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S.1 Existence of robustly optimal mechanisms

In this section, we show that a robustly optimal mechanism exists. In the main text, Propo-

sition 1 contains necessary and sufficient conditions under which the Baron-Myerson-with-

quantity-floor mechanism is robustly optimal. However, when these conditions are not sat-

isfied, Proposition 2 in the main text only contains a partial characterization of the optimal

mechanism. The following lemma shows that even in that case, a robustly optimal mecha-

nism always exists.

Lemma S.1 A robustly optimal mechanism exists.

Proof : Recall that a mechanism is robustly optimal if and only if it solves the following

program:

max
q:[θ,θ]→[0,q̄]

θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
f ⋆(θ)(dθ)

subject to

q weakly decreasing

V (q(θ))− θq(θ)−
θˆ

θ

q(y)dy ≥ G∗ ∀ θ ∈ [θ, θ].

Hereafter, we refer to the set of schedules q satisfying the restrictions in the above problem

as the “feasible set”.

Since each q in the feasible set is uniformly bounded, i.e., 0 ≤ q(θ) ≤ q̄ for all θ ∈
[θ, θ], by Helly’s selection theorem, the set of weakly decreasing schedules q is sequentially

compact under the point-wise convergence topology. Since V is continuous and q is uniformly

bounded, by the dominated convergence theorem, the function V (q(θ))− θq(θ)−
´ θ
θ
q(y)dy

is thus sequentially continuous. Hence, the feasible set is sequentially compact under the

point-wise convergence topology. That this set is non-empty is immediate.

Next, observe that the objective function is continuous in q. To see this, define,

ϕ(θ, q) =
[
V ⋆(q)− z⋆(θ)q

]
f ⋆(θ) ∀ θ ∈ Θ,∀ q ∈ [0, q̄]
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Note that for a feasible function q, the value of the objective function equals

θˆ

θ

ϕ(θ, q(θ))dθ

Clearly, ϕ(θ, q) is continuous in q. Furthermore, for every θ ∈ [θ, θ] and q ∈ [0, q̄],

ϕ(θ, q) ≤
[
V ⋆(D∗(z⋆(θ)))− z⋆(θ)D∗(z⋆(θ))

]
f ⋆(θ) ≡ ϕ̄(θ).

Because ϕ̄ is continuous, ϕ is uniformly bounded.

Now take a sequence (qn) of feasible schedules converging to q under the point-wise

convergence topology. Then, for every θ ∈ [θ, θ], we have that

lim
n→∞

ϕ(θ, qn(θ)) = ϕ(θ, q(θ))

by continuity of ϕ in the second argument. Furthermore, for each qn in the sequence, we

have that

ϕ(θ, qn(θ)) ≤ ϕ̄(θ) ∀ θ ∈ [θ, θ].

Then, by the dominated convergence theorem,

lim
n→∞

ˆ θ

θ

ϕ(θ, qn(θ))dθ =

ˆ θ

θ

ϕ(θ, q(θ))dθ.

This establishes the sequential continuity of the objective function under the point-wise

convergence topology. Since the range of the objective function is a subset of R, from the

extreme value theorem, we conclude that the above optimization program has a solution,

i.e., a robustly optimal mechanism exists. ■

S.2 Undomination

In this section, we formally define what it means for a mechanism to be undominated, and

then establish that robustly optimal mechanisms are undominated.

Recall that M is the set of all IC and IR mechanisms.
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Definition S.1 For any pair of mechanisms M = (q, u) and M̂ = (q̂, û), M dominates

M̂ if, for every (V, F ) ∈ V × F ,

θˆ

θ

[
V (q(θ))− θq(θ)− u(θ)

]
F (dθ) ≥

θˆ

θ

[
V (q̂(θ))− θq̂(θ)− û(θ)

]
F (dθ),

with the inequality strict for some (V, F ).

A mechanism M̂ ∈ M is undominated if there does not exist a mechanism M ∈ M
that dominates it.

The following lemma points to an internal consistency property of the set of robustly opti-

mal mechanisms: each robustly optimal mechanism is either undominated, or it is dominated

by another robustly optimal mechanism.

Lemma S.2 Suppose MOPT = (qOPT, uOPT) is a robustly optimal mechanism and M =

(q, u) ∈ M dominates MOPT. Then M is a robustly optimal mechanism.

Proof : Since MOPT = (qOPT, uOPT) is a robustly optimal mechanism, we know that, for all

θ ∈ [θ, θ],

V (qOPT(θ))− θqOPT(θ)− uOPT(θ) ≥ G∗.

Now pick any θ ∈ [θ, θ]. Since M = (q, u) dominates MOPT, under V = V and F = δθ

(where δθ is the Dirac distribution that puts unit point mass at θ), we have that

V (q(θ))− θq(θ)− u(θ) ≥ V (qOPT(θ))− θqOPT(θ)− uOPT(θ).

Combining the two inequalities, we have that V (q(θ))− θq(θ)− u(θ) ≥ G∗. Since this holds

for all θ, by Lemma 2 in the main text, we have that M ∈ MSL.

Next, pick any θ ∈ [θ, θ]. Since M = (q, u) dominates MOPT, by considering V = V ⋆ and

F = δθ, we have that

V ⋆(q(θ))− θq(θ)− u(θ) ≥ V ⋆(qOPT(θ))− θqOPT(θ)− uOPT(θ),
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which implies that, for any F ∈ F ,

θˆ

θ

[
V ⋆(q(θ))− θq(θ)− u(θ)

]
F ⋆(dθ) ≥

θˆ

θ

[
V ⋆(qOPT(θ))− θqOPT(θ)− uOPT(θ)

]
F ⋆(dθ).

Since M ∈ MSL and MOPT is robustly optimal, the above inequality implies that M is also

robustly optimal. In fact, this implies that the above inequality is an equality. Therefore,

for almost all θ ∈ Θ,

V ⋆(qOPT(θ))− θqOPT(θ)− uOPT(θ) = V ⋆(q(θ))− θq(θ)− u(θ).

■

We then have the following result:

Lemma S.3 If the Baron-Myerson-with-quantity-floor mechanism M⋆ = (q⋆, u⋆) is robustly

optimal, it is undominated.

Proof : Suppose M⋆ is robustly optimal and M = (q, u) dominates it. By Lemma S.2, M

is also robustly optimal. By Corollary 1 in the main text, q(θ) = q⋆(θ) for all θ > θ. This

implies that u(θ) = u⋆(θ) for all θ.

Consider the pair (V ⋆, δθ), where δθ is the Dirac distribution that puts unit mass at θ.

Then

V ⋆(q⋆(θ))− θq⋆(θ)− u⋆(θ) > V ⋆(q(θ))− θq(θ)− u(θ).

The inequality holds because u(θ) = u⋆(θ), and q⋆(θ) ≡ qBM(θ) uniquely maximizes surplus

V ⋆(q) − θq. This inequality, however, contradicts to the fact that M = (q, u) dominates

(q⋆, u⋆). ■

A consequence of the last Lemma S.2 is that, when the conditions in Proposition 1 in

the main text are satisfied, the Baron-Myerson-with-quantity-floor mechanism is not only

robustly optimal but also undominated. This result generalizes, albeit under a mild technical

condition (which is satisfied by (q⋆, u⋆)).

Proposition S.1 Suppose M = (q, u) is a robustly optimal mechanism and q is left-continuous.

