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Proof of Proposition 1.

As explained in the main text, when the traders submit affine demand schedules with parameters

(a, b̂, ĉ), the equilibrium price is equal to

p =
α+ βb̂

1 + βĉ
+

βa

1 + βĉ
z (1)

where

z ≡ θ + ω, (2)

with ω ≡ f(y)η − u/(βa). The information about θ contained in the equilibrium price is thus the

same as the one contained in a public signal whose noise ω has precision1

τω(a) ≡
β2a2yτuτη

β2a2τu + yτη
. (3)

In turn, this implies that the equilibrium trades xi = asi + b̂− ĉp are affine functions of the traders’

exogenous private information si and the endogenous public information z contained in the price.

That is, when the endogenous public information contained in the price is equivalent to z, a trader

with private signal si purchases an amount of the asset equal to

xi = asi + b+ cz

where

b = b̂− ĉ
α+ βb̂

1 + βĉ
(4)

and

c = − βaĉ

1 + βĉ
. (5)

For each vector (a, b̂, ĉ) describing the traders’ demand schedules, there exists a unique vector (a, b, c)

describing the traders’ equilibrium trades as a function of their (exogenous) private information, si,

and the (endogenous) public information, z, and vice versa. Hereafter, we find it more convenient

to characterize the equilibrium use of information in terms of the vector (a, b, c) describing the

equilibrium trades. When the individual trades are given by xi = asi + b + cz, the aggregate trade

is equal to

x̃ =

∫
xidi = a(θ + f(y)η) + b+ cz.

Using the fact that z ≡ θ + f(y)η − u/(βa), we thus have that

x̃ = a(z +
u

βa
) + b+ cz = (a+ c)z +

u

β
+ b.

Using the expression for the inverse aggregate supply function p = α − u + βx̃, we then have that

the equilibrium price can be expressed as follows:

p = α+ βb+ β(a+ c)z. (6)

1To derive τω(a) we use the fact that f(y) = 1/
√
y.
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Next, observe that

E[θ|Ii, p] = E[θ|si, z] =
[
Cov(θ, si) Cov(θ, z)

] [ V ar(si) Cov(si, z)

Cov(si, z) V ar(z)

]−1 [
si − E[si]
z − E[z]

]

=
[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ϵ σ2
θ + f(y)2σ2

η

σ2
θ + f(y)2σ2

η σ2
θ + σ2

ω(a)

]−1 [
si − E[si]
z − E[z]

]
,

where σ2
θ ≡ τ−1

θ , σ2
ω(a) ≡ τω(a)

−1, σ2
η ≡ τ−1

η , and σ2
ϵ ≡ τ−1

ϵ . Substituting for the inverse of the

variance-covariance matrix, we have that

E[θ|si, z] =
1

(σ2
θ + σ2

ϵ )(σ
2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
×

[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ω(a) −(σ2
θ + f(y)2σ2

η)

−(σ2
θ + f(y)2σ2

η) σ2
θ + σ2

ϵ

][
si − E[si]
z − E[z]

]
.

Expanding the quadratic form, we have that

E[θ|si, z] =
σ2
θ

(
σ2
ω(a)− f(y)2σ2

η

)
(σ2

θ + σ2
ϵ )(σ

2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
(si − E[si])

+
σ2
θ

(
σ2
ϵ − f(y)2σ2

η

)
(σ2

θ + σ2
ϵ )(σ

2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
(z − E[z]).

Using the fact that E[si] = E[z] = 0, and replacing σ2
θ with τ−1

θ , σ2
ω(a) with τω(a)

−1, σ2
η with τ−1

η ,

σ2
ϵ with τ−1

ϵ , and f(y) = 1/
√
y, we have that

E[θ|si, z] = γ1(τω(a))si + γ2(τω(a))z

where, for any τω,

γ1(τω) ≡
τϵyτη (yτη − τω)

y2τ2η (τω + τϵ + τθ)− τωτϵ (τθ + 2yτη)
(7)

and

γ2(τω) ≡
τω
(
y2τ2η − τϵyτη

)
y2τ2η (τω + τϵ + τθ)− τωτϵ (τθ + 2yτη)

=

(
1− γ1(τω)

τθ + yτη
yτη

)
τω

τω + τθ
. (8)

Now recall that optimality requires that the equilibrium trades satisfy

xi =
1

λ
(E[θ|si, z]− p) .

Using the fact that p = α+βb+β(a+ c)z, and the characterization of E[θ|si, z] above, we thus have
that

xi =
1

λ
[γ1(τω(a))si − (α+ βb) + (γ2(τω(a))− β(a+ c)) z] .

The sensitivity of the equilibrium trades to private information must thus satisfy

a =
γ1(τω(a))

λ
. (9)

The sensitivity of the equilibrium trades to the endogenous public signal contained in the equilibrium
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price must satisfy

c =
1

λ
(γ2(τω(a))− β(a+ c)) . (10)

The constant b in the equilibrium trades must satisfy

b = −α+ βb

λ
. (11)

Replacing the expression for γ1(τω(a)) in (7) into (9), we thus conclude that the sensitivity a∗ of the

equilibrium demand schedules to the traders’ private information must solve the following equation

a∗ =
1

λΛ(τω(a∗))
, (12)

where

Λ(τω) ≡
y2τ2η (τω + τϵ + τθ)− τωτϵ (τθ + 2yτη)

τϵyτη (yτη − τω)
. (13)

Using (8), (10), and (9), we have that the sensitivity of the equilibrium trades to the endogenous

public signal contained in the equilibrium price must satisfy

c =
1

β + λ

[(
1− λa− λa

τθ
yτη

)
τω(a)

τω(a) + τθ
− βa

]
. (14)

Using (11), in turn we have that the constant b in the equilibrium trades is given by

b = − α

β + λ
. (15)

Finally, inverting the relationship between b and b̂ and c and ĉ using (4) and (5), we have that, given

a∗, the values of ĉ∗ and b̂∗ satisfy ĉ∗ = Ĉ(a∗) and b̂∗ = B̂(a∗), where, for any a, the functions Ĉ and

B̂ are given by

Ĉ(a) ≡ −τω(a)yτη(1− λa− βa)− λaτθτω(a)− βayτητθ
λβayτη (τω(a) + τθ − τθτω(a)) + βτω(a)yτη

, (16)

and

B̂(a) ≡ α

β + λ

(
λĈ(a)− 1

)
. (17)

The formula for Ĉ(a) in the main text is obtained from (16) after replacing the formula for τω(a).

To complete the proof, it thus suffices to show that equation (12) admits a unique solution and that

such a solution satisfies 0 < a∗ < 1/λ. To see this, use the fact that τϵ = yτeτη/(τe + τη) to observe

that this equation is equivalent to

λβ2τu (yτη + τθ) a
3 + λy [yτeτη + τθ(τe + τη)] a− τeτηy

2 = 0. (18)

Clearly, because the left-hand side is strictly increasing in a, the above cubic equation has a unique

real root, which is strictly positive. Furthermore, when a = 1/λ, the left-hand side is equal to

β2τu
λ2

(yτη + τθ) + τθ(τe + τη)y > 0.

We conclude that a∗ ∈ (0, 1/λ). Q.E.D.
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Derivation of welfare under FB allocation.

Because ∫ 1

0

(
x2i
)
di >

(∫ 1

0
xidi

)2

we have that W is maximal when xi = xo for all i, with

xo ≡ θ − α+ u

β + λ
.

Q.E.D.

Derivation of welfare losses.

Ex-post welfare is equal to

W o = θxo − λ

2
(xo)2 −

(
α− u+ β

xo

2

)
xo =

β + λ

2
(xo)2.

It follows that

WL =
β + λ

2
E
[
(xo)2

]
− E

[
(θ − α+ u) x̃− β

x̃2

2
− λ

2

∫ 1

0
x2i di

]
.

Replacing xo = θ−α+u
β+λ into the above expression and using the fact that E

[∫ 1
0 x2i di

]
= E

[
E[x2i |x̃]

]
,

we have that

WL =
β + λ

2
E
[
(xo)2

]
− 1

2
E
[
2 (β + λ) x̃xo − βx̃2 − λ

∫ 1

0
x2i di

]
=

β + λ

2
E
[
(xo)2

]
+

1

2
E
[
(β + λ)x̃2 − 2xox̃(β + λ)− λx̃2 + λE[x2i |x̃]

]
=

β + λ

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2].

Q.E.D.

Proof of Lemma 1.

The same arguments as in the proof of Proposition 1 imply that, when the traders submit demand

schedules of the form xi = asi + b̂− ĉp, for some (a, b̂, ĉ), the trades induced by market clearing can

be expressed as a function of the endogenous public information z generated by the market-clearing

price by letting xi = asi + b+ cz where z ≡ θ+ f(y)η− u/(βa) is the endogenous information about

θ contained in the equilibrium price, and where the noise in the endogenous signal has precision

τω(a) =
(
β2a2yτuτη

)
/
(
β2a2τu + yτη

)
.

Furthermore, the values of b and c are given by (4) and (5). Using the above representation, we

have that the aggregate volume of trade when the demand schedules are given by (a, b̂, ĉ) is given by
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x̃ = a(θ + f(y)η) + b+ cz and hence ex-ante welfare is given by

E[W ] = E
[
(θ − α+ u) (a(θ + f(y)η) + b+ cz)− β (a(θ+f(y)η)+b+cz)2

2 −
∫ 1
0

λ
2 (asi + b+ cz)2 di

]
.

Note that
∂E[W ]

∂b
= E [(θ − α+ u)− β (a(θ + f(y)η) + b+ cz)− λ (as+ b+ cz)] = −α− (β + λ)b,

∂2E[W ]

∂b2
= −(β + λ) < 0,

∂E[W ]

∂c
= E [z (θ − α+ u)− β (a(θ + f(y)η) + b+ cz) z − λz (as+ b+ cz)] ,

∂2E[W ]

∂c2
= E

[
−βz2 − λz2

]
< 0,

and ∂2E[W ]/∂c∂b = 0. Hence E[W ] is concave in b and c . For any a, the optimal values of b and c are

thus given by the FOCs ∂E[W ]/∂b = 0 and ∂E[W ]/∂c = 0 from which we obtain that b = −α/(β+λ)

and

E
[
z (θ + u)− β (a(θ + f(y)η)) z − βcz2 − λazs− λcz2

]
= 0.

The last condition can be rewritten as

Cov [(θ + u− βa(θ + f(y)η)) , z]− (β + λ) cV ar(z)− λaCov(z, s) = 0

from which we obtain that

c =
Cov [(θ + u− βa(θ + f(y)η)) , z]

(β + λ)V ar(z)
− λaCov(z, s)

(β + λ)V ar(z)
.

Using the fact that z ≡ θ + f(y)η − u
βa and s = θ + 1√

y (η + e), we have that

V ar(z) =
1

τθ
+

1

τω(a)
= σ2

θ + σ2
ω(a),

where σ2
θ = 1/τθ and σ2

ω(a) = 1/τω(a). Furthermore,

Cov [(θ + u− βa(θ + f(y)η)) , z] = Cov
[
(θ + u− βa(θ + f(y)η)) , θ + f(y)η − u

βa

]
= Cov [θ(1− βa), θ] + Cov

[
u,− u

βa

]
− Cov [βaf(y)η, f(y)η]

= (1− βa)σ2
θ −

σ2
u

βa − βaf(y)2σ2
η,

and Cov [z, s] = σ2
θ + f(y)2σ2

η. Hence,

c =
(1− βa)σ2

θ −
σ2
u

βa − βaf(y)2σ2
η

(β + λ) (σ2
θ + σ2

ω(a))
−

λa(σ2
θ + f(y)2σ2

η)

(β + λ) (σ2
θ + σ2

ω(a))

=
1

β + λ

[(
1− λa− λa

τθ
yτη

)
τω(a)

τω(a) + τθ
− βa

]
.

We conclude that, given a, the optimal values for c and b are given by the same functions in (14)

and (15) that characterize the parameters c and b as a function of a under the equilibrium usage of

information. To go from the optimal trades to the demand schedules that implement them, it then

suffices to use the functions defined by (4) and (5). We thus conclude that, for any choice of a, the
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optimal values of ĉT and b̂T are given by the functions (16) and (17), as claimed. Q.E.D.

Derivation of formula for welfare losses.

As shown above, the welfare losses can be expressed as

WL =
β + λ

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2],

where x0 is given by

xo ≡ θ + u− α

β + λ
. (19)

We have also shown above that, for any vector (a, b̂, ĉ) describing the demand schedules, there exists

a unique vector (a, b, c) describing the induced trades xi = asi + b+ cz at the market-clearing price,

and vice versa, where z ≡ θ + f(y)η − u
βa is the endogenous signal contained in the market-clearing

price. This also means, when the traders submit the demand schedules corresponding to the vector

(a, b̂, ĉ), the aggregate volume of trade at the market-clearing price can be expressed as a function of

(θ, η, z) as follows: x̃ = a(θ + f(y)η) + b+ cz. Therefore, the dispersion of individual trades around

the aggregate trade can be expressed as

E[(xi − x̃)2] = E[a2f(y)2e2i ] =
a2

yτe
.

Next, use the fact that, for any a, the optimal values of c and b are given by (14) and (15),

along with the fact that z ≡ θ + f(y)η − u
βa , and the fact that f(y) = 1/

√
y, to obtain that

x̃ = a(θ + f(y)η) + b+ cz =
λa(θ + f(y)η) + u− α+

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
z

β + λ
.

Combining the expression for x̃ derived above with the expression for x0 in (19), we have that

E[(x̃− xo)2] = E


λa(θ + f(y)η) + u− α+

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
z

β + λ
− θ − α+ u

β + λ

2
 .

Simplifying, we have that

E[(x̃− xo)2] = E

(λaf(y)η
β+λ +

(
1−λa−λa

τθ
yτη

)
τω(a)

τω(a)+τθ
(z−θ)

β+λ −
[
1−λa−

(
1−λa−λa

τθ
yτη

)
τω(a)

τω(a)+τθ

]
θ

β+λ

)2
 .

