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S.1 Existence of robustly optimal mechanisms

In this section, we show that a robustly optimal mechanism exists. In the main text, Propo-
sition 1 contains necessary and sufficient conditions under which the Baron-Myerson-with-
quantity-floor mechanism is robustly optimal. However, when these conditions are not sat-
isfied, Proposition 2 in the main text only contains a partial characterization of the optimal
mechanism. The following lemma shows that even in that case, a robustly optimal mecha-

nism always exists.
Lemma S.1 A robustly optimal mechanism ezists.

Proof: Recall that a mechanism is robustly optimal if and only if it solves the following
program:
0
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q weakly decreasing
0
V(q(6)) — 0g(0 /q iy > G veelnd)
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Hereafter, we refer to the set of schedules ¢ satisfying the restrictions in the above problem

as the “feasible set”.

Since each ¢ in the feasible set is uniformly bounded, i.e., 0 < ¢(f) < q for all § €
[0,0], by Helly’s selection theorem, the set of weakly decreasing schedules ¢ is sequentially
compact under the point-wise convergence topology. Since V is continuous and q is uniformly
bounded, by the dominated convergence theorem, the function V(q(0)) — 0q(0 f 0 4
is thus sequentially continuous. Hence, the feasible set is sequentially compact under the

point-wise convergence topology. That this set is non-empty is immediate.

Next, observe that the objective function is continuous in ¢. To see this, define,

6(0,q) = |V*(a) = *(O)a| f'(0)  VO€O¥qelng



Note that for a feasible function ¢, the value of the objective function equals

¢(0,q(0))do

\cb\cm

Clearly, ¢(0,q) is continuous in q. Furthermore, for every 6 € [#,6] and q € [0, q],

¢(0,q) < {V*(D*( *(0))) = 25 (0)D* (=*(9)) | f*(6) = (0).
Because ¢ is continuous, ¢ is uniformly bounded.

Now take a sequence (g,) of feasible schedules converging to ¢ under the point-wise

convergence topology. Then, for every 6 € [, 6], we have that

lim (6, ¢, (0)) = ¢(6, q(0))

n—oo

by continuity of ¢ in the second argument. Furthermore, for each ¢, in the sequence, we
have that

(0, 4a(0)) < 6(0) Vo€ 0,0

Then, by the dominated convergence theorem,

lim ¢9qn d@—/gb@q

n—oo

This establishes the sequential continuity of the objective function under the point-wise
convergence topology. Since the range of the objective function is a subset of R, from the
extreme value theorem, we conclude that the above optimization program has a solution,

i.e., a robustly optimal mechanism exists. |

S.2 Undomination

In this section, we formally define what it means for a mechanism to be undominated, and

then establish that robustly optimal mechanisms are undominated.

Recall that M is the set of all IC and IR mechanisms.



Definition S.1 For any pair of mechanisms M = (q,u) and M= (q,u), M dominates
M if, for every (V,F) €V x F,

Via(0) - 09(0) — u(®)| F(d0) > [ [V(a(0)) - 6a(6) — (6) | F(d0),

\m\%‘
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with the inequality strict for some (V| F).

A mechanism M € M is undominated if there does not exist a mechanism M € M

that dominates it.

The following lemma points to an internal consistency property of the set of robustly opti-
mal mechanisms: each robustly optimal mechanism is either undominated, or it is dominated

by another robustly optimal mechanism.

Lemma S.2 Suppose MOYT = (¢OFT uOFPT) is a robustly optimal mechanism and M =

(q,u) € M dominates MOFYT. Then M is a robustly optimal mechanism.

Proof: Since MOPT = (¢°FPT 4OFPT) is a robustly optimal mechanism, we know that, for all
€00,
K(QOPT(Q)) o QC]OPT(H) . uOPT(H) > G*.

Now pick any 6 € [6,0]. Since M = (q,u) dominates M°T under V =V and F = &

(where 4y is the Dirac distribution that puts unit point mass at ), we have that
V(q(0)) — 09(0) — u(0) > V.(¢°FT(0)) — 04°77(0) — u®"T(B).

Combining the two inequalities, we have that V (¢(0)) — 8q(0) — u(#) > G*. Since this holds
for all #, by Lemma 2 in the main text, we have that M € M5F.

Next, pick any 6 € [0, 0]. Since M = (g, u) dominates M°FT by considering V = V* and
F = 0y, we have that

V*(q(0)) — 0q(0) — u(®) > V*(¢°FT(0)) — 0¢°TT(0) — u°FT(0),



which implies that, for any F' € F,

V*(a(68)) — 60(6) — w(®)| F(a0) = [ [V*(a°"7(8)) — 6¢°77(6) — O (9)| F*(dB).

Kb\%\
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Since M € M3" and MOFT is robustly optimal, the above inequality implies that M is also
robustly optimal. In fact, this implies that the above inequality is an equality. Therefore,

for almost all 0 € ©,

V*(q®PT(0)) — 0g°7T(0) — uCPT(0) = V*(q(0)) — Og(6) — u(0).

We then have the following result:

Lemma S.3 If the Baron-Myerson-with-quantity-floor mechanism M* = (q*,u*) is robustly

optimal, it 1s undominated.

Proof: Suppose M* is robustly optimal and M = (q,u) dominates it. By Lemma S.2, M
is also robustly optimal. By Corollary 1 in the main text, ¢(6) = ¢*(0) for all § > 6. This
implies that u(f) = u*(0) for all 6.

Consider the pair (V*,dy), where dp is the Dirac distribution that puts unit mass at .
Then

V(g (0)) — 8¢7(0) — u(8) > V7(q(8)) — 04(8) — u(0).

The inequality holds because u(f) = u*(6), and ¢*(0) = ¢®(0) uniquely maximizes surplus
V*(q) — 0q. This inequality, however, contradicts to the fact that M = (¢,u) dominates
(", ur). [

A consequence of the last Lemma S.2 is that, when the conditions in Proposition 1 in
the main text are satisfied, the Baron-Myerson-with-quantity-floor mechanism is not only
robustly optimal but also undominated. This result generalizes, albeit under a mild technical
condition (which is satisfied by (¢*, u*)).