Then, (q, u) is undominated.
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S.3 More permissive short list

In this section, we consider a short-list that contains also mechanisms that are not worst-case

optimal but for which the guarantee is not too small relative to the maximal one. Formally,

let

MSL
γ ≡ {M ∈ M : G(M) ≥ γG(M ′) ∀ M ′ ∈ M},

where γ ∈ (0, 1]. The analysis in the main text corresponds to the case γ = 1. Here, we

extend the results to γ ∈ (0, 1).

Lemma 1 in the main text remains unchanged. The short list is now characterized as

follows:1

Lemma S.4 (Short-list characterization) Take any IC and IR mechanism M ≡ (q, u) ∈
M. Then M ∈ MSL

γ if and only if

V (q(θ))− θq(θ)− u(θ) ≥ γG∗ ∀ θ ∈ Θ. (1)

Two important distinctions from the analogue of the same result for γ = 1 (Lemma 2

in the main text) is that when γ < 1, (i) the rent u(θ) is not necessarily pinned down to

zero, and (ii) q(θ) need not be equal to qℓ. Moreover, short list for γ′ > γ is a subset of

the shortlist associated with γ. Moving on, we focus on mechanisms in the MSL
γ that has

u(θ) = 0, which will follow from the robust-optimality, and state a generalized version of

Lemma 4 in the main text.

Lemma S.5 Take any weakly decreasing function q : Θ → R+. The following statements

are equivalent:

1. for all θ ∈ Θ,

V (q(θ))− θq(θ)−
ˆ θ

θ

q(y)dy ≥ γG∗; (2)

2. for all θ ∈ Θ,

θˆ

θ

q(y)dy ≤
θˆ

θ

D(y)dy −
P (q(θ))ˆ

θ

(D(y)− q(θ)) dy + (1− γ)G∗; (3)

1The proofs of all results in this section are available upon request.
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3. Condition (3) holds for θ ∈ {θ, θ} and, for all θ ∈ (θ, θ),

θˆ

θ

q(y)dy ≤
θˆ

θ

D(y)dy + (1− γ)G∗. (4)

We now modify Baron-Myerson-with-quantity-floor to account for the pessimism param-

eter γ. This is reflected by setting a floor which now depends on γ. To define the new floor

(dependent on γ), notice that since V (q) − θq is strictly concave in q, there are precisely

two solutions to the equation: V (q) − θq = γG∗. Denote these two solutions as q̄γℓ and qγ
ℓ
,

where q̄γℓ > qγ
ℓ
. The generalization of Baron-Myerson-with-quantity-floor uses the lower of

the two floors: qγ
ℓ
. In this way, the generalized Baron-Myerson-with-quantity-floor depends

on γ, but to have notational simplicity, we supress its dependence on γ.

Definition S.2 The Baron-Myerson-with-quantity-floor is the mechanism M⋆ ≡ (q⋆γ, u
⋆
γ),

where q⋆γ is the quantity schedule defined, for all θ, by

q⋆γ(θ) ≡ max{qBM(θ), qγ
ℓ
} (5)

and where u⋆ is given by u⋆
γ(θ) =

´ θ
θ
q⋆γ(y)dy for all θ.

Proposition S.2 (Optimality of Baron-Myerson-with-quantity-floor) Baron-Myerson-

with-quantity-floor is robustly optimal if and only if

θˆ

θ

q⋆γ(y)dy ≤
θˆ

θ

D(y)dy −

P (q⋆γ(θ))ˆ

θ

[
D(y)− q⋆γ(θ)

]
dy + (1− γ)G∗, (6)

and

θˆ

θ

q⋆γ(y)dy ≤
θˆ

θ

D(y)dy + (1− γ)G∗ ∀θ ∈ Θ. (7)

Let θmγ be as defined in the main text. Let θ⋆γ be the threshold defined as follows. If

qBM(θ) ≤ qγ
ℓ
, by continuity of qBM along with the fact that qBM(θ) > qγ

ℓ
, let θ⋆γ be the unique

solution to qBM(θ⋆γ) = qγ
ℓ
. If, instead, qBM(θ) > qγ

ℓ
(i.e., if qBM never crosses qγ

ℓ
), then let

θ⋆γ ≡ θ. Note that both θmγ and θ⋆γ depend on γ.

The extended version of Proposition 2 is as follows.
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Proposition S.3 Suppose Baron-Myerson-with-quantity-floor is not robustly optimal. Then

θmγ < θ⋆γ, and every robustly optimal mechanism MOPT = (qOPT, uOPT) satisfies the following

properties:

(a) qOPT(θ) = qγ
ℓ
for all θ ∈ (θ⋆γ, θ] when θ⋆γ < θ.

(b) qOPT(θ) ≤ qBM(θ) for almost all θ ≤ θ⋆γ, with the inequality strict over a Lebesgue

positive measure set of types I ⊆ [θmγ , θ
⋆
γ].

(c) qOPT(θ) = qBM(θ) for all θ ∈ (θ, θmγ ).

Note that the three intervals identified in Proposition S.3 depend on γ, and hence, are

different from the analogous proposition for γ = 1 (Proposition 2 in the main text). More

importantly, the floor used in part (a) of Proposition S.3 is different from that in Proposition

2 of main text since the worst-case optimality does not uniquely pin down q(θ) to be qγ
ℓ
, and

only restricts it to be in the interval [qγ
ℓ
, q̄γℓ ].

Finally, when it comes to the price regulation, Baron-Myerson-with-price-cap still remains

robustly-optimal with a higher price cap of P (qγ
ℓ
) > θ. Consequently, Proposition 4 in the

main text, which compared price and quantity regulation, extends with quantity regulation

dominating price regulation less often because of increased price-cap.

S.4 More general forms of technological uncertainty

In this section, we relax the fact that F contains all distributions over Θ. We show how our

results in the main text change under this relaxation. We begin by defining F , the set of

plausible technologies, as a subset of the set CDF(Θ) with some structure. In particular, we

assume there exists a cdf F ∈ CDF(Θ) such that F is the set of all cdfs F ∈ CDF(Θ) such

that F (θ) ≥ F (θ) for all θ ∈ Θ. In the main text, we assumed F (θ) is the Dirac distribution

that puts unit mass at θ. This amounted to F = CDF(Θ). Now, we allow F to have support

[θs, θ], where θs ∈ (θ, θ). In particular, we assume the following:

Definition S.3 The cdf F is regular with respect to θs if it is absolutely continuous over R
with density f(θ) > 0 if only if θ ∈ [θs, θ] and with z(θ) ≡ θ + F (θ)/f(θ) continuous and

increasing over [θs, θ].
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Let MBM ≡ (qBM, uBM) ∈ M denote an arbitrary IC and IR mechanism that is optimal

under the model (V , F ). Note that such a mechanism is not unique, but in any such a

mechanism qBM is non-increasing, uBM(θ̄) = 0, and uBM(θ) =
´ θ
θ
qBM(y)dy for all θ. Then

let

G∗
s ≡

θˆ

θs

W (θ, qBM)F (dθ). (8)

be the buyer’s expected welfare under the mechanism MBM when the gross value function is

V , and the technology is F . Note that, when θs = θ̄, as in the previous sections, G∗
s = G∗.

Finally, for any IC and IR mechanism M = (q, u) ∈ M, let wq ≡ infθ≤θs W (θ, q). The next

proposition generalizes Lemma 2 in the main text by providing a complete characterization

of the short-list when F is regular with respect to θs.