Using the fact that f(y) = 1/
√
y, and that E[ωθ] = E[ηθ] = 0, we then have that

E[(x̃− xo)2] =

((
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

)2
(β + λ)2 τω(a)

+
λ2a2 + 2λa

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(β + λ)2 yτη

+

(
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

)2
(β + λ)2 τθ

.
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Replacing the expressions for E[(xi − x̃)2] and E[(x̃ − xo)2] derived above into the formula for the

welfare losses, we then have that, for any a, when b̂ and ĉ are set optimally, the welfare losses can

be expressed as

WL(a, τω(a)) =

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2
2 (β + λ) τω(a)

+
λ2a2 + 2λa

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

2 (β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2
2 (β + λ) τθ

+
λa2

2yτe
. (20)

as claimed in the main text. Q.E.D.

Proof of Proposition 2.

As shown above, once b and c are set optimally as a function of a to minimize the welfare losses,

the latter can be expressed as a function of a and τω(a), with the formula for WL(a, τω(a)) given by

(20), with τω(a) = (β2a2τuτηy)/(β
2a2τu + yτη). The socially optimal level of a is thus the one that

minimizes WL(a, τω(a)) and is given by the FOC

dWL(a, τω(a))

da
=

∂WL(a, τω(a))

∂a
+
∂WL(a, τω(a))

∂τω(a)

∂τω(a)

∂a
= 0.

Note that

∂WL(a, τω(a))

∂a
= −

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(
λ
yτη+τθ
yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λ2a+ λ

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− λ2a

yτη+τθ
yτη

τω(a)
τω(a)+τθ

(β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

] (
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

+
λa

yτe
,

and that

∂WL(a, τω(a))

∂τω(a)
=

(
1− λa− λa τθ

yτη

)2
2 (β + λ)

τθ − τω(a)

(τω(a) + τθ)
3 +

λa
(
1− λa− λa τθ

yτη

)
(β + λ) yτη

τθ

(τω(a) + τθ)
2

−

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
(β + λ) τθ

(
1− λa− λa

τθ
yτη

)
τθ

(τω(a) + τθ)
2 .

Also note that

∂τω(a)

∂a
=

2β2ay2τ2η τu

(β2a2τu + yτη)2
.
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Using the expressions above, we obtain that

dWL(a, τω(a))

da
= −

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(
λ
yτη+τθ
yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λa

yτe
+H(a)

+
λ2a+ λ

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− λ2a

yτη+τθ
yτη

τω(a)
τω(a)+τθ

(β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

] (
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

where

H(a) ≡
β2ay2τ2η τu

(β2a2τu + yτη)2


(
1− λa− λa τθ

yτη

)2
(β + λ)

τθ − τω(a)

(τω(a) + τθ)
3 +

2λa
(
1− λa− λa τθ

yτη

)
(β + λ) yτη

τθ

(τω(a) + τθ)
2

−
2
[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
(β + λ) τθ

(
1− λa− λa

τθ
yτη

)
τθ

(τω(a) + τθ)
2

 .

Hence, the first-order-condition dWL(a, τω(a))/da = 0 is equivalent to

0 = λaτϵ

(
(yτη + τθ)

2 τω(a)

τω(a) + τθ

)
+ λayτητϵ (τω(a) + τθ)− 2λaτϵ (yτη + τθ) τω(a)

+λaτϵ
(τω(a) + τθ)

τθ

(
yτη − (yτη + τθ)

τω(a)

τω(a) + τθ

)2

+ λayτητϵ
yτη (τω(a) + τθ) (β + λ)

λyτe

+yτητϵ
(β + λ) (τω(a) + τθ) yτηH(a)

λ
− yτητϵ (yτη − τω(a)) ,

from which we obtain that

yτητϵ (yτη − τω(a)) = λa
{
y2τ2η τϵ − τω(a)τϵ (τθ + 2yτη) + (τω(a) + τθ) y

2τ2η

+yτητϵ
yτη (τω(a) + τθ)β

λyτe
+ yτητϵ

(β + λ) (τω(a) + τθ) yτηH(a)

λ2a

}
.

Using the definitions of the Λ(·), ∆(·), and Ξ(·) functions in the main text, we then have that that

aT must solve

aT =
1

λ

1

Λ(τω(a)) + Ξ(a) + ∆(a)
.

It is straightforward to verify that

dWL(a, τω(a))

da

∣∣∣∣
a= 1

λ

=
λτθ

(β + λ) yτη(τω(a) + τθ)

yτη
β2a2τu + yτη(

1− β2a2τu
(β2a2τu + yτη)

× τθ
(τω(a) + τθ)

)
+

λa

yτe
> 0,
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and that

dWL(a, τω(a))

da

∣∣∣∣
a=0

=

τω(a)
τω(a)+τθ

(
−λ

yτη+τθ
yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λ
(

τω(a)
τω(a)+τθ

)
(β + λ) yτη

+

(
1− τω(a)

τω(a)+τθ

)(
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

∝ τω(a)

yτη
− 1 = − yτη

β2a2τu + yτη
< 0,

which implies that 0 < aT < 1/λ, as claimed in the proposition. Q.E.D.

Optimal sensitivity to private information when agents do not learn

from prices.

In the cursed economy, each trader receives a private signal si = θ + f(y)η + f(y)ei︸ ︷︷ ︸
≡ϵi

and a public

signal z = θ + f(y)η + χ︸ ︷︷ ︸
≡ζ

, and believes p to be orthogonal to
(
θ, η, (ei)

i=1
i=0

)
. Following steps similar

to those leading to Proposition 1 in the main text, we have that E[θ|si, z] = γ̄1si + γ̄2z, where

γ̄1 ≡
τϵyτη (yτη − τζ)

y2τ2η (τζ + τϵ + τθ)− τζτϵ(τθ + 2yτη)

and

γ̄2 ≡
yτητζ (yτη − τϵ)

y2τ2η (τζ + τϵ + τθ)− τϵτζ(τθ + 2yτη)
=

(
1− γ̄1

τθ + yτη
yτη

)
τζ

τζ + τθ
.

Observe that the cursed-equilibrium demand schedules must satisfy

xi =
1

λ
(E[θ|si, z]− p) . (21)

Now let xi = a∗exosi + b̂∗exo − ĉ∗exop + d̂∗exoz denote the cursed-equilibrium demand schedules. From

the derivations above, we have that a∗exo = γ̄1/λ, b̂
∗
exo = 0, ĉ∗exo = 1/λ, and d̂∗exo = γ̄2/λ. Using the

formula for γ̄1 above we have that the formula for a∗exo is equivalent to

a∗exo =
1

λΛ(τζ)
, (22)

as claimed in the main text.

Now suppose that, given a, the planner is constrained to choose (b̂, ĉ, d̂) to maintain the same

relationship between a and (b̂, ĉ, d̂) as between a∗exo and (b̂∗exo, ĉ
∗
exo, d̂

∗
exo) in the cursed equilibrium.

Using the fact that

γ̄2 =

(
1− γ̄1

τθ + yτη
yτη

)
τζ

τζ + τθ
,

and the fact that γ̄1 = λa∗exo, we have that, in the cursed equilibrium, the relationship between a∗exo
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and (b̂∗exo, ĉ
∗
exo, d̂

∗
exo) is given by b̂∗exo = 0, ĉ∗exo = 1/λ, and

d̂∗exo =
1

λ

(
1− λa∗exo

τθ + yτη
yτη

)
τζ

τζ + τθ
,

The above properties imply that, in the cursed economy, for any choice of a, the planner is constrained

to select demand schedules of the form

xi =
1

λ

(
λasi +

(
1− λa (τθ + yτη)

yτη

)
τζ

τζ + τθ
z − p

)
. (23)

The planner then chooses a to minimize the welfare losses

WL =
(β + λ)

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2]

under the the above demand schedules, taking into account the market-clearing condition.

Following steps similar to those in the baseline economy, and using the market-clearing condition,

we have that, when the traders’ demand schedules are given by (23),

(β + λ)

2
E[(x̃− xo)2] =

((
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

)2
(β + λ)2 τζ

+
λ2a2 + 2λa

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

(β + λ)2 yτη

+

(
1− λa−

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

)2
(β + λ)2 τθ

and
λE[(xi − x̃)2]

2
=

λa2

2yτe
.

This means that, for any a, the welfare losses are equal to

WL =

[(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

]2
2 (β + λ) τζ

+
λ2a2 + 2λa

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

2 (β + λ) yτη

+

[
1− λa−

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

]2
2 (β + λ) τθ

+
λa2

2yτe
.

Following steps similar to those in the proof of Proposition 2, we then have that the value of a that

minimizes the above welfare losses is equal to

aTexo =
1

λ

1

Λ(τζ) +
τηβ(τζ+τθ)
λτe(yτη−τζ)

as claimed in the main text. Q.E.D.
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Proof of Proposition 3.

We start by establishing the first two equalities. Observe that the function F given, for all a, by

F(a) = a− 1

λΛ(τω(a))

is strictly increasing. To see this, recall that, for any τω, Λ(τω) = 1/γ1(τω). Then note that

γ1(τω) =
τϵyτη (yτη − τω)

y2τ2η (τω + τϵ + τθ)− τωτϵ (τθ + 2yτη)

is decreasing in τω if and only if τηy > τϵ. Because

τϵ ≡
τe

τe + τη
τηy,

we have that γ1(τω) is decreasing in τω. Because τω(a) is increasing in a, we conclude that F is

strictly increasing.

Next, let FT be the function given, for any a, by

FT (a) = a− 1

λ

1

Λ(τω(a)) + ∆(a) + Ξ(a)
.

Because ∆ and Ξ are both increasing, FT is strictly increasing.

The first two equalities follow from the above monotonicities along with the fact that a∗ solves

F(a∗) = 0 whereas aT solves FT (aT ) = 0. Indeed, when ∆(aT ) + Ξ(aT ) > 0,

F(aT ) =
1

λ

1

Λ(τω(aT )) + ∆(aT ) + Ξ(aT )
− 1

λΛ(τω(aT ))
< 0,

implying that a∗ > aT . If a∗ > aT , then
1

λΛ(τω(a∗))
>

1

λ

1

Λ(τω(aT )) + ∆(aT ) + Ξ(aT )
>

1

λ

1

Λ(τω(a∗)) + ∆(a∗) + Ξ(a∗)

which implies that ∆(a∗) + Ξ(a∗) > 0. That ∆(a∗) + Ξ(a∗) > 0 in turn implies that

FT (a∗) =
1

λΛ(τω(a∗))
− 1

λ

1

Λ(τω(a∗)) + ∆(a∗) + Ξ(a∗)
> 0

which implies that a∗ > aT . Finally, that a∗ > aT implies that

F(aT ) =
1

λ

1

Λ(τω(aT )) + ∆(aT ) + Ξ(aT )
− 1

λΛ(τω(aT ))
< 0,

which implies that ∆(aT ) + Ξ(aT ) > 0. Replicating the arguments above for the case in which the

inequalities are reversed then permits us to establish that

a∗ − aT
sgn
= Ξ(aT ) + ∆(aT )

sgn
= Ξ(a∗) + ∆(a∗).

Next, consider the last two equalities in the proposition. In the proof of Lemma 1, we established

that, for any sensitivity a of the efficient trades to private information, the sensitivity of the efficient
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trades to the endogenous signal z contained in the market-clearing price is given by

c =
1

β + λ

[(
1− λa− λa

τθ
yτη

)
τω(a)

τω(a) + τθ
− βa

]
and coincides with the sensitivity of the equilibrium trades to z when the sensitivity of the equilibrium

trades to private information is a. Using the formula for τω(a), we then have that a + c > 0. Now

use Condition (5) to observe that

ĉ = − c

β(a+ c)
. (24)

Because a + c > 0, we conclude that sgn(ĉ) = −sgn(c). Combining this property with Condition

(14), we conclude that

ĉ
sgn
= βa−

(
1− λa− λa

τθ
yτη

)
τω(a)

τω(a) + τθ
.

Next observe that

∆(a) + Ξ(a) =
βτη

λ (yτη − τω(a))

τω(a) + τθ
τe

−
βy3τ2η τu

(
1− λa− λa τθ

yτη

)2
λ (β2a2τu + yτη)

2 (τω(a) + τθ)

 . (25)

Because yτη − τω(a) > 0,

∆(a) + Ξ(a)
sgn
= λ

(
β2a2τu + yτη

)2
(τω(a) + τθ)

2 − τeβy
3τ2η τu

(
1− λa− λa

τθ
yτη

)2

.

It is then easy to see that ∆(a) + Ξ(a)
sgn
= ĉ. The above derivations hold no matter whether a is the

sensitivity of the equilibrium schedules (equivalently, trades) to private information, or the sensitivity

of the efficient schedules (equivalently, trades) to private information. Hence, ĉ∗
sgn
= Ξ(a∗) + ∆(a∗)

and ĉT
sgn
= Ξ(aT ) + ∆(aT ). Because Ξ(a∗) + ∆(a∗)

sgn
= Ξ(aT ) + ∆(aT ), we then have that

Ξ(a∗) + ∆(a∗)
sgn
= ĉ∗

sgn
= ĉT .

Q.E.D.

Proof of Proposition 4.

Under the proposed policy, each trader’s demand schedule must satisfy the optimality condition

Xi(p; Ii) =
1

λ+ δ
(E[θ|Ii, p]− (1 + tp)p+ t0) .

For any vector (a, b̂, ĉ), when all traders submit affine demand schedules xi = asi + b̂ − ĉp, the

equilibrium price then continues to satisfy the same representation as in (1) but with (a∗, b̂∗, ĉ∗)

replaced by (a, b̂, ĉ). This also means that the equilibrium trades can be expressed as a function of the

endogenous public signal z, as in the laissez-faire equilibrium with no policy. Letting xi = asi+b+cz

denote the trades generated by the demand schedules xi = asi + b̂ − ĉp (with z representing the

endogenous public signal contained in the market-clearing price), we then have that the functions
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that map the coefficients ĉ and b̂ in the demand schedules into the coefficients c and b in the induced

trades continue to be given by (5) and (4). Using the fact that E[θ|si, z] = γ1(τω(a))si + γ2(τω(a))z,

with the functions γ1(·) and γ2(·) as defined in (7) and (8), along with the fact that the market-

clearing price satisfies p = α + βb + β(a + c)z as shown in (6), we then have that the equilibrium

trades must satisfy

xi =
1

λ+ δ
[γ1(τω(a))si + γ2(τω(a))z − (1 + tp)α− (1 + tp)βb− (1 + tp)β(a+ c)z + t0]

=
1

λ+ δ
{γ1(τω(a))si − (1 + tp) (α+ βb) + [γ2(τω(a))− (1 + tp)β(a+ c)] z + t0} .

