Proof of Proposition 2.

As shown above, once b and ¢ are set optimally as a function of a to minimize the welfare losses,
the latter can be expressed as a function of a and 7,(a), with the formula for W L(a, 7,(a)) given by
(20), with 7,(a) = (B%a*Tumyy)/(B*a*7, + y7y). The socially optimal level of a is thus the one that
minimizes W L(a, 7,(a)) and is given by the FOC

dWL(a,1,(a))  OWL(a,7,(a)) +8WL(a,Tw(a)) Otu(a) 0
da B da 07,(a) oa
Note that
. B T Tw(a) ymy+T10  Tw(a)
OW L(a,1,(a)) _ <1 Aa )‘ayfn> 7w (a)+7 ()‘ vy eTu(a)JrTe)
da B+ 1w(a)
2 T Tw(a) 2 ym+T19  Tw(a)
A a+ A (1-da—dagt) SR — Vit s
(ﬁ + )‘) YTy
g — (1= \g — \gTe) _Tw(@ _ Yo | _Tw(a)
" |:1 Aa (1 Aa )\ayfn) Tw(a)+T91| ( )\+)\( ;Ty] ) Tw(a)-‘rﬂq) n a
(B+ )9 YTe
and that
T 2 7o
Wi ) _ (Lha-det) gong  de(l-da-de)
01, (a) 2(B4+N) (1w(a) + 79)3 B+ Ny, (1w(a) + 7'9)2
_ _ (71— 2y 7o) _Tw(@)
3 [1 Aa (1 Aa /\%fn> m(a)+m] <1 g )\am) Ty
(B+A) 79 Y7 ) (1w(a) + 79)°
Also note that
0T, (a) B 252ay2737u
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Using the expressions above, we obtain that
Chg — N\t ) _Tw(@) Yt Tw(a) )
(1 Aa A%m) 7 (a) 170 (A v Tl@dn) | AG H(a)

dWl(a,7w(a)) _
da B B+ 7w(a) YTe
2 T Tw(a) 2 ym+te Tw(a)
+)‘ a+ A (1 —Aa— )\aﬁ) Tw(a)+710 Aa 17/]7'7] ‘ Tw(a)+Tg
(B+A) YTy
_ _ . . Ty Tw(a) _ yTn+T7o Tw(a)
n [1 Aa <1 Aa )\aygn) ‘I‘w(a)+7’9:| < A+ A( ;Tn > Tw(a)+7'0)
(B+A)
where
2
i = P (1=Aa=2a2)" o ) 2o (1-ra=2a)
B, + ym)? BN () + ) BN (rale) + 70
2(1—Xa— (1-Xa—Na2)—Teld
(e ) ] () o )
Y7o/ (1w(a) + 79)

- (B+A)7o
Hence, the first-order-condition dW L(a, 7,,(a))/da = 0 is equivalent to

0 = Xame ((yﬂ7 + 79)? TW(T;))(C_? 7_9) + Aaym, e (Tw(a) + 19) — 2Xate (ym; + 79) Tw(a)
Y7y (Twla) +79) (B+A)

(Tw(a) + 79) Tw(a) 2
T y7—77 (yTﬂ + 7—9) T (CL) + - + AayTnTE )\yTe
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+ate

from which we obtain that
Aa {927',37'5 — 1(a) e (19 + 2y7;) + (Tw(a) + 79) yQTg

YTnTe (yTn — Tw(a))

yryr BN (m(aA);ar 79) Y7y H (a) } _

e Y7y (Tw(a) +79) B "
AYTe

Using the definitions of the A(-), A(+), and =(-) functions in the main text, we then have that that

a® must solve

al =

>| =

1
A(7y(a)) +Z(a) + A(a) -

It is straightforward to verify that
_ ATo YTy
(B + ) ymy(1ws(a) + 19) f2a’1, + ymy,
Aa

62‘127—11 To )
1-— X + — >0,
(- G T ) * i

dW L(a, 1,(a))
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_1
a=x




and that

Tw(a) ym+710  Tw(a) Tw(a)
dWL(CL, Tw(a)) _ Tw(a)+7g <_A ;Tn ’ Tw(a)+‘l'g) A (Tw(a)+7'9>
da a=0 (B4 A) 7w(a) (B+A)ym
_ Tw(a) o YT+ Tw(a)
. (1- o) (A () i)
(B+X)T0
O(Tw<a)_1:_“L<07
YTy B2acTy, +ymy,

which implies that 0 < a” < 1/), as claimed in the proposition. Q.E.D.

Optimal sensitivity to private information when agents do not learn

from prices.

In the cursed economy, each trader receives a private signal s; = 6 + f(y)n+ f(y)e; and a public
—_—
signal 2 = 6 + f(y)n + x, and believes p to be orthogonal to (9, n, (el)zié) Following steps similar
—

=
to those leading to Proposition 1 in the main text, we have that E[f|s;, 2] = 71s; + 722, where
5 = TeYTy (Y9 — 7¢)
yQTg(Tg + Te + 79) — TcTe(T9 + 2yTy)

and
L Y1y (Y1) — Te) B _ Tp+ymy ¢
Y27 (¢ + Te + 7o) — Te7 (o + 2yTy)) YTy T + To
Observe that the cursed-equilibrium demand schedules must satisfy
1
vio= 5 (El6lsi 2~ ). (21)

Now let x; = al, S + l;zxo — Copol + cf:xoz denote the cursed-equilibrium demand schedules. From
= 72/A. Using the

the derivations above, we have that a*,, = 31/A, b%,, = 0, &,, = 1/, and d*,,
*

formula for 4; above we have that the formula for a},,

is equivalent to

at,, = (22)

as claimed in the main text.
Now suppose that, given a, the planner is constrained to choose (3, ¢, cZ) to maintain the same

and (b%,,, ¢, d*,.) in the cursed equilibrium.

. . 7 ~ > *
relationship between a and (b,¢,d) as between a  v0s Comos Ao

exro
Using the fact that

_ _ Tp + YT, T
’72=<1—71 77> <

YTy T+ 19

*

and the fact that 41 = \a},,, we have that, in the cursed equilibrium, the relationship between a},,

exro’



~

and (b, & d*,.) is given by b5, =0, ¢, = 1/), and

exro’ “exo’ 'exo EXO EXTO

5 1 To + YT, ¢
di,,=~<1-Xad 1
EXO )\ < aexo yTn ) TC' + 7_0 Y

The above properties imply that, in the cursed economy, for any choice of a, the planner is constrained

to select demand schedules of the form

S ()\asi + (1 _Jalm ym) s —p> . (23)

z
A YTy Tc+ 7o
The planner then chooses a to minimize the welfare losses

wr = U Vg o4 Je(e - 22

under the the above demand schedules, taking into account the market-clearing condition.

Following steps similar to those in the baseline economy, and using the market-clearing condition,

we have that, when the traders’ demand schedules are given by (23),

_ Aa(ymy+Te) us 2 2 9 _ Aa(ymy+Tp) us
(ﬂ + A) E[(i’ . 1‘0)2] _ ((1 y:n ) T§+T9) + Aa + 2Xa (1 y;-]n ) T¢+To
2 (B+ X7 (B+ Xy,
. . _Aa(yty+Te) ¢ 2
n (1 Aa (1 y:n ) ’T'C-'F’T'g)
(B+X)?7

and
AE[(z; — ©)%]  Aa?

2 - 2yTe

This means that, for any a, the welfare losses are equal to

[(1 _ /\a(yTn+Te)) s ]2 2242 4+ 2)\a (1 - )\a(yTnJrq-e)) 7

W L _ YTn TC+T9 + YTn T¢+To
2(8+N) ¢ 2(8+ X))y,
Aa(ymn+T79) T 2
n {1 —Aa — (1 - ny]n ’ ) T("ng:| a2
2(B+ )9 2yTe

Following steps similar to those in the proof of Proposition 2, we then have that the value of a that

minimizes the above welfare losses is equal to

CLT == 1
DY B(7c+70)
ATt 5o lim—rc)

as claimed in the main text. Q.E.D.

10



Proof of Proposition 3.

We start by establishing the first two equalities. Observe that the function F given, for all a, by

1
F(@) = 0= 3K tm@)

is strictly increasing. To see this, recall that, for any 7, A(7w) = 1/71(7w). Then note that

TeYTy (?/Tn — Tw)
Y212 (T + Te + 79) — TwTe (10 + 2yT))
n \Tw € 0 wle\70 YTn

Y1(Tw) =

is decreasing in 7, if and only if 7,y > 7.. Because
Te

Te = Tny,

Te + Ty
we have that ~;(7,) is decreasing in 7,,. Because 7,(a) is increasing in a, we conclude that F is
strictly increasing.

Next, let F” be the function given, for any a, by

! 1
A A(rw(a)) + A(a) +E(a)

FT(a) =a

Because A and Z are both increasing, F7 is strictly increasing.
The first two equalities follow from the above monotonicities along with the fact that a* solves
F(a*) = 0 whereas a’ solves F”(a”) = 0. Indeed, when A(a”) +Z(a’) > 0,
F(al) = 1 1 — - L
A A(1,(aT) + A(aT) + Z(aT) A (7(aT))
implying that a* > a”. If a* > a”, then
1 1 1 1 1
M(7o(@)) ~ A Mro(al)) + AaT) + 2(aT) ~ X Mro(a") + Ala”) + =(a)
which implies that A(a*) + Z(a*) > 0. That A(a*) + Z(a*) > 0 in turn implies that
1 1 1

<0,

FT(a*) = - — >0
(a”) M (1u(a*)) X A(1w(a*)) + A(a*) + E(a*)
which implies that a* > a”. Finally, that a* > a” implies that
1 1 1
Flal) =< <0,

T A A((aT)) + AeT) + E(T) A (r(aT))
which implies that A(a”) +Z(a’) > 0. Replicating the arguments above for the case in which the

inequalities are reversed then permits us to establish that
a* —a? "L 2T + A(a") £ Z(a*) + Aa”).
Next, consider the last two equalities in the proposition. In the proof of Lemma 1, we established

that, for any sensitivity a of the efficient trades to private information, the sensitivity of the efficient

11



trades to the endogenous signal z contained in the market-clearing price is given by
1
e 1 [(1_M_M79) _mle) g
B+ A Y1y ) Tw(a) + 1o

and coincides with the sensitivity of the equilibrium trades to z when the sensitivity of the equilibrium

trades to private information is a. Using the formula for 7,(a), we then have that a + ¢ > 0. Now
use Condition (5) to observe that

c
C=——"—. 24
Bla+c) (24)

Because a 4+ ¢ > 0, we conclude that sgn(¢) = —sgn(c). Combining this property with Condition
(14), we conclude that

¢ L Ba — (1 )\a)\aTe> 7-“)7(&).
ymy ) Tw(a)+ 19

Next observe that

2
3.-2 T
Ala) +Z(a) = Bty Tw(a) + 79 B By Ty Tu (1 —Xa — )\aﬁ) (25)
A(ymy — Tw(a)) Te A (B2a?T, + 3/7'77)2 (1w(a) + 7o)
Because y1, — 1,(a) > 0,
2 T 2
A(a) + E(a) D) (/32612% + yTn) (tw(a) + 79)2 — Teﬁy?’TgTu <1 — a — /\ay€>
n
sgn .