Proposition S.1 Suppose M = (q,u) is a robustly optimal mechanism and q is left-continuous.

Then, (q,u) is undominated.



S.3 More permissive short list

In this section, we consider a short-list that contains also mechanisms that are not worst-case
optimal but for which the guarantee is not too small relative to the maximal one. Formally,
let

M ={M e M:G(M)>~+GM') Y M € M},

where v € (0,1]. The analysis in the main text corresponds to the case v = 1. Here, we

extend the results to v € (0,1).

Lemma 1 in the main text remains unchanged. The short list is now characterized as

follows:!

Lemma S.4 (Short-list characterization) Tuke any IC and IR mechanism M = (q,u) €
M. Then M € MiL if and only if

V(q(0)) —0q(0) —u(d) 2~1G"  VHeO. (1)

Two important distinctions from the analogue of the same result for v = 1 (Lemma 2
in the main text) is that when v < 1, (i) the rent u(6) is not necessarily pinned down to
zero, and (i) ¢(6) need not be equal to q,. Moreover, short list for 4/ > + is a subset of
the shortlist associated with v. Moving on, we focus on mechanisms in the MEL that has
u(6) = 0, which will follow from the robust-optimality, and state a generalized version of

Lemma 4 in the main text.

Lemma S.5 Take any weakly decreasing function q : © — R,. The following statements

are equivalent:

1. for all 0 € O,

P(q(0))

0 0

[awdy< [ Dy~ [ @) - o) dy+ (1 -6 )
0 0 0

IThe proofs of all results in this section are available upon request.
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3. Condition (3) holds for 0 € {0,0} and, for all 6 € (0,0),

q(y)dy < | D(y)dy + (1 — )G (4)

%\m\
%\m\

We now modify Baron-Myerson-with-quantity-floor to account for the pessimism param-
eter v. This is reflected by setting a floor which now depends on «. To define the new floor
(dependent on ), notice that since V(q) — fq is strictly concave in q, there are precisely
two solutions to the equation: V(q) — Aq = vG*. Denote these two solutions as q, and q;,
where @, > q;- The generalization of Baron-Myerson-with-quantity-floor uses the lower of
the two floors: q)- In this way, the generalized Baron-Myerson-with-quantity-floor depends

on v, but to have notational simplicity, we supress its dependence on 7.

Definition S.2 The Baron-Myerson-with-quantity-floor is the mechanism M* = (¢}, u
where ¢, is the quantity schedule defined, for all 6, by
¢ (0) = max{q"™(0),q7} (5)

and where u* is given by u’(0) = ff ¢ (y)dy for all 6.

*
~y

),

Proposition S.2 (Optimality of Baron-Myerson-with-quantity-floor) Baron-Myerson-

with-quantity-floor is robustly optimal if and only if
P(q%(9)

[awir< [Dway- [ [pw) - @]+ - e, ()

and
0 0
/@@@g/g@@+a—wm ) (7)
0 0

Let 07" be as defined in the main text. Let 65 be the threshold defined as follows. If
M () < q], by continuity of ¢®™ along with the fact that ¢®™(9) > q], let 03 be the unique
solution to qBM(G;) = ¢). If, instead, "M (0) > a; (i.e., if ¢®M never crosses gz), then let
67 = 0. Note that both 67" and 67 depend on 7.

The extended version of Proposition 2 is as follows.
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Proposition S.3 Suppose Baron-Myerson-with-quantity-floor is not robustly optimal. Then

OPT’ UOPT)

07" < 0%, and every robustly optimal mechanism MOPT = (¢ satisfies the following

properties:
(a) q°PT(0) = q) for all O € (6%,06] when 6% <.

(b) ¢°F1(0) < ¢®N(8) for almost all § < 6%, with the inequality strict over a Lebesgue

positive measure set of types I C [0, 0%].

(c) ¢°PT(0) = ¢"M(0) for all 6 € (0,0).

Note that the three intervals identified in Proposition S.3 depend on 7, and hence, are
different from the analogous proposition for v = 1 (Proposition 2 in the main text). More
importantly, the floor used in part (a) of Proposition S.3 is different from that in Proposition

2 of main text since the worst-case optimality does not uniquely pin down ¢(#) to be q;, and

only restricts it to be in the interval [g7, g;].

Finally, when it comes to the price regulation, Baron-Myerson-with-price-cap still remains
robustly-optimal with a higher price cap of E(QZ) > 6. Consequently, Proposition 4 in the
main text, which compared price and quantity regulation, extends with quantity regulation

dominating price regulation less often because of increased price-cap.

S.4 More general forms of technological uncertainty

In this section, we relax the fact that F contains all distributions over ©. We show how our
results in the main text change under this relaxation. We begin by defining F, the set of
plausible technologies, as a subset of the set CDF(0) with some structure. In particular, we
assume there exists a cdf F' € CDF(0) such that F is the set of all cdfs F' € CDF(©) such
that F'(0) > F(0) for all @ € ©. In the main text, we assumed F(0) is the Dirac distribution
that puts unit mass at . This amounted to F = CDF(0). Now, we allow F to have support

[0,, 0], where 6, € (6,0). In particular, we assume the following:

Definition S.3 The cdf F is reqular with respect to 0, if it is absolutely continuous over R
with density f(6) > 0 if only if 6 € [6,,6] and with z(0) = 0 + F(0)/f(6) continuous and

increasing over [0, 0].



Let M™M= (c__[BM, uPM) € M denote an arbitrary IC and IR mechanism that is optimal
under the model (V, F). Note that such a mechanism is not unique, but in any such a
mechanism ¢ is non-increasing, u®™(#) = 0, and u®M(6) = 99 ¢®M(y)dy for all §. Then

let
/ W(9,¢"™)F(d6). (8)

be the buyer’s expected welfare under the mechanism M™™ when the gross value function is
V, and the technology is F. Note that, when 6, = 0, as in the previous sections, G* = G*.
Finally, for any IC and IR mechanism M = (q,u) € M, let w, = infy<p, W (0, q). The next
proposition generalizes Lemma 2 in the main text by providing a complete characterization

of the short-list when F' is regular with respect to 6.