The sensitivity of the equilibrium trades to private information si under the proposed policy thus

satisfies a = γ1(τω(a))/(λ + γ). Using the formula for γ1 in (7), we then have that the equilibrium

value of a under the proposed policy is the unique solution to the following equation:

a =
1

λ+ δ

τϵy
2τ2η − τω(a)τϵyτη

y2τ2η (τω(a) + τϵ + τθ)− τω(a)τϵ (τθ + 2yτη)
,

Using the fact that, for ant τω,

Λ(τω) ≡
y2τ2η (τω + τϵ + τθ)− τωτϵ (τθ + 2yτη)

τϵyτη(yτη − τω)
,

we thus have that the equilibrium value of a is given by

a =
1

λ+ δ

1

Λ(τω(a))
.

The equilibrium value of b is given by the unique solution to

b =
−(1 + tp) (α+ βb) + t0

λ+ δ
which is equal to

b =
t0 − (1 + tp)α

λ+ δ + (1 + tp)β
.

The equilibrium value of c, instead, is given by the unique solution to

c =
1

λ+ δ
[γ2(τω(a))− (1 + tp)β(a+ c)]

which is equal to

c =
γ2(τω(a))− (1 + tp)βa

λ+ δ + (1 + tp)β
.

Now recall that the sensitivity aT of the efficient trades to private information is given by the unique

solution to

a =
1

λ

1

Λ(τω(a)) + Ξ(a) + ∆(a)
.

Therefore, the equilibrium value a under the proposed policy coincides with the efficient level aT if

and only if δ satisfies

(λ+ δ)Λ(τω(a
T ))

= λ
[
Λ(τω(a

T )) + Ξ(aT ) + ∆(aT )
]
,
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from which we obtain that

δ =
λ
[
Ξ(aT ) + ∆(aT )

]
Λ(τω(aT ))

.

Now recall that, given aT , the other two coefficients cT and bT describing the efficient trades are

given by the functions in (14) and (15), implying that

cT =
1

β + λ

((
1− λaT − λaT

τθ
yτη

)
τω(a

T )

τω(aT ) + τθ
− βaT

)
and bT = −α/(β + λ). Hence, for the equilibrium levels of c and b under the proposed policy to

coincide with the efficient levels it must be that
γ2(τω(a

T ))− (1 + tp)βa
T

λ+ δ + (1 + tp)β
=

1

β + λ

((
1− λaT − λaT

τθ
yτη

)
τω(a

T )

τω(aT ) + τθ
− βaT

)
and

t0 − (1 + tp)α

λ+ δ + (1 + tp)β
= − α

β + λ
.

It is easy to see that the above two equations are satisfied when

tp =
γ2(τω(a

T ))− λ+δ+β
β+λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− βa

]
− βaT

β
{

1
β+λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− βa

]
+ aT

}
and

t0 = (1 + tp)α− α [λ+ δ + (1 + tp)β]

β + λ
.

Q.E.D.

Proof of Proposition 5.

Given Ii = (yi, si), trader i’s demand schedule maximizes, for each price p, the trader’s expected

payoff

E
[
(θ − (1 + tp)p)xi − λ

x2i
2
|Ii, p

]
.

The solution to this problem is the demand schedule given by

X(p; Ii) =
1

λ
(E[θ|Ii, p]− (1 + tp)p), (26)

where, as in the laissez-faire equilibrium, E[θ|Ii, p] denotes the trader’s expectation of θ given Ii and

p.

In any symmetric equilibrium in which the price is an affine function of (θ, u, η), the equilibrium

trades continue to be given by

xi = asi + b+ cz (27)

for some scalars (a, b, c) that may depend on the level of the tax tp and on the quality yi = y of the

agents’ information.
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When the individual trades are given by (27), the aggregate trade is equal to

x̃ = (a+ c)z +
u

β
+ b,

where we used the fact that z + u/(βa) = θ+ f(y)η. Replacing x̃ into the expression for the inverse

aggregate supply function, we then have that the equilibrium price

p = α+ βb+ β(a+ c)z (28)

can be expressed as a function of (a, b, c) and the endogenous public signal z, as in the laissez-fare

equilibrium. Furthermore,

E[θ|Ii, p] = γ1(τω(a))si + γ2(τω(a))z, (29)

with γ1(·) and γ2(·) given by (7) and (8), respectively. Combining (26) with (28) and (29), we thus

have that the equilibrium trades satisfy

xi =
1

λ
[γ1(τω(a))si − (1 + tp) (α+ βb) + (γ2(τω(a))− (1 + tp)β(a+ c)) z] . (30)

We conclude that the sensitivity of the equilibrium trades to private information satisfies

a =
γ1(τω(a))

λ
. (31)

That is, no matter the value of tp, the equilibrium level of a is given by a∗, as in the laissez-fare

economy in which tp = 0. Furthermore, combining (30) with (31) and using (8), we have that the

equilibrium sensitivity of the trades to the endogenous public signal is given by

c =
1

β(1 + tp) + λ

[(
1− λa

τθ + yτη
yτη

)
τω(a)

τω(a) + τθ
− (1 + tp)βa

]
, (32)

whereas the constant b in the equilibrium trades is given by

b = −(1 + tp)
α

(1 + tp)β + λ
. (33)

Hence, any ad-valorem tax tp ̸= 0 induces the same sensitivity a∗ of the equilibrium trades to private

information as in the laissez-faire equilibrium in which tp = 0 but different values of b and c. Because,

given a∗, the values of b and c (equivalently, of b̂ and ĉ) in the laissez-fare economy maximize welfare,

as shown in Lemma 1, we conclude that any policy tp ̸= 0 results in strictly lower welfare than tp = 0.

Q.E.D.

Proof of Proposition 6.

The proof is in four steps. Step 1 shows that, for any y ∈ [0,+∞), when all other agents acquire

information of quality y and submit the equilibrium limit orders for information of quality y, each

agent’s net private marginal benefit N(y) of increasing the quality of his information at yi = y

(and then trade optimally) is a strictly decreasing function of y. Step 2 uses the result in step 1 to

show that, when C′(0) is small enough, there is one, and only one, value of y for which N(y) = 0.

Step 3 shows that, when the cost of information is sufficiently convex, then if all other agents

acquire information of quality y∗ (where y∗ is the unique solution to N(y) = 0) and then submit the
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equilibrium limit orders for information of quality y∗, the payoff V #(y∗, yi) that each agent obtains

by acquiring information of quality yi and then trading optimally is strictly quasi-concave in yi.

Jointly, the above properties establish the claim in the proposition.

Step 1. First observe that, when all other agents acquire information of quality y and then

submit the equilibrium limit orders for information of quality y, the maximal payoff that agent i can

obtain by acquiring information of quality yi and then trading optimally is given by

V #(y, yi) ≡ supg(·)

{
E[π#

i (y, yi; g(·))]− C(yi)
}

with

E[π#
i (y, yi; g(·))] ≡ E

[
θg(si, z)− (α+ βb+ β(a+ c)z) g(si, z)−

λ

2
(g(si, z))

2 ; yi

]
,

where g is an arbitrary (measurable) function of the agent’s private signal si and the public signal

z ≡ θ+ f(y)η− u/(βa) contained in the equilibrium price, with noise ω ≡ f(y)η− u/βa of precision

τω(a) ≡ β2(a)2yτuτη/
(
β2(a)2τu + yτη

)
, describing the amount of the good traded by agent i under

the limit orders he submits. Note that, in writing E[π#
i (y, yi; g(·))], we used the fact that the

relationship between z and the equilibrium price is given by p = α+βb+β(a+c)z, where (a, b, c) are

the coefficients describing the equilibrium trades when the quality of information is y and all agents

submit the equilibrium limit orders for information of quality y. Also note that the dependence of

E[π#
i (y, yi; g(·))] on yi is through the fact that the agent’s private signal is given by si = θ+f(yi)(η+

ei). Using the envelope theorem, we then have that

N(y) ≡ ∂V #(y, yi)

∂yi

∣∣∣∣
yi=y

=
(β + λ) (a+ c) a

2τηy2
+

λa2

2y2τe
− C′(y). (34)

Next, use Conditions (3) and (14) to verify that N(y) = F (a, y)− C′(y), where, for any (a, y),

F (a, y) ≡ 1

2
a2

a2β2λτuτθ + y
[
λa2β2τuτη + λ(τe + τη)τθ + β2τeτua

]
y2τe [yτθτη + a2β2τu (τθ + yτη)]

. (35)

As shown in the proof of Proposition 1, the equilibrium value of a (given y) is given by the unique

real root to the cubic equation in (18). Equivalently, letting Z ≡ a/y and

R(Z, y) ≡ Z3yβ2λτu (τθ + yτη) + Zλ (τeτθ + τθτη + yτeτη)− τeτη,

we have, for any y, the equilibrium level of Z is given by the unique positive real solution to the

equation R(Z, y) = 0, and is such that Z < τe/λτy. Furthermore,

∂

∂y
R(Z, y) = Zλ

(
τeτη + Z2β2τuτθ + 2yZ2β2τuτη

)
> 0.

Now let Z∗(y) be the equilibrium value of Z, given y. From the Implicit Function Theorem, we thus

have that Z∗(y) is decreasing in y.

Next, let G(y) ≡ F (Z∗(y)y, y), where F (a, y) is the function defined in Condition (35) above,

and where we used the fact a = Z∗(y)y.

Now use the fact that the equilibrium value of a is given by
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a = y2τe
τη

λ (y (τeτθ + τθτη + yτeτη) + a2β2τu (τθ + yτη))

or, equivalently,

a3 =
y2τeτη − ayλ (τeτθ + τθτη + yτeτη)

β2λτu (τθ + yτη)

to express the function F (a, y) as follows:

F (a, y) = −1

2
(τe + aλτη)

−yτη + aλτθ + ayλτη
(yτθτη + a2β2τu (τθ + yτη))λ (τθ + yτη)

.

The latter expression can be simplified to

F (a, y) =
1

2

a (τe + aλτη)

yτe (τθ + yτη)
.

We thus have that

G(y) =
1

2
Z∗(y)

τe + yZ∗(y)λτη
τe (τθ + yτη)

.

Note that
dG(y)

dy
=

1

2
Z∗(y)τη

−τe + Z∗(y)λτθ

τe (τθ + yτη)
2 +

1

2

τe + 2yZ∗(y)λτη
τe (τθ + yτη)

dZ∗(y)

dy
< 0,

where the inequality follows from the fact that Z∗(y) < τe/λτy and dZ∗(y)/dy < 0. Because N(y) =

G(y)− C′(y), we conclude that N(y) is a strictly decreasing function of y.

Step 2. Next, consider the limit properties of N(y). Because

lim
y→0

Z∗(y) =
τeτη

λτθ (τe + τη)
,

we have that

lim
y→0

G(y) =
1

2

τeτη
λτ2θ (τe + τη)

,

and hence

lim
y→0

N(y) =
1

2

τeτη
λτ2θ (τe + τη)

− C′(0).

Furthermore,

lim
y→∞

N(y) = lim
y→∞

G(y)− lim
y→∞

C′(y).

Because lim
y→∞

Z∗(y) = 0, we have that lim
y→∞

G(y) = 0. Hence,

lim
y→∞

N(y) = − lim
y→∞

C′(y) < 0.
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Letting

L ≡ 1

2

τeτη
λτ2θ (τe + τη)

,

we conclude that, when C′(0) < L, there exists one, and only one, value of y for which N(y) = 0.

Step 3. Assume C′(0) < L and let y∗ be the unique solution to N(y) = 0. Suppose that

all other agents acquire information of quality y∗ and then submit the equilibrium limit orders for

information of quality y∗. Let (a∗, b∗, c∗) denote the coefficients describing the equilibrium trades

under the equilibrium limit orders for information of quality y∗ (these coefficients are given by

Conditions (12), (15), and (14), applied to y = y∗). Let τ∗ω = τω(a
∗) denote the precision of the

endogenous signal z ≡ θ+ f(y∗)η−u/(βa∗) contained in the equilibrium price when all other agents

acquire information of quality y∗ and then submit the equilibrium limit orders for information of

quality y∗.

We show that, when C is sufficiently convex, V #(y∗, yi) is strictly quasi-concave in yi. To see

this, first recall that optimality requires that, for any yi, any (si, p), the trades that the agent induces

through his limit orders given (si, p) are equal to

xi =
1

λ
(E[θ|si, p; yi]− p) .

Equivalently, for any yi, the function g∗(·; yi) that maximizes the agent’s payoff E[π#
i (y∗, yi; g(·))]−

C(yi) is such that, for any (si, z),

g∗(si, z; yi) =
1

λ
(E[θ|si, z; yi]− (α+ βb∗)− β(a∗ + c∗)z) .

Observe that

E[θ|si, z; yi] =
[
Cov(θ, si; yi) Cov(θ, z; yi)

]
×[

V ar(si; yi) Cov(si, z; yi)

Cov(si, z : yi) V ar(z; yi)

]−1 [
si − E[si; yi]
z − E[z; yi]

]

=
[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ϵ (yi) σ2
θ + f(y)f(yi)σ

2
η

σ2
θ + f(y)f(yi)σ

2
η σ2

θ + σ2
ω

]−1 [
si − E[si]
z − E[z]

]
,

where σ2
ϵ (yi) ≡ τ−1

ϵ (yi). Substituting for the inverse of the variance-covariance matrix, and using

the fact that, for any yi, E[si; yi] = E[z; yi] = 0, we have that

E[θ|si, z; yi] =
1

(σ2
θ + σ2

ϵ (yi))(σ
2
θ + σ2

ω)− (σ2
θ + f(y∗)f(yi)σ2

η)
2
×

[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ω −(σ2
θ + f(y∗)f(yi)σ

2
η)

−(σ2
θ + f(y∗)f(yi)σ

2
η) σ2

θ + σ2
ϵ (yi)

][
si

z

]
.
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Expanding the quadratic form, we have that

E[θ|si, z; yi] =
σ2
θ

(
σ2
ω − f(y∗)f(yi)σ

2
η

)
(σ2

θ + σ2
ϵ (yi))(σ

2
θ + σ2

ω)− (σ2
θ + f(y∗)f(yi)σ2

η)
2
si

+
σ2
θ

(
σ2
ϵ − f(y∗)f(yi)σ

2
η

)
(σ2

θ + σ2
ϵ (yi))(σ

2
θ + σ2

ω)− (σ2
θ + f(y∗)f(yi)σ2

η)
2
z.