It is then easy to see that A(a) +Z(a) = ¢é. The above derivations hold no matter whether a is the
sensitivity of the equilibrium schedules (equivalently, trades) to private information, or the sensitivity
of the efficient schedules (equivalently, trades) to private information. Hence, & “Z£" Z(a*) + A(a*)
and ¢ 2" Z(aT) + A(aT). Because Z(a*) + A(a*) "L Z(aT) + A(a”), we then have that

E(a*) + Aa*) L e L el

Q.E.D.

Proof of Proposition 4.

Under the proposed policy, each trader’s demand schedule must satisfy the optimality condition

Xilpi 1) = 15 (B0 7] — (1 + tp)p+ 1)

For any vector (a,l;, ¢), when all traders submit affine demand schedules x; = as; + b— ¢p, the
equilibrium price then continues to satisfy the same representation as in (1) but with (a*,b*, &*)
replaced by (a, I;, ¢). This also means that the equilibrium trades can be expressed as a function of the
endogenous public signal z, as in the laissez-faire equilibrium with no policy. Letting x; = as; +b+cz
denote the trades generated by the demand schedules z; = as; + b— ¢p (with z representing the

endogenous public signal contained in the market-clearing price), we then have that the functions
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that map the coefficients ¢ and b in the demand schedules into the coefficients ¢ and b in the induced
trades continue to be given by (5) and (4). Using the fact that E[f]s;, 2] = 71 (7(a))s; + 12(10(a)) 2,
with the functions ~;(-) and 72(-) as defined in (7) and (8), along with the fact that the market-
clearing price satisfies p = « + b + (a + ¢)z as shown in (6), we then have that the equilibrium

trades must satisfy
1

Ti= 3T (71 (70(@))si +v2(1(a))z — (1 +tp)a — (1 +,)8b — (1 4+ t,)B(a + ¢)z + to]
= XL&%E&W&—ﬂ+%ﬂa+&ﬂwmmm»—u+%wm+@p+my

The sensitivity of the equilibrium trades to private information s; under the proposed policy thus
satisfies a = v1(7(a))/(A 4+ ). Using the formula for ; in (7), we then have that the equilibrium
value of a under the proposed policy is the unique solution to the following equation:
1 Teszg — Tw(a)Teym,
A48 szg(Tw(a) + 7e + 19) — Tw(a)Te (1o + 2yTy;)’
Using the fact that, for ant 7,

y%ﬁ(m + Te + 79) — TwTe (79 + 2yTy)

TeYTn(Ymy — Tw)
we thus have that the equilibrium value of a is given by

1 1
a=——

A+ A(1,(a))

A(1,) =

)

The equilibrium value of b is given by the unique solution to
—(1+1tp,) (o + Bb) + to
A+9

b=

which is equal to
b— to— (1+tp)a
A0+ (1+1t,)8

The equilibrium value of ¢, instead, is given by the unique solution to

¢ = 3= 2(1w(a) = (1 +p)5(a + ¢)]

which is equal to
_ 12(rw(a)) — (1 +8)Ba

A+ (14

Now recall that the sensitivity a’ of the efficient trades to private information is given by the unique

solution to
1 1

AA(ro(a)) + E(a) + Ala)

Therefore, the equilibrium value a under the proposed policy coincides with the efficient level a’ if

a =

and only if ¢ satisfies
(A +8)A(7(a"))
= A [A(rw(a®)) + E(a”) + AaT)],

13



from which we obtain that
A [E(aT) + A(aT)]
A(7,(aT))

Now recall that, given a”, the other two coefficients ¢! and b” describing the efficient trades are

5 =

given by the functions in (14) and (15), implying that
1 T
=y (1 aar ) ) )
B+ A yty ) Tw(a®) + 19
and b1 = —a/(B + A). Hence, for the equilibrium levels of ¢ and b under the proposed policy to

coincide with the efficient levels it must be that

Y2(rw(a”)) = (1 +tp)Ba” 1 ((_ T TTe> u(a”) B T)
A+ 8+ (1+1t,)8 B+ I=Aa” = Aa y1y ) Tw(a®) + 19 pa

and
to— (1+1tp)a e
Ao+ (1+6)8 B+N
It is easy to see that the above two equations are satisfied when

Y2 (1w (al)) — /\;SB [(1 —Xa— )\ay%) mT(tzgi)fg _ Ba} — 8dT

tp =
1 T Tw(a)
B {a [(1- 2 - dage) i — e +aT}
and
aA+6+ (1+1t,)8]
frmd 1 —
to=(1+t,) T

Q.E.D.

Proof of Proposition 5.

Given I; = (y;, s;), trader ¢’s demand schedule maximizes, for each price p, the trader’s expected

payoff
22
E|(0—(1+t)p)zi— )\?’\L‘,P :

The solution to this problem is the demand schedule given by

X(p: 1) =  (BIOITi,p] — (1 + t,)p), (26)
where, as in the laissez-faire equilibrium, E[0|];, p] denotes the trader’s expectation of § given I; and
.
In any symmetric equilibrium in which the price is an affine function of (6,u,n), the equilibrium
trades continue to be given by

T, =as;+b+cz (27)

for some scalars (a, b, c) that may depend on the level of the tax ¢, and on the quality y; = y of the

agents’ information.

14



When the individual trades are given by (27), the aggregate trade is equal to

:E:(a—i-c)z—i-%—i-b,

where we used the fact that z +u/(B8a) = 6 + f(y)n. Replacing & into the expression for the inverse

aggregate supply function, we then have that the equilibrium price
p=a+pBb+ pla+c)z (28)

can be expressed as a function of (a,b,c) and the endogenous public signal z, as in the laissez-fare

equilibrium. Furthermore,
E[0]1;, p| = 71(7w(a))si + 12(1w(a))z, (29)

with 1 () and y2(-) given by (7) and (8), respectively. Combining (26) with (28) and (29), we thus

have that the equilibrium trades satisfy

1
zi = 1 nw(@)si = (1+1p) (@ +Bb) + (12(7w(a)) — (L +p)Ba+c)) 2] (30)
We conclude that the sensitivity of the equilibrium trades to private information satisfies
_ 7(7w(a))
a= 3 .
That is, no matter the value of ¢,, the equilibrium level of a is given by a*, as in the laissez-fare

(31)

economy in which ¢, = 0. Furthermore, combining (30) with (31) and using (8), we have that the

equilibrium sensitivity of the trades to the endogenous public signal is given by

1 To + YTy Tw(a)
=—F——|(1-X -1+ , 32
‘ Bl +1tp) + A [( ¢ YTy ) Tw(a) + 79 ( p)f (32
whereas the constant b in the equilibrium trades is given by
o
b=—-(14+1t) ——F—. 33
( ”)(1+tp)6+A (33)

Hence, any ad-valorem tax t, # 0 induces the same sensitivity a* of the equilibrium trades to private
information as in the laissez-faire equilibrium in which ¢, = 0 but different values of b and c. Because,
given a*, the values of b and ¢ (equivalently, of b and ¢) in the laissez-fare economy maximize welfare,
as shown in Lemma 1, we conclude that any policy ¢, # 0 results in strictly lower welfare than ¢, = 0.
Q.E.D.

Proof of Proposition 6.

The proof is in four steps. Step 1 shows that, for any y € [0, +00), when all other agents acquire
information of quality y and submit the equilibrium limit orders for information of quality y, each
agent’s net private marginal benefit N(y) of increasing the quality of his information at y; = y
(and then trade optimally) is a strictly decreasing function of y. Step 2 uses the result in step 1 to
show that, when C’(0) is small enough, there is one, and only one, value of y for which N(y) = 0.
Step 3 shows that, when the cost of information is sufficiently convex, then if all other agents

acquire information of quality y* (where y* is the unique solution to N(y) = 0) and then submit the

15



equilibrium limit orders for information of quality y*, the payoff V#(y*, y;) that each agent obtains
by acquiring information of quality y; and then trading optimally is strictly quasi-concave in y;.
Jointly, the above properties establish the claim in the proposition.