Proposition S.4 Suppose F' is reqular with respect to 05. The following are then true:

1. For any M € M, G(M) = Gz,
2. A mechanism M = (q,u) € M5 if and only if the following conditions jointly hold

(a) q is non-increasing,
(b) for all 0, u(0) = [ a(y)dy,
(c) q(8) = ¢"™(0) for all 6 € (6;,0),

(d) V(q(0)) —0q(0) — [ q(y)dy > G for all & < 0,

S —

0
(e) w,F(0) + [W(y,¢"™)F(dy) > G% for all 6 € [6,,6].
b

Part (1) follows from the fact that Nature can always pick (V, F'), which implies that the
guarantee of any IC and IR mechanism is bounded above by the maximal welfare attainable
under the lowest gross value function V' and the worst technology F. This upper bound

on guarantee can be achieved by offering a mechanism M = (¢, u) in which ¢() = ¢ (0,)

for all § < 6, q(0) = ¢°M(0) for all § > 6, and u(f) = [ ¢(y)dy for all §. Against such a

D



A: Function W (-, q). B: Technology F; generates welfare below G?.

Figure S.1: Graphical illustration of new robustness constraint in Part (e) of Proposition
S.4.

mechanism an adversarial Nature cannot do better than selecting (V, F') = (V, F), yielding

the buyer a payoft of G7.

Conditions (a)-(d) in Part (2) are generalizations of robustness constraints in Lemma 2
in the main text. Condition (c) follows from the fact that Nature can always choose the
model (V, F') and the worst-case optimality uniquely pins down the buyer’s response to be
MBM = (¢"™, uPM). As for condition (d), it now applies only to § < 6, as Nature can now
select a Dirac distribution only on 6 < 6. General technological uncertainty adds a novel
constraint given in part (e). It stems from the fact that Nature’s best response can be a
non-Dirac distribution. To understand this constraint, consider Figure S.1. Let 6, < 6, be a
cost level at which the function W (-, ¢) reaches the minimum over [0, 0,], i.e., W (01, q) = w,,
and let 05 > 6, be a cost level such that W (fs, q) = W (6,, QBM) = w,. Suppose Nature picks
a distribution F; with an atom at ¢y equal to F(6;) and which agrees with F on all § > 0,.
BM)

Because W (-, ¢"") is decreasing, even if w, > G (as implied by the constraint in Part (c)),

in the absence of the new constraint in Part (e) it may well be the case that

0 0

w, Fy(6:) +/w(0,gBM)F1(de) = w,F(6,) +/m(9,gBM)E(de) <G,
92 92

meaning that the mechanism’s guarantee is below G%. Therefore, to guard against such

worst-case possibilities, we need constraint in part (e).

Continuing further, we now establish an analog of Proposition 2, which provided a partial
characterization of robustly optimal mechanism when F = CDF(©). To do so, we generalize
the definitions of q,, ¢*, * and 6™ as follows. Let

q; = D(0;)

denote the efficient output when the inverse demand is P and the cost is ;. Then let ¢} be

10



the quantity schedule defined by

max{¢®M (), 5} 0 < 6,
£(0) = | {¢77(0), qz} 0 < ©)
) 0 > 0,

where ¢®M continues to denote the optimal quantity schedule of Baron and Myerson (1982)
when the model is (V*, F**), with F** regular, whereas ¢® is the optimal quantity schedule of
Baron and Myerson (1982) when the model is (V, F'). The following mechanism is a natural

generalization of Baron-Myerson-with-quantity-floor in the main text.

Definition S.4 The Baron-Myerson-with-quantity-bridge is the mechanism M} =

*

(qf,uf) where g% is the quantity schedule in (9) and u’ is the function given by uX(f) =

6
[ a:(y)dy for all 6.
(%

Finally, let 0% be the threshold cost defined as follows. If ¢®™(6,) < q3, by continuity of
¢®™ along with the fact that ¢®M(0) > qf (assured by the regularity of F*), % is the unique
solution to ¢®M(0%) = qf. If, instead, ¢®™(0,) > q (i.e., if ¢®™ never crosses qj over the
interval [0, 0%]), then 0% = 0. In either case, 0% < ;. Similarly, let

07" = max{0 : 6 € arg min W(y,q¢l)}.
yE[Q,Gs]
Thus, w,. = W(07", ¢}). Finally, let

1 [
Gy = sup —— [ W(y,¢"")E(dy). (10)
0€(0s,0] E(é’ ) 05 -

We are now ready to state the generalization of Proposition 2 in the main text, extending

the partial characterization of robustly optimal mechanism.

Proposition S.5 Suppose F* is reqular and F is reqular with respect to 0. Then, the

following are true.

1. The Baron-Muyerson-with-quantity-bridge mechanism is robustly optimal if and only if
W07, ¢7) = max{G7, GY"}.

2. If W(07,q%) < max{G%, G}, then 07 < 0% and every robustly optimal mechanism

MOPT = (¢OPT yOPT) satisfies the following properties:

11



A: Baron-Myerson-with-quantity-bridge. B: Robustly optimal mechanism when
Vx#£V.

Figure S.2: Graphical illustration of Proposition S.5.

(a) ¢°FT(0) = ¢®M(0) for all 6 € (6,,0),

(b) ¢°YT(9) = for all 0 € (0%, 6;),

(c) ¢°FT(0) < ¢®M(0) for almost all 0 < 0%, with the inequality strict over a Lebesque
positive measure set of types I C [07,0%], and

(d) ¢°FT(0) = ¢®M(0) for all 0 € (0,6™).
We end this section with three remarks about Proposition S.5.

Remark S.1 To be precise, part (2) of Proposition S.5 generalizes Proposition 2 in the
main text. Part (1) of Proposition S.5 provides necessary and sufficient conditions for the
Baron-Myerson-with-quantity-bridge mechanism to be robustly optimal. This is analogous
to Proposition 1 in the main text which provided necessary and sufficient conditions for the

Baron-Myerson-with-quantity-floor mechanism to be robustly optimal when F = CDF(O).

