
Pandora’s Auctions: Dynamic Matching with Unknown
Preferences

By DANIEL FERSHTMAN AND ALESSANDRO PAVAN∗

Matching theory typically assumes that agents
know their values for possible partners and con-
fines attention to settings in which matching
is either static, or driven by population dy-
namics. In many environments of interest, in-
stead, dynamics originate in the agents learn-
ing their preferences through interactions with
other agents. In this short paper, we illustrate
how platforms can use appropriately designed
auctions to account for the joint value of exper-
imentation and cross-subsidization in dynamic
matching markets. The model presented below
is a stylized special version of the general one
in Fershtman and Pavan (2016). We refer the
reader to that paper for a more general treatment
and to the Online Supplement to this article for a
discussion of how the results in the present paper
can be obtained from those in the other paper.

I. Environment

A platform mediates the interactions between
agents from two sides of a market. There are
two agents on side 1, x and y, and a single agent
on side 2, z. Agents are uncertain about the
utility, or profit, they derive by interacting with
potential partners, but perfectly learn such val-
ues after the first interaction. The platform can
match at most a pair of agents in each period.
As the agents’ perceived, as well as true, values
are their own private information, the platform
uses an auction to determine which match to im-
plement in each period. We allow the platform’s
objective to be a weighted combination of prof-
its and welfare, but then illustrate how the re-
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sults specialize in the case of pure profits and
pure welfare maximization.

From the perspective of agent i ∈ {x, y, z},
the true quality ωij of the match with agent j can
be either “good” (ωij = G) or “bad” (ωij = B).
Importantly, while the match between i and j
may be a bad one from the perspective of agent
i, it may be a good one from the perspective
of agent j (that is, ωij = B may be consis-
tent with ωji = G). A good match yields agent
i a gross flow payoff θi, whereas a bad match
yields the same agent a gross flow payoff equal
to −Lθi, where L > 0, and where the values
θi are drawn independently across agents, and
independently from the horizontal values ωij ,
from a uniform distribution with support

[
θ, θ
]
,

with θ > θ > θ/2 > 0. Upon joining the
platform, each agent i receives a private signal
σij ∈ {G,B}, ij ∈ {xz, yz, zx, zy}, about
the quality of each potential partner. A sig-
nal σij = B perfectly reveals to agent i that
ωij = B, whereas a signal σij = G reveals
to the individual that ωij = G with probabil-
ity λ ∈ (0, 1). After the first interaction with
agent j, agent i perfectly learns ωij . Given i’s
period-t information Iti , i’s period-t (expected)
match value for interacting with j is thus equal
to θi · εtij , where

εtij ≡ Pr(ωij = G|Iti )− LPr(ωij = B|Iti ).

The probability that agent i receives a favor-
able signal σij = G about agent j is equal to
q ∈ (0, 1). The signal agent i receives about
the quality of his match with agent j is inde-
pendent of the signal the same agent, or any
other agent, receives about the quality of any
other match. We assume q is large enough that
qλ > (1 − qλ)L, which guarantees that, ex-
ante, agents are sufficiently optimistic about the
value of each potential interaction. To facilitate
the analysis, we also focus on the limit in which
λ → 1 and 2θ → θ. Agents maximize the ex-
pected discounted sum of their flow payoffs us-
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ing the common discount factor δ ∈ (0, 1].

II. Pandora’s Auctions

The platform uses the following auction pro-
cedure. At t = 0, after privately learning θi,
each agent i decides whether or not to join the
platform. If he joins, agent i then chooses a
membership status βi = β(θ̂i) and pays a fee
p0i . Membership statuses are conveniently in-
dexed by the agents’ “vertical” types θ̂i ∈

[
θ, θ
]
,

with the function β :
[
θ, θ
]
→ R strictly posi-

tive, non-decreasing, and bounded. Higher sta-
tus grants an agent more favorable treatment in
the auctions. Upon joining the platform and see-
ing which agents are on board, each agent i re-
ceives a signal σij ∈ {G,B} about the quality
of the match with each possible partner.

At each subsequent period t ≥ 1, each agent
i then submits a bid btij for each possible part-
ner j from the opposite side. Bids can be either
positive or negative, reflecting the idea that cer-
tain agents may dislike certain interactions and
ask to be compensated by the platform. The
received bids, along with the agents’ member-
ship statuses, determine which match is imple-
mented, according to the rules described below.
Letmt

ij = 1 denote the decision to match agents
i and j in period t and mt

ij = 0 the deci-
sion to leave the pair unmatched, and denote
by m<t the period-t history of all past matches.
Period-t bids that are inconsistent with the above
processes are automatically replaced with a bid
equal to 0.1 Each matched agent pays pti to the
platform, whereas each unmatched agent pays
nothing. After the first interaction with agent j,
agent i perfectly, but privately, learns ωij . Un-
matched agents receive no further information.