Step 1. First observe that, when all other agents acquire information of quality y and then
submit the equilibrium limit orders for information of quality y, the maximal payoff that agent 7 can

obtain by acquiring information of quality y; and then trading optimally is given by

V#(y,yi) = supy, {E[W,#(y,yi;g(-))] - C(w)}
with
B (5. 9] = E 09050 2) — (o 80+ Bla-+ 002) 5,2 — § (050250
where g is an arbitrary (measurable) function of the agent’s private signal s; and the public signal
z =0+ f(y)n —u/(Ba) contained in the equilibrium price, with noise w = f(y)n — u/Ba of precision
Tw(a) = B*(a)?ytuty/ (B*(a)?Ty + y7y), describing the amount of the good traded by agent ¢ under
the limit orders he submits. Note that, in writing E[ﬂl#(y,yi;g(-))], we used the fact that the
relationship between z and the equilibrium price is given by p = a+ b+ S(a+c)z, where (a, b, ¢) are
the coefficients describing the equilibrium trades when the quality of information is y and all agents
submit the equilibrium limit orders for information of quality y. Also note that the dependence of
E[?T,L# (y,yi; 9(+))] on y; is through the fact that the agent’s private signal is given by s; = 6+ f(v;)(n+
e;). Using the envelope theorem, we then have that
# . 2

N(y) = W . _ B+ ;)TTS;; ca N 2/3\1376 _ ). (34)

Next, use Conditions (3) and (14) to verify that N(y) = F(a,y) — C'(y), where, for any (a,y),

1a2 a’?BP Ayt +y [)\a2,827'u7'77 + N7 + 1) 9 + ﬁQTeTuCL]

Fl(a,y) =
(a,y) 2 y21e [yToy + a2 B21y (1o + y1y)]

(35)

As shown in the proof of Proposition 1, the equilibrium value of a (given y) is given by the unique

real root to the cubic equation in (18). Equivalently, letting Z = a/y and
R(Z, y) = Z3yﬂ2/\7—u (7-9 + yTn) + ZA (7—67—0 + ToTy + yTeTn) — TeTn,

we have, for any y, the equilibrium level of Z is given by the unique positive real solution to the

equation R(Z,y) = 0, and is such that Z < 7./A7,. Furthermore,

gyR(Z’ y) = ZA\ (7'57'77 + Z2627'u7'9 + 23/22527-“7-77) > 0.

Now let Z*(y) be the equilibrium value of Z, given y. From the Implicit Function Theorem, we thus
have that Z*(y) is decreasing in y.

Next, let G(y) = F(Z*(y)y,y), where F(a,y) is the function defined in Condition (35) above,
and where we used the fact a = Z*(y)y.

Now use the fact that the equilibrium value of a is given by

16



Tn
A (y (TeTp + ToTy + yTeTn) + a?f?7, (1o + yTn))

a=y’7.

or, equivalently,
3 _ 3/27'67'77 — ay (TeTg + ToTy + YTeTy)
52)\Tu (7—9 + yTn)

a

to express the function F'(a,y) as follows:
—YTy + aATy + ayATy,
(y7omy + a*B27u (10 + y79)) A (70 + Yy73)

1
Fla,y) = —3 (7. + a\y)

The latter expression can be simplified to

1 a(1e + aAty)

F(a,y) == .
(@9) =3 yTe (19 + y7y)
We thus have that
1 Te +yZ*(y) A1y
Gly) = =Z*(y) —F—1,
W) =320 .
Note that
dG(y 1,, —Te+ Z%(Y)A19 1 7e +2yZ* (y) AT, dZ* (y
d() — 52(?/)7}7 ()2 - () n ()<O,
Yy Te (T + y73y) 2 Te(rotym) dy

where the inequality follows from the fact that Z*(y) < 7./A1, and dZ*(y)/dy < 0. Because N (y) =
G(y) — C'(y), we conclude that N(y) is a strictly decreasing function of y.
Step 2. Next, consider the limit properties of N(y). Because

TeT
limZ*(y) = ———1—,
y—0 () AT (Te + 75)
we have that .
TeTy
ImG(y) = =
yg% ) 278 (Te + )
and hence
lim N (y) = +— < (0)
y—0 2 MG (Te 4+ T) '
Furthermore,

lim N(y) = lim G(y) — lim C'(y).

Y—0o0 Y—00 Yy—00

Because lim Z*(y) = 0, we have that li_>m G(y) = 0. Hence,
y—00

Yy—00

lim N(y) = — lim C'(y) < 0.

Yy—00 Yy—00
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Letting
TeTy

1
2 MNE(Te + 1)

L

we conclude that, when C'(0) < L, there exists one, and only one, value of y for which N(y) = 0.

Step 3. Assume C’(0) < L and let y* be the unique solution to N(y) = 0. Suppose that
all other agents acquire information of quality y* and then submit the equilibrium limit orders for
information of quality y*. Let (a*,b*,¢*) denote the coefficients describing the equilibrium trades
under the equilibrium limit orders for information of quality y* (these coefficients are given by
Conditions (12), (15), and (14), applied to y = y*). Let 7}, = 7,(a*) denote the precision of the
endogenous signal z = 6+ f(y*)n —u/(Ba*) contained in the equilibrium price when all other agents
acquire information of quality y* and then submit the equilibrium limit orders for information of
quality y*.

We show that, when C is sufficiently convex, V#(y*,v;) is strictly quasi-concave in y;. To see
this, first recall that optimality requires that, for any y;, any (s;,p), the trades that the agent induces

through his limit orders given (s;,p) are equal to

1
i =5 (E[0]si,p;ys] —p) -

Equivalently, for any y;, the function ¢*(-; y;) that maximizes the agent’s payoff E[?T;#: (v, vi;9(:))] —
C(y;) is such that, for any (s;, 2),
* 1 >k * *
g*(si, 23 yi) = X (E[0]si, 23 9i] — (v + Bb") — B(a™ +c¥)2) .
Observe that
Elf]si 50 = | Covlb,siy) Covld,ziy) | x
-1
Var(si;y;)  Cov(si, 2;yi)
| Cov(si,z:y)  Var(zy:)
2 2 2 2 17!
[ o toc(yi) o5+ fW)f(yi)o si — Els;]
= |9 o } 2 2 o o ’
- oy + f(y) f(yi)oy, oy + o5 z — E[z]

where 02(y;) = 7. 1(y;). Substituting for the inverse of the variance-covariance matrix, and using

s; — E[si; yi ]
z — E[z;yi]

the fact that, for any y;, E[s;; yi] = E[z; ;] = 0, we have that

1
(02 + 02(y)) (02 + 02) — (02 + F() F(w)o2)?
[0202][ 7 + 0 -%ﬁ+f@ﬂﬂwb%][&]_
O (03 + fly) fyi)ol) o2 + o2 (y;)

E[0]ss, 2; yi

z

18



Expanding the quadratic form, we have that
fi)o )
of + <>ﬂWﬁV”
N o (02 = Fy*)f (vs .
(07 +02(yi))(of + 03) (07 + (y*)f(.%)U%)2
Simplifying, and using the fact that 02 = 7, ', 02 = (r*)7h, 03] = T{l, (oe(i))? = (re(yi)) ", we
have that

o (02— f(y*
(0F + 02(yi))(0F + 02)

E[9|Slazvyz]

1 (g _ M)
E(B]si z55i] = 1 1 - 1 = 1 - Iy )f(y) %
(G + ) (s ) — (5 + )2
1 1 fly )f(zn))
+ To T€(yz Tn 5
(% + Te(lyz))(% + %) _ (% + Iy T)j(yz))Q
or, equivalently,
Te(yi) o (T vi — T
E[0]si, 2] = ; n( i g )f(yz)> s;
Tny*yi(Te(yi) + 75 4 79) — T5T(Yi) (f(y Yien) + 7'0)
7 (r2yry; — el
I ( n fly )f(lh)) .

« 27,
2y i rey) + 73+ 70) = mmewi) (7o + )
Using the fact that 7.(y;) = 7eryyi/(7e + 1), f(y*) = 1//y*, and f(y;) = 1/\/yi, we conclude that

El]si, z;ui] = A1(yi)si +F2(vi)z

where .
F1(y;) = TeTnm(Tn y*yz ) (36)
i Y™ [TeTnyi—F(Tf,-i-Tg) (Te+7'77)] (27'7]1/3/ yz—|-7-9)
and
- 570 [(Te + ) ¥ — TerA /Y Y
Yo (i) = w'n [(7e n)y Y Yil (37)

Ty* [Temyyi + (75 + 19) (Te + )] — To7e (27'71\/@ +79)
In other words, for any y;, the function ¢*(-; ;) is given by ¢*(s;, z; ys) = a(yi)s; +b(y:) + é(y;) 2, with
a(yi) = 31(y:) /A byi) = — (a+ Bb*) /A, and &(yi) = Fa(ys) — Bla™ + )] /A
Now note that, given any affine strategy g(s;,z) = As; + B + Cz, where A, B, C' are scalars,
Elrf (", vi:9())] = E[0(As; + B + C2) [y
—E[(a + Bb* + B(a* + ¢*)z) (As; + B+ Cz) |yi]

-E [% (As; + B+ Cz)? |yz] .

Hence, fixing the affine strategy g(s;,z) = As; + B + Cz, and using the fact that

si =0+ f(yi)(n+e:)
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and

o, U
=0+ f(y*)n Bar
we have that
QB[ (y*,yig())] P 9 Ao d oy
aun = —A[f(a* + ") + \C] a—ylE [siz|yi] — §A @E [si |yl] ,
where
O [sizluil = £'(9) f(47)
i iZ|Yi] = Yi)J\Yy ™
and

0 1 1
5, 1] = 20 () ' (w0) <Tn ; Te) |

Using the Envelope Theorem, we thus have that

OVH#(y*, i) _ OBl (v yis 9" (9))]

— / .
0y; 0y; )

with

O[] (y*,yi: 9( )]
yi ™

Observe that

1

Ty

Bla™ +c*) 4+ Xe(yi) = Y2 (i)-
It follows that
H(ax o).
W) 30 () 7 ) F ) - — M) F ) (1) (1 i 1) ().

i T Ty Te
Next, observe that

2V H# (2% o).
TV ot 00+
Y; K
i) L ) 07) - = ) 500 ) )
—2)a(ys)a' (yi) f (i) f' (vi) (Tln + 71)

1 1

= —a(y:) [B(a” + ¢*) + Aé(yi)] f’(yi)f(y"‘)l = xa(yi)* f(ya) ' (vi) ( +

1

Te

N (1) (4 ) = a1 (- + 1) - ¢

Tn Te

20
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We thus have that, at any y; at which OV (y*,y;)/0y; = 0,

PAVE N .
TG = ) ) )+
i) L ) ) + T (€ )
Ny () (i) () (1 n 1)
—Xa(yi)? (f'(yi))2 <Tl + :) —C" ().
n e
The above can be rewritten as
PVAG ) (1N O
T — (1wt ) o (i)
(~ro (5 + 7)) o a7}
" Wi) 1 N o
STom [C ()] — C" (i)