Remark S.2 If V* =V (as when the only uncertainty is over the cost technology), then
07 = 0, and the condition in Part 1 of Proposition S.5 is satisfied. In this case, the Baron-
Myerson-with-quantity-bridge mechanism, illustrated in Panel A of Figure S.2, is a robustly
optimal mechanism. Panel B illustrates the features of robustly optimal mechanism when,
instead, V* # V. A comparison of these figures with Figure 1 and Figure 2 in the main text
illustrates that the key features of the robustly optimal mechanism continue to hold under

general technological uncertainty.

Remark S.3 Proposition S.5 further highlights that the key forces identified in Sections 3
and 4 of the main text continue to determine the shape of robustly optimal mechanisms to
the left of O5. Most importantly, the level of the plateau in robustly optimal mechanisms is
determined by D(0y), the efficient quantity at 05 under the lowest possible inverse demand.
Moreover, this level is robust to even more general specifications of technological uncertainty
where F C CDF(O) is an arbitrary set with the property that there exists F € F that

first-order stochastically dominates all other cost distributions in F.

12



S.5 Non-monotonicity of the procured quantity in F

As Proposition S.5 shows the robustly optimal mechanism depends on F only through F*
and F. In this section, we show that as F' changes the robustly optimal mechanism may
change in a non-monotonic way. To simplify exposition, we focus on the case V* = V.
As is clear from Proposition S.5 (see Remark S.2), the robustly optimal mechanism is the
Baron-Myerson-with-quantity-bridge. We formalize the changes in the Baron-Myerson-with-

quantity-bridge mechanism as F' changes.

Consider a sequence (F,,) of cdfs corresponding to the lowest elements of the set F while

fixing F* with the following properties:

(a) for every n there exists §,, € © and 6,, > 0 such that,

(1) F, is absolutely continuous over (—oo, §), with density f (0) >0foralld €0, 0),
(2) F,(0)=0forall 0 <, F,(0)=1forald>0,
(3) limyg £, (0) =1 — 0n,

(b) for every n, 8, ., >0, and for every 6 € (6,0), there exists n such that 6 < 6, < 0,
(c) for every n, d,41 > 0p,

(d) there exists m,m € NU {+00} with m > 7 such that 6, = 0 if, and only if, n < 7, and
5, > 0 if, and only if, n > 7.

(e) for every n, the function z, : [6,,,0] — R defined by

0+E,(9)/f 0) ifoecld,0)
z,(0) = 0+1/f (0) if =0 and 6, = 0
0+ (1—0,)/0, if =6 and 6,, > 0

is increasing over [0,,, 0] and continuous over [4,,,0).

(f) for all 6 € [0,,,,,0],

< L,
RROE
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FO)4 k+l<m<i<m<m

0, m (9)

6m+1 (@)

Q 05 ‘9(+1 em 9m+1 g

Figure S.3: Pictorial depiction of the sequence (F,).

and for every n and every 0 € [6,,0),

z,(0) < 2*(0), (12)

<

which is the case when ==

@

~

fr(0

—~

Figure S.3 provides an illustration of the sequence (F,,). Note that property (c) above means
that the technologies are ranked in the reverse-hazard-rate order. The sequence can thus
be interpreted as capturing an increase in the severity of the buyer’s uncertainty over the

technology that determines the seller’s cost.

Let ¢OFT be a robustly optimal quantity schedule when the lowest technology in F is F,,.
The following proposition establishes that the quantity procured under a robustly optimal
mechanism is not monotone in the lowest distribution F',. This property holds despite
the fact that, as is well known, the Baron-Myerson quantity schedule ¢” defined, for all
6clo,,0), by

4" (0) = arg max {V*(q) - z,(0)q}

a€[0,g]
is increasing in the inverse-hazard rare order: for any n,n’ € N, with n’ > n and any 6 > 0,,,
M(0) > ¢”M(0). That is, when the buyer’s model over the technology of the seller’s cost
coincides with the distribution £, , an increase in the distribution (in the inverse-hazard-rate

order) leads to an increase in the output procured.

14



Figure S.4: Illustration of Proposition S.6.

Proposition S.6 (Non-monotonicity of output in severity of cost uncertainty) Suppose
V* =V and F* is reqular. Let (F,) be any sequence of cdfs satisfying properties (a)-(f) above

OPT

and let (M) be any sequence of mechanisms such that, for each n, MS™" = (¢° orT)

7un

15 a robustly optimal mechanism when the lowest distribution in F is F,. Then, for every

0 € (0,0),

1. there exists n(0) € N such that ¢ (0) is non-decreasing in n (respectively, non-

increasing in n) over n < n(0) — 1 (respectively, over n > n(f)).

2. there exists j,k € N with j < k such that ¢?""(0) > ¢;"" (6).

Figure S.4 illustrates the result in Proposition S.6. For any 6 € [0, 0], as the lowest
technology changes from F£'; to F,, the quantity procured increases. In fact, the robustly
optimal quantity schedule changes from the dash-dotted line to the dash-double-dotted line.
Note that both F; to F, have support ©; a reduction in the inverse of reverse hazard rate
then implies a reduction in the value of reducing the rents paid to the most efficient types and
hence an increase in the output procured under the optimal mechanism. When the lowest
technology changes from £, to F'5, the robustly optimal quantity schedule changes from
the dash-double-dotted line to the solid line and the quantity procured from types in the
range [0, 07] goes down. This is because the support of 5 no longer contains low-cost types.
The buyer can then afford to procure less output from these types without jeopardizing
robustness. Thus, the quantity procured from types in the range [, 6] is not monotone in

n, equivalently, in the worst possible technology. The formal proof is in Appendix S.A.
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S.A Proofs of Propositions S.1, S.4, S.5, and S.6

Proof of Proposition S.1: Let M = (¢,u) be a robustly optimal mechanism in which ¢
is left-continuous. By contradiction, assume M is dominated by another mechanism M=
(4,u). Lemma S.2 implies that M is also robustly optimal, and therefore, by Proposition 2

in the main text, ¢ differs from ¢ only on the interval (6™,60*). Let
0, = {0 € (07,0 4(6) < a(0)}.