Proposition S.4 Suppose F is regular with respect to θs. The following are then true:

1. For any M ∈ MSL, G(M) = G∗
s;

2. A mechanism M ≡ (q, u) ∈ MSL if and only if the following conditions jointly hold

(a) q is non-increasing,

(b) for all θ, u(θ) =
´ θ
θ
q(y)dy,

(c) q(θ) = qBM(θ) for all θ ∈ (θs, θ),

(d) V (q(θ))− θq(θ)−
θ́

θ

q(y)dy ≥ G∗
s for all θ ≤ θs,

(e) wqF (θ) +
θ́

θ

W (y, qBM)F (dy) ≥ G∗
s for all θ ∈ [θs, θ].

Part (1) follows from the fact that Nature can always pick (V , F ), which implies that the

guarantee of any IC and IR mechanism is bounded above by the maximal welfare attainable

under the lowest gross value function V and the worst technology F . This upper bound

on guarantee can be achieved by offering a mechanism M ≡ (q, u) in which q(θ) = qBM(θs)

for all θ ≤ θs, q(θ) = qBM(θ) for all θ > θs, and u(θ) =
θ́

θ

q(y)dy for all θ. Against such a
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A: Function W (·, q). B: Technology F1 generates welfare below G∗
s.

Figure S.1: Graphical illustration of new robustness constraint in Part (e) of Proposition

S.4.

mechanism an adversarial Nature cannot do better than selecting (V, F ) = (V , F ), yielding

the buyer a payoff of G∗
s.

Conditions (a)-(d) in Part (2) are generalizations of robustness constraints in Lemma 2

in the main text. Condition (c) follows from the fact that Nature can always choose the

model (V , F ) and the worst-case optimality uniquely pins down the buyer’s response to be

MBM ≡ (qBM, uBM). As for condition (d), it now applies only to θ ≤ θs as Nature can now

select a Dirac distribution only on θ ≤ θs. General technological uncertainty adds a novel

constraint given in part (e). It stems from the fact that Nature’s best response can be a

non-Dirac distribution. To understand this constraint, consider Figure S.1. Let θ1 < θs be a

cost level at which the function W (·, q) reaches the minimum over [θ, θs], i.e., W (θ1, q) = wq,

and let θ2 > θs be a cost level such that W (θ2, q) = W (θ2, q
BM) = wq. Suppose Nature picks

a distribution F1 with an atom at θ1 equal to F (θ2) and which agrees with F on all θ ≥ θ2.

Because W (·, qBM) is decreasing, even if wq ≥ G∗
s (as implied by the constraint in Part (c)),

in the absence of the new constraint in Part (e) it may well be the case that

wqF1(θ1) +

θˆ

θ2

W (θ, qBM)F1(dθ) = wqF (θ2) +

θˆ

θ2

W (θ, qBM)F (dθ) < G∗
s,

meaning that the mechanism’s guarantee is below G∗
s. Therefore, to guard against such

worst-case possibilities, we need constraint in part (e).

Continuing further, we now establish an analog of Proposition 2, which provided a partial

characterization of robustly optimal mechanism when F = CDF(Θ). To do so, we generalize

the definitions of qℓ, q
⋆, θ⋆ and θm as follows. Let

qsℓ ≡ D(θs)

denote the efficient output when the inverse demand is P and the cost is θs. Then let q⋆s be

10



the quantity schedule defined by

q⋆s(θ) ≡

max{qBM(θ), qsℓ} θ < θs

qBM(θ) θ ≥ θs,
(9)

where qBM continues to denote the optimal quantity schedule of Baron and Myerson (1982)

when the model is (V ⋆, F ⋆), with F ⋆ regular, whereas qBM is the optimal quantity schedule of

Baron and Myerson (1982) when the model is (V , F ). The following mechanism is a natural

generalization of Baron-Myerson-with-quantity-floor in the main text.

Definition S.4 The Baron-Myerson-with-quantity-bridge is the mechanism M⋆
s =

(q⋆s , u
⋆
s) where q⋆s is the quantity schedule in (9) and u⋆

s is the function given by u⋆
s(θ) =

θ́

θ

q⋆s(y)dy for all θ.

Finally, let θ⋆s be the threshold cost defined as follows. If qBM(θs) ≤ qsℓ, by continuity of

qBM along with the fact that qBM(θ) > qsℓ (assured by the regularity of F ⋆), θ⋆s is the unique

solution to qBM(θ⋆s) = qsℓ. If, instead, qBM(θs) > qsℓ (i.e., if qBM never crosses qsℓ over the

interval [θ, θ⋆s ]), then θ⋆s ≡ θs. In either case, θ⋆s ≤ θs. Similarly, let

θms ≡ max{θ : θ ∈ arg min
y∈[θ,θs]

W (y, q⋆s)}.

Thus, wq⋆s
= W (θms , q

⋆
s). Finally, let

G∗∗
s ≡ sup

θ∈(θs,θ]

1

F (θ)

ˆ θ

θs

W (y, qBM)F (dy). (10)

We are now ready to state the generalization of Proposition 2 in the main text, extending

the partial characterization of robustly optimal mechanism.

Proposition S.5 Suppose F ⋆ is regular and F is regular with respect to θs. Then, the

following are true.

1. The Baron-Myerson-with-quantity-bridge mechanism is robustly optimal if and only if

W (θms , q
⋆
s) ≥ max{G∗

s, G
∗∗
s }.

2. If W (θms , q
⋆
s) < max{G∗

s, G
∗∗
s }, then θms < θ⋆s and every robustly optimal mechanism

MOPT = (qOPT, uOPT) satisfies the following properties:
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A: Baron-Myerson-with-quantity-bridge. B: Robustly optimal mechanism when

V ⋆ ̸= V .

Figure S.2: Graphical illustration of Proposition S.5.

(a) qOPT(θ) = qBM(θ) for all θ ∈ (θs, θ),

(b) qOPT(θ) = qsℓ for all θ ∈ (θ⋆s , θs),

(c) qOPT(θ) ≤ qBM(θ) for almost all θ < θ⋆s , with the inequality strict over a Lebesgue

positive measure set of types I ⊆ [θms , θ
⋆
s ], and

(d) qOPT(θ) = qBM(θ) for all θ ∈ (θ, θms ).

We end this section with three remarks about Proposition S.5.

Remark S.1 To be precise, part (2) of Proposition S.5 generalizes Proposition 2 in the

main text. Part (1) of Proposition S.5 provides necessary and sufficient conditions for the

Baron-Myerson-with-quantity-bridge mechanism to be robustly optimal. This is analogous

to Proposition 1 in the main text which provided necessary and sufficient conditions for the

Baron-Myerson-with-quantity-floor mechanism to be robustly optimal when F = CDF(Θ).

Remark S.2 If V ⋆ = V (as when the only uncertainty is over the cost technology), then

θms = θs, and the condition in Part 1 of Proposition S.5 is satisfied. In this case, the Baron-

Myerson-with-quantity-bridge mechanism, illustrated in Panel A of Figure S.2, is a robustly

optimal mechanism. Panel B illustrates the features of robustly optimal mechanism when,

instead, V ⋆ ̸= V . A comparison of these figures with Figure 1 and Figure 2 in the main text

illustrates that the key features of the robustly optimal mechanism continue to hold under

general technological uncertainty.