Using the fact that a(y;) = 71(y;)/A, we have that, at any point y; at which V# (y*, ;) /0y; = 0,

PVH (v, yi ' LINERUAE
w1 (yz-)f(y):n)dyi{vl(yi)vz(yz‘)}

>0

(~r (5 +7)) g {2 )

>0

(i) N g,
f,(yi)c(yz) C"(yi)- (38)
~—

<0

Using the fact that f(y) = 1/,/y and letting J : Ry — R be the function defined by
1 1 1 d . . 1 1 1 1 d 5 1
inE()Vlyz'szz’ +[ <+>]{’71y¢ },
=3 2YiV YY" T dyi{ V() + 3 2%y \y  Te )| dyi Chiws)) VYi
we thus have that, at any point y; at which OV 7 (y*,y;)/0y; = 0,

aQV#(y*,yi) 3 1"
67?/1‘2 J(yi) - TMC (yi) -C (yi)‘

—+

> =

+

Now observe that
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1) = 5 (g ) i) + 31005 w0}
+§ [2;;1 N ( ] {271 yi) 1 (i) 1% - (%(%-))22%1\@}

izyi/@\ﬁT {3 (i) A2 (yi) + 3 (i) 73 (i) }

izyzl\/@\/l@ < o ) {2’71(%)'71(%) (F1(y:))” 21%}

Next observe that
Hw) = {r” lremyi + (754 7) (4 7)) = o (20 4 0) ) x
X {(Tny* [TeTnyi + (10 + 70) (Te + )] — T57e (27'77\/y yi + 7'9))
d
g, (e (/v =)

d *
— (rat” [remypi + (72 + 70) (e + )] = e (27057 +70) )
K3

(e (/i =) ) -

Expanding the derivatives,
-2
%(?JZ) = {Tny* [TeTnyi + (75 + 7o) (Te + Tn)] — ToTe (2Tn VY Y + 7'0)} X
X {(Tny* [TeTnyi + (155 + 79) (Te + )] — T 7e (27'77\/:1/*%' + Tg)) X
1 1
TeTo VY | T/ Y* — =Tw——
[ VY < (A ﬁﬂ
* * 1
_ [Tny TeTn — TTe <27'77‘ /y*W)] (TeTn\/y Yi ( VY Y — T, ))}
(A

Simplifying, we have that

rer Vi (Vi — 3735 )

~/
) = T+ (75 4 70) (e + )] = e (2 + 70)
YTy — T \/\/ij .
- - - Y1 (yi)-
v [Tnyi + (75 + 70) (1 + ?’7” =T (2\/y*yz- + ﬁ)
Simplifying further,
;y/ (y ) 7_77:'-/* - Tw*gf/yiyiz 5/1(3%)2
1\Yi) = -
v [Tnyi + (75 + 70) (1 + %’7)} T (2\/y*y¢ + %Z) Yi
Using again the fact that
- x % Y*
Y1 (i) Y T Tw

Yoyt g () (14 2)] - (2vrm + 2)
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we have that
* _ VYT ~
Y " Twagm ny) ()’

Y(yi) = 5
’ Tﬁy* - 75 VYT Yi Yi

i

T — % A1 (i)
<M _ ,71(%)) !

VY Y — TS Yi
Similarly,
Tolvi) =
R TR e[ R B e Ty
2, % \/7
Tﬂy Te — T wTeTn
v Yo (Yi)-

Ty (et + (75 4 70) (e + )] — To7e TGy +76) |

Simplifying, we have that

—im L
~/ 2
Yolyi) = .
v [Tny¢+(rgj+79 ( 7’)} g (%/@Jr :f;)
*vy*
Tny — Tw Ju; -
— v - Yo (vi)
Yy [TnymL(T +79) (1+;’7ﬂ - 75 (2\/y*y +%)

Using the fact that

~ * —
Y(yi) Y T Tw

Yi y* [Tnyi + (75 4 709) (1 + )} T (2\/@%- ;:)

we have that

Y(yi) (i)
) = “yl LY I 5 ()
Tﬁy*_Twﬁ Yi Yi

and hence

T

, T i) M) -
Yo\Yi) = - Y2 Yi
2(vi) WYY — TS Yi Vi (v:)
5 ¥ A1 (yi)
= — (Bl + -
( (3:) mVﬁ%—m) Yi

23



Replacing the above derivatives in the expression for J we obtain that
1 1 1 1
Jy)) = ————=—X
( Z) )‘2%\/@\/9* Tn

W - %\ )i (- 3 73 (y:)
{(Tn\/y i — T %(yz)) Yi (72( o) TNV Yi — ) Yi }
1 73

11 <1+1> o (VY= Sy | 2T RiED)
/\2%\/% \/ZZ VY Yi — 75 Yi 2y;
1 31 (i)

1
Xz yszn Yi

n yyz_* - -

= i (y y Yi) + —————y
{(Tn e A1( 2)) Yo (i) — <72( i) T =T
1

/\

,'5/
1 1 i T, T y*y'—i B 1 (s
Lhlw) (1, 1) {2(} VI i) ) ) - 22
n 7 w

vl
v
=
—~
<
n
S~—
—

2%\/@% VY% Ty Vi

Te
Hence
11 1 15w [rui—% ¥
Jyi) = < — — 27 2
(y:) NV v | =T Yo (yi) — 291 (yi) Y2 (vi) — T\/W—T;S%(y’)
L 11vwﬂo+n>ﬁﬁ2mwm—%7w%@ﬂw_%@>
)‘2%\/@\/ Tn  Yi Te ) V/Yi VY Y — 75 ’ L 2
In other terms,

where, for any y;,

= 1 1 11 %)
H i) = — —
W) = X T T

and

R(y;) = - 2o (yi) — 291 (yi) 72 (yi) — 1(¥i
(vi) ST = Tu,S’Y (vi) — 291 (y:)¥2(vi) Py :)7 (vi)
( > O PN s

Vi

N’\a\‘*

A1 (yi) — 25’% (i) —

Tn Yy — T

Now observe that

TeTnvy Yi (TnvZ/ Yi — w)

. - o [(7e + ) y* = Tev/yTY]
) = and ) = <1 1
where, for any y;,
D(ys) = " lremqyi + (75 4+ 70) (e + 7)) = e (207w + 70 )
Hence

o) = el ATy~ Tev vl ()
T - (A
TeTnV Y Y; (Tnv Yy — T(j)
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Replacing these terms in the formula for R, we have that

(Tnm - 7—2;> T DT 2 Te@ Y1(yi)
TeTn\/yTyi (Tn\/yTyi —75)
_275777 [(Te + 7)) ¥* — TeV/y*yi] 2(y;) — % 1 (i)
T TR B AT e
+ (1_1_7'17> \/Z?{QTH\/@—TSN

: %(yz’)}
N 932 (g) — ]
e ) VUi \ VUi — T Y1 (yi) — 297 (i) 9

R(yi)

This means that

J(yi) = H(y:)A ()W (ys)
where, for any y;,

*

* Tw T:JT Te + Tn) Y* — Te VY Y
W) = (mvirn - 5 ) oy ey

* * * 2
2 TeTnVY Yi (Tnm_’]—w)
o7 [(Te +70) Y = TeVY Yl TNy (Tavy Y — ) 3
TeToN Y Yi (T VY Fyi — 735) D(y;) TV Y Y — T

2T\ Y Y — T ™\ VY
) |1+ =
TV Y Y — 75 VYi

o TV Y (VY i — 73) <1 N Tn) VyE 1 (1 N Tn) vy

D(y;)

Te) VY 2 Te) VYi
Hence,
~ e ToN 15 (Te + ) Y — Te/ Y Y
W) = Qm@%‘%+5)““i )Y 7]
TEM(TUV Yy — 1)
T [(Te + 1) Y — TeVyTYi] U
D(yi) TNV Yi — TS
2T 13\ (| VT
Sl Ul B (e
™mVY Yi — Ty Te \/@
_2T77y (Tﬂ\/y Yi Tw) (Te +7—17) . (1 + TTY) \/yi
D(y:) 2 Te ) \VYi
Equivalently,

o T [(Te + 7)) VU* — Te\/¥i]
M) e - )
4 (7':;)2 [(Te + 7)) VY — Te\/E]
2o/ (To/U Y — 75)°

215y [(Te + ) ¥* — Te VY Uil - 3
D(y;) VY Y — TG

1 Tnm 1 T77 \/37

R G -y ) e :

TV Y — 75 Te ) /Yi
_2Tny* (7’771 /y*yz — :,) (7_ + T ) . 1 (1 + 7—17> vV y*
" .
D(y:) "2 e ) Ui

25



Simplifying further
N T [(7’e + 7)) VY — Te\/@]
Te\/Yi (Tp VY i = 75)
i (7':;)2 [(Te + 7'71) \/37 - Te\/E]
27@\/@(771\/@ - 7':5)2
_27—:17_77 [(Te + 7)) Y* — Te\/Y*yi] _ >
D(ys) VY — T

T, Toy*
< Te Tnvy*yi — 75
* ko). % *
2nyyt (VY'Y — ) (7o +7) L1 <1+ Tn> vy
D(yz) 2 Te) \VYi
—

Putting all pieces together we thus have that
* % 2
T[T+ m) VY —Tey/m] 11 111 2yt (VYT — )
TeN/Yi (VY Yi — 735) A 2Yin/Yi YT Ty Yi D2(y;)
* * * 2
O e )V Te] 11 1 11 Ry (e - )
2Te\/Yi (TyN/Y* Y — 753)2 A 2YiN/Yi VY Ty Yi D?(y;)
* * * 2
2y (e + 1) ¥ — Te /Y { L1111y (v — ) }

J(yi)

D(y:) N 2yi/Yi Y Ty Vi D(y;)
o {1 1 1 1172759y (o Vy v —TS)Q}

_ 2 - -
TovVY* Y — 75 | A 2¥i/Yi VY Ty Yi D2(y;)