By Lemma S.6 (which is stated and proved below after this proof), ©, has a positive Lebesgue
measure. By Proposition 2 in Mishra et al. (2025), we know that

4(0) < q(9) < ¢"™(0) < D*(0) Ve, (13)
Next, define
0, :=sup {0:6 € O,}.

Since ©, is non-empty and bounded 6, is a finite real number. Clearly, 8, > ™. The proof
below establishes a contradiction by showing that there exists #, in a left neighborhood of

01, at which the buyer gets a higher welfare under the mechanism M when (V, F') = (V*, dy).

By left-continuity of ¢ and since ¢ and ¢ are weakly decreasing, there exists a non-empty
left-neighborhood N := [, 6)) such that N C ©, and

g(0) < D*(6,)  VOEN.

The last inequality follows from the fact that ¢(6,) < D*(6,) (by (13)) and ¢ is left-

continuous. Let

A = sup [q(y) — 4(y)]
yeN

By definition of A/, A > 0. Thus, there exists § € N such that q(0) — ¢(0) = A — ¢,

P (q(00)=0n

where € < Agz(q(ee))—om' Such ¢ > 0 can be chosen because, by definition of N, we have
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q(6y) < D*(6),) and this implies P*(q(6;)) > 6, > ™. Observe that

—~

q(9)

W (M;V*,85) = W(M;V*,69) = | (P*(z) — 6)dz —
)

(aly) — d(y))dy.

%\%\

)

a(
To reach a contradiction and complete the proof, it suffices to show that the right-hand side

of the above condition is positive.

W(M;V*,85) — W(M; V*, 8)

q(0) On
= [ -0— ([ () - at)a)
a(0) o
([ ) - dtw)av)
q(9) ' Op
> / (P*(2) — 6)dz — ( / (ay) — d(y))dy) (since g(y) < q(y) for all y > 61)
a(9) o
> (P*(q(@)) _ 9) (q(0) — q(0)) — A(0, — 0)  (since q(6;) > q(#) and by definition of A)
— (P*(g(80)) ~ 6)(A — ©) — A@G, — 6)
— A(P*(q(0,)) — 0,) — e(P*(q(60)) — 0)
> A(P*(q(6,)) — 61) — e(P*(q(60)) — 6™)
>0,

P* (¢(61)) -0 -

where the last inequality follows from the fact that e < AW'

Lemma S.6 The set ©, has positive Lebesque measure.

Proof: Assume, toward a contradiction, that ©, has zero Lebesgue measure. Then, either
(1) q(0) < q(0) for all 8 € (6™,0%), or (2) q(f) > (@) only on countably many 6 € (6™, 6*).

Below, we obtain a contradiction in each of these two cases.

Case 1: Suppose ¢(0) < §(0) for all § € (6™,0*). If this inequality holds with equality for
all 8 € (6™,0%), then ¢ coincides with ¢ at all 8, a contradiction. Thus, ¢(0) < §(0) for
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some 0 € (0™,0*). Moreover, because ¢ is left-continuous, and both ¢ and ¢ are weakly-
decreasing, it must be that ¢(f) < ¢(0) on a positive Lebesgue measure of 6§ € (6™,60*).
Thus, u(0™) < (6™). Moreover, any robustly optimal mechanism ¢(0™) = ¢(6™) = D(6™)

(Lemma 10 in the main text). Therefore,

q(y)dy,

S—

0
VH(q(6m)) — o™ / y)dy > V(G(O™) — 8mq(0™) —

That is, W(M;V*, 0gm) > W(Z\//.T, V* dgm), a contradiction to the fact that M dominates M.

Case 2: Now suppose, ¢(f) > ¢(f) only on countably many 6 € (0™, 6%). Because g is
left-continuous, and both ¢ and ¢ are weakly-decreasing, these points must be the ones
where ¢ is discontinuous. Let ¢’ be one such point of discontinuity of ¢ in (6™, 6*). Because
q(0) = ¢(0) for almost all § € O, we have u(0') = ¢(¢'). Furthermore, because ¢(6) < D*(0)
for all 8 € (6™,0%), we have that ¢(0') < q(0') < D*(#"). Combining these facts with the
quasi-concavity of V*(q) — 0'q, we have that
6

o)y > V() 030 - [ o)y

o

V*(q(0) — 'q(0") —

QE\Q:\

That is, W (M;V*, 0e) > W(]\/Z, V* dg), a contradiction to the fact that M dominates M.

Consequently, ©, has positive Lebesgue measure. |

Proof of Proposition S.4. Part 1. For any IC and IR mechanism M = (¢,u) € M,

= i : < : < BM, _ o
G(M) (V,Fl)réf]‘)x]-'W(M’ V7 F) = W<Mazv E) >(a) W(M 7K7 E) Gs (14)

Inequality (a) holds because M™™ maximizes W (-;V, F) over M. We now show that there
exists an IC and IR mechanism M € M such that G(M) = G%. Let M = (q,u) be the

mechanism in which

M (6,) it 6 < 6,

q(0) =
PMG) it 6> 0,

and u(6 fe y)dy for all §. Clearly, M € M. Further, since F has support [0,,0], i
follows that W(M;V,F) = WMV, F). Now, recall that M"™ = (¢®™, uPM) is the

18



optimal mechanism for the model (V, F'). When F is regular with respect to 0, q s such
that, for all 8 > 6.,
¢*M(0) = D(z(0)),

where, for all 0 > 0,, 2(0) = 0+ F(0)/f(0). Thus, ¢(0) < D(0) for all 0, with the inequality
strict for § # 6,.2 Part A of Lemma 9 in Mishra et al. (2025) then implies that W(-,q) is

non-increasing over ©. Furthermore, because, for all F' € F, F >=rosp F,
W(M;V,F)>W(M;V,F).

Because, for any V € V and any F' € F , W(M;V, F) > W(M;V, F), we thus have that
W(M;V,F)>W(M;V,F). We conclude that G(M) = W(M®*™: V| F) = G*.