Simplifying, and using the fact that σ2
θ ≡ τ−1

θ , σ2
ω ≡ (τ∗ω)

−1, σ2
η ≡ τ−1

η , (σϵ(yi))
2 ≡ (τϵ(yi))

−1, we

have that

E[θ|si, z; yi] =

1
τθ

(
1
τ∗ω

− f(y∗)f(yi)
τη

)
( 1
τθ

+ 1
τϵ(yi)

)( 1
τθ

+ 1
τ∗ω
)− ( 1

τθ
+ f(y∗)f(yi)

τη
)2
si

+

1
τθ

(
1

τϵ(yi)
− f(y∗)f(yi)

τη

)
( 1
τθ

+ 1
τϵ(yi)

)( 1
τθ

+ 1
τ∗ω
)− ( 1

τθ
+ f(y∗)f(yi)

τη
)2
z,

or, equivalently,

E[θ|si, z; yi] =
τϵ(yi)τη

(
τηy

∗yi − τ∗ω
f(y∗)f(yi)

)
τ2η y

∗yi(τϵ(yi) + τ∗ω + τθ)− τ∗ωτϵ(yi)
(

2τη
f(y∗)f(yi)

+ τθ

)si
+

τ∗ω

(
τ2η y

∗yi − τϵ(yi)τη
f(y∗)f(yi)

)
τ2η y

∗yi(τϵ(yi) + τ∗ω + τθ)− τ∗ωτϵ(yi)
(

2τη
f(y∗)f(yi)

+ τθ

)z.
Using the fact that τϵ(yi) ≡ τeτηyi/(τe + τη), f(y

∗) = 1/
√
y∗, and f(yi) = 1/

√
yi, we conclude that

E[θ|si, z; yi] = γ̃1(yi)si + γ̃2(yi)z

where

γ̃1(yi) ≡
τeτη

√
y∗yi (τη

√
y∗yi − τ∗ω)

τηy∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe (2τη
√
y∗yi + τθ)

(36)

and

γ̃2(yi) ≡
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

τηy∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe (2τη
√
y∗yi + τθ)

. (37)

In other words, for any yi, the function g∗(·; yi) is given by g∗(si, z; yi) = ã(yi)si+ b̃(yi)+ c̃(yi)z, with

ã(yi) ≡ γ̃1(yi)/λ, b̃(yi) ≡ − (α+ βb∗) /λ, and c̃(yi) ≡ [γ̃2(yi)− β(a∗ + c∗)] /λ.

Now note that, given any affine strategy g(si, z) = Asi +B + Cz, where A,B,C are scalars,

E[π#
i (y∗, yi; g(·))] = E [θ (Asi +B + Cz) |yi]

−E [(α+ βb∗ + β(a∗ + c∗)z) (Asi +B + Cz) |yi]
−E

[
λ
2 (Asi +B + Cz)2 |yi

]
.

Hence, fixing the affine strategy g(si, z) = Asi +B + Cz, and using the fact that

si = θ + f(yi)(η + ei)
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and

z ≡ θ + f(y∗)η − u

βa∗

we have that

∂E[π#
i (y∗, yi; g(·))]

∂yi
= −A [β(a∗ + c∗) + λC]

∂

∂yi
E [siz|yi]−

λ

2
A2 ∂

∂yi
E
[
s2i |yi

]
,

where
∂

∂yi
E [siz|yi] = f ′(yi)f(y

∗)
1

τη

and
∂

∂yi
E
[
s2i |yi

]
= 2f(yi)f

′(yi)

(
1

τη
+

1

τe

)
.

Using the Envelope Theorem, we thus have that

∂V #(y∗, yi)

∂yi
=

∂E[π#
i (y∗, yi; g

∗(·; yi))]
∂yi

− C′(yi)

with

∂E[π#
i (y∗, yi; g(·; yi))]

∂yi
= −ã(yi) [β(a

∗ + c∗) + λc̃(yi)] f
′(yi)f(y

∗)
1

τη
− λã(yi)

2f(yi)f
′(yi)

(
1

τη
+

1

τe

)
.

Observe that

β(a∗ + c∗) + λc̃(yi) = γ̃2(yi).

It follows that
∂V #(y∗, yi)

∂yi
= −ã(yi)γ̃2(yi)f

′(yi)f(y
∗)

1

τη
− λã(yi)

2f(yi)f
′(yi)

(
1

τη
+

1

τe

)
− C′(yi).

Next, observe that

∂2V #(y∗, yi)

∂y2i
= −ã′(yi)γ̃2(yi)f

′(yi)f(y
∗)

1

τη

−ã(yi)
dγ̃2(yi)

dyi
f ′(yi)f(y

∗)
1

τη
− ã(yi)γ̃2(yi)f

′′(yi)f(y
∗)

1

τη

−2λã(yi)ã
′(yi)f(yi)f

′(yi)

(
1

τη
+

1

τe

)
−λã(yi)

2
(
f ′(yi)

)2( 1

τη
+

1

τe

)
− λã(yi)

2f(yi)f
′′(yi)

(
1

τη
+

1

τe

)
− C′′(yi).
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We thus have that, at any yi at which ∂V #(y∗, yi)/∂yi = 0,

∂2V #(y∗, yi)

∂y2i
= −ã′(yi)γ̃2(yi)f

′(yi)f(y)
1

τη

−ã(yi)
dγ̃2(yi)

dyi
f ′(yi)f(y)

1

τη
+

f ′′(yi)

f ′(yi)

[
C′(yi)

]
−2λã(yi)ã

′(yi)f(yi)f
′(yi)

(
1

τη
+

1

τe

)
−λã(yi)

2
(
f ′(yi)

)2( 1

τη
+

1

τe

)
− C′′(yi).

The above can be rewritten as
∂2V #(y∗, yi)

∂y2i
=

(
−f ′(yi)f(y)

1

τη

)
∂

∂yi
{ã(yi)γ̃2(yi)}(

−f ′(yi)

(
1

τη
+

1

τe

))
∂

∂yi

{
λã(yi)

2f(yi)
}

+
f ′′(yi)

f ′(yi)

[
C′(yi)

]
− C′′(yi).

Using the fact that ã(yi) = γ̃1(yi)/λ, we have that, at any point yi at which ∂V #(y∗, yi)/∂yi = 0,

∂2V #(y∗, yi)

∂y2i
=

1

λ

(
−f ′(yi)f(y)

1

τη

)
︸ ︷︷ ︸

>0

d

dyi
{γ̃1(yi)γ̃2(yi)}

+
1

λ

(
−f ′(yi)

(
1

τη
+

1

τe

))
︸ ︷︷ ︸

>0

d

dyi

{
(γ̃1(yi))

2 f(yi)
}

+
f ′′(yi)

f ′(yi)
C′(yi)︸ ︷︷ ︸

<0

−C′′(yi). (38)

Using the fact that f(y) = 1/
√
y and letting J : R+ → R be the function defined by

J(yi) ≡
1

λ

(
1

2yi
√
yiy∗

1

τη

)
d

dyi
{γ̃1(yi)γ̃2(yi)}+

1

λ

[
1

2yi
√
yi

(
1

τη
+

1

τe

)]
d

dyi

{
(γ̃1(yi))

2 1
√
yi

}
,

we thus have that, at any point yi at which ∂V #(y∗, yi)/∂yi = 0,

∂2V #(y∗, yi)

∂y2i
= J(yi)−

3

2yi
C′(yi)− C′′(yi).

Now observe that
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J(yi) =
1

λ

(
1

2yi
√
yiy∗

1

τη

){
γ̃′1(yi)γ̃2(yi) + γ̃1(yi)γ̃

′
2(yi)

}
+
1

λ

[
1

2yi
√
yi

(
1

τη
+

1

τe

)]{
2γ̃1(yi)γ̃

′
1(yi)

1
√
yi

− (γ̃1(yi))
2 1

2yi
√
yi

}
=

1

λ

1

2yi
√
yi

1√
y∗

1

τη

{
γ̃′1(yi)γ̃2(yi) + γ̃1(yi)γ̃

′
2(yi)

}
+
1

λ

1

2yi
√
yi

1
√
yi

(
1

τη
+

1

τe

){
2γ̃1(yi)γ̃

′
1(yi)− (γ̃1(yi))

2 1

2yi

}
.

Next observe that

γ̃′1(yi) =
{
τηy

∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe

(
2τη
√

y∗yi + τθ

)}−2
×

×
{(

τηy
∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe

(
2τη
√
y∗yi + τθ

))
×

d

dyi

(
τeτη

√
y∗yi

(
τη
√
y∗yi − τ∗ω

))
− d

dyi

(
τηy

∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe

(
2τη
√
y∗yi + τθ

))
×(

τeτη
√

y∗yi

(
τη
√

y∗yi − τ∗ω

))}
.

Expanding the derivatives,

γ̃′1(yi) =
{
τηy

∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe

(
2τη
√
y∗yi + τθ

)}−2
×

×
{(

τηy
∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe

(
2τη
√
y∗yi + τθ

))
×[

τeτη
√

y∗
(
τη
√
y∗ − 1

2
τω

1
√
yi

)]
−
[
τηy

∗τeτη − τ∗ωτe

(
2τη
√
y∗

1

2
√
yi

)](
τeτη

√
y∗yi

(
τη
√
y∗yi − τ∗ω

))}
.

Simplifying, we have that

γ̃′1(yi) =
τeτη

√
y∗
(
τη
√
y∗ − 1

2τ
∗
ω

1√
yi

)
τηy∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe (2τη

√
y∗yi + τθ)

−
y∗τη − τ∗ω

√
y∗√
yi

y∗
[
τηyi + (τ∗ω + τθ)

(
1 +

τη
τe

)]
− τ∗ω

(
2
√
y∗yi +

τθ
τη

) γ̃1(yi).
Simplifying further,

γ̃′1(yi) =
τηy

∗ − τ∗ω

√
y∗

2
√
yi

y∗
[
τηyi + (τ∗ω + τθ)

(
1 +

τη
τe

)]
− τ∗ω

(
2
√
y∗yi +

τθ
τη

) − γ̃1(yi)
2

yi

Using again the fact that

γ̃1(yi)

yi
=

τηy
∗ − τ∗ω

√
y∗√
yi

y∗
[
τηyi + (τ∗ω + τθ)

(
1 +

τη
τe

)]
− τ∗ω

(
2
√
y∗yi +

τθ
τη

) ,
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we have that

γ̃′1(yi) =
τηy

∗ − τ∗ω

√
y∗

2
√
yi

τηy∗ − τ∗ω

√
y∗√
yi

γ1(yi)

yi
− γ̃1(yi)

2

yi

=

(
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

− γ̃1(yi)

)
γ̃1(yi)

yi

Similarly,

γ̃′2(yi) =
−1

2τ
∗
ωτeτη

√
y∗√
yi

τηy∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe (2τη
√
y∗yi + τθ)

−
τ2η y

∗τe − τ∗ωτeτη
√
y∗√
yi

τηy∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe (2τη
√
y∗yi + τθ)

γ̃2(yi).

Simplifying, we have that

γ̃′2(yi) =
−1

2τ
∗
ω

√
y∗√
yi

y∗
[
τηyi + (τ∗ω + τθ)

(
1 +

τη
τe

)]
− τ∗ω

(
2
√
y∗yi +

τθ
τη

)
−

τηy
∗ − τ∗ω

√
y∗√
yi

y∗
[
τηyi + (τ∗ω + τθ)

(
1 +

τη
τe

)]
− τ∗ω

(
2
√
y∗yi +

τθ
τη

) γ̃2(yi).
Using the fact that

γ̃1(yi)

yi
=

τηy
∗ − τ∗ω

√
y∗√
yi

y∗
[
τηyi + (τ∗ω + τθ)

(
1 +

τη
τe

)]
− τ∗ω

(
2
√
y∗yi +

τθ
τη

) ,
we have that

γ̃′2(yi) =
−1

2τ
∗
ω

√
y∗√
yi

τηy∗ − τ∗ω

√
y∗√
yi

γ̃1(yi)

yi
− γ̃1(yi)

yi
γ̃2(yi)

and hence

γ̃′2(yi) =
− τ∗ω

2

τη
√
y∗yi − τ∗ω

γ̃1(yi)

yi
− γ̃1(yi)

yi
γ̃2(yi)

= −

(
γ̃2(yi) +

τ∗ω
2

τη
√
y∗yi − τω

)
γ̃1(yi)

yi
.
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Replacing the above derivatives in the expression for J we obtain that

J(yi) =
1

λ

1

2yi
√
yi

1√
y∗

1

τη
×{(

τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

− γ̃1(yi)

)
γ̃1(yi)γ̃2(yi)

yi
−

(
γ̃2(yi) +

τ∗ω
2

τη
√
y∗yi − τ∗ω

)
γ̃21(yi)

yi

}

+
1

λ

1

2yi
√
yi

1
√
yi

(
1

τη
+

1

τe

){
2

(
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

− γ̃1(yi)

)
γ̃21(yi)

yi
− γ̃21(yi)

2yi

}

=
1

λ

1

2yi
√
yi

1√
y∗

1

τη

γ̃1(yi)

yi
×{(

τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

− γ̃1(yi)

)
γ̃2(yi)−

(
γ̃2(yi) +

τ∗ω
2

τη
√
y∗yi − τ∗ω

)
γ̃1(yi)

}

+
1

λ

1

2yi
√
yi

1
√
yi

1

τη

γ̃1(yi)

yi

(
1 +

τη
τe

){
2

(
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

− γ̃1(yi)

)
γ̃1(yi)−

γ̃1(yi)

2

}
.