The selection of the matches is based on the
following “scores.” Given the agents’ period-t
bids, bt, and the agents’ statuses, β, the platform
assigns a score Stij to each possible match. If

1Formally, for any pair of agents who have interacted in
the past, any bid btij /∈

[
−Lθ,−Lθ

]
∪
[
θ, θ̄
]

is automat-
ically replaced with a bid equal to zero. Likewise, for any
pair of agents who have never interacted in the past, any bid
btij /∈

[
−Lθ,−Lθ

]
∪
[
(λ− (1− λ)L)θ, (λ− (1− λ)L)θ

]
is automatically replaced with a bid equal to zero. Finally, the
bids btzx, btzy by agent z from side 2 are replaced with bids
equal to zero if they reveal they are inconsistent with the same
vertical type θ ∈ [θ, θ̄], that is, if btzx/k 6= btzy/k̂ for all
k, k̂ ∈ {−L, λ− (1− λ)L, 1}.

the pair (i, j) was matched in the past, the score
is equal to Stij (bt;β,m<t) = βib

t
ij + βjb

t
ji. If,

instead, the pair (i, j) has never been matched,
the score is equal to

Stij
(
bt;β,m<t

)
=
(
βib

t
ij + βjb

t
ji

)(1− δ + δλ2

λ−(1−λ)L

1− δ + δλ2

)

if btij, b
t
ji ≥ 0, it is equal to

Stij
(
bt;β,m<t

)
= βlb

t
lk

(
1− δ + δλ

λ−(1−λ)L

1− δ + δλ

)
+ βkb

t
kl

if btlk ≥ 0 and btkl < 0, for lk, kl ∈ {ij, ji},
kl 6= lk, and it is equal to Stij (bt;β,m<t) =
−1 if btij, b

t
ji < 0.

In each period, the match with the highest
non-negative score is implemented. If all scores
are negative, no match is formed.2

The description of the matching auction is
completed by specifying the payment scheme.
The period-t payment of agent i ∈ {x, y, z}
when matched with agent j 6= i in period t is
equal to

(1) pti =
(1− δ)W t

−i − βjbtji
βi

,

where W t
−z = 0, whereas for i, k ∈ {x, y},

k 6= i ,W t
−i is the continuation weighted surplus

associated with the match (k, z); that is, the ex-
pected weighted continuation surplus generated
by matching the pair (k, z) from period t till this
continuation value turns negative. Formally, for
any d ∈ R, let [d]+ ≡ max{0, d}. If the pair

2The reader is referred to the Online Supplement for a dis-
cussion of how the above scores relate to the indexes in Fersht-
man and Pavan (2016), and for how the latter in turn capture the
trade-offs between exploitation and experimentation in dynamic
matching markets.
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(y, z) was never matched, then

W t
−x =

(
βyb

t
yz + βzb

t
zy

)
+

δλ2
(
βyb

t
yz + βzb

t
zy

)
(1− δ) (λ− (1− λ)L)

+
δλ (1− λ)

(1− δ) (λ− (1− λ)L)

×
∑

lk,kl∈{yz,zy},kl 6=lk

[
βlb

t
lk − βkbtklL

]+
if btyz, b

t
zy ≥ 0,

W t
−x =

[ (
βlb

t
lk + βkb

t
kl

)
+

δλ

1− δ

(
βlb

t
lk

λ− (1− λ)L
+ βkb

t
kl

)]+

if btlk ≥ 0 and btkl < 0 for some lk, kl ∈
{yz, zy}, kl 6= lk, and W t

−x = 0 if btyz, b
t
zy <

0. If, instead, the pair (y, z) was matched in the
past, then

W t
−x =

[
βyb

t
yz + βzb

t
zy

]+
1− δ

.

The value W t
−y is defined analogously.

Let θ̂ ≡ (θ̂x, θ̂y, θ̂z) denote a profile of mem-
bership statuses (recall that the latter are conve-
niently indexed by the vertical types, θ), and,
similarly, let θ̂−i denote a profile of member-
ship statuses of all agents excluding agent i. Let
Di(θ̂) denote agent i’s expected “match qual-
ity” from participating in the auction, given θ̂,
and let Ki ∈ R.3 The period-0 membership fee
charged to each agent i is equal to

p0i =θ̂iDi(θ̂)−
∫ θ̂i

θ

Di(θ̂−i, y)dy(2)

− E

[
∞∑
t=1

δtpti|θ̂
]
−Ki.