Part 2: Necessity If M = (q, ) € M5B then M is IC and IR, and, therefore, ¢ is
non-increasing and (¢ 0)+ f p 4(y)dy for all 6. Further, by the result in Part 1, it must
be that G(M) = G=. Hence, u(f) = 0.

Recall that, for any 6 > 6, ¢"™(0) = arg maxqeq{V (q) — 2(0)a}. If q(#) # ¢°M(6) for
a positive Lebesgue measure subset of [0, #], then inequality (a) in (14) is strict and hence

W(M;V,F) < W(MP,V,F) = G* This means that G(M) < G* and hence M ¢ M5,

BM

a contradiction. Because ¢”" is decreasing and continuous over [0;,0], we conclude that

g(0) = ¢®M(0) for all 6 € (0,,0).

Next, observe that, for any 6 < 6,, F contains a distribution F' corresponding to a Dirac

measure at § < 05 (indeed, F' >FOSD F). Welfare under the lowest gross value function V.

and such an F'is V (q(0)) f q(y W(0,q). Hence, it must be that W (0,q) > G=.

Finally, observe that the inequality in the constraint in part (e) is an equality for 6 = ;.

Suppose there exists 6 € (6, 0] such that

/ y.d")F(dy) < G, (15)

2This property holds even if F is not regular. In fact, any undominated mechanism M = (g, u) is such
that ¢(0) < D(0) for all  (Mishra and Patil, 2025).
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By definition of w,, there exists ¢ < 0, such that W (¢, q) is arbitrarily close to w,. Let F
be the cdf given by
0 if 0 <o

F(0) =< F(6) ifoeld,0)

F() if6>0.

Clearly, F(#) > F(6) for all 0, and hence, ' € F. Welfare under the mechanism (g, u) when
Nature selects the model (V, F) is equal to

[
W(M:V,F) = W(#,q)E(6) + / W(y,¢"")E(dy) < G2,
6
where the inequality follows from inequality (15) and the fact that W (#',q) is arbitrarily

close to w,. This, however, is a contradiction to M € ML,

We conclude that properties (a)-(e) are jointly necessary for any M € M5,

Part 2: Sufficiency. Take any mechanism M satisfying properties (a)-(e). By virtue of
(a) and (b), M is IC and IR. Thus, it suffices to prove that G(M) = G%. By inequality (14),
it is enough to show W (M;V, F') > G* for any model (V, F) € V x F. First, suppose F' is a

Dirac distribution on some 6 < 5. Then, condition in part (c) implies
6
WOLV.F) = WOV, F) = Via(0) - 0a(6) ~ [ aly)dy = G:.
9

Now consider any model (V, F') € ¥V x F, where F' puts a positive mass on 6 > ;. Then,

W(M;V,F) 2 W(M;V, F)

0
> w, F(6s) + /E(G, q)F(de) (by definition of w,)

= w,F(0,) + / W, ¢ F(do) (because ¢(0) = ¢™"(0) for all 6 € (6,,0)).

(16)

Now, partition [0,,6] into ©; = {6 € [6,,0] : W(0,¢"™) < w,} and O, = [6,,6] \ ©;. Note
that W(-, ¢®™) is decreasing over [f,,6] and hence ©; is an (possibly empty) interval. If ©,
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is empty, let =6, Else, let 0 be the left endpoint of ©;. Using (16), we have that

W(M;V,F) >w,F(6 /W BMY [(dg) + W(e M)F(do)

— w, F(0) + / W (0, ") F(do) (17)

Now, let h : © — R be the non-increasing function defined by

w, if 0 <0
h(9) =
W(0,¢™®) otherwise.

From (17), we then have that

W(M;V, F) = h(0)F(d0)

\%\%‘

0
hO)F(a6) + [ ho)F(d6) =
6

h(@)E(d@) (since F >rosp F)

Hence, by Part (1), G(M) = G=. |
Proof of Proposition S.5. The proof is in several parts, each corresponding to a part of

the proposition. Before we get to these parts, observe that for a mechanism (q,u) € MSF

the constraint (d) in Part 2 of Proposition S.4 is equivalent to w, > G%. As for constraint
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is equivalent to

w, > sup /W "M E(dy) = G
0e(0,,0) L

Thus, constraints (d) and (e) can be equivalently written as w, > max{G?%, G*}, or alterna-
tively, W (0, q) > max{G%, G} for all < 0.

Part 1. If M} is robustly optimal, then M} € M>". Observe that w,, = W (0", ¢}). Thus,
as argued above, conditions (d) and (e) in Part 2 of Proposition S.4 imply W (07", q%) >
max{G?, G**}.

Next, suppose that M7 is such that W (07, ¢¥) > max{G%, G¥*}. We want to show
that M7 is robustly optimal. By definition, M} satisfies conditions (a)-(c) in Part 2 of
Proposition S.4. As we argued above, that W (67",¢%)> max{G%,G**} implies that the two
robustness constraints (d) and (e) in Part 2 of Proposition S.4 are satisfied. This means
that M* € M5, To see that M* maximizes the buyer’s payoff under the conjectured model
(V*, F*) over M5l first observe that ¢* is non-increasing because F* is regular. Second note
that every mechanism M = (q,u) in the short list has a non-increasing quantity schedule
q that agrees with ¢®" over (0,,0) (Proposition S.4). This means that, in any such a
mechanism, ¢(0) > ¢ for all § € [0, 0,). Because, for every 0 € [0, 6;),

¢:(0) = arg max {V"(q) —*(0)a}

q€[q;,ql

we conclude that, for any M = (¢,u) € M5F,

V2 (a(0)) - = (0)a(0)| F*(d0) < [ [V*(a2(0)) = 2 (0)a; (0)| 7 ()

\%\%‘
\m\w

implying that indeed M maximizes the buyer’s payoff (under the conjectured model (V*, F*))

over M5,

Part 2. We start with the following lemma:
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Lemma S.7 Suppose w,. < max{Gy,G3*}. Then the following are true:

1. 07 < 07,

2. if 07 > 0, then q2(07) = D(0").