Hence,

J(yi) =
1

λ

1

2yi
√
yi

1√
y∗

1

τη

γ̃1(yi)

yi

{
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

γ̃2(yi)− 2γ̃1(yi)γ̃2(yi)−
τ∗ω
2

τη
√
y∗yi − τ∗ω

γ̃1(yi)

}

+
1

λ

1

2yi
√
yi

1√
y∗

1

τη

γ̃1(yi)

yi

(
1 +

τη
τe

) √
y∗

√
yi

{
2
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

γ̃1(yi)− 2γ̃21(yi)−
γ̃1(yi)

2

}
In other terms,

J(yi) = H̃(yi)R̃(yi)

where, for any yi,

H̃(yi) ≡
1

λ

1

2yi
√
yi

1√
y∗

1

τη

γ̃1(yi)

yi

and

R̃(yi) ≡
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

γ̃2(yi)− 2γ̃1(yi)γ̃2(yi)−
τ∗ω
2

τη
√
y∗yi − τ∗ω

γ̃1(yi)

+

(
1 +

τη
τe

) √
y∗

√
yi

{
2
τη
√
y∗yi − τ∗ω

2

τη
√
y∗yi − τ∗ω

γ̃1(yi)− 2γ̃21(yi)−
γ̃1(yi)

2

}
.

Now observe that

γ̃1(yi) =
τeτη

√
y∗yi (τη

√
y∗yi − τ∗ω)

D(yi)
and γ̃2(yi) =

τ∗ωτη [(τe + τη) y
∗ − τe

√
y∗yi]

D(yi)
,

where, for any yi,

D(yi) = τηy
∗ [τeτηyi + (τ∗ω + τθ) (τe + τη)]− τ∗ωτe

(
2τη
√
y∗yi + τθ

)
.

Hence

γ̃2(yi) =
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

τeτη
√
y∗yi (τη

√
y∗yi − τ∗ω)

γ̃1(yi)
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Replacing these terms in the formula for R̃, we have that

R̃(yi) =

(
τη
√

y∗yi −
τ∗ω
2

)
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

τeτη
√
y∗yi (τη

√
y∗yi − τ∗ω)

2 γ̃1(yi)

−2
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

τeτη
√
y∗yi (τη

√
y∗yi − τ∗ω)

γ̃21(yi)−
τ∗ω
2

τη
√
y∗yi − τ∗ω

γ̃1(yi)

+

(
1 +

τη
τe

) √
y∗

√
yi

{
2τη

√
y∗yi − τ∗ω

τη
√
y∗yi − τ∗ω

γ̃1(yi)− 2γ̃21(yi)−
γ̃1(yi)

2

}
.

This means that

J(yi) = H̃(yi)γ̃(yi)W̃ (yi)

where, for any yi,

W̃ (yi) =

(
τη
√

y∗yi −
τ∗ω
2

)
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

τeτη
√
y∗yi (τη

√
y∗yi − τ∗ω)

2

−2
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

τeτη
√
y∗yi (τη

√
y∗yi − τ∗ω)

τeτη
√
y∗yi (τη

√
y∗yi − τ∗ω)

D(yi)
−

τ∗ω
2

τη
√
y∗yi − τ∗ω

+

(
2τη

√
y∗yi − τ∗ω

τη
√
y∗yi − τ∗ω

)(
1 +

τη
τe

) √
y∗

√
yi

−2
τeτη

√
y∗yi (τη

√
y∗yi − τ∗ω)

D(yi)

(
1 +

τη
τe

) √
y∗

√
yi

− 1

2

(
1 +

τη
τe

) √
y∗

√
yi
.

Hence,

W̃ (yi) =

(
τη
√

y∗yi − τ∗ω +
τ∗ω
2

)
τ∗ω [(τe + τη) y

∗ − τe
√
y∗yi]

τe
√
y∗yi (τη

√
y∗yi − τ∗ω)

2

−2
τ∗ωτη [(τe + τη) y

∗ − τe
√
y∗yi]

D(yi)
−

τ∗ω
2

τη
√
y∗yi − τ∗ω

+

(
2τη

√
y∗yi − τ∗ω

τη
√
y∗yi − τ∗ω

)(
1 +

τη
τe

) √
y∗

√
yi

−2
τηy

∗ (τη
√
y∗yi − τ∗ω)

D(yi)
(τe + τη)−

1

2

(
1 +

τη
τe

) √
y∗

√
yi
.

Equivalently,

W̃ (yi) =
τ∗ω
[
(τe + τη)

√
y∗ − τe

√
yi
]

τe
√
yi (τη

√
y∗yi − τ∗ω)

+
(τ∗ω)

2 [(τe + τη)
√
y∗ − τe

√
yi
]

2τe
√
yi (τη

√
y∗yi − τ∗ω)

2

−2τ∗ωτη [(τe + τη) y
∗ − τe

√
y∗yi]

D(yi)
−

τ∗ω
2

τη
√
y∗yi − τ∗ω

+

(
1 +

τη
√
y∗yi

τη
√
y∗yi − τ∗ω

)(
1 +

τη
τe

) √
y∗

√
yi

−2τηy
∗ (τη

√
y∗yi − τ∗ω)

D(yi)
(τe + τη)−

1

2

(
1 +

τη
τe

) √
y∗

√
yi
.
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Simplifying further

W̃ (yi) =
τ∗ω
[
(τe + τη)

√
y∗ − τe

√
yi
]

τe
√
yi (τη

√
y∗yi − τ∗ω)

+
(τ∗ω)

2 [(τe + τη)
√
y∗ − τe

√
yi
]

2τe
√
yi (τη

√
y∗yi − τ∗ω)

2

−2τ∗ωτη [(τe + τη) y
∗ − τe

√
y∗yi]

D(yi)
−

τ∗ω
2

τη
√
y∗yi − τ∗ω

+

(
1 +

τη
τe

)(
τηy

∗

τη
√
y∗yi − τ∗ω

)
−2τηy

∗ (τη
√
y∗yi − τ∗ω)

D(yi)
(τe + τη) +

1

2

(
1 +

τη
τe

) √
y∗

√
yi
.

Putting all pieces together we thus have that

J(yi) =
τ∗ω
[
(τe + τη)

√
y∗ − τe

√
yi
]

τe
√
yi (τη

√
y∗yi − τ∗ω)

{
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}

+
(τ∗ω)

2 [(τe + τη)
√
y∗ − τe

√
yi
]

2τe
√
yi (τη

√
y∗yi − τ∗ω)

2

{
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}

−2τ∗ωτη [(τe + τη) y
∗ − τe

√
y∗yi]

D(yi)

{
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}

−
τ∗ω
2

τη
√
y∗yi − τ∗ω

{
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}

+

(
1 +

τη
τe

)(
τηy

∗

τη
√
y∗yi − τ∗ω

){
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}

−2τηy
∗ (τη

√
y∗yi − τ∗ω)

D(yi)
(τe + τη)

{
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}

+
1

2

(
1 +

τη
τe

) √
y∗

√
yi

{
1

λ

1

2yi
√
yi

1√
y∗

1

τη

1

yi

τ2e τ
2
η y

∗yi (τη
√
y∗yi − τ∗ω)

2

D2(yi)

}
.
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Simplifying,

J(yi) =
τ∗ωτeτη

√
y∗ (τη

√
y∗yi − τ∗ω)

[
(τe + τη)

√
y∗ − τe

√
yi
]

2λy2iD
2(yi)

+
(τ∗ω)

2 τeτη
√
y∗
[
(τe + τη)

√
y∗ − τe

√
yi
]

4λy2iD
2(yi)

−
τ2e τ

2
η τ

∗
ω

√
y∗ (τη

√
y∗yi − τ∗ω)

2
[(τe + τη) y

∗ − τe
√
y∗yi]

λyi
√
yiD3(yi)

−τ2e τητ
∗
ω

√
y∗ (τη

√
y∗yi − τ∗ω)

4λ
√
yiyiD2(yi)

+
(τη + τe) τeτ

2
η

√
y∗y∗ (τη

√
y∗yi − τ∗ω)

2λyi
√
yiD2(yi)

−
(τe + τη) τ

2
e τ

2
η

√
y∗y∗ (τη

√
y∗yi − τ∗ω)

3

λyi
√
yiD3(yi)

+
(τe + τη) τeτηy

∗ (τη
√
y∗yi − τ∗ω)

2

4λy2iD
2(yi)

.

Simplifying further, we have that

J(yi) =
τ∗ωτeτη

√
y∗ (τη

√
y∗yi − τ∗ω)

[
(τe + τη)

√
y∗ − τe

√
yi
]

2λy2iD
2(yi)

+
(τη + τe) τeτ

2
η

√
y∗
√
yiy

∗ (τη
√
y∗yi − τ∗ω)

2λy2iD
2(yi)

+
(τ∗ω)

2 τeτη
√
y∗
[
(τe + τη)

√
y∗ − τe

√
yi
]

4λy2iD
2(yi)

+
(τe + τη) τeτηy

∗ (τη
√
y∗yi − τ∗ω)

2 − τ2e τητ
∗
ω

√
y∗
√
yi (τη

√
y∗yi − τ∗ω)

4λy2iD
2(yi)

−
τ2e τ

2
η τ

∗
ω

√
y∗ (τη

√
y∗yi − τ∗ω)

2
[(τe + τη) y

∗ − τe
√
y∗yi]

λyi
√
yiD3(yi)

−
(τe + τη) τ

2
e τ

2
η

√
y∗y∗ (τη

√
y∗yi − τ∗ω)

3

λyi
√
yiD3(yi)

.

Equivalently,

J(yi) =
2τeτη

√
y∗(τη

√
y∗yi−τ∗ω){(τe+τη)

√
y∗[τ∗ω+τη

√
yiy∗]−τ∗ωτe

√
yi}

4λy2i D
2(yi)

+
τeτη

√
y∗

4λy2i D
2(yi)

[
(τ∗ω)

2 (τe + τη)
√
y∗ − τe (τ

∗
ω)

2√yi

]
+

τeτη
√
y∗

4λy2i D
2(yi)

(τη
√
y∗yi − τ∗ω)

[
(τe + τη)

√
y∗ (τη

√
y∗yi − τ∗ω)− τeτ

∗
ω
√
yi
]

− τ2e τ
2
ηy

∗(τη
√
y∗yi−τ∗ω)

2
[(τe+τη)y∗τη−τ∗ωτe]

λyiD3(yi)
.

We conclude that
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J(yi) =
τeτη

√
y∗yi

4λy2i D
2(yi)

{
(τe + τη) y

∗τη [3τη
√
yiy∗ − 2τ∗ω]− 3τ∗ωτeτη

√
y∗yi + 2τe (τ

∗
ω)

2
}

− τ2e τ
2
ηy

∗(τη
√
y∗yi−τ∗ω)

2
[(τe+τη)y∗τη−τ∗ωτe]

λyiD3(yi)
.

Next, observe that

lim
yi→0

D(yi) = τηy
∗ (τ∗ω + τθ) (τe + τη)− τ∗ωτeτθ.

Using this limit, we have that

lim
yi→0

J(yi) = lim
yi→0

{
− τeτητ

∗
ω

√
y∗ [τηy

∗ (τe + τη)− τeτ
∗
ω]

2λ [τηy∗ (τe + τη) (τ∗ω + τθ)− τeτ∗ωτθ]
2

(√
yi

y2i

)}
+

lim
yi→0

{
−

(τ∗ω)
2 τ2e τ

2
η y

∗ [τηy
∗ (τe + τη)− τeτ

∗
ω]

λyi [τηy∗ (τe + τη) (τ∗ω + τθ)− τeτ∗ωτθ]
3

1

yi

}

≡ lim
yi→0

{
− A1(yi)

2λA0(yi)2

(√
yi

y2i

)
− A2(yi)

λyiA0(yi)3
1

yi

}
,

where, for any yi,

A0(yi) ≡ [τηy
∗ (τe + τη) (τ

∗
ω + τθ)− τeτ

∗
ωτθ] ,

A1(yi) ≡ τeτητ
∗
ω

√
y∗ [τηy

∗ (τe + τη)− τeτ
∗
ω] ,

and

A2(yi) ≡ (τ∗ω)
2 τ2e τ

2
η y

∗ [τηy
∗ (τe + τη)− τeτ

∗
ω] .

Using the fact that

τ∗ω =
β2a∗2y∗τuτη

β2a∗2τu + y∗τη
,

we have that

A1(yi)
sgn
= τηy

∗ (τe + τη)− τeτ
∗
ω

= τe(τηy
∗ − τ∗ω) + τηy

∗τη

= τe

(
τηy

∗ − β2a∗2y∗τuτη
β2a∗2τu + y∗τη

)
+ τηy

∗τη

= τητey
∗
(
1− β2a∗2τu

β2a∗2τu + y∗τη

)
+ τηy

∗τη

> 0.

Similarly,

A2(yi)
sgn
= τηy

∗ (τe + τη)− τeτ
∗
ω > 0.
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Observe that

A0(yi) ∝ τηy
∗ (τe + τη) (τ

∗
ω + τθ)− τeτ

∗
ωτθ

= (τηy
∗ − τ∗ω) τeτθ + τηy

∗(τeτ
∗
ω + τητ

∗
ω + τητθ)

> 0.

Therefore limyi→0 J(yi) < 0. It is straightforward to see that limyi→∞ J(yi) = 0. Finally, we check

for asymptotes (namely, for values of yi for which D(yi) = 0). Suppose that D(yi) = 0 for some yi.

That is, there exists yi such that

τ2η y
∗ [τeτηyi + (τω + τθ) (τe + τη)]− τωτeτη

(
2τη
√

y∗yi + τθ

)
= 0.

The expression in the above equation is quadratic in
√
yi so we can calculate the determinant to be:

4τ2ωτ
2
e τ

2
η y

∗ − 4τeτ
2
η y

∗ (τηy
∗ (τω + τθ) (τe + τη)− τωτeτθ) ∝ τ2ωτe − (τηy

∗ (τω + τθ) (τe + τη)− τωτeτθ)

∝ τe (τω − τηy
∗)− τ2η y

∗.

Using the definition of τω we then get that the determinant is proportional to

β2a∗2y∗τuτη
β2a∗2τu + y∗τη

− τηy
∗ ∝ β2a∗2τu

β2a∗2τu + y∗τη
− 1

=
−y∗τη

β2a∗2τu + y∗τη
,

which is strictly negative. Therefore there is no real value of
√
yi for which D(yi) = 0. Because yi is

non-negative, this means that there are no vertical asymptotes for J(yi; y
∗).