Remark S.3 Proposition S.5 further highlights that the key forces identified in Sections 3

and 4 of the main text continue to determine the shape of robustly optimal mechanisms to

the left of θs. Most importantly, the level of the plateau in robustly optimal mechanisms is

determined by D(θs), the efficient quantity at θs under the lowest possible inverse demand.

Moreover, this level is robust to even more general specifications of technological uncertainty

where F ⊂ CDF(Θ) is an arbitrary set with the property that there exists F ∈ F that

first-order stochastically dominates all other cost distributions in F .
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S.5 Non-monotonicity of the procured quantity in F

As Proposition S.5 shows the robustly optimal mechanism depends on F only through F ⋆

and F . In this section, we show that as F changes the robustly optimal mechanism may

change in a non-monotonic way. To simplify exposition, we focus on the case V ⋆ = V .

As is clear from Proposition S.5 (see Remark S.2), the robustly optimal mechanism is the

Baron-Myerson-with-quantity-bridge. We formalize the changes in the Baron-Myerson-with-

quantity-bridge mechanism as F changes.

Consider a sequence (F n) of cdfs corresponding to the lowest elements of the set F while

fixing F ⋆ with the following properties:

(a) for every n there exists θn ∈ Θ and δn ≥ 0 such that,

(1) F n is absolutely continuous over (−∞, θ), with density f
n
(θ) > 0 for all θ ∈ [θn, θ),

(2) F n(θ) = 0 for all θ < θn, F n(θ) = 1 for all θ ≥ θ,

(3) limθ↑θ F n(θ) = 1− δn,

(b) for every n, θn+1 ≥ θn, and for every θ ∈ (θ, θ), there exists n such that θ < θn < θ,

(c) for every n, δn+1 ≥ δn,

(d) there exists n, n ∈ N ∪ {+∞} with n > n such that θn = θ if, and only if, n ≤ n, and

δn > 0 if, and only if, n ≥ n.

(e) for every n, the function zn : [θn, θ] → R defined by

zn(θ) ≡


θ + F n(θ)/fn

(θ) if θ ∈ [θn, θ)

θ + 1/f
n
(θ) if θ = θ and δn = 0

θ + (1− δn)/δn if θ = θ and δn > 0

is increasing over [θn, θ] and continuous over [θn, θ).

(f) for all θ ∈ [θn+1, θ],
F n+1(θ)

f
n+1

(θ)
≤ F n(θ)

f
n
(θ)

, (11)

13



θ θ

F (θ)

1

F ⋆

θℓ+1θℓ

F ℓ
F ℓ+1

k + 1 < n < l < n < m

F k+1

F k

Fm

θm θm+1

δm(θ)

δm+1(θ)

Fm+1

Figure S.3: Pictorial depiction of the sequence (F n).

and for every n and every θ ∈ [θn, θ],

zn(θ) < z⋆(θ), (12)

which is the case when
Fn(θ)

f
n
(θ)

< F ⋆(θ)
f⋆(θ)

.

Figure S.3 provides an illustration of the sequence (F n). Note that property (c) above means

that the technologies are ranked in the reverse-hazard-rate order. The sequence can thus

be interpreted as capturing an increase in the severity of the buyer’s uncertainty over the

technology that determines the seller’s cost.

Let qOPT
n be a robustly optimal quantity schedule when the lowest technology in F is F n.

The following proposition establishes that the quantity procured under a robustly optimal

mechanism is not monotone in the lowest distribution F n. This property holds despite

the fact that, as is well known, the Baron-Myerson quantity schedule qBM
n

defined, for all

θ ∈ [θn, θ), by

qBM

n
(θ) ≡ arg max

q∈[0,q̄]
{V ⋆(q)− zn(θ)q}

is increasing in the inverse-hazard rare order: for any n, n′ ∈ N, with n′ > n and any θ ≥ θn′ ,

qBM
n′ (θ) ≥ qBM

n
(θ). That is, when the buyer’s model over the technology of the seller’s cost

coincides with the distribution F n, an increase in the distribution (in the inverse-hazard-rate

order) leads to an increase in the output procured.
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Figure S.4: Illustration of Proposition S.6.

Proposition S.6 (Non-monotonicity of output in severity of cost uncertainty) Suppose

V ⋆ = V and F ⋆ is regular. Let (F n) be any sequence of cdfs satisfying properties (a)-(f) above

and let (Mopt
n ) be any sequence of mechanisms such that, for each n, Mopt

n ≡ (qoptn , uopt
n )

is a robustly optimal mechanism when the lowest distribution in F is F n. Then, for every

θ ∈ (θ, θ),

1. there exists n(θ) ∈ N such that qOPT
n (θ) is non-decreasing in n (respectively, non-

increasing in n) over n ≤ n(θ)− 1 (respectively, over n > n(θ)).

2. there exists j, k ∈ N with j < k such that qOPT
j (θ) > qOPT

k (θ).

Figure S.4 illustrates the result in Proposition S.6. For any θ ∈ [θ, θ†], as the lowest

technology changes from F 1 to F 2, the quantity procured increases. In fact, the robustly

optimal quantity schedule changes from the dash-dotted line to the dash-double-dotted line.

Note that both F 1 to F 2 have support Θ; a reduction in the inverse of reverse hazard rate

then implies a reduction in the value of reducing the rents paid to the most efficient types and

hence an increase in the output procured under the optimal mechanism. When the lowest

technology changes from F 2 to F 3, the robustly optimal quantity schedule changes from

the dash-double-dotted line to the solid line and the quantity procured from types in the

range [θ, θ†] goes down. This is because the support of F 3 no longer contains low-cost types.

The buyer can then afford to procure less output from these types without jeopardizing

robustness. Thus, the quantity procured from types in the range [θ, θ†] is not monotone in

n, equivalently, in the worst possible technology. The formal proof is in Appendix S.A.
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S.A Proofs of Propositions S.1, S.4, S.5, and S.6

Proof of Proposition S.1: Let M ≡ (q, u) be a robustly optimal mechanism in which q

is left-continuous. By contradiction, assume M is dominated by another mechanism M̂ ≡
(q̂, û). Lemma S.2 implies that M̂ is also robustly optimal, and therefore, by Proposition 2

in the main text, q̂ differs from q only on the interval (θm, θ⋆). Let

Θq := {θ ∈ (θm, θ⋆) : q̂(θ) < q(θ)}.

By Lemma S.6 (which is stated and proved below after this proof), Θq has a positive Lebesgue

measure. By Proposition 2 in Mishra et al. (2025), we know that

q̂(θ) < q(θ) ≤ qBM(θ) < D⋆(θ) ∀ θ ∈ Θq. (13)

Next, define

θh := sup {θ : θ ∈ Θq}.

Since Θq is non-empty and bounded θh is a finite real number. Clearly, θh > θm. The proof

below establishes a contradiction by showing that there exists θ, in a left neighborhood of

θh, at which the buyer gets a higher welfare under the mechanism M when (V, F ) = (V ⋆, δθ).

By left-continuity of q and since q and q̃ are weakly decreasing, there exists a non-empty

left-neighborhood N := [θℓ, θh) such that N ⊆ Θq and

q(θ) < D⋆(θh) ∀ θ ∈ N .