Proof: Part 1 of Lemma S.7. We consider two cases. First, suppose ¢®™(0,) > ¢ =
D(6,). Then, % = 6,. Since D and ¢®™ are decreasing and continuous, there exists a non-
empty left neighborhood of 8, where ¢®™(0) > D(6). Part B of Lemma 9 in Mishra et al.
(2025) then implies that W (6, q) is increasing on this interval implying 07" < 6, = 6.

Next, suppose ¢M(0,) < q; = D(6,). Then, 8% < 0,, and for every 6 € [0%,0,], ¢*(0) = q;
and W(0,q;) = W(bs,q}) > max{G}, G5*} > w,., where the first inequality follows from
(10), and the second inequality follows from our assumption. This implies that W (6%, ¢%) >

m *
w,.. Hence, 65" < 07.

Part 2 of Lemma S.7. Since 0™ < 6%, we have ¢*(67) = ¢®™(6™). Using this and repeating
the arguments of Lemma 10 in Mishra et al. (2025), the proof can be completed. [

Equipped with this result, we now establish parts Parts 2(a) and 2(b) of the proposition.

Parts 2(a) and 2(b). Part 2(a) follows from Proposition S.4 because any robustly optimal
mechanism belongs to M5, Thus consider Part 2(b). We consider two cases. First, if

¢®M(0,) > q, then, by the definition of 6%, we have that 6% = 6, and hence the interval

RS

S

(6%, 6,) is empty and the result applies vacuosly. Therefore, suppose that ¢®™(6,) < qj.
Then, 0% < 0,. Now, assume for a contradiction that there exists § € (6%,0) such that
¢°FT(0") > q;. Monotonicity of ¢°FT then implies that ¢°FT(0) > qf for all § € [0%,6]. This
means that there exists a non-zero Lebesgue measure of types such that ¢°FT(6) > q3. Then,

consider the mechanism M = (4, u) where the quantity schedule is given by
OPT(G) it 0 <0
q0) = q q; if 0e/[07,0,

QBM<9> _ qOPT(Q) if 9 2 95

(=)

and where the rents @ are given by 4(#) = | G(y)dy for all §. Because ¢ is non-increasing,

-

this ensures that A is IC and IR. The buyer’s payoff from M (under the conjectured model)

23



is equal to B
0

[ [v+a@®) - = ©ae)| 7 (s)
(%)

which is strictly higher than under M©FT. This follows from the fact that, for any 0 € [0, 6],
qf maximizes V*(q)—z*(0)q over q > ¢f, along with the fact that F** is absolutely continuous.

Thus, to produce a contradiction to the robust optimality of MOFT it suffices to show that
M e M5,

By definition, M satisfies properties (a)-(c) in Part 2 of Proposition S.4. As for properties
(d) and (e), they are equivalent to verifying that w; > max{G%, G:*}. That w; > G follows
from the arguments in the proof of Lemma 6 in Mishra et al. (2025), along with the fact
that ¢(f) < ¢°F"(0) for all . To establish that w; > G&*, notice that, for all 6 € [0}, 6],

s )

W(0,q) = W(b,,¢"™) > Gi*. Thus, it suffices to focus on 6 < ;. Observe that

inf W(0,q) > inf W(0,¢°"") > G,
<03

0<0%

where the first inequality follows from the fact that G(0) = ¢®FT(0) for 0 < 6%, along with
the fact that g(0) < ¢°FT(#) for all 6, which implies that @(0) < u°FT(0) for all §. The
second inequality holds because MOFT ¢ MSE,

Part 2(c). From Part 2(b), ¢°FT(0) = q for all § € (0%,0,). Now suppose there is a
positive-Lebesgue-measure set I C [0, 0%) such that ¢°FT(0) > ¢*(0) = ¢®™(6). Consider the

mechanism M = (G, u) where the quantity schedule is given by

G(0) = min{q}(9),¢°""(0)} Voeo,

and where @(0) = | G(y)dy for all §. Clearly, because ¢ is non-increasing and @ satisfies the

S

above properties, the mechanism M is IC and IR. Notice, by Part 2 (a) and (b), ¢(0) =
q:(0) = q°FT(0) for all 6 > 0%

The buyer’s payoff under M is strictly higher than under MOFT following arguments
similar to those in the proof of Lemma 7 in Mishra et al. (2025). Clearly, M satisfies
conditions (a)-(c) of Part 2 of Proposition S.4. The next two claims establish that M also
satisfies the conditions in parts (d) and (e), that is, w; > max{G%,G7*} or W(0,q) >
max{G?%, G¥*} for all § < ;. First, observe for every 6 € [0%,64], G(6) = ¢5() = q; and
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W(0,q) = W(bs,q) > max{G%, G=*}. Now, we establish the desired inequality for § < 6%

using the following two claims.

Claim S.1 Suppose 0 < 0F is such that either G(0) = ¢°YT(0) or D(9) < G(0) = ¢ (0) <
q°FT(0). Then W(0,q) > max{G*, G**}.

Proof: Pick § < 0*. We establish W(6,q) > W(0,¢°FT), and because W (0, ¢°FT) >

max{G?, G}, the claim follows.

Note that ¢*(0) = ¢®™(6). For any # such that G(0) = ¢°FT(0), since G(y) < ¢°FT(y) for
all y > 6, we have that W(6,q) > W (0, ¢°FT). Thus, consider a # for which D(6) < ¢(0) =
¢ (0) = ¢®M(0) < ¢°FT(#). The quasi-concavity of the function V(q) — fq in q implies that

V(qz(0)) — 0q:(0) > V(q°"(0)) — 0¢°7 (0).

Together with the fact that g(y) < ¢°FT(y) for all y > 6, this means that W(0,q) >
W(0,q°FT). |

Claim S.2 Suppose 0 < 0% is such that ¢*(0) < min{D(0),q°*T(0)}. Then, W(0,q) >
max{G?%, G¥*}.

Proof: The proof considers two cases to establish the existence of # > 6 such that W (-, q)
is non-increasing on [0, 0] with W (¢, q) > max{G%, G**}.