Jointly, the properties that (a) limyi→0 J(yi; y
∗) = −∞, (b) limyi→+∞ J(yi) = 0, and (c) J(yi; y

∗)

does not have vertical asymptotes, imply that J(yi; y
∗) is bounded from above by a constant M > 0.

Hence, when 3
2yi

C′(yi) + C′′(yi) > M for all yi ≥ 0, the payoff is quasi-concave. Note that, when

C(y) = B
2 y

2, the above condition becomes B > 2
5M , which holds for B large enough, as claimed in

the main text.

The above results imply that, under the conditions in the proposition, choosing quality of in-

formation yi = y∗ and then submitting the limit orders defined by the coefficients (a∗, b̂∗, ĉ∗) in

Proposition 1 (for quality of information y∗) is a symmetric equilibrium in the full game. That there

are no other symmetric equilibria in affine strategies follows from the uniqueness of the solution to

N(y) = 0 established in Step 2. Q.E.D.
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Proof of Proposition 7.

Let yT denote the socially optimal quality of private information and (aT , b̂T , ĉT ) the coefficients

describing the efficient demand schedules when the precision of private information is yT . Next, for

any ȳ, let E[W T ; ȳ] denote ex-ante gross welfare when all traders acquire information of quality ȳ

but then submit the efficient demand schedules for information of quality yT (that is, the schedules

corresponding to the coefficients (aT , b̂T , ĉT )). Such a welfare function is gross of the costs of infor-

mation acquisition. Finally, for any (yi, ȳ), let E[πT
i ; yi, ȳ] denote the ex-ante gross profit of a trader

acquiring information of quality yi when all other traders acquire information of quality ȳ, and all

traders, including i, submit the efficient demand schedules for information of quality yT (that is, the

schedules corresponding to the coefficients (aT , b̂T , ĉT ) mentioned above). The payoff is again gross

of the cost of information acquisition. We start by establishing the following result:

Lemma 2. Let yT denote the socially optimal quality of private information and suppose

that all traders submit the efficient demand schedules for information of quality yT (parametrized

by (aT , b̂T , ĉT )). When ĉT > 0 (i.e., when the pecuniary externality dominates over the information

externality so that the efficient demand schedules are downward sloping), for any ȳ,

∂

∂yi
E[πT

i ; yi, ȳ]

∣∣∣∣
yi=ȳ

>
d

dȳ
E[W T ; ȳ]

whereas the opposite inequality holds when ĉT < 0 (i.e., when the learning externality dominates over

the pecuniary externality and, as a result, the efficient demand schedules are upward sloping).

Proof of Lemma 2 . When all traders other than i acquire information of quality ȳ and then submit

the demand schedules corresponding to (aT , b̂T , ĉT ), irrespectively of the information acquired by

trader i and of the demand schedule submitted by the latter, the equilibrium price is given by

p(θ, u, η; ȳ) = α+ βbT + β(aT + cT )z(θ, u, η; ȳ),

where bT and cT are the coefficients obtained from (aT , b̂T , ĉT ) using the functions (4) and (5), and

where z(θ, u, η; ȳ) ≡ θ + f(ȳ)η − u/βaT .2 Furthermore, the aggregate level of trade is equal

X̃(θ, u, η; ȳ) = aT [θ + f(ȳ)η] + bT + cT z(θ, u, η; ȳ)

whereas the level of trade for agent i when he acquires information of quality yi and then submits

the demand schedule corresponding to the coefficients (aT , b̂T , ĉT ) is equal to

Xi(θ, u, η, ei; ȳ, yi) = aT [θ + f(yi)ei + f(yi)η]︸ ︷︷ ︸
si

+bT + cT z(θ, u, η; ȳ).

It follows that, when all traders other than i acquire information of quality ȳ, trader i acquires infor-

mation of quality yi and all traders, including trader i, submit the demand schedules corresponding

to (aT , b̂T , ĉT ), trader i’s ex-ante gross payoff is equal to

2Observe that the functions (4) and (5) do not depend on y and hence cT and bT do not depend on y.
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E[πT
i ; ȳ, yi] = E

[
(θ − p(θ, u, η; ȳ))Xi(θ, u, η, ei; ȳ, yi)−

λ

2
X2

i (θ, u, η, ei; ȳ, yi)

]
.

Using the fact that the market-clearing price must also be consistent with the inverse-supply function

and hence satisfy p = α− u+ βX̃(θ, u, η; ȳ), we then have that

E[πT
i ; ȳ, yi] = E

[(
θ − α+ u− βX̃(θ, u, η; ȳ)

)
E[xi|θ, u, η; ȳ, yi]−

λ

2
E
[
x2i |θ, u, η; ȳ, yi

]]
or, equivalently,

E[πT
i ; ȳ, yi] = E

[ (
θ − α+ u− βX̃(θ, u, η; ȳ)

)
E[xi|θ, u, η; ȳ, yi]− λ

2V ar[xi|θ, η, u; ȳ, yi]

−λ
2 (E[xi|θ, η, u; ȳ, yi])

2
]
,

where

E[xi|θ, u, η; ȳ, yi] ≡ E[Xi(θ, u, η, ei; ȳ, yi)|θ, u, η; ȳ, yi],

E[x2i |θ, u, η; ȳ, yi] ≡ E
[
(Xi(θ, u, η, ei; ȳ, yi))

2 |θ, u, η; ȳ, yi
]
,

and

V ar[xi|θ, η, u; ȳ, yi] ≡ E[x2i |θ, u, η; ȳ, yi]− (E[xi|θ, u, η; ȳ, yi])2 .

Using the fact that

E[xi|θ, u, η; ȳ, yi] = aT [θ + f(yi)η] + bT + cT z(θ, u, η; ȳ)

and

V ar[xi|θ, η, u; ȳ, yi] =
(
aT f(yi)

)2
/τe,

we have that

∂

∂yi
E[πT

i ; ȳ, yi] = E
[(

θ − α+ u− βX̃(θ, u, η; ȳ)
)
aT f ′(yi)η

]
− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λE
[(
aT [θ + f(yi)η] + bT + cT z(θ, u, η; ȳ)

)
aT f ′(yi)η

]
= −aTβE

[
X̃(θ, u, η; ȳ)η

]
f ′(yi)− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λ
(
aT
)2

f(yi)f
′(yi)

1

τη
− λaT cTE [z(θ, u, η; ȳ)η] f ′(yi).

Using the fact that

E
[
X̃(θ, u, η; ȳ)η

]
=

aT f(ȳ)

τn
+ cTE [z(θ, u, η; ȳ)η]

and

E [z(θ, u, η; ȳ)η] =
f(ȳ)

τn
,

we then have that

∂

∂yi
E[πT

i ; ȳ, yi] = −aTβ

[
aT f(ȳ)

1

τn
+ cT f(ȳ)

1

τn

]
f ′(yi)− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λ
(
aT
)2

f(yi)f
′(yi)

1

τη
− λaT cT f(ȳ)

1

τn
f ′(yi). (39)
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We conclude that

∂

∂yi
E[πT

i ; ȳ, yi]

∣∣∣∣
yi=ȳ

= −aTβ

[
aT f(ȳ)

1

τn
+ cT f(ȳ)

1

τn

]
f ′(ȳ)− λ

(
aT
)2

τe
f(ȳ)f ′(ȳ)

−λ
(
aT
)2

f(ȳ)f ′(ȳ)
1

τη
− λaT cT f(ȳ)

1

τn
f ′(ȳ)

= −f(ȳ)f ′(ȳ)aT
[
λ
aT

τe
+ (β + λ)(aT + cT )

1

τη

]
. (40)

Next, observe that, when trader i also acquires information of quality ȳ and all traders submit

the demand schedules corresponding to (aT , b̂T , ĉT ),

E[πT
i ; ȳ, ȳ] = E

[(
θ − α+ u− βX̃(θ, u, η; ȳ)

)
X̃(θ, u, η; ȳ)− λ

2

(
aT f(ȳ)

)2
τe

− λ

2

(
X̃(θ, u, η; ȳ)

)2]
.

Now observe that, when all traders acquire information of quality ȳ and submit the demand schedules

corresponding to (aT , b̂T , ĉT ), the ex-ante payoff of the representative supplier (which the planner

accounts for in the computation of welfare) is equal to

E[Π; ȳ] = E
[
(p(θ, u, η; ȳ)− α+ u) X̃(θ, u, η; ȳ)− β

2

(
X̃(θ, u, η; ȳ)

)2]
=

β

2
E
[(

X̃(θ, u, η; ȳ)
)2]

,

where we used the fact that p(θ, u, η; ȳ) = α−u+βX̃(θ, u, η; ȳ). We thus have that, when all traders

acquire information of quality ȳ and submit the demand schedules corresponding to (aT , b̂T , ĉT ),

ex-ante welfare is equal to

E[W T ; ȳ] = E[πT
i ; ȳ, ȳ] + E[Π; ȳ]

= E

[
(θ − α+ u) X̃(θ, u, η; ȳ)− λ

2

(
aT f(ȳ)

)2
τe

− λ+ β

2

(
X̃(θ, u, η; ȳ)

)2]
.

Hence,

d

dȳ
E[W T ; ȳ] = E

 (θ − α+ u)∂X̃(θ,u,η;ȳ)
∂ȳ − λ(aT )

2
f(ȳ)f ′(ȳ)

τe

−(λ+ β)X̃(θ, u, η; ȳ)∂X̃(θ,u,η;ȳ)
∂ȳ

 ,

where
∂

∂ȳ
X̃(θ, u, η; ȳ) = (aT + cT )f ′(ȳ)η.

It follows that

d

dȳ
E[W T ; ȳ] = −

λ
(
aT
)2

f(ȳ)f ′(ȳ)

τe
− (λ+ β)(aT + cT )f ′(ȳ)Eθ,η,u

[
X̃(θ, u, η; ȳ)η

]
.

Using the fact that

E
[
X̃(θ, u, η; ȳ)η

]
= (aT + cT )f(ȳ)

1

τn
,

we thus have that
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d

dȳ
E[W T ; ȳ] = −

λ
(
aT
)2

f(ȳ)f ′(ȳ)

τe
− (λ+ β)

(
aT + cT

)2
f ′(ȳ)f(ȳ)

1

τn
. (41)

Comparing (40) with (41), we thus have that, when cT < 0,

∂

∂yi
E[πT

i ; ȳ, yi]

∣∣∣∣
yi=ȳ

>
d

dȳ
E[W T ; ȳ],

whereas the opposite inequality holds when cT > 0. Finally, use Condition (5) to observe that

ĉT = − cT

β(aT+cT )
and Condition (14), along with the formula for τω(a), to observe that aT + cT > 0.

Jointly, the last two conditions imply that sgn(ĉT ) = −sgn(cT ) thus completing the proof of the

lemma.

We now show that the result in Lemma 2 implies the result in the proposition. We start by estab-

lishing the (global) concavity of E[πT
i ; ȳ, yi] and E[W T ; ȳ] in yi and ȳ, respectively. Recall that the

coefficients defining the equilibrium trades as a function of the private signals si and the endogenous

public signal z are kept constant in both cases at (aT , bT , cT ), where (aT , bT , cT ) is the vector defining

the efficient trades when the quality of private information is yT . Using (39), we have that

∂2

∂y2i
E[πT

i ; ȳ, yi] = −aTβf(ȳ)
1

τη

(
aT + cT

)
f ′′(yi)− λ

(
aT
)2 [ 1

τe
+

1

τη

]
∂

∂yi

(
f(yi)f

′(yi)
)

−λaT cT f(ȳ)
1

τη
f ′′(yi)

= −aT f(ȳ)
1

τη

[
β
(
aT + cT

)
+ λcT

]
f ′′(yi)− λ

(
aT
)2 [ 1

τe
+

1

τη

]
∂

∂yi

(
f(yi)f

′(yi)
)
.

Now observe that f ′′(yi) = 3
√
yi/4y

3
i > 0 and ∂

∂yi
(f(yi)f

′(yi)) = 1/y3i > 0. Hence,

∂2

∂y2i
E[πT

i ; ȳ, yi] = − aT

y3i τη

[
3
√
yi

4
√
ȳ

(
βaT + (β + λ) cT

)
+ λaT

τη + τe
τe

]
.

Recall that, irrespective of the sign of cT , aT > 0 and aT + cT > 0, where the last inequality is

established in the proof of Lemma 2. Hence, when cT ≥ 0, for any (ȳ, yi), ∂
2E[πT

i ; ȳ, yi]/∂y
2
i < 0. To

see that the same inequality holds when cT < 0, recall that

cT =
1

β + λ

[(
1− λaT − λaT

τθ
yT τη

)
τω(a

T )

τω(aT ) + τθ
− βaT

]
.

Hence,

βaT + (β + λ) cT =

(
1− λaT − λaT

τθ
yT τη

)
τω(a

T )

τω(aT ) + τθ
.

Using

τω(a
T ) =

β2
(
aT
)2

yT τητu

β2 (aT )2 τu + yT τη
,

we can rewrite the last condition as

βaT + (β + λ) cT =
[(
1− λaT

)
yT τη − λaT τθ

] β2
(
aT
)2

τu

β2 (aT )2 τu (yT τη + τθ) + yT τητθ
.
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Hence,

βaT + (β + λ) cT
sgn
=
(
1− λaT

)
yT τη − λaT τθ.

Now recall that aT solves

aT =
1

λ

1

Λ(τω(aT )) + Ξ(aT ) + ∆(aT )
. (42)

Using the definition of the Λ function, we have that the latter condition is equal to

aT =
1

λ

τϵy
T τη(y

T τη − τω(a
T ))

(yT )2 τ2η (τϵ + τθ + τω(aT ))− τω(aT )τϵ (τθ + 2yT τη) + [Ξ(aT ) + ∆(aT )] τϵyT τη(yT τη − τω(aT ))
,

(43)

with τϵ ≡
(
yT τeτη

)
/ (τe + τη) and τω(a) ≡ β2a2τuy

T τη/
(
β2a2τu + yT τη

)
. Observe that the numera-

tor in (43) is positive. Because aT > 0, as shown above, this means that the denominator in (43) is

also positive. Furthermore, using (43), we have that(
1− λaT

)
yT τη − λaT τθ

=
yT τηQ

(yT )2τ2η (τϵ+τθ+τω(aT ))−τω(aT )τϵ(τθ+2yT τη)+[Ξ(aT )+∆(aT )]τϵyT τη(yT τη−τω(aT ))
,

where

Q ≡ yT τη
(
yT τη − τϵ

) (
τθ + τω(a

T )
)
+
[
Ξ(aT ) + ∆(aT )

]
τϵy

T τη(y
T τη − τω(a

T )).