The last inequality follows from the fact that q(θh) < D⋆(θh) (by (13)) and q is left-

continuous. Let

∆ = sup
y∈N

[
q(y)− q̂(y)

]
By definition of N , ∆ > 0. Thus, there exists θ ∈ N such that q(θ) − q̂(θ) = ∆ − ϵ,

where ϵ < ∆ P ⋆(q(θℓ))−θh
P ⋆(q(θℓ))−θm

. Such ϵ > 0 can be chosen because, by definition of N , we have
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q(θℓ) < D⋆(θh) and this implies P ⋆(q(θℓ)) > θh > θm. Observe that

W (M ;V ⋆, δθ)−W (M̂ ;V ⋆, δθ) =

q(θ)ˆ

q̂(θ)

(
P ⋆(z)− θ

)
dz −

θˆ

θ

(
q(y)− q̂(y)

)
dy.

To reach a contradiction and complete the proof, it suffices to show that the right-hand side

of the above condition is positive.

W (M ;V ⋆, δθ)−W (M̂ ;V ⋆, δθ)

=

q(θ)ˆ

q̂(θ)

(
P ⋆(z)− θ

)
dz −

( θhˆ

θ

(
q(y)− q̂(y)

)
dy
)

−
( θˆ

θh

(
q(y)− q̂(y)

)
dy
)

≥
q(θ)ˆ

q̂(θ)

(
P ⋆(z)− θ

)
dz −

( θhˆ

θ

(
q(y)− q̂(y)

)
dy
)

(since q(y) ≤ q̂(y) for all y > θh)

≥
(
P ⋆(q(θℓ))− θ

)
(q(θ)− q̂(θ))−∆(θh − θ) (since q(θℓ) ≥ q(θ) and by definition of ∆)

=
(
P ⋆(q(θℓ))− θ

)
(∆− ϵ)−∆(θh − θ)

= ∆
(
P ⋆(q(θℓ))− θh

)
− ϵ
(
P ⋆(q(θℓ))− θ

)
≥ ∆

(
P ⋆(q(θℓ))− θh

)
− ϵ
(
P ⋆(q(θℓ))− θm

)
> 0,

where the last inequality follows from the fact that ϵ < ∆ P ⋆(q(θℓ))−θh
P ⋆(q(θℓ))−θm

. ■

Lemma S.6 The set Θq has positive Lebesgue measure.

Proof : Assume, toward a contradiction, that Θq has zero Lebesgue measure. Then, either

(1) q(θ) ≤ q̂(θ) for all θ ∈ (θm, θ⋆), or (2) q(θ) > q̂(θ) only on countably many θ ∈ (θm, θ⋆).

Below, we obtain a contradiction in each of these two cases.

Case 1: Suppose q(θ) ≤ q̂(θ) for all θ ∈ (θm, θ⋆). If this inequality holds with equality for

all θ ∈ (θm, θ⋆), then q̂ coincides with q at all θ, a contradiction. Thus, q(θ) < q̂(θ) for
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some θ ∈ (θm, θ⋆). Moreover, because q is left-continuous, and both q and q̂ are weakly-

decreasing, it must be that q(θ) < q̂(θ) on a positive Lebesgue measure of θ ∈ (θm, θ⋆).

Thus, u(θm) < q̂(θm). Moreover, any robustly optimal mechanism q(θm) = q̂(θm) = D(θm)

(Lemma 10 in the main text). Therefore,

V ⋆(q(θm))− θmq(θm)−
θˆ

θm

q(y)dy > V ⋆(q̂(θm))− θmq̂(θm)−
θˆ

θm

q̂(y)dy,

That is, W (M ;V ⋆, δθm) > W (M̂ ;V ⋆, δθm), a contradiction to the fact that M̂ dominates M .

Case 2: Now suppose, q(θ) > q̂(θ) only on countably many θ ∈ (θm, θ⋆). Because q is

left-continuous, and both q and q̂ are weakly-decreasing, these points must be the ones

where q is discontinuous. Let θ′ be one such point of discontinuity of q in (θm, θ⋆). Because

q(θ) = q̂(θ) for almost all θ ∈ Θ, we have u(θ′) = q̂(θ′). Furthermore, because q(θ) < D⋆(θ)

for all θ ∈ (θm, θ⋆), we have that q̂(θ′) < q(θ′) < D⋆(θ′). Combining these facts with the

quasi-concavity of V ⋆(q)− θ′q, we have that

V ⋆(q(θ′))− θ′q(θ′)−
θˆ

θ′

q(y)dy > V ⋆(q̂(θ′))− θ′q̂(θ′)−
θˆ

θ′

q̂(y)dy.

That is, W (M ;V ⋆, δθ′) > W (M̂ ;V ⋆, δθ′), a contradiction to the fact that M̂ dominates M .

Consequently, Θq has positive Lebesgue measure. ■

Proof of Proposition S.4. Part 1. For any IC and IR mechanism M = (q, u) ∈ M,

G(M) = inf
(V,F )∈V×F

W (M ;V, F ) ≤ W (M ;V , F ) ≤(a) W (MBM;V , F ) = G∗
s. (14)

Inequality (a) holds because MBM maximizes W (·;V , F ) over M. We now show that there

exists an IC and IR mechanism M ∈ M such that G(M) = G∗
s. Let M ≡ (q, u) be the

mechanism in which

q(θ) =

qBM(θs) if θ < θs

qBM(θ) if θ ≥ θs,

and u(θ) =
´ θ
θ
q(y)dy for all θ. Clearly, M ∈ M. Further, since F has support [θs, θ], it

follows that W (M ;V , F ) = W (MBM;V , F ). Now, recall that MBM = (qBM, uBM) is the
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optimal mechanism for the model (V , F ). When F is regular with respect to θs, q
BM is such

that, for all θ ≥ θs,

qBM(θ) = D(z(θ)),

where, for all θ ≥ θs, z(θ) ≡ θ + F (θ)/f(θ). Thus, q(θ) ≤ D(θ) for all θ, with the inequality

strict for θ ̸= θs.
2 Part A of Lemma 9 in Mishra et al. (2025) then implies that W (·, q) is

non-increasing over Θ. Furthermore, because, for all F ∈ F , F ≻FOSD F ,

W (M ;V , F ) ≥ W (M ;V , F ).

Because, for any V ∈ V and any F ∈ F , W (M ;V, F ) ≥ W (M ;V , F ), we thus have that

W (M ;V, F ) ≥ W (M ;V , F ). We conclude that G(M) = W (MBM;V , F ) = G∗
s.

Part 2: Necessity. If M = (q, u) ∈ MSL, then M is IC and IR, and, therefore, q is

non-increasing and u(θ) = u(θ)+
´ θ
θ
q(y)dy for all θ. Further, by the result in Part 1, it must

be that G(M) = G∗
s. Hence, u(θ) = 0.

Recall that, for any θ ≥ θs, q
BM(θ) = argmaxq∈[0,q̄]{V (q)− z(θ)q}. If q(θ) ̸= qBM(θ) for

a positive Lebesgue measure subset of [θs, θ̄], then inequality (a) in (14) is strict and hence

W (M ;V , F ) < W (MBM;V , F ) = G⋆
s. This means that G(M) < G∗

s and hence M /∈ MSL,

a contradiction. Because qBM is decreasing and continuous over [θs, θ̄], we conclude that

q(θ) = qBM(θ) for all θ ∈ (θs, θ̄).

Next, observe that, for any θ < θs, F contains a distribution F corresponding to a Dirac

measure at θ < θs (indeed, F ≻FOSD F ). Welfare under the lowest gross value function V

and such an F is V (q(θ))−θq(θ)−
θ́

θ

q(y)dy = W (θ, q). Hence, it must be that W (θ, q) ≥ G∗
s.