Te ) \TopVY i — 75 ) | A 29U VY Ty i D2 (y;)
2
R G TS A D 8 S S O k102 A TRl
D(y;) M XN 2y VY T Y D2(y;)
* * * 2
L <1+T’7> Vy*{l L1 1 17yt (VY = 7) }

+7 — —_
2 Te) VUi | A 20T VYT Ty v D?(yi)
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Simplifying,
TutTeTn\/?T* (Tn\/yTyi —75) [(Te =+ 7'77) Vy* = Te\/@}
2)y; D?(yi)
(7_:))2 7'67'77\/37* [(Te + Tn) \/ZU»* - Te\/@]
ANy D2 (y:)
T iNT (/yyi — 12)” [(re + ) Y — eyl
- AyYin/Yi D3 (yi)
77—827-777—:;\/? (o VY Y — 1)
ANy D? (yi)
(Tt ) Y (T~ 75)
2Myi\/YiD?(yi)
(Te +7y) 7373\/?7*1/* (Tn\/ﬁ - TS)B
Ayin/Yi D3 (i)
(e + 7) TeTny™ (TyVY*yi — 75)2
ANy D (ys) '

_l’_

_l’_

Simplifying further, we have that
Sy = T O/~ ) (e + 1) VI = 7]
2My; D (y:)
I (T + 7e) TeTg\/ZF\/ZZ?J* (ToVy*yi — 7)
2)y7 D (y:)
(75)2 Te TV Y* [(Te + ) VYF — Te\/@]
ANy D (ys)

2
N (Te + ) TeTny™ (ToV/ YTy — 705)° — TETn TN TN i (T Y — 725)

+

ANy D*(y;)
22N (1T — 75) (e + T0) ¥ — TeV/T U]
Nyin/Yi D3 (y:)
(Te +79) 7’3773\/3?9* (Tn\/ﬁ - 7':)3
MY/ D3 (i) '

Equivalently,
T(u:) = 27’67'77W(Tnmfﬂz){(TEJFTn)\/yT[TSJFTn\/W]*TSTE\/E}
(vi) = Ay D2 (y;)
T [(75)? (7 + ) VI — 7 (73) V)

+74AT;§B§(/;) Ty Y — 75) [(Te + ) VYT (TVYYi — 75) = TeTS\/Yi)

* * 2 * *
_TeQT?;y (Tn y*yi_Tw) [(Te+7n)y* T — 755 7e]

Ay D3 (y;)

We conclude that

27



Jws) = 7l { (re + )y BrgVu — 275 = 37imem T + 27 (75)° |

2
2y (ravyyi—15) [(Tetn)y Ty =T 7e]
Ayi D3 (y;) )

Next, observe that

yl_iglOD(%) = Tpy" (75 + 70) (Te + 7)) — T5TeTo-

Using this limit, we have that

AT = i,

T TN [yt (e + 1) — Ter] : <\/@> } I

2N [mgy* (Te + 1) (15 + T9) — TeTiTo
(

{_ ﬂfﬁﬁfﬁwwn+n»—na]1}

AYi [Tny* (e + Tn) (75 +710) — 7'67':57'0]3 Yi

Ay <\/?J7> Az(yi) 1}’

Il

22 0(¥i)2 \ v2 ) Myido(vi) vi

where, for any y;,

Ao(yi) = [Tny* (Te + ™) (70 +79) — TeTTo)

Ai(y;) = 7'67'7771: VY [Tny* (Te + 7'77) — TeTuls

and

Ao(yi) = (10)" 2y gy (e + ) — 7).

Using the fact that
o BQQ*Q?J*TuTn
© T Ba?r, +yin,

we have that

Ay (yz) = Tny* (Te + Tn) - TCT:;
= Ty —15) + YTy
n BQa*2Tu + y*Tn
62a*27u

62 a*27—u + y*,]-n

) + Tyt Ty,

= Ty <1 ) + Tyt Ty

Similarly,

As(y;) EAg Y™ (Te + ) — Te1s, > 0.
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Observe that

Ao(yi) o< Tpy* (Te + 1) (75 + To) — TeTosTo
= (my* —15) TeTo + Ty (TeT), + T Tl + o)
> 0.

Therefore lim,, .o J(y;) < 0. It is straightforward to see that limy, ,o J(y;) = 0. Finally, we check
for asymptotes (namely, for values of y; for which D(y;) = 0). Suppose that D(y;) = 0 for some y;.
That is, there exists y; such that

T,?y* [TeTnyi + (Tw + 79) (Te + )] — TwTeTy (2Tn\/y*yi + 79) = 0.

The expression in the above equation is quadratic in |/y; so we can calculate the determinant to be:

47‘37'627'33/* - 4767'33/* (Tny™ (Tw + 70) (Te + Ty) — TwTeTp) 7'3,7'e — (Y™ (1w + 19) (Te + 7)) — TwTeTp)

X Te (T — my") — Tiy*.

Using the definition of 7, we then get that the determinant is proportional to

52Q*2y*7—u7—n . ﬁ2a*27-u
2 %2 * — Y X 2 %2 * —1
B2a*sT, + y*m, B2a*s T, + y*m,
*
—y*Ty,

which is strictly negative. Therefore there is no real value of ,/y; for which D(y;) = 0. Because y; is
non-negative, this means that there are no vertical asymptotes for J(y;; y*).

Jointly, the properties that (a) limy, 0 J(ys; y*) = —o0, (b) limy, 540 J(yi) = 0, and (c) J(yi; y*)
does not have vertical asymptotes, imply that J(y;;y*) is bounded from above by a constant M > 0.
Hence, when 2%1-0/ (y;) + C"(y;) > M for all y; > 0, the payoff is quasi-concave. Note that, when
Cly) = gyz, the above condition becomes B > %M , which holds for B large enough, as claimed in
the main text.

The above results imply that, under the conditions in the proposition, choosing quality of in-
formation y; = y* and then submitting the limit orders defined by the coefficients (a*,l;*,é*) in
Proposition 1 (for quality of information y*) is a symmetric equilibrium in the full game. That there
are no other symmetric equilibria in affine strategies follows from the uniqueness of the solution to

N(y) = 0 established in Step 2. Q.E.D.
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Proof of Proposition 7.

Let y” denote the socially optimal quality of private information and (aT,l;T,éT) the coefficients
describing the efficient demand schedules when the precision of private information is y. Next, for
any 9, let E[W7; 7] denote ex-ante gross welfare when all traders acquire information of quality 7
but then submit the efficient demand schedules for information of quality 7 (that is, the schedules
corresponding to the coefficients (a”, I;T, ¢T)). Such a welfare function is gross of the costs of infor-
mation acquisition. Finally, for any (y;, 7), let E[r1;y;, §] denote the ex-ante gross profit of a trader
acquiring information of quality y; when all other traders acquire information of quality g, and all
traders, including 4, submit the efficient demand schedules for information of quality 3” (that is, the
schedules corresponding to the coefficients (a”, I;T, ¢T) mentioned above). The payoff is again gross

of the cost of information acquisition. We start by establishing the following result:

Lemma 2. Let yT' denote the socially optimal quality of private information and suppose
that all traders submit the efficient demand schedules for information of quality y* (parametrized
by (a”, b7, ¢)). When e > 0 (i.e., when the pecuniary externality dominates over the information
externality so that the efficient demand schedules are downward sloping), for any y,

0 T d T
8y,~E[7Ti YLyl > @E[W 9

Yi=y

whereas the opposite inequality holds when ¢ < 0 (i.e., when the learning externality dominates over

the pecuniary externality and, as a result, the efficient demand schedules are upward sloping).

Proof of Lemma 2. When all traders other than i acquire information of quality ¥ and then submit

the demand schedules corresponding to (a7, ET,éT), irrespectively of the information acquired by

trader ¢ and of the demand schedule submitted by the latter, the equilibrium price is given by
p(0,u,m;9) = a+ BT + Ba” +¢")z(0,u,n;7),

where b” and ¢! are the coefficients obtained from (a”, b7, ¢T) using the functions (4) and (5), and

where z(0,u,n;7) = 0 + f(§)n — u/Ba’.? Furthermore, the aggregate level of trade is equal
X(0,u,m:9) = a" [0+ f(@)n] + 0" + 28, u,m:9)

whereas the level of trade for agent ¢ when he acquires information of quality y; and then submits

the demand schedule corresponding to the coefficients (a”, b, ¢l is equal to

Xi(0,u,m,e539,y:) = a’ [0+ f(yi)ei + fyi)n] +b" + T 2(0,u,m;9).

Sq

It follows that, when all traders other than ¢ acquire information of quality g, trader ¢ acquires infor-
mation of quality y; and all traders, including trader 7, submit the demand schedules corresponding

to (a”, l;T, ¢, trader i’s ex-ante gross payoff is equal to

2Observe that the functions (4) and (5) do not depend on y and hence ¢* and ” do not depend on .
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_ _ _ A _
Eln];9,v:]) =E [(9 —p(0,u,m;9)) Xi(0,u,m, €557, yi) — §Xi2(0,u, n, ei;y,yi)] :

Using the fact that the market-clearing price must also be consistent with the inverse-supply function

and hence satisfy p = a — u + X (0, u,n;§), we then have that
_ 5 _ _ A _
E[n]; 9,y =E [(9 —a+u—BX(0,u,m; y)) Eli[0, u, ;9 4] — 5B [#710, u, 1 y,yi]]
or, equivalently,
E[nl; 5, vi] = E[ (9 —a+u—BX(0,u,m; 3?)) Elzil0, u, 0; 7, yi] — 5V arlzi|0,n,u; 7, yi]

—% (B[]0, 7, u; 9, yz']ﬂw
where

Elz|0,u,n; 9, y:] = E[Xi(0, u,n, €59, 9:)|0, w, n: Y, yil,
Ea}10,u,m; 7, yi) = E |(Xi(0,w,7, €9, 9:))° 10,0, 07, 0|
and
Varlz|0,n,u; g, 4] = Ele?|0,u,m; 9, vi] — (Elwi|, w,m; 9, wi])*
Using the fact that
Elwi|0,u,n;9,y:) = a" [0+ f(yi)n] + 0" + ¢ 2(0,u,m;9)
and
Varlzi|0,n,w 9,9 = (a" ()" /7,

we have that

) . (a7)?
gy Bl mul = E[(0-atu=pX0un9)a’ S ] -3 Fw)f )