We thus have that (
1− λaT

)
yT τη − λaT τθ

sgn
= Q.

Now, using the fact that τϵ =
(
yT τeτη

)
/ (τe + τη), we have that Q can be rewritten as

Q =
(
yT τη

)2 τη
τe + τη

(
τθ + τω(a

T )
)
+
[
Ξ(aT ) + ∆(aT )

] τe
τe + τη

(
yT τη

)2
(yT τη − τω(a

T )).

Because yT τη − τω(a
T ) > 0, we conclude that sgn (Q) > 0 if Ξ(aT ) + ∆(aT ) > 0. The latter

property holds because, as explained in the main text, when cT < 0, then ĉT > 0 in which case

Ξ(aT ) + ∆(aT ) > 0. We conclude that, no matter the sign of cT , for any ȳ, E[πT
i ; ȳ, yi] is strictly

concave in yi.

Next, consider the concavity of E[W T ; ȳ] in ȳ. Using (41), we have that

d2

dȳ2
E[W T ; ȳ] = −

[
λ
(
aT
)2

τe
+ (λ+ β)

(
aT + cT

)2 1

τn

]
∂

∂ȳ

(
f(ȳ)f ′(ȳ)

)
< 0,

where again the inequality follows from the fact that ∂
∂ȳ (f(ȳ)f

′(ȳ)) > 0. Hence E[W T ; ȳ] is strictly

concave in ȳ. Because E[πT
i ; ȳ, yi] is strictly concave in yi, in equilibrium, all traders acquire infor-

mation of quality y∗ such that

∂

∂yi
E[πT

i ; ȳ, yi]

∣∣∣∣
yi=ȳ=y∗

= C′(y∗).
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Now recall that the socially-optimal quality of information satisfies

d

dȳ
E[W T ; ȳ]

∣∣∣∣
ȳ=yT

= C′(yT ).

Because E[W T ; ȳ] is strictly concave in ȳ, the result in Lemma 2 then implies that, when ĉT < 0,

yT > y∗, whereas, when ĉT > 0, yT < y∗. Q.E.D.

Proof of Proposition 8.

Under the proposed policy, each trader i’s ex-ante gross expected payoff when all traders other than

i collect information of quality ȳ, trader i collects information of quality yi, and all traders (including

i) submit the efficient demand schedules (parametrized by (aT , b̂T , ĉT )) is equal to

E[πT
i (ȳ, yi); t̂p] = E

[
θxi − (1 + t̂p)pxi −

λ

2
x2i

]
= E

[
θxi − (1 + t̂p) (α− u+ βx̃)xi −

λ

2
x2i

]
with

xi = Xi(θ, u, η, ei; ȳ, yi) = aT [θ + f(yi)ei + f(yi)η]︸ ︷︷ ︸
si

+bT + cT
(
θ + f(ȳ)η − u

βaT

)
,

p = P (θ, u, η; ȳ) = α− u+ βX(θ, u, η; ȳ),

and

x̃ = X(θ, u, η; ȳ) = aT (θ + f(ȳ)η) + bT + cT
(
θ + f(ȳ)η − u

βaT

)
,

and where bT and cT are the coefficients describing the equilibrium trades obtained from b̂T and ĉT

using (4) and (5). Hence,

E[πT
i (ȳ, yi); t̂p] = N − β(aT + cT )aT

1 + t̂p√
ȳ
√
yiτη

− λcTaT√
ȳ
√
yiτη

− λ

2

(
aT
)2

yiτη
− λ

2

(
aT
)2

yiτe
,

where N is a function of all variables that do not interact with yi. It follows that

∂

∂yi
E[πT

i (ȳ, yi); t̂p] =
β(1 + t̂p)(a

T + cT )aT

2τηyi
√
ȳyi

+
λaT

2τηyi
√
yi

(
aT
√
yi

+
cT√
ȳ

)
+

λ
(
aT
)2

2y2i τe
.

Because E[πT
i (ȳ, yi); t̂p] − C(yi) is concave in yi, for yi = ȳ = yT to be sustained in equilibrium it is

both necessary and sufficient that

∂

∂yi
E[πT

i (y
T , yT ); t̂p] = C′(yT )

which is equivalent to[
β(1 + t̂p) + λ

]
(aT + cT )aT

2τη
+

λ
(
aT
)2

2τe
= C′(yT )

(
yT
)2

.
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Using the fact that yT satisfies

(β + λ)(aT + cT )2

2τη
+

λ
(
aT
)2

2τe
= C′(yT )

(
yT
)2

,

we have that the proposed policy implements the efficient acquisition of private information when

t̂p =
(β + λ)cT

βaT
.

Using the fact that

cT =
1

β + λ

(
γ2
(
τω(a

T )
)
− βaT

)
we then have that the optimal t̂p is equal to

t̂p =
γ2
(
τω(a

T )
)
− βaT

βaT

where γ2 is the function defined in the proof of Proposition 1. Q.E.D.

Proof of Proposition 9.

Assume that all traders other than i acquire information of quality yT and then submit the efficient

demand schedules (that is, those corresponding to the coefficients (aT , b̂T , ĉT ) for quality of informa-

tion yT ). Given any policy T (xi, p), the expected net payoff for trader i when he chooses information

of quality yi and then selects his demand schedule optimally is equal to

V (yT , yi) ≡ supg(·)
{
E[π̃i(yT , yi); g(·)]− C(yi)

}
where g : R2 → R is a generic function specifying the amount of shares xi = g(si, z) that the trader

purchases as a function of his private signal si and the endogenous signal z ≡ θ+ f(yT )η − u/(βaT )

contained in the market-clearing price, and where

E[π̃i(yT , yi); g(·)] ≡ E
[
θg(si, z)− (α− u+ βx̃)g(si, z)− λ

2 (g(si, z))
2
]

−E [T (g(si, z), α− u+ βx̃)] .

Note that the definition of E[π̃i(yT , yi); g(·)] uses the fact that the market-clearing price is given by

p = α− u+ βx̃ with x̃ = aT (θ+ f(yT )η) + bT + cT z, where bT and cT are the coefficients describing

the equilibrium trades obtained from b̂T and ĉT using (4) and (5). It also uses the fact that, when

all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,

any mapping from (si, p) into xi) can be expressed as a function g(si, z) of (si, z).
3

For the policy T (xi, p) to implement the efficient acquisition and usage of information, it must

be that, when yi = yT , the function g(·) that maximizes the trader’s payoff is equal to g(si, z) =

aT si+bT+cT z. Using the fact that the equilibrium price can be expressed as p = α+βbT+β(aT+cT )z,

and the fact that E [θ|si, z] = γ1(τω(a
T ))si + γ2(τω(a

T ))z where γ1 and γ2 are the functions defined

3It suffices to use (6) to observe that p = α+ βbT + β(aT + cT )z.

36



in the proof of Proposition 1, we thus have that, for the policy T to implement the efficient trades,

it must be that T is differentiable in xi and satisfies

γ1(τω(a
T ))si + γ2(τω(a

T ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
− ∂

∂xT
(
aT si + bT + cT z, α+ βbT + β(aT + cT )z

)
= 0

for all (si, z). Next, observe that, when trader i trades efficiently, the quantity that he purchases is

given by xi = aT si + bT + cT z. Expressing si as a function of xi using the last expression, and using

the relationship p = α+ βbT + β(aT + cT )z to express z as a function of p, we have that

γ1(τω(a
T ))si + γ2(τω(a

T ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
=
[
γ1(τω(a

T ))− λaT
]
xi−bT−cT z

aT
+
[
γ2(τω(a

T ))− β(aT + cT )− λcT
] p−α−βbT

β(aT+cT )

−
(
α+ βbT + λbT

)
=
[
γ1(τω(a

T ))− λaT
]
x−bT

aT

+
[
γ2(τω(a

T ))− β(aT + cT )− λcT −
(
γ1(τω(a

T ))− λaT
)

cT

aT

]
p−α−βbT

β(aT+cT )
−
(
α+ βbT + λbT

)
.

Note that the term above is the discrepancy between the trader’s marginal benefit and marginal cost

of expanding his demand evaluated at the efficient trade. But this means that, for the policy T (xi, p)

to implement the efficient use of information, it must be that T (xi, p) is a polynomial of second order

of the form

T (xi, p) =
δ

2
x2i + (tpp− t0)xi + K̃(p), (44)

for some vector (δ, tp, t0) and some function K̃(p) which plays no role for incentives and which

therefore we can disregard. In the proof of Proposition 4, we showed that there exists a unique

vector (δ, tp, t0) that induces the traders to submit the efficient demand schedules when the precision

of their private information is yT (the vector in Proposition 4 applied to y = yT ). Thus, if a policy

T induces efficiency in both information acquisition and information usage, it must be of the form in

(44) with (δ, tp, t0) as in Proposition 4 applied to y = yT . When the policy takes this form, for any

yi, the optimal choice of g(·) is affine and hence can be written as g(si, z) = asi + b + cz, for some

(a, b, c), implying that

E[π̃i(yT , yi); g(·)] = E

[
(θ + t0) (asi + b+ cz)− λ+δ

2 (asi + b+ cz)2

−(1 + tp)
(
α− u+ β

[
aT (θ + f(yT )η) + bT + cT z

])
(asi + b+ cz)

]
.

Letting M̃ be a function of all variables that do not interact with yi, we then have that, when

g(si, z) = asi + b+ cz, for some (a, b, c),

E[π̃i(yT , yi); g(·)] = M̃ − β(1 + tp)(a
T + cT )a 1√

yT
√
yiτη

+ (λ+δ)ca√
yT

√
yiτη

− λ+δ
2

a2

yiτη
− λ+δ

2
a2

yiτe
.

The optimal g when yi = yT is g(xi, z) = aT si + bT + cT z. Hence, using the envelope theorem, we

then have that
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∂

∂yi
V (yT , yi)

∣∣∣∣
yi=yT

=
[β(1 + tp) + λ+ δ] (aT + cT )aT

2τη (yT )
2 +

(λ+ δ)
(
aT
)2

2τe (yT )
2 − C′(yT ).

Recall that the efficient yT is given by the solution to the following equation

(β + λ)(aT + cT )2

2τη (yT )
2 +

λ
(
aT
)2

2τe (yT )
2 = C′(yT ).

Hence, for the policy of Proposition 4 (applied to ȳ = yT ) to implement the efficient acquisition of

private information, it must be that

(β + λ)(aT + cT )2

τη
+

λ
(
aT
)2

τe
=

[β(1 + tp) + λ+ δ] (aT + cT )aT

τη
+

(λ+ δ)
(
aT
)2

τe

or, equivalently, (aT + cT )τe
[
(β + λ)cT − (βtp + δ)aT

]
= δ

(
aT
)2

τη. One can verify that the values

of δ and tp from Proposition 4 do not solve the above equation except for a non-generic set of

parameters. Q.E.D.

Proof of Proposition 10.

Paralleling the derivations in the proof of Proposition 9, we have that, when the policy takes the

proposed form and all traders other than i acquire information of quality yT and then submit the

efficient demand schedules (that is, the affine orders corresponding to the coefficients (aT , b̂T , ĉT )

for quality of information yT ), the expected net payoff for trader i when he chooses information of

quality yi is maximized by submitting an affine demand schedule xi = asi + b̂ − ĉp which induces

trades xi = asi + b + cz that are affine in (si, z), where z = θ + f(yT )η − u/βaT is the endogenous

signal contained in the market-clearing price.

Using this result, let

V̂ (yT , yi) ≡ sup
a,b,c

{
E[π̃i(yT , yi); a, b, c]− C(yi) +Ayi

}
denote the maximal payoff that trader i can obtain by acquiring information of precision yi when all

other traders acquire information of precision yT and then submit the efficient demand schedules for

information of quality yT . As shown in the proof of Proposition 9, the expected gross payoff that

trader i obtains by inducing the affine trades xi = asi+b+cz when he chooses information of quality

yi is equal to

E[π̃i(yT , yi); a, b, c] = M̄ − β(1 + tp)(a+ c)a
1√

yT
√
yiτη

− (λ+ δ)ca√
yT

√
yiτη

− λ+ δ

2

a2

yiτη
− λ+ δ

2

a2

yiτe
,

where M̄ is a term collecting all variables that do not interact with yi. Using the envelope theorem,
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we have that

∂

∂yi
V̂ (yT , yi)

∣∣∣∣
yi=yT

=
[β(1 + tp) + λ+ δ] (aT + cT )aT

2τη (yT )
2 +

(λ+ δ)
(
aT
)2

2τe (yT )
2 − C′(yT ) +A.

Again, in writing the above derivative we used the fact that, when yi = yT , the optimal demand

schedule for trader i induces trades equal to aT si + bT + cT z. Using the fact that yT satisfies

(β + λ)(aT + cT )2

2τη (yT )
2 +

λ
(
aT
)2

2τe (yT )
2 = C′(yT ),

we thus have that the proposed policy induces the efficient acquisition of private information only if

the following condition holds

(β + λ)(aT + cT )2

2τη
+

λ
(
aT
)2

2τe
=

(β(1 + tp) + λ+ δ) (aT + cT )aT

2τη
+

(λ+ δ)
(
aT
)2

2τe
+A

(
yT
)2

from which we obtain that

A =
aT + cT

2τη (yT )
2

[
(β + λ)cT − (βtp + δ)aT

]
−

δ
(
aT
)2

2τe (yT )
2 .

Next, use Condition (5) to express cT as a function of ĉT and rewrite A as follows

A = −
(
aT
)2

2τη (yT )
2

[
β(β + λ)ĉT

(1 + βĉT )2
+

βtp + δ

1 + βĉT

]
−

δ
(
aT
)2

2τe (yT )
2 .