We refer to the above matching auction as
a Pandora β-auction. Note that the auction is
fully transparent – previous matches, payments,
bids and membership choices are all public.

3See the Online Supplement for a precise definition of the
Di functions.

A perfect Bayesian equilibrium (PBE) of the
above matching auction is truthful if each agent
i ∈ {x, y, z} (a) participates in period 0 and se-
lects the membership status β(θi) designed for
his true vertical type θi, and (b) in each subse-
quent period t ≥ 1 submits for each potential
partner j a bid equal to his true (expected) match
value, btij = θiε

t
ij , given the information Iti .

PROPOSITION 1: For any positive, non-
decreasing, and bounded function β(·), there
exist Ki ∈ R, i = x, y, z, such that the Pandora
β-auction described above admits a truthful
equilibrium.

The above scores are the analogs of Weitz-
man’s (1979) reservation prices in a “Pandora’s
boxes search problem”. Matching agents ac-
cording to the above procedure guarantees that
the weighted continuation surplus is maximized
at each history, provided that all agents, irre-
spective of their past behavior, in the continu-
ation game that starts with period t ≥ 0, follow
truthful strategies. Note that, in a truthful equi-
librium, once a pair of agents is matched for the
second time, it is then matched in all subsequent
periods as well, and payments remain the same
in all subsequent periods.

Arguments similar to those in Bergemann and
Välimäki (2010), along with arguments similar
to those in Pavan, Segal and Toikka (2014) then
imply that, starting from any period-t history,
t ≥ 1, irrespective of the agents’ own past be-
havior and of their beliefs about other agents’
past and current types, it is optimal for all agents
to bid their true expected flow match values in
each period of the continuation game. Allow-
ing agents to adjust their bids at each period, in-
cluding those following periods in which agents
are expected to receive no new private informa-
tion, guarantees that truthful strategies constitute
a periodic ex-post equilibrium, starting from any
period-t history, t ≥ 1.

The proof is then completed by showing that,
when the membership fees are as in (2), it is op-
timal for each type θi of each agent i to join the
platform in period t = 0, and select the member-
ship status β(θi) designed for θi. Specifically,
the fee (2) is added to the subsequent payments
(1) so that each agent’s intertemporal equilib-
rium payoff, as perceived in period t = 0, sat-
isfies an envelope condition relating the period-
0 (interim) expected payoff to the expected dis-
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counted match quality. Matching dynamics un-
der the truthful equilibria of the proposed auc-
tion can then be shown to satisfy an appropri-
ate average monotonicity condition by which
match quality is increasing in (a) each agent’s
period-0 membership status, for given true ver-
tical type θi, and (b) each agent’s true vertical
type, for given period-0 membership statuses.
Together with the aforementioned envelope con-
ditions, such an average monotonicity property
then implies that there exist Ki large enough,
i = x, y, z, such that participating and select-
ing a membership status β(θi) is optimal for
each type θi of each agent i = x, y, z in period
t = 0, again irrespective of the agent’s beliefs
about other agents’ period-0 information.

III. Profit- vs Welfare-Maximizing Auctions

We now turn to the distortions in matching dy-
namics brought in by profit maximization. First,
we argue that the above auctions admit as spe-
cial cases both auctions that maximize welfare,
as well as auctions that maximize the platform’s
profits, over all possible mechanisms. We then
compare matching dynamics under profit max-
imization with their counterparts under welfare
maximization.

PROPOSITION 2: The Pandora β-auction
with weights β(θ) = 1, all θ ∈ [θ, θ̄], and
payments given by (1) and (2), with Ki suffi-
ciently large, i = x, y, z, maximizes welfare
over all possible mechanisms. The Pandora
β-auction with weights β(θ) =

(
2θ − θ

)
/θ, all

θ ∈ [θ, θ̄], and payments given by (1) and (2),
with Ki = 0, all i = x, y, z, maximizes profits
over all possible mechanisms.