—AE [(a” [0+ f(yi)n] + 0" + c"2(0,u,m;9)) a” f' (yi)n]

_ (a7)*
= —a”BE [ X(0.wm 7)) £'w) - A F ) f ()

e

2 1 B
=M (a®)" i) (i) — = Aa "B [2(0, u,m; )] f (i)
n
Using the fact that

~ al f(y
E [X(H, u,n;y)n} = iy) +'E [2(0, w, m; )]

Tn
and _
E [2(9, U, 175 5)77] = ff_fj) ,
we then have that
T\ 2
aa.E[WiT; gyl = —a'p [an(Z?)l + CTf(l?)i fyi) =X (@) Fi) f'(yi)
Yi Tn Tn Te
(@) ) ) = = AT @)1 ) (39)
n n
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We conclude that

aT)?
Suligul| = st v o k] re - s
A D @) - @)
a® ' 1
= @ N N (10)

Next, observe that, when trader ¢ also acquires information of quality ¢ and all traders submit

the demand schedules corresponding to (a”, T, ey,

ol F()? -
Elr]§,9] = E (9—a+u—ﬂX(9,u,n;g)>X(&,u,n;g)_;‘(fTiy))_;(X(eju’mg)f]‘

Now observe that, when all traders acquire information of quality ¢ and submit the demand schedules

corresponding to (a”, b, ¢l), the ex-ante payoff of the representative supplier (which the planner

accounts for in the computation of welfare) is equal to

E[l g — E[@(e,u,n;g)—a+u>5f<e,u,n;y>

= gE [(X(G,u, 77;.@))2] :

where we used the fact that p(6,u,n;y) = a— u+ﬁ)~((0, u,n;y). We thus have that, when all traders

-5 (X))

acquire information of quality § and submit the demand schedules corresponding to (aT,Z;T,éT),

ex-ante welfare is equal to

EW":g] = Elr;9,9]+E[lL]
~ _ )\ an g 2 )\ + ) ) )

= E (9—a+u)X(9,u,n;y)_2( T( ) 25 (X(H,u,n;y)) |

Hence,
o T

A pwrg =g | @t OX (i) _ A(~ V107 @

dy ~(A\+ B)X (0, u,n; g)%}w;y)
where

(%X(G,u,n;ﬂ) — (" 1+ ).

It follows that

d A (aD)? £ @) (5 N
Ly = MVIOID o) 1) e [£0,0m5000].
Using the fact that )
E[X 0w mom] = "+ @)=

we thus have that
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2
EwTg =~ IOID gy )L (41)

dy ™ -
Comparing (40) with (41), we thus have that, when ¢ < 0,

) i d
5, Bl 9, > }E[WT,Z/]
Yi Yi=y

whereas the opposite inequality holds when ¢/ > 0. Finally, use Condition (5) to observe that

el = _B(a;iicT) and Condition (14), along with the formula for 7,,(a), to observe that a’ + ¢’ > 0.
Jointly, the last two conditions imply that sgn(¢’) = —sgn(c’) thus completing the proof of the
lemma.

We now show that the result in Lemma 2 implies the result in the proposition. We start by estab-
lishing the (global) concavity of E[r};¥,v;] and E[WT;¢] in y; and @, respectively. Recall that the
coefficients defining the equilibrium trades as a function of the private signals s; and the endogenous
public signal z are kept constant in both cases at (a’, b7, cT) T el

, where (a is the vector defining

the efficient trades when the quality of private information is y”. Using (39), we have that

0? " 1 1] 0 ,
o Bl v ul = —aTBf() ~(a"+ ) g (i) — A (aT)” =t |y T W)
—AaTch@)Tif"(y»
— T [T+ )] 0 =A@V ] (0 w0)

Now observe that f”(y;) = 3,/7;/4y} > 0 and 8%1- (f(yi) f'(yi)) = 1/y3 > 0. Hence,

82 ~ T 3 + Te
afygE[mT;y,yd = y?Tn[‘l\;(ﬁ +(B+AN)c )+ATTnTeT}

Recall that, irrespective of the sign of ¢, a” > 0 and a’ + ¢’ > 0, where the last inequality is
established in the proof of Lemma 2. Hence, when ¢! > 0, for any (7, v:), 0*E[r}; 7, vi]/0y? < 0. To
see that the same inequality holds when ¢! < 0, recall that

= L Kl —Xal — )\aTy;O ) s(a’) - ﬂaT] :

B+ A Ty ) Tw(a®) + 79
Hence,
Ba® +(B+ N =(1—xal = Xa” 70 7 (a’)
- yI'ry ) 1o(a®) + 19
Using

2
62 (aT) yTTnTu
32 (CLT)2 Tu +yT'm,

Tw(CLT) =

)

we can rewrite the last condition as
52 ( aT)Q -

32 (aT)2 Tu (YT 1y + 79) + yTang.

Bal + (B+N) ! = [(1- )\aT) yl'r, — )\aTrg]
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Hence,
Bal + (B+ )l (1= xa") y"'r, — Aa' 5.

Now recall that a” solves
r 1 1

== . 42
TN Mro(@h) + E(aT) + AldT) (42)
Using the definition of the A function, we have that the latter condition is equal to
sl ey T (y" Ty — 7(al)) ,
A (yT)" 72 (1e + 1o + Tw(aT)) — (@) 7e (19 + 2y77y) + [E(aT) + A(aT)] ey (y" 7y — 70 (aT))
(43)

with 7 = (y'7ery;) / (Te + 1) and 7,(a) = B2a®ry’ 1)/ (%7, + y*' 1;). Observe that the numera-
tor in (43) is positive. Because a’ > 0, as shown above, this means that the denominator in (43) is

also positive. Furthermore, using (43), we have that

(1 — )\aT) yTT,7 —Xa''my

_ yTTnQ
(WD) 72 (ret o+ (aT)) = 7w (aT)7e (ro+2y T ) +E(aT)+A(aT ) ey Ty (y Ty — T (aT))

where
Q= yTTn (yTT?7 — 7'6) (7'9 + Tw(CLT)) + [E(aT) + A(aT)] TeyTTn(yTTn — Tw(aT)).

We thus have that

n

(1 — )\aT) yTTn —xal'ry L Q.
Now, using the fact that 7. = (yTTeTn) / (Te + 1), we have that @) can be rewritten as

Q= (yT7'77)2 . :7_77_ (7'9 + Tw(aT)) + [E(aT) + A(aT)] . ::_ (yTTn)2 (yTTn — Tw(aT)).
e n € n

Because y''7, — 7,(a’) > 0, we conclude that sgn (Q) > 0 if E(a’) + A(a’) > 0. The latter

property holds because, as explained in the main text, when ¢/ < 0, then ¢© > 0 in which case
Z(a’) + A(a’) > 0. We conclude that, no matter the sign of ¢’ for any g, E[r!;¥,;] is strictly
concave in ;.

Next, consider the concavity of E[W7;7] in 7. Using (41), we have that

2 al)?
CZ?E[WT;‘U] = - [A(Te) +(A+58) (aT+cT)27_1n] ay (f)f @)
< 0,

where again the inequality follows from the fact that a% (f(@)f'(y)) > 0. Hence E[WT; ] is strictly
concave in §. Because ]E[W;‘r ; U, y;] is strictly concave in y;, in equilibrium, all traders acquire infor-

mation of quality y* such that

Elr]; 9, yi] =C'(y").

Oyi
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Now recall that the socially-optimal quality of information satisfies

d _
—EW"; 7] =C'(y").
dy g=yT
Because E[W7T; ] is strictly concave in ¢, the result in Lemma 2 then implies that, when ¢ < 0,

y? > y*, whereas, when ¢ > 0, y7 < y*. Q.E.D.

Proof of Proposition 8.

Under the proposed policy, each trader i’s ex-ante gross expected payoff when all traders other than
i collect information of quality g, trader i collects information of quality y;, and all traders (including

i) submit the efficient demand schedules (parametrized by (a7, ¢7)) is equal to

Elr! (G, vi);ty) = E [91’1‘ — (1 +tp)px; — ;\%2]

= E[@xi—(1+fp)(a—u+ﬁi‘)xi—;\xf]

with

20 = X6, u, e 5 s) = a7 04+ Flyn)es + £yl 57 + ¢ (9 A BUT> ’

Si

p=PO,u,n;9) = a—u+ BX(0,u,n;9),

and
=X (0,u,m:9) = a’ (0 + f(@)m) + 5"+ <9 + f(5)n - ﬁuT) ,

and where b7 and ¢! are the coefficients describing the equilibrium trades obtained from b7 and &7

using (4) and (5). Hence,

r 1+t Ada” A(a)’ A(a")’
VINGT) NI 2 viTy 2 iTe

where N is a function of all variables that do not interact with y;. It follows that

Eln! (7,9:)itp] = N—Ba" +c)a

O pinT gyt = S0tBE +hal | T ( a” CT> A(aT)?
ﬂ-i s Yi 7 - — - = .
Ay ? 27YiN/YYi 2mYiYi \VYi Y 2y77e

Because E[r1(4,y:); 5] — C(y;) is concave in y;, for y; = § = y to be sustained in equilibrium it is

both necessary and sufficient that

0
gy B Wyl = ')
which is equivalent to
(B4 ) + ] (@ +Ma” A (o)’
27, 27,
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Using the fact that y” satisfies
(B4 N+ A (a")’

27, 27e
we have that the proposed policy implements the efficient acquisition of private information when
. (B+ Al
tp —_— /BT.

Using the fact that

= 5 (e (rufa”)) = )

we then have that the optimal fp is equal to

r Y2 (Tw(aT)) - BaT
ty = Bal
where 7, is the function defined in the proof of Proposition 1. Q.E.D.

Proof of Proposition 9.