Finally, observe that the inequality in the constraint in part (e) is an equality for θ = θs.

Suppose there exists θ̃ ∈ (θs, θ] such that

wqF (θ̃) +

θˆ

θ̃

W (y, qMB)F (dy) < G∗
s. (15)

2This property holds even if F is not regular. In fact, any undominated mechanism M = (q, u) is such

that q(θ) ≤ D(θ) for all θ (Mishra and Patil, 2025).
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By definition of wq, there exists θ′ ≤ θs such that W (θ′, q) is arbitrarily close to wq. Let F̃

be the cdf given by

F̃ (θ) =


0 if θ < θ′

F (θ̃) if θ ∈ [θ′, θ̃)

F (θ) if θ ≥ θ̃.

Clearly, F̃ (θ) ≥ F (θ) for all θ, and hence, F̃ ∈ F . Welfare under the mechanism (q, u) when

Nature selects the model (V , F̃ ) is equal to

W (M ;V , F̃ ) = W (θ′, q)F (θ̃) +

θˆ

θ̃

W (y, qMB)F (dy) < G∗
s,

where the inequality follows from inequality (15) and the fact that W (θ′, q) is arbitrarily

close to wq. This, however, is a contradiction to M ∈ MSL.

We conclude that properties (a)-(e) are jointly necessary for any M ∈ MSL.

Part 2: Sufficiency. Take any mechanism M satisfying properties (a)-(e). By virtue of

(a) and (b), M is IC and IR. Thus, it suffices to prove that G(M) = G∗
s. By inequality (14),

it is enough to show W (M ;V, F ) ≥ G∗
s for any model (V, F ) ∈ V ×F . First, suppose F is a

Dirac distribution on some θ ≤ θs. Then, condition in part (c) implies

W (M ;V, F ) ≥ W (M ;V , F ) = V (q(θ))− θq(θ)−
θˆ

θ

q(y)dy ≥ G∗
s.

Now consider any model (V, F ) ∈ V × F , where F puts a positive mass on θ > θs. Then,

W (M ;V, F ) ≥ W (M ;V , F )

≥ wqF (θs) +

θˆ

θs

W (θ, q)F (dθ) (by definition of wq)

= wqF (θs) +

θˆ

θs

W (θ, qBM)F (dθ) (because q(θ) = qMB(θ) for all θ ∈ (θs, θ̄)).

(16)

Now, partition [θs, θ] into Θ1 ≡ {θ ∈ [θs, θ] : W (θ, qBM) ≤ wq} and Θ2 ≡ [θs, θ] \ Θ1. Note

that W (·, qBM) is decreasing over [θs, θ] and hence Θ1 is an (possibly empty) interval. If Θ1
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is empty, let θ̂ ≡ θs. Else, let θ̂ be the left endpoint of Θ1. Using (16), we have that

W (M ;V, F ) ≥ wqF (θs) +

θ̂ˆ

θs

W (θ, qBM)F (dθ) +

θˆ

θ̂

W (θ, qBM)F (dθ)

≥ wqF (θs) + wq

(
F (θ̂)− F (θs)

)
+

θˆ

θ̂

W (θ, qMB)F (dθ)

(because W (·, qMB) ≥ wq on [θs, θ̂])

= wqF (θ̂) +

θˆ

θ̂

W (θ, qMB)F (dθ) (17)

Now, let h : Θ → R be the non-increasing function defined by

h(θ) =

wq if θ ≤ θ̂

W (θ, qMB) otherwise.

From (17), we then have that

W (M ;V, F ) ≥
θ̂ˆ

θ

h(θ)F (dθ) +

θˆ

θ̂

h(θ)F (dθ) =

θˆ

θ

h(θ)F (dθ)

≥
θˆ

θ

h(θ)F (dθ) (since F ≻FOSD F )

= wqF (θ̂) +

θˆ

θ̂

W (θ, qMB)F (dθ) (by definition of h)

≥ G∗
s (by condition (e) in Part 3)

Hence, by Part (1), G(M) = G∗
s. ■

Proof of Proposition S.5. The proof is in several parts, each corresponding to a part of

the proposition. Before we get to these parts, observe that for a mechanism (q, u) ∈ MSL

the constraint (d) in Part 2 of Proposition S.4 is equivalent to wq ≥ G∗
s. As for constraint
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(e),

wqF (θ) +

θˆ

θ

W (y, qBM)F (dy) ≥ G∗
s =

θˆ

θs

W (y, qBM)F (dy) ∀ θ ≥ θs

is equivalent to

wq ≥ sup
θ∈(θs,θ]

1

F (θ)

ˆ θ

θs

W (y, qBM)F (dy) = G∗∗
s .

Thus, constraints (d) and (e) can be equivalently written as wq ≥ max{G∗
s, G

∗∗
s }, or alterna-

tively, W (θ, q) ≥ max{G∗
s, G

∗∗
s } for all θ ≤ θs.

Part 1. If M⋆
s is robustly optimal, then M⋆

s ∈ MSL. Observe that wq⋆s
= W (θms , q

⋆
s). Thus,

as argued above, conditions (d) and (e) in Part 2 of Proposition S.4 imply W (θms , q
⋆
s) ≥

max{G∗
s, G

∗∗
s }.

Next, suppose that M⋆
s is such that W (θms , q

⋆
s) ≥ max{G∗

s, G
∗∗
s }. We want to show

that M⋆
s is robustly optimal. By definition, M⋆

s satisfies conditions (a)-(c) in Part 2 of

Proposition S.4. As we argued above, that W (θms ,q
⋆
s)≥ max{G∗

s,G
∗∗
s } implies that the two

robustness constraints (d) and (e) in Part 2 of Proposition S.4 are satisfied. This means

that M⋆
s ∈ MSL. To see that M⋆

s maximizes the buyer’s payoff under the conjectured model

(V ⋆, F ⋆) over MSL, first observe that q⋆s is non-increasing because F ⋆ is regular. Second note

that every mechanism M = (q, u) in the short list has a non-increasing quantity schedule

q that agrees with qBM over (θs, θ̄) (Proposition S.4). This means that, in any such a

mechanism, q(θ) ≥ qsℓ for all θ ∈ [θ, θs). Because, for every θ ∈ [θ, θs),

q⋆s(θ) = arg max
q∈[qsℓ ,q̄]

{V ⋆(q)− z⋆(θ)q}

we conclude that, for any M = (q, u) ∈ MSL,

θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
F ⋆(dθ) ≤

θˆ

θ

[
V ⋆(q⋆s(θ))− z⋆(θ)q⋆s(θ)

]
F ⋆(dθ)

implying that indeedM⋆
s maximizes the buyer’s payoff (under the conjectured model (V ⋆, F ⋆))

over MSL.

Part 2. We start with the following lemma:
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Lemma S.7 Suppose wq⋆s
< max{G∗

s, G
∗∗
s }. Then the following are true:

1. θms < θ⋆s ,

2. if θms > θ, then q⋆s(θ
m
s ) = D(θms ).

Proof : Part 1 of Lemma S.7. We consider two cases. First, suppose qBM(θs) > qsℓ =

D(θs). Then, θ⋆s = θs. Since D and qBM are decreasing and continuous, there exists a non-

empty left neighborhood of θs where qBM(θ) > D(θ). Part B of Lemma 9 in Mishra et al.