That the Pandora β-auction with weights
β(θ) = 1 all θ ∈ [θ, θ̄], and payments given
by (1) and (2) with Ki large enough to induce
participation by all agents, maximizes welfare
over all possible mechanisms follows from the
fact that the induced matches maximize the sum
of all agents’ continuation payoffs, starting from
each history. That the β-auction with weights
β(θ) =

(
2θ − θ

)
/θ, all θ ∈ [θ, θ̄], and pay-

ments given by (1) and (2), with Ki = 0, max-
imizes profits is a consequence of the following
observations. Given any mechanism Γ, and any
Bayes Nash equilibrium (BNE) of the game in-
duced by it, the platform’s profits are equal to the

sum of all agents’ expected weighted payoffs,
net of the payoff expected by each agent’s lowest
vertical type, θ, where the weights β correspond
to the agents’ “virtual vertical types” β(θ) =(
2θ − θ

)
/θ, all θ ∈ [θ, θ̄]. It is then easy to see

that, in the proposed β-auctions, when all agents
follow truthful strategies, the (state-contingent)
matches implemented in equilibrium maximize
the above expected weighted surplus function
after any period-t history, t ≥ 1. Furthermore,
when Ki = 0, the participation constraint of
each agent’s lowest vertical type θ binds. The
monotonicity of the average match quality men-
tioned above, along with the fact that the period-
0 membership fees satisfy the envelope formula
in (2) in turn guarantee that participation is op-
timal also for all types θ > θ. Combined, the
above properties imply that the platform’s prof-
its under the truthful equilibria of the proposed
auctions are higher than under any BNE of any
other mechanism, thus establishing the result.

Below, we show that the order of experimen-
tation under profit maximization may be ineffi-
cient. Furthermore, matching dynamics under
profit maximization may involve upwards dis-
tortions: matches that are proved to be socially
undesirable (in the sense that the sum of the
match values of the involved agents is negative)
may be implemented for arbitrarily long hori-
zons.

PROPOSITION 3: Profit maximization may
lead to inefficiency in the order of search, as well
as to the implementation of matches that are so-
cially undesirable for arbitrarily long horizons.

To illustrate the distortions in Proposition 3, let
1 < L < θ/θ, and consider the following se-
quence of realizations of the agents’ private in-
formation: θx = θ, θz = θ, and θy = θ + ν,
where 0 < ν < (L − 1)θ. Upon joining, the
agents receive the signals σxz = σyz = σzy =
G, whereas σzx = B. That is, with the excep-
tion of agent z, who receives a bad signal about
his match with agent x, all other agents are op-
timistic about the quality of each potential inter-
action. The true quality of each match is given
by ωyz = G and ωxz = ωzx = ωzy = B.

When λ→ 1 and 2θ − θ → 0, under welfare
maximization, S1

yz > S1
xz > 0, whereas, under

profit maximization, S1
xz > S1

yz > 0. The first
match implemented under welfare maximization
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is therefore (y, z), whereas the first match im-
plemented under profit maximization is (x, z).
The period-2 scores under welfare maximization
are then such that S2

xz = S1
xz > 0 > S2

yz,
whereas the period-2 scores under profit maxi-
mization are such that S2

yz = S1
yz > 0 > S2

xz.
Therefore, in period 2, the platform implements
a match different from the one implemented in
period 1, irrespective of whether it maximizes
welfare or profits. Finally, for any t ≥ 3,
the scores under welfare maximization are such
that Stxz, S

t
yz < 0, whereas the scores under

profit maximization are such that Stxz < 0 <
Styz. Therefore, from period 3 onward, a profit-
maximizing platform matches the pair (y, z) in
each period, despite the fact that all matches are
known to be undesirable from a welfare stand-
point.

The reason why a profit-maximizing platform
may “lock” a pair of agents whose payoff sum is
negative into arbitrarily long interactions is that
this may serve as a device to discourage agents
with a high vertical type to underbid, thus mim-
icking lower types.

IV. Conclusions

Matching auctions similar to those introduced
above can be used in richer environments in
which (a) agents learn the attractiveness of part-
ners gradually over time (i.e., through multi-
ple, possibly infinite, interactions), (b) match-
ing is many-to-many (i.e., the same agent may
be matched to multiple agents from the opposite
side), (c) exogenous shocks may alter the desir-
ability of existing matching allocations, (d) the
platform may incur (possibly history-dependent)
costs in implementing the different matches, and
(e) intermediate capacity constraints may permit
the platform to implement more than a single
match but not all possible matches in each pe-
riod. In this case, the scores are more sophis-
ticated than the ones presented here but often
continue to take the form of “indexes” similar
to those considered in the experimentation lit-
erature. We refer the reader to Fershtman and
Pavan (2016) for details.
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“The dynamic pivot mechanism.” Economet-
rica, 78(2): 771–789.

Fershtman, Daniel, and Alessandro Pavan.
2016. “Matching auctions.” Mimeo, North-
western University.

Pavan, Alessandro, Ilya Segal, and Ju-
uso Toikka. 2014. “Dynamic mechanism de-
sign: A myersonian approach.” Econometrica,
82(2): 601–653.

Weitzman, Martin L. 1979. “Optimal search
for the best alternative.” Econometrica: Jour-
nal of the Econometric Society, 641–654.