Assume that all traders other than i acquire information of quality y” and then submit the efficient
demand schedules (that is, those corresponding to the coefficients (a’, BT, ¢T) for quality of informa-
tion y7'). Given any policy T(z;,p), the expected net payoff for trader  when he chooses information

of quality y; and then selects his demand schedule optimally is equal to

V(y", i) = supyy {E[Ti(y", vi); ()] — C(wi) }
where g : R? — R is a generic function specifying the amount of shares x; = g(s;, z) that the trader
purchases as a function of his private signal s; and the endogenous signal z = 0 + f(y*)n — u/(Ba™)
contained in the market-clearing price, and where
El7i(y",v);9()] = E [99(&-, 2) = (@ —u+ BE)g(si, 2) — 5 (9(si, Z))ﬂ
“E[T (g(51,2), @ — u + B)].

Note that the definition of E[7;(y”,v:); g(+)] uses the fact that the market-clearing price is given by
p=oa—u+BF with =a’(0+ f(y")n) +b" +c’z, where b and ¢! are the coefficients describing
the equilibrium trades obtained from b7 and ¢ using (4) and (5). It also uses the fact that, when
all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,
any mapping from (s;, p) into z;) can be expressed as a function g(s;, z) of (s;,2).?

For the policy T'(z;,p) to implement the efficient acquisition and usage of information, it must
be that, when y; = y’, the function g(-) that maximizes the trader’s payoff is equal to g(s;,z) =
a’'s;+bT +cT 2. Using the fact that the equilibrium price can be expressed as p = a+pb7 +5(a’ +c!)z,
and the fact that E[0]s;, 2] = y1(r(a’))s; + v2(7,(aT))z where 41 and 7 are the functions defined

31t suffices to use (6) to observe that p = a4 8b” + B(a” + ¢7)z.
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in the proof of Proposition 1, we thus have that, for the policy T to implement the efficient trades,

it must be that T is differentiable in x; and satisfies

Y1 (1w(a"))si + v2(10(a”))z — [+ 0T + B(a” + ¢")z] — X (aTsi + 07 + ¢T2)

— 27 (aTs; + b7 + Tz, + BbT + Bla’ +cT)z) =0
for all (s;,2). Next, observe that, when trader i trades efficiently, the quantity that he purchases is
given by z; = a’s; + b’ + ¢! z. Expressing s; as a function of x; using the last expression, and using

the relationship p = o + 8b” + B(a” 4 ')z to express z as a function of p, we have that
1 (10 (a®))s; + 2 (1, (a”))z — [a + T + BaT + cT)z] —A (aTsi +ol + cTz)

= [n(rula”)) = AaT] S=ms | [o(r, (aT)) = B(aT +cT) — AeT] B2
— (a + T + )\bT) = [’yl (1 (a)) — )\aT] :’:—ﬁT
+ [2(ru(@™) = B(a” +¢7) = AT = (n(ru(a") = AaT) | Bl — (a+ 867 + W0T)

Note that the term above is the discrepancy between the trader’s marginal benefit and marginal cost
of expanding his demand evaluated at the efficient trade. But this means that, for the policy T'(z;, p)
to implement the efficient use of information, it must be that 7'(z;, p) is a polynomial of second order
of the form

T(zi,p) = gfﬂf + (tpp — to) zi + K (p), (44)
for some vector (d,t,,to) and some function K(p) which plays no role for incentives and which
therefore we can disregard. In the proof of Proposition 4, we showed that there exists a unique
vector (6, 1p,tp) that induces the traders to submit the efficient demand schedules when the precision
of their private information is y” (the vector in Proposition 4 applied to y = y*). Thus, if a policy
T induces efficiency in both information acquisition and information usage, it must be of the form in
(44) with (8,t,,t0) as in Proposition 4 applied to y = y?. When the policy takes this form, for any
¥i, the optimal choice of g(-) is affine and hence can be written as g(s;, z) = as; + b + cz, for some

(a,b, c), implying that

El7i(y7, vi); g(-)] = E[ (0 +to) (as; + b+ cz) — 2L (as; + b+ cz)”

—(1+tp) (@ —u+B[a” 0+ fly")n) + 0" +cT2]) (asi +b+cz) |.

Letting M be a function of all variables that do not interact with y;, we then have that, when
9(8i, 2) = as; + b+ cz, for some (a, b, c),
E[fi(y", )i 9(-)] = M = B(1 + t,)(a” +cP)a
(Md)eca A48 a® A a2
NN 2 yimy 2 yTe’
The optimal g when y; = y” is g(x;,2) = a’'s; + b’ + 2. Hence, using the envelope theorem, we
then have that

1
V yT VYiTn
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T CBA+t) A+ @ el A+ 0) (o) L
ayiV(y ) yi=yT - 2m (yT)2 i 27¢ (?JT)2 e

Recall that the efficient y” is given by the solution to the following equation

T>'

(B+ N +c)? | A(a”)’
27, (y7)? 27, (y7)?
Hence, for the policy of Proposition 4 (applied to 4 = y”) to implement the efficient acquisition of

= C'(y").

private information, it must be that

(B+N)(a" +7) | A (a7)” _ [B(+1ty) + A+ 0] (" +cT)a” L +9) (aT)?
T77 Te T"? Te

or, equivalently, (a” + ¢")7 [(8+ A)c! — (Bt + 0)a’] =6 (aT)2 Ty. One can verify that the values
of 4 and t, from Proposition 4 do not solve the above equation except for a non-generic set of

parameters. Q.E.D.

Proof of Proposition 10.

Paralleling the derivations in the proof of Proposition 9, we have that, when the policy takes the
proposed form and all traders other than i acquire information of quality y” and then submit the
efficient demand schedules (that is, the affine orders corresponding to the coefficients (aT,b7,¢T)
for quality of information y”), the expected net payoff for trader i when he chooses information of
quality y; is maximized by submitting an affine demand schedule z; = as; + b— ¢p which induces
trades z; = as; + b + cz that are affine in (s;, 2), where z = 0 + f(y7)n — u/Ba” is the endogenous
signal contained in the market-clearing price.

Using this result, let

V) = s%p {E[7i(y",9:);a,b,c] — C(yi) + Ay; }
a,b,c
denote the maximal payoff that trader ¢ can obtain by acquiring information of precision y; when all
other traders acquire information of precision y? and then submit the efficient demand schedules for
information of quality y”. As shown in the proof of Proposition 9, the expected gross payoff that
trader ¢ obtains by inducing the affine trades x; = as; + b+ cz when he chooses information of quality
y; is equal to
. - 1 A+b6)ca AN+ a? A+6 a?
Bl 5)sa,b, = M~ B+ fy){a+ da—r—— — 0208 _AX0 T ALT 4
VY VYT VY YTy YiTy YiTe

where M is a term collecting all variables that do not interact with ;. Using the envelope theorem,

38



we have that

0
yi

CLT CT CLT CLT 2
V(" ) = P+ 1) z/\ J{yi])(g tela (A; (?y(T)g) - N+ A
yi=y Tn Te

Again, in writing the above derivative we used the fact that, when vy; = y”, the optimal demand

schedule for trader i induces trades equal to a’'s; + b" + ¢’ z. Using the fact that y” satisfies

2
B+ A (" +cM)?  A(d")
27, (y7)? 27, (y7)?
we thus have that the proposed policy induces the efficient acquisition of private information only if

= C'(y")

Y

the following condition holds

T T2 aT)? T I, T aT)?
(6+)\)éa +ch) +)\(2 ) (ﬁ(l—i—tp)—l—)\z—l—é)(a +ca +(A+g)( ) AT
Ty Te Tn Te

from which we obtain that

— M[(5+A)T—(6t +6) T}_W
T, 1) T e )

T

Next, use Condition (5) to express ¢! as a function of ¢/ and rewrite A as follows

(a")* [BB+NE | Bty+3] _ o(a")’
2r, (yT)? | (1 + BeT)? 1+ BET | o7, (yT)

That the function f/(yT,yi) is globally quasi-concave in y; under the conditions in the proposition
follows from arguments similar to those in the proof of Proposition 6. We conclude that the proposed

policy implements the efficient acquisition and usage of information. Q.E.D.

Proof of Proposition 11.

As in the proof of the last two propositions, assume that all traders other than ¢ acquire information
of quality y” and then submit the efficient demand schedules (that is, those corresponding to the
coefficients (a”, b, ¢l for quality of information y7). Given any policy T'(x;, Z, p), the expected net
payoff for trader ¢ when he chooses information of quality y; and then selects his demand schedule
optimally is equal to

V(y",yi) = supy) {BIFi(y", vi); 9()] — C(wi) }
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where g : R? — R is a generic function specifying the amount of shares x; = g(s;, z) that the trader

purchases as a function of s; and z, with z = 0 + f(y")n —u/(Ba”), and

El7i(y", vi); ()] = E |09(si, 2) — (@ = u+ BF)g(si,2) — 5 (9(si,2))°
—E[T (9(si,2), T, —u+ pz)].
Note that, in writing E[7;(y”,%); g(-)], we use the fact that the market-clearing price is given by
p=oa—u+px with & =a” (04 f(y")n) +b" 4+ cT'z, where b" and ¢! are the coefficients describing
the equilibrium trades obtained from b7 and ¢! using (4) and (5). We also use the fact that, when
all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,
any mapping from (s;,p) into x;) can be expressed as a function g(s;, z) of (s;,2) by using (6) to
express p = a + b + B(a’ + ¢")z as an affine transformation of z.