(2025) then implies that W (θ, q) is increasing on this interval implying θms < θs = θ⋆s .

Next, suppose qBM(θs) ≤ qsℓ = D(θs). Then, θ
⋆
s ≤ θs, and for every θ ∈ [θ⋆s , θs], q

⋆
s(θ) = qsℓ

and W (θ, q⋆s) = W (θs, q
⋆
s) ≥ max{G∗

s, G
∗∗
s } > wq⋆s

, where the first inequality follows from

(10), and the second inequality follows from our assumption. This implies that W (θ⋆s , q
⋆
s) >

wq⋆s
. Hence, θms < θ⋆s .

Part 2 of Lemma S.7. Since θms < θ⋆s , we have q
⋆
s(θ

m
s ) = qBM(θms ). Using this and repeating

the arguments of Lemma 10 in Mishra et al. (2025), the proof can be completed. ■

Equipped with this result, we now establish parts Parts 2(a) and 2(b) of the proposition.

Parts 2(a) and 2(b). Part 2(a) follows from Proposition S.4 because any robustly optimal

mechanism belongs to MSL. Thus consider Part 2(b). We consider two cases. First, if

qBM(θs) ≥ qsℓ, then, by the definition of θ⋆s , we have that θ⋆s = θs, and hence the interval

(θ⋆s , θs) is empty and the result applies vacuosly. Therefore, suppose that qBM(θs) < qsℓ.

Then, θ⋆s < θs. Now, assume for a contradiction that there exists θ′ ∈ (θ⋆s , θs) such that

qOPT(θ′) > qsℓ. Monotonicity of qOPT then implies that qOPT(θ) > qsℓ for all θ ∈ [θ⋆s , θ
′]. This

means that there exists a non-zero Lebesgue measure of types such that qOPT(θ) > qsℓ. Then,

consider the mechanism M̃ = (q̃, ũ) where the quantity schedule is given by

q̃(θ) =


qOPT(θ) if θ < θ⋆s

qsℓ if θ ∈ [θ⋆s , θs]

qBM(θ) = qOPT(θ) if θ ≥ θs

and where the rents ũ are given by ũ(θ) =
θ́

θ

q̃(y)dy for all θ. Because q̃ is non-increasing,

this ensures that M̃ is IC and IR. The buyer’s payoff from M̃ (under the conjectured model)
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is equal to
θˆ

θ

[
V ⋆(q̃(θ))− z⋆(θ)q̃(θ)

]
F ⋆(dθ)

which is strictly higher than underMOPT. This follows from the fact that, for any θ ∈ [θ⋆s , θs],

qsℓ maximizes V ⋆(q)−z⋆(θ)q over q ≥ qsℓ, along with the fact that F ⋆ is absolutely continuous.

Thus, to produce a contradiction to the robust optimality of MOPT, it suffices to show that

M̃ ∈ MSL.

By definition, M̃ satisfies properties (a)-(c) in Part 2 of Proposition S.4. As for properties

(d) and (e), they are equivalent to verifying that wq̃ ≥ max{G∗
s, G

∗∗
s }. That wq̃ ≥ G∗

s follows

from the arguments in the proof of Lemma 6 in Mishra et al. (2025), along with the fact

that q̃(θ) ≤ qOPT(θ) for all θ. To establish that wq̃ ≥ G∗∗
s , notice that, for all θ ∈ [θ⋆s , θs],

W (θ, q̃) = W (θs, q
BM) ≥ G∗∗

s . Thus, it suffices to focus on θ < θ⋆s . Observe that

inf
θ<θ⋆s

W (θ, q̃) ≥ inf
θ<θ⋆s

W (θ, qOPT) ≥ G∗∗
s ,

where the first inequality follows from the fact that q̃(θ) = qOPT(θ) for θ < θ⋆s , along with

the fact that q̃(θ) ≤ qOPT(θ) for all θ, which implies that ũ(θ) ≤ uOPT(θ) for all θ. The

second inequality holds because MOPT ∈ MSL.

Part 2(c). From Part 2(b), qOPT(θ) = qsℓ for all θ ∈ (θ⋆s , θs). Now suppose there is a

positive-Lebesgue-measure set I ⊆ [θ, θ⋆s) such that qOPT(θ) > q⋆s(θ) = qBM(θ). Consider the

mechanism M̃ = (q̃, ũ) where the quantity schedule is given by

q̃(θ) = min{q⋆s(θ), qOPT(θ)} ∀ θ ∈ Θ,

and where ũ(θ) =
θ́

θ

q̃(y)dy for all θ. Clearly, because q̃ is non-increasing and ũ satisfies the

above properties, the mechanism M̃ is IC and IR. Notice, by Part 2 (a) and (b), q̃(θ) =

q⋆s(θ) = qOPT(θ) for all θ ≥ θ⋆s .

The buyer’s payoff under M̃ is strictly higher than under MOPT following arguments

similar to those in the proof of Lemma 7 in Mishra et al. (2025). Clearly, M̃ satisfies

conditions (a)-(c) of Part 2 of Proposition S.4. The next two claims establish that M̃ also

satisfies the conditions in parts (d) and (e), that is, wq̃ ≥ max{G∗
s, G

∗∗
s } or W (θ, q̃) ≥

max{G∗
s, G

∗∗
s } for all θ ≤ θs. First, observe for every θ ∈ [θ⋆s , θs], q̃(θ) = q⋆s(θ) = qsℓ and
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W (θ, q̃) = W (θs, q̃) > max{G∗
s, G

∗∗
s }. Now, we establish the desired inequality for θ < θ⋆s

using the following two claims.

Claim S.1 Suppose θ < θ⋆s is such that either q̃(θ) = qOPT(θ) or D(θ) ≤ q̃(θ) = q⋆s(θ) <

qOPT(θ). Then W (θ, q̃) ≥ max{G∗
s, G

∗∗
s }.

Proof : Pick θ < θ⋆s . We establish W (θ, q̃) ≥ W (θ, qOPT), and because W (θ, qOPT) ≥
max{G∗

s, G
∗∗
s }, the claim follows.

Note that q⋆s(θ) = qBM(θ). For any θ such that q̃(θ) = qOPT(θ), since q̃(y) ≤ qOPT(y) for

all y ≥ θ, we have that W (θ, q̃) ≥ W (θ, qOPT). Thus, consider a θ for which D(θ) ≤ q̃(θ) =

q⋆s(θ) = qBM(θ) < qOPT(θ). The quasi-concavity of the function V (q)− θq in q implies that

V (q⋆s(θ))− θq⋆s(θ) > V (qOPT(θ))− θqOPT(θ).

Together with the fact that q̃(y) ≤ qOPT(y) for all y ≥ θ, this means that W (θ, q̃) ≥
W (θ, qOPT). ■

Claim S.2 Suppose θ < θ⋆s is such that q⋆s(θ) < min{D(θ), qOPT(θ)}. Then, W (θ, q̃) ≥
max{G∗

s, G
∗∗
s }.

Proof : The proof considers two cases to establish the existence of θ′ > θ such that W (·, q̃)
is non-increasing on [θ, θ′] with W (θ′, q̃) ≥ max{G∗

s, G
∗∗
s }.

Case 1. Suppose q⋆s(θs) = qsℓ = D(θs). Because q⋆s and D are both continuous, there exists

θ < θ′ ≤ θs such that q⋆s(y) ≤ D(y) for all y ∈ [θ, θ′], with q⋆s(θ
′) = D(θ′). Thus,

q̃(θ′) = min{D(θ′), qOPT(θ′)}.