Case 1. Suppose ¢:(6;5) = qf = D(65). Because ¢ and D are both continuous, there exists

0 < 0 < 0, such that ¢*(y) < D(y) for all y € [0,0'], with ¢*(¢') = D(#). Thus,
4(0") = min{D(9),¢°"" (¢")}.
Further, for all y € [0,6],
G(y) = min{¢°""(y), ¢ ()} < D(y).
Part A of Lemma 9 in Mishra et al. (2025) implies that W (-, ) is non-increasing over [0, ¢']

whereas Claim S.1 implies that W (6, §) > max{G?%, G%*}. Hence, W (0, q) > max{G?%, G**}.
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Case 2. Now suppose ¢*(0s) = ¢®™(0,) > q; = D(6,). Then, because ¢*() < D(f), and
D and ¢} are continuous (latter due to regularity of F*), there exists 0 < 6 < 6 such that
¢:(0) = D(0) and ¢*(y) > D(y) for all y > 0. Again, just like we argued in Case 1, there
exists § < 0 < 6§ such that ¢*(y) < D(y) for all y € [0,0'] with ¢%(¢') = D(0'). Repeating

the remaining arguments in Case 1 completes the proof. |

The above two claims establish that § satisfies the constraint w; > max{G?%, G%*}, and
by Proposition S.4, M= (q,a) € M5L.

We complete the proof by showing that there must exist a set of types I C [6,0%] of
positive Lebesgue measure such that ¢°FT(0) < ¢BM(0) for all # € I. To do that assume
for contradiction ¢°FT(0) = ¢®M(#) almost everywhere on [#,6%]. Moreover, because ¢* is
continuous and ¢®M(#) is the unique maximizer of V*(q) —2*(6)q, it is without loss to assume
that ¢OFT(0) = ¢®M(0) for all # < 0*. This however implies that M* is robustly optimal, a

contradiction.

Part 2(d). Assume for contradiction that there exists a § € (6,0™) such that ¢°FT () #
¢®™(0). Because ¢PM is continuous and decreasing, this means that there exists a positive
Lebesgue measure set of types I C [0,0™) such that ¢°FT(0) # ¢®M(0) for all # € I. By
Part (c), we have that ¢OFT(6) < ¢BM(0) for all § € I (as ¢®M is continuous and both ¢BM

OPT are non-increasing). Then, let M = (¢, w) be the mechanism where the quantity

and ¢
schedule is given by
BM : m
_ g (0) it 0€10,07]
q(0) =

q°FT(0) otherwise

[ — —
and where () = [ G(y)dy for all . Clearly, M is IC and IR. Below, we show that M yields
0

a higher payoff to the buyer than M°FT and M € MBL | contradicting the optimality of
MOPT.

Because, for any 6, ¢®M(6) is the unique maximizer of V*(q) — 2*(6)q, the objective

function

[V (a(0)) = " (0)a(0)] F*(d0)

‘%\m\

is strictly higher under M than under MOPT,
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We now show that ¢ satisfies the robustness constraint w; > max{G%,G%*}. To do so,
it suffice to show W (6, q) > max{G%, G¥*} for § < 07" because the inequality holds for any
6 > 6. Thus consider 6 € [0,07]. For any § < 6™, G(0) = ¢®™(0) = ¢*(0). The latter

equality follows from Lemma S.7, which states 07" < 6%. Moreover,

> [V (00) - 06O (0] — (V™ 0) — 0™ (6

|% A

=) W(@;n, qOPT) (Qma q:)
> max{G*, G2} — W(0,q)
Z(d) maX{G*, G:*} - w(ea qz)’

Inequality (a) follows from the fact that D(67") maximizes V(q) — 07'q over all q and
M) = D(0™) (Lemma S.7). Equality (b) follows from the fact that ¢®™(0) = ¢*(6).
Inequality (c) follows from the fact that MO9FT € M5Y which implies that ¢°FT(y) sat-
isfies the robustness constraint. Inequality (d) follows from the definition of 7. Hence,
W(0,q) > max{G*,G**} also for all § € [6,07]. We conclude that M € M5 and yields a
higher payoff to the buyer than MOFT contradicting the optimality of M©FT. [ |

This completes the proof of Proposition S.5. |

Proof of Proposition S.6. Each part below establishes the corresponding part in the

proposition.

Part 1. For any 6 € (6,0), let n(0) be the largest n > 7 such that §, < 0 < 0, ;. Existence
of n(f) is guaranteed because of (b) in the definition of (£, ), which imply 0, < 0,,., < 0
and lim,,_, 0, = 0. For any n < n() — 1, we have 0 € [0,,,0] and 0 € [0,,,,0]. Thus, by
Proposition 8.5, g7 (0) = ¢>™(0), and ¢2{1(0) = .} (0). Condition (11) in turn implies
that QEM(Q) < gfﬁ(@) that is, ¢9FT(0) is non-decreasing in n for n < n(f) — 1.

and therefore, ¢OFT(0) = max{¢®™(0), D(0,)}. The quantity

) is non-increasing in n because 0, < 6, ., < 0 for every n. Consequently, ¢ (0) is

For any n > n(6), 6 < 6
D(0

zn?

T
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also non-increasing in n.

Part 2. To establish the second part of the proposition it suffices to exhibit a pair 7,k € N,
with j < k, such that ¢?""(0) > ¢;""(#). To do so, consider the following two cases.

Case 1. Suppose ¢°(0) > D(0,,4,1).- Then let j = n(f) and k = n(f) + 1, and observe
that

f,(0) f*(0)

J

i27(0) = ¢(0) = D (e v ij)) >0+ ) = P00) = £770),

where the inequality follows from (12).

Case 2. Suppose ¢° () < D(6,,4)+1)- Then let j = n()+1 and let k be such that 6, > ;.

Existence of such an k is ensured by condition (b) in the definition of (£,). Then
gi" " (0) = max{q™(0), D(6))} < D(¢;) = ¢;" " (6).

To see this, observe that 0, > 6, implies that D(0,) < D(6;,). Hence, if ¢0*"(0) = D(6,),

then ¢O"T(0) = D(0,) < D(9;) = ¢27"(0). If, instead, ¢P""(0) = ¢®™(0), the result follows

from the fact that, by assumption, ¢®M(0) < D(0;). |
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