That the function V̂ (yT , yi) is globally quasi-concave in yi under the conditions in the proposition

follows from arguments similar to those in the proof of Proposition 6. We conclude that the proposed

policy implements the efficient acquisition and usage of information. Q.E.D.

Proof of Proposition 11.

As in the proof of the last two propositions, assume that all traders other than i acquire information

of quality yT and then submit the efficient demand schedules (that is, those corresponding to the

coefficients (aT , b̂T , ĉT ) for quality of information yT ). Given any policy T (xi, x̃, p), the expected net

payoff for trader i when he chooses information of quality yi and then selects his demand schedule

optimally is equal to

Ṽ (yT , yi) ≡ supg(·)
{
E[π̃i(yT , yi); g(·)]− C(yi)

}
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where g : R2 → R is a generic function specifying the amount of shares xi = g(si, z) that the trader

purchases as a function of si and z, with z ≡ θ + f(yT )η − u/(βaT ), and

E[π̃i(yT , yi); g(·)] ≡ E
[
θg(si, z)− (α− u+ βx̃)g(si, z)− λ

2 (g(si, z))
2
]

−E [T (g(si, z), x̃, α− u+ βx̃)] .

Note that, in writing E[π̃i(yT , yi); g(·)], we use the fact that the market-clearing price is given by

p = α− u+ βx̃ with x̃ = aT (θ+ f(yT )η) + bT + cT z, where bT and cT are the coefficients describing

the equilibrium trades obtained from b̂T and ĉT using (4) and (5). We also use the fact that, when

all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,

any mapping from (si, p) into xi) can be expressed as a function g(si, z) of (si, z) by using (6) to

express p = α+ βbT + β(aT + cT )z as an affine transformation of z.

For the policy T (xi, x̃, p) to implement efficiency in both information acquisition and usage,

it must be that, when yi = yT , the function g(·) that maximizes the trader’s payoff is equal to

g(si, z) = aT si + bT + cT z. Using the expression for the equilibrium price p = α+ βbT + β(aT + cT )z

and the fact that

E
[
θ|si, z; yi, yT

]∣∣
yi=yT

= γ1(τω(a
T ))si + γ2(τω(a

T ))z,

where γ1 and γ2 are the functions defined in the proof of Proposition 1, we thus have that, for the

policy T to implement the efficient trades, it must be that T is differentiable in xi and, for all (si, z),

satisfy

γ1(τω(a
T ))si + γ2(τω(a

T ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
− ∂

∂xi
E
[
T
(
aT si + bT + cT z, x̃, α− u+ βx̃

)
|si, z; yi, yT

]∣∣∣
yi=yT

= 0,

where x̃ = aT (θ + f(yT )η) + bT + cT z, with z ≡ θ + f(yT )η − u/(βaT ).

Next recall from the proof of Proposition 7 that, when the individual trades efficiently,

γ1(τω(a
T ))si + γ2(τω(a

T ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
=
[
γ1(τω(a

T ))− λaT
]
x−bT

aT
+
[
γ2(τω(a

T ))− β(aT + cT )− λcT −
(
γ1(τω(a

T ))− λaT
)

cT

aT

]
p−α−βbT

β(aT+cT )

−
(
α+ βbT + λbT

)
.

This means that, for the policy T to implement the efficient use of information, it must be that

T (xi, x̃, p) is a polynomial of second order of the form

T (xi, x̃, p) =
δ′

2
x2i +

(
pt′p − t′0 + tx̃x̃

)
xi +K ′(x̃, p), (45)

for some vector (δ′, t′p, t
′
0, tx̃), where K ′(x̃, p) is a function that does not depend on xi, plays no role

for incentives, and hence can be disregarded. Furthermore, under any such a policy,

∂
∂xi

E
[
T (xi, x̃, p) |si, p; yi, yT

]
= δ′xi + pt′p − t′0 + tx̃E

[
x̃|si, p; yi, yT

]
= δ′xi + pt′p − t′0 + tx̃E

[
p−α+u

β |si, p; yi, yT
]
= δ′xi + pt′p − t′0 +

tx̃
β (p− α) + tx̃

β E
[
u|si, p; yi, yT

]
= δ′xi + pt′p − t′0 +

tx̃
β (p− α) + tx̃

β A
#(yi, y

T )si +
tx̃
β B

#(yi, y
T )p+ tx̃

β C
#(yi, y

T ),

where we used the fact that p = α− u+ βx̃ and the fact that

E
[
u|si, p; yi, yT

]
= A#(yi, y

T )si +B#(yi, y
T )p+ C#(yi, y

T )
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where A#(yi, y
T ), B#(yi, y

T ), and C#(yi, y
T ) are the coefficients of the projection of u on (si, p)

when all agents other than i acquire information of quality yT (and trade efficiently) whereas trader

i acquires information of quality yi.

When trader i too acquires information of quality yi = yT and trades efficiently, xi = aT si +

bT + cT z, with z =
(
p− α− βbT

)
/
(
β(aT + cT )

)
. Using the last two conditions to express si as a

function of xi and p, we then have that

E
[
u|si, p; yi, yT

]
= A#(yT , yT )

xi−bT−cT
(

p−α−βbT

β(aT+cT )

)
aT

+B#(yT , yT )p+ C#(yT , yT )

= A#(yT ,yT )
aT

xi +
[
B#(yT , yT )− A#(yT ,yT )cT

aT β(aT+cT )

]
p+ C#(yT , yT )− A#(yT ,yT )bT

aT
+ A#(yT ,yT )cT (α+βbT )

aT β(aT+cT )
.

Then let

Â# ≡ A#(yT , yT )

aT
,

B̂# ≡
[
B#(yT , yT )− A#(yT , yT )cT

aTβ(aT + cT )

]
,

and

Ĉ# ≡ C#(yT , yT )− A#(yT , yT )bT

aT
+

A#(yT , yT )cT (α+ βbT )

aTβ(aT + cT )
.

We thus have that, when trader i acquires information of quality yi = yT and trades efficiently,

∂

∂xi
E
[
T (xi, x̃, p) |si, p; yT , yT

]
= δxi + tpp− t0

where

δ = δ′ +
tx̃
β
Â#, (46)

tp = t′p + tx̃
1 + B̂#

β
, (47)

and

t0 = t′0 + tx̃
α

β
− tx̃

β
Ĉ#. (48)

In the proof of Proposition 4, we showed that, when agents acquire information of quality yT , for

them to trade efficiently, the values of (δ, tp, t0) must coincide with those in Proposition 4 (applied

to y = yT ). Thus, for the above policy to induce efficiency in both information acquisition and

information usage, it must be that the vector (δ′, t′p, t
′
0, tx̃) satisfies Conditions (46)-(48) with (δ, tp, t0)

given by the values determined in Proposition 4 applied to y = yT . Note that, for any tx̃, there

exists unique values of (δ′, t′p, t
′
0) that solve the above three conditions. Abusing notation, denote

these values by (δ′(tx̃), t
′
p(tx̃), t

′
0(tx̃)).

Next, note that, when the policy takes the form in (45), for any yi, the optimal choice of g(·) is
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affine and hence can be written as g(si, z) = asi + b+ cz, for some (a, b, c). This implies that

E[π̃i(yT , yi); g(·)] = E

[
(θ + t′0(tx̃)− tx̃x̃) (asi + b+ cz)− λ+δ

2 (asi + b+ cz)2

−(1 + t′p(tx̃))
(
α− u+ β

[
aT (θ + f(yT )η) + bT + cT z

])
(asi + b+ cz)

]
.

Letting M̂ be a function of all variables that do not interact with yi, we then have that, when

g(si, z) = asi + b+ cz, for some (a, b, c),

E[π̃i(yT , yi); g(·)] = M̂ −
[
tx̃ + β(1 + t′p(tx̃))

] a(aT+cT )√
yT

√
yiτη

− (λ+δ)ca√
yT

√
yiτη

− λ+δ
2

a2

yiτη
− λ+δ

2
a2

yiτe
.

Using the envelope theorem, we then have that

∂

∂yi
Ṽ (yT , yi)

∣∣∣∣
yi=yT

=

[
tx̃ + β(1 + t′p(tx̃)) + λ+ δ

]
(aT + cT )aT

2τη (yT )
2 +

(λ+ δ)
(
aT
)2

2τe (yT )
2 − C′(yT ).

Once again, in writing the above derivative, we used the fact that, when yi = yT , the optimal demand

schedule for trader i induces trades equal to the efficient trades aT si + bT + cT z. Finally, recall that

the efficient yT is given by the solution to the following equation

(β + λ)(aT + cT )2

2τη (yT )
2 +

λ
(
aT
)2

2τe (yT )
2 = C′(yT ).

Hence, for the above policy to induce efficiency in information acquisition, it must be that

(β+λ)(aT+cT )2

τη
+

λ(aT )
2

τe
=

[tx̃+β(1+t′p(tx̃))+λ+δ](aT+cT )aT

τη
+

(λ+δ)(aT )
2

τe
. (49)

Using (47), we have that

t′p(tx̃) = tp − tx̃
1 + B̂#

β

with tp given by the unique value determined in Proposition 4 applied to y = yT . Because the

function H̃ : R → R given by H̃(tx̃) ≡ tx̃ + βt′p(tx̃) = βtp − tx̃B̂
# is linear, there exists a (unique)

value of tx̃ that solves (49).

Following steps similar to those in the proof of Proposition 6, one can show that there exist scalars

K̂, M̂ ∈ R++ such that, when the cost of information satisfies the properties in the proposition, the

function Ṽ (yT , yi) is globally quasi-concave in yi. We conclude that, under the conditions in the

proposition, the policy in (45), with tx̃ given by the unique solution to (49) and with (δ′, t′p, t
′
0)

given by the unique solution (δ′(tx̃), t
′
p(tx̃), t

′
0(tx̃)) to Conditions (46)-(48), induces efficiency in both

information acquisition and information usage. Q.E.D.

Proof of Proposition 12.
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We establish the result by showing that the precision of private information y acquired in equilibrium

is invariant in tp. Once this property is established, the proposition follows from what established

in the proof of Proposition 5. Namely, any tp ̸= 0 results in an equilibrium in which the precision of

private information is y = y∗ and the sensitivity of the trades to the private signals is a = a∗, where

y∗ and a∗ are as in the laissez-faire economy in which tp = 0. On the other hand, for any tp ̸= 0, the

sensitivity c of the equilibrium trades to the endogenous public signal z contained in the equilibrium

price, and the constant b in the equilibrium trades are different from the corresponding levels in the

laissez-faire economy. Because, given y∗ and a∗, the sensitivity c∗ of the equilibrium trades to the

endogenous public signal z and the constant b∗ in the equilibrium trades in the laissez-faire economy

are welfare maximizing (by virtue of Lemma 1), we thus have that any tp ̸= 0 results in strictly lower

welfare than tp = 0, as in the case of exogenous private information (Proposition 5).

Hence, based on the arguments above, it suffices to show that any such a policy fails to change the

quality of information acquired in equilibrium. To see this, fix tp, and denote by y and (a, b, c) the

precision of private information acquired in equilibrium and the parameters defining the equilibrium

trades in the economy with ad-valorem tax equal to tp.

For any yi, let

V #(y, yi) ≡ sup
g(·)

{
E[π#

i ; y, yi, g(·))]− C(yi)
}

denote the maximal payoff that trader i can obtain by selecting private information of quality yi when

all other traders acquire information of quality y and then submit the limit orders corresponding

to the parameters (a, b, c), where g : R2 → R is a generic function specifying the amount of shares

xi = g(si, z) the trader purchases as a function of si and the endogenous public signal z contained in

the equilibrium price. Let (a, b, c) be the parameters defining the equilibrium trades when information

is of quality y and the tax rate is tp. Note that4

E[π#
i ; y, yi, g(·))] ≡ E

[
θg(si, z)− (1 + tp) (α+ βb+ β(a+ c)z) g(si, z)− λ

2 (g(si, z))
2 |yi

]
.

is the trader’s expected payoff, gross of the information cost, when following the rule g(·) after

acquiring information of quality yi. In writing E[π#
i (yi; g(·)], we used the fact that the equilibrium

price is given by p = α+ βb+ β(a+ c)z with z = θ + f(y)η − u/(βa).

By the definition of equilibrium, if agent i acquires information of quality yi = y, the limit

order that maximizes his payoff must be the equilibrium ones (that is, the one corresponding to the

coefficients (a, b, c)). The envelope theorem then implies that

N(y) ≡ ∂V #(y, yi)

∂yi

∣∣∣∣
yi=y

=
β(1 + tp)(a+ c)a

2τηy2
+

λa(a+ c)

2τηy2
+

λ (a)2

2y2τe
− C′(y). (50)

Hence, the equilibrium value of y must satisfy N(y) = 0. Let M#(tp, a, c, y) denote the function

defined by the right-hand-side of (50). Next, use the derivations in the proof of Proposition 5 to

observe that, given (tp, y), the equilibrium values of (a, b, c) are given by (31), (32), and (33). From

4As above, given (a, b, c), the sensitivity of the equilibrium limit orders ĉ to the price and the constant b̂ in the
equilibrium limit orders are obtained from (a, b, c) using (4) and (5).
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the implicit function theorem, we then have that

dy

dtp
= −

∂M#(tp,a,c,y)
∂tp

+
∂M#(tp,a,c,y)

∂c
∂c
∂tp

∂M#(tp,a,c,y)
∂y +

∂M#(tp,a,c,y)
∂a

∂a
∂y +

∂M#(tp,a,c,y)
∂c

∂c
∂y

,

where we used the fact that, given y, the equilibrium level of a is invariant in tp. Note that ∂c/∂tp

is the partial derivative of the equilibrium level of c with respect to tp, holding y constant, whereas

∂a/∂y and ∂c/∂y are the partial derivatives of the equilibrium levels of a and c with respect to y,

holding tp fixed.

Because
∂

∂tp
M#(tp, a, c, y) =

β(a+ c)a

2τηy2
,

∂

∂c
M#(tp, a, c, y) =

[β(1 + tp) + λ] a

2τηy2
,

and
∂c

∂tp
=

−β(a+ c)

β(1 + tp) + λ
,

we conclude that dy/dtp = 0, as claimed. Q.E.D.
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