For the policy T'(z;,Z,p) to implement efficiency in both information acquisition and usage,
it must be that, when y; = y’, the function g(-) that maximizes the trader’s payoff is equal to
g(si,2) = a’'s; + b + 'z, Using the expression for the equilibrium price p = a + b7 + 3(a” +cT)z
and the fact that
r = 7(r(a"))si + 12(10(a”))z,

E [0lsi, 239,97 ]|, —,

where 1 and 79 are the functions defined in the proof of Proposition 1, we thus have that, for the
policy T' to implement the efficient trades, it must be that T is differentiable in x; and, for all (s;, z),
satisfy
Y1 (1w(a?))s; + y2(rw(al))z — [a+ BbT + Bla® + cT)z] — A (al's; + b7 + ¢T2)
— %E [T (aTsZ- +o' + T2 F o —u+ Bi) si, 2; yi,yT] =0,

Yi=yY
where & = a® (0 + f(yT)n) + b7 +cl'z, with 2 = 0 + f(y")n — u/(Ba’).
Next recall from the proof of Proposition 7 that, when the individual trades efficiently,

Y1 (1o(a))s; + ")/Q(Tw( M)z = Ja+ BT + B(a” + cT)z] — A (aT's; + b7 + cT'z2)
= [n(rula®) = AaT] 2 + [ya(r(a?)) = BaT + ) = AT = (n(ru(a?)) = Aa”) & | Besis
— (a+ BT + X07) .
This means that, for the policy T" to implement the efficient use of information, it must be that

T(z;,Z,p) is a polynomial of second order of the form

- 5 N N
T(z;, %, p) = Ezc? + (pt;, — to + tai) x; + K'(Z,p), (45)
for some vector (&', 17, 1(,t3), where K'(Z, p) is a function that does not depend on z;, plays no role
P

for incentives, and hence can be disregarded. Furthermore, under any such a policy,
2B [T (2i, %, ) 50,03 i, y"] = 8'wi + pty, — t + tzE [Z]si, 03 91, 5" |
= 0'w; + pt), — t’ +t;:E {p a+“\sz,p, Vi, Y ] = 0'w; + pty, — 1y + F(p —a)+ %”E [ulsi, p; yi, y7 ]
= 0 +pty, — 1o+ F (0 — @) + FAF(yi,y")si + B (i v )p + FCF (i y"),
where we used the fact that p = a — u + % and the fact that

E [ulsi, piyi.y" | = A*(yi,y")si + B (yi,y" )p + C* (yiy")
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where A% (y;,y"7), B#(y;,yT), and C%(y;,y”) are the coefficients of the projection of u on (s;,p)
when all agents other than i acquire information of quality 4” (and trade efficiently) whereas trader
1 acquires information of quality ;.

When trader i too acquires information of quality y; = y” and trades efficiently, z; = a’'s; +
bl + Tz, with z = (p —a— 5bT) / (b’(aT + CT)). Using the last two conditions to express s; as a

function of z; and p, we then have that

xi_bT_CT(pf%fﬁbTT)
E [ulsi, p;yi,y”| = A% (y",y7) S L 4 BT, yTp + CF (YT yT)

_ A*ET YT T Ty _ A* (T y")e” T , T _ AP YT | AF Ty (atBbT)

=y T+t [B#(Z/ Y )—m}p—i-c#(y Y) = P + aT BlaT+cT) .
Then let

ar = ATy
=—7
B# — B#(yT yT) _ A#(yTayT)CT
- ’ alB(aT + )|’

and

A#(yT yT)pT N A#(yT yT)e! (o + pbT)
aT aB(a” 4 cT) '

C# = c*(y",y") -

We thus have that, when trader i acquires information of quality 1; = y” and trades efficiently,

9 N
o B [T (@i, ,p) [si,piy"y' | = 0mi+ tpp — to
where
ti -
G=0"+ 5A%, (46)
B
1+ B#
tp:t;+tf+7, (47)
5
and
o ts ~
to =ty +tz — = C7". 48
CTTEE B (48)

In the proof of Proposition 4, we showed that, when agents acquire information of quality y”, for
them to trade efficiently, the values of (d,t,,%p) must coincide with those in Proposition 4 (applied
to y = y?). Thus, for the above policy to induce efficiency in both information acquisition and
information usage, it must be that the vector (&', 1, ty, tz) satisfies Conditions (46)-(48) with (6, tp, to)
given by the values determined in Proposition 4 applied to y = y’. Note that, for any tz, there
exists unique values of (¢’ ,t;,tf)) that solve the above three conditions. Abusing notation, denote
these values by (&'(tz), t,(tz), to(tz))-

Next, note that, when the policy takes the form in (45), for any y;, the optimal choice of g(-) is
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affine and hence can be written as g(s;, z) = as; + b+ cz, for some (a, b, ¢). This implies that
E7i(y",y:); 9()) = B | (0 + th(t) — ta) (asi + b+ cz) — 22 (as; + b+ c2)?
—(1+t(tz) (a —u+ B [a? (0 + f(yT)n) + b7 4+ cT'2]) (asi + b+ cz) |.

Letting M be a function of all variables that do not interact with v;, we then have that, when

9(8i, 2) = as; + b+ cz, for some (a,b,c),

~ 9 (lT T )\ (S a2 a2
B (7 90 90)] = M — [t + B+ ty(t))] GE2T) — Ao Mo ar  Agbar

Using the envelope theorem, we then have that

R [ BAH ) + A+ (@ + M (A +0) (D)
T — 27, (y7)" T o ) cw

Once again, in writing the above derivative, we used the fact that, when y; = y”, the optimal demand

schedule for trader 4 induces trades equal to the efficient trades a’'s; + b’ + ¢’ z. Finally, recall that

the efficient y” is given by the solution to the following equation

B+ N+ A(a)’ ,
P oty S

Hence, for the above policy to induce efficiency in information acquisition, it must be that

(6+)\)(2T+CT)2 n A(iT)Q _ [ti-&-ﬁ(l-f—t;,(ti)):-)\-‘rﬁ](aT+cT)aT n (>\+57)—(aT)2. (49)
n e n e
Using (47), we have that
1+ B#
g =t -1

with ¢, given by the unique value determined in Proposition 4 applied to y = y”. Because the
function H : R — R given by H(tz) = t; + Bty (tz) = Bty — tzB# is linear, there exists a (unique)
value of t; that solves (49).

Following steps similar to those in the proof of Proposition 6, one can show that there exist scalars
K,M € R+ such that, when the cost of information satisfies the properties in the proposition, the
function f/(yT,yi) is globally quasi-concave in y;. We conclude that, under the conditions in the
proposition, the policy in (45), with ¢z given by the unique solution to (49) and with (d',),,tg)
given by the unique solution (&'(tz), t,(tz), t5(tz)) to Conditions (46)-(48), induces efficiency in both

information acquisition and information usage. Q.E.D.

Proof of Proposition 12.
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We establish the result by showing that the precision of private information y acquired in equilibrium
is invariant in ¢,. Once this property is established, the proposition follows from what established
in the proof of Proposition 5. Namely, any ¢, # 0 results in an equilibrium in which the precision of
private information is y = y* and the sensitivity of the trades to the private signals is a = a*, where
y* and a* are as in the laissez-faire economy in which ¢, = 0. On the other hand, for any ¢, # 0, the
sensitivity ¢ of the equilibrium trades to the endogenous public signal z contained in the equilibrium
price, and the constant b in the equilibrium trades are different from the corresponding levels in the
laissez-faire economy. Because, given y* and a*, the sensitivity ¢* of the equilibrium trades to the
endogenous public signal z and the constant b* in the equilibrium trades in the laissez-faire economy
are welfare maximizing (by virtue of Lemma 1), we thus have that any ¢, # 0 results in strictly lower
welfare than ¢, = 0, as in the case of exogenous private information (Proposition 5).

Hence, based on the arguments above, it suffices to show that any such a policy fails to change the
quality of information acquired in equilibrium. To see this, fix ¢,, and denote by y and (a,b,c) the
precision of private information acquired in equilibrium and the parameters defining the equilibrium
trades in the economy with ad-valorem tax equal to .

For any v;, let

V¥ () = sup {B[rf'sy. 00 90)] - C0 }
)

denote the maximal payoff that trader ¢ can obtain by selecting private information of quality y; when
all other traders acquire information of quality y and then submit the limit orders corresponding
to the parameters (a,b,c), where g : R> — R is a generic function specifying the amount of shares
x; = g(s;, z) the trader purchases as a function of s; and the endogenous public signal z contained in
the equilibrium price. Let (a, b, ¢) be the parameters defining the equilibrium trades when information

is of quality y and the tax rate is t,. Note that?

Elr] 5y, 9,9()] = E|0g(si,2) — (1+,) (o + Bb+ Bla+¢)2) g(si, 2) — 3 (9(si,2))” [ys | -
is the trader’s expected payoff, gross of the information cost, when following the rule g(-) after
acquiring information of quality vy;. In writing ]E[?TZ# (yi; g(+)], we used the fact that the equilibrium
price is given by p = a+ b+ f(a + ¢)z with z = 0 + f(y)n — u/(Ba).

By the definition of equilibrium, if agent ¢ acquires information of quality y; = vy, the limit
order that maximizes his payoff must be the equilibrium ones (that is, the one corresponding to the
coefficients (a, b, c)). The envelope theorem then implies that

N(y) = av#;(y, Yi) _ B+ tp)(c; +c)a  Aala +2c) N )\(g)z ). (50)
Vi imy 27,y 27,y 2y47,
Hence, the equilibrium value of y must satisfy N(y) = 0. Let M#(t,,a,c,y) denote the function

defined by the right-hand-side of (50). Next, use the derivations in the proof of Proposition 5 to
observe that, given (p,y), the equilibrium values of (a, b, ¢) are given by (31), (32), and (33). From

4As above, given (a,b,c), the sensitivity of the equilibrium limit orders é to the price and the constant b in the
equilibrium limit orders are obtained from (a, b, c) using (4) and (5).
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the implicit function theorem, we then have that
6M#(tp,a,c,y) + 8M#(tp’azcvy)@

dy Ity dc Ity
dt, — 9M*(tpacy) N IM#(tp,a,c,y) a N OM#(tp,a,cy) dc’
oy da oy dc oy

where we used the fact that, given y, the equilibrium level of a is invariant in ¢,. Note that dc/0t,
is the partial derivative of the equilibrium level of ¢ with respect to ¢,, holding y constant, whereas
da/dy and Oc/Jy are the partial derivatives of the equilibrium levels of a and ¢ with respect to y,
holding ¢, fixed.

Because 5 5 )
+c)a
— M# — plaTc)a
8tp (tpa a, c, y) QTny2 )
0 [B(1+t,)+ A a
Z M _ P
8CM (tp7 a,c, y) 27_77y2 }
and
g —Blato)
oty B+t +N

we conclude that dy/dt, = 0, as claimed. Q.E.D.
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