Further, for all y ∈ [θ, θ′],

q̃(y) = min{qOPT(y), q⋆s(y)} ≤ D(y).

Part A of Lemma 9 in Mishra et al. (2025) implies that W (·, q̃) is non-increasing over [θ, θ′]

whereas Claim S.1 implies that W (θ′, q̃) ≥ max{G∗
s, G

∗∗
s }. Hence, W (θ, q̃) ≥ max{G∗

s, G
∗∗
s }.
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Case 2. Now suppose q⋆s(θs) = qBM(θs) > qsℓ = D(θs). Then, because q⋆s(θ) < D(θ), and

D and q⋆s are continuous (latter due to regularity of F ⋆), there exists θ < θ̂ < θ such that

q⋆s(θ̂) = D(θ̂) and q⋆s(y) > D(y) for all y > θ̂. Again, just like we argued in Case 1, there

exists θ < θ′ ≤ θ̂ such that q⋆s(y) ≤ D(y) for all y ∈ [θ, θ′] with q⋆s(θ
′) = D(θ′). Repeating

the remaining arguments in Case 1 completes the proof. ■

The above two claims establish that q̃ satisfies the constraint wq̃ ≥ max{G∗
s, G

∗∗
s }, and

by Proposition S.4, M̃ = (q̃, ũ) ∈ MSL.

We complete the proof by showing that there must exist a set of types I ⊆ [θ, θ⋆s ] of

positive Lebesgue measure such that qOPT(θ) < qBM(θ) for all θ ∈ I. To do that assume

for contradiction qOPT(θ) = qBM(θ) almost everywhere on [θ, θ⋆s ]. Moreover, because q⋆s is

continuous and qBM(θ) is the unique maximizer of V ⋆(q)−z⋆(θ)q, it is without loss to assume

that qOPT(θ) = qBM(θ) for all θ < θ⋆s . This however implies that M⋆
s is robustly optimal, a

contradiction.

Part 2(d). Assume for contradiction that there exists a θ ∈ (θ, θms ) such that qOPT(θ) ̸=
qBM(θ). Because qBM is continuous and decreasing, this means that there exists a positive

Lebesgue measure set of types I ⊆ [θ, θms ) such that qOPT(θ) ̸= qBM(θ) for all θ ∈ I. By

Part (c), we have that qOPT(θ) < qBM(θ) for all θ ∈ I (as qBM is continuous and both qBM

and qOPT are non-increasing). Then, let M̃ = (q̃, ũ) be the mechanism where the quantity

schedule is given by

q̃(θ) =

qBM(θ) if θ ∈ [θ, θms ]

qOPT(θ) otherwise

and where ũ(θ) =
θ́

θ

q̃(y)dy for all θ. Clearly, M̃ is IC and IR. Below, we show that M̃ yields

a higher payoff to the buyer than MOPT and M̃ ∈ MSL, contradicting the optimality of

MOPT.

Because, for any θ, qBM(θ) is the unique maximizer of V ⋆(q) − z⋆(θ)q, the objective

function
θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
F ⋆(dθ)

is strictly higher under M̃ than under MOPT.
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We now show that q̃ satisfies the robustness constraint wq̃ ≥ max{G∗
s, G

∗∗
s }. To do so,

it suffice to show W (θ, q̃) ≥ max{G∗
s, G

∗∗
s } for θ ≤ θms because the inequality holds for any

θ > θms . Thus consider θ ∈ [θ, θms ]. For any θ ≤ θms , q̃(θ) = qBM(θ) = q⋆s(θ). The latter

equality follows from Lemma S.7, which states θms < θ⋆s . Moreover,

W (θ, q̃)−W (θ, q⋆s) =

θˆ

θms

q⋆s(y)dy −
θˆ

θms

qOPT(y)dy

≥(a)

[
V (qOPT(θms ))− θms q

OPT(θms )
]
−
[
V (qBM(θms ))− θms q

BM(θms )
]

+

θˆ

θms

q⋆s(y)dy −
θˆ

θms

qOPT(y)dy

=(b) W (θms , q
OPT)−W (θms , q

⋆
s)

≥(c) max{G∗, G∗∗
s } −W (θms , q

⋆
s)

≥(d) max{G∗, G∗∗
s } −W (θ, q⋆s),

Inequality (a) follows from the fact that D(θms ) maximizes V (q) − θms q over all q and

qBM(θms ) = D(θms ) (Lemma S.7). Equality (b) follows from the fact that qBM(θ) = q⋆s(θ).

Inequality (c) follows from the fact that MOPT ∈ MSL which implies that qOPT(y) sat-

isfies the robustness constraint. Inequality (d) follows from the definition of θms . Hence,

W (θ, q̃) ≥ max{G∗, G∗∗
s } also for all θ ∈ [θ, θms ]. We conclude that M̃ ∈ MSL and yields a

higher payoff to the buyer than MOPT contradicting the optimality of MOPT. ■

This completes the proof of Proposition S.5. ■

Proof of Proposition S.6. Each part below establishes the corresponding part in the

proposition.

Part 1. For any θ ∈ (θ, θ), let n(θ) be the largest n > n such that θn ≤ θ < θn+1. Existence

of n(θ) is guaranteed because of (b) in the definition of (F n), which imply θn ≤ θn+1 < θ

and limn→∞ θn = θ. For any n ≤ n(θ) − 1, we have θ ∈ [θn, θ] and θ ∈ [θn+1, θ]. Thus, by

Proposition S.5, qOPT
n (θ) = qBM

n
(θ), and qOPT

n+1 (θ) = qBM
n+1

(θ). Condition (11) in turn implies

that qBM
n

(θ) ≤ qBM
n+1

(θ), that is, qOPT
n (θ) is non-decreasing in n for n ≤ n(θ)− 1.

For any n > n(θ), θ < θn, and therefore, qOPT
n (θ) = max{qBM(θ), D(θn)}. The quantity

D(θn) is non-increasing in n because θn ≤ θn+1 < θ for every n. Consequently, qOPT
n (θ) is

27



also non-increasing in n.

Part 2. To establish the second part of the proposition it suffices to exhibit a pair j, k ∈ N,
with j < k, such that qOPT

j (θ) > qOPT
k (θ). To do so, consider the following two cases.

Case 1. Suppose qBM(θ) ≥ D(θn(θ)+1). Then let j = n(θ) and k = n(θ) + 1, and observe

that

qOPT
j (θ) = qBM

j
(θ) = D

(
θ +

F j(θ)

f
j
(θ)

)
> D

(
θ +

F ⋆(θ)

f ⋆(θ)

)
= qBM(θ) = qOPT

k (θ),

where the inequality follows from (12).

Case 2. Suppose qBM(θ) < D(θn(θ)+1). Then let j = n(θ)+1 and let k be such that θk > θj.

Existence of such an k is ensured by condition (b) in the definition of (F n). Then

qOPT
k (θ) = max{qBM(θ), D(θk)} < D(θj) = qOPT

j (θ).

To see this, observe that θk > θj implies that D(θk) < D(θj). Hence, if qOPT
k (θ) = D(θk),

then qOPT
k (θ) = D(θk) < D(θj) = qOPT

j (θ). If, instead, qOPT
k (θ) = qBM(θ), the result follows

from the fact that, by assumption, qBM(θ) < D(θj). ■
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