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1 Introduction

“I am prepared for the worst but hope for the best,” Benjamin Disraeli, 1st Earl of

Beaconsfield, UK Prime Minister.

In the canonical Bayesian persuasion model, a Sender designs an information

structure to influence the behavior of a Receiver. The Sender is Bayesian, and has

beliefs over the Receiver’s prior information as well as the additional information the

Receiver might acquire after observing the realization of the Sender’s signal. As a

result, the Sender’s optimal signal typically depends on the details of her belief about

the Receiver’s learning environment.

In many applications, however, the Sender may be concerned that her belief—

which we call a conjecture—is wrong. In such cases, the Sender may prefer to choose

a policy that is not optimal under her conjecture but that protects her well in the

event her conjecture turns out to be false.

In this paper, we propose a solution concept for the persuasion problem that

accounts for the uncertainty that the Sender may face over the Receiver’s learning

environment and that incorporates the Sender’s concern for the validity of her conjec-

ture. Specifically, we assume that the Sender discards all policies that do not provide

her with the optimal payoff guarantee when her conjecture is wrong. The payoff guar-

antee is computed conservatively by considering all possible learning environments for

the Receiver, without assuming that the Sender is last to speak or that the Receiver

will break indifferences in the Sender’s favor. We characterize properties of “robust

solutions” which we define as policies that maximize the Sender’s payoff under her

conjecture among those that provide the optimal payoff guarantee.

The following example (inspired by the “judge example” from Kamenica and

Gentzkow, 2011) illustrates our main ideas.

Example 1. The Receiver is a judge, the Sender is a prosecutor, and there are

three relevant states of the world, ω ∈ {i, m, f}, corresponding to a defendant being

innocent, guilty of a misdemeanor, or guilty of a felony, respectively. The prior µ0 is

given by µ0(i) = 1/2 and µ0(m) = µ0(f) = 1/4. The judge, who initially only knows

the prior distribution, will convict if her posterior belief that the defendant is guilty

(that is, that ω ∈ {m, f}) is at least 2/3. In that case, she also chooses a sentence.

Let x ∈ [x, x̄], with x > 0, be the range of the number of years in prison that the
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judge can select from. The maximal sentence x̄ is chosen if the judge’s posterior

belief that a felony was committed conditional on the defendant being guilty is at

least 1/2. Otherwise, the sentence is linearly increasing in the conditional probability

of the state f . The prosecutor attempts to maximize the expected sentence (with

acquitting modeled as a sentence of x = 0). Formally, if µ is the induced posterior

belief of the judge, with µ(ω) denoting the probability of state ω, the Sender’s payoff

is given by

V̂ (µ) = 1{µ(m)+µ(f)≥ 2
3}min{x̄, x+

2µ(f)

µ(f) + µ(m)
(x̄− x)},

where 1{a} is a function taking value 1 when the statement {a} is true and 0 otherwise.

The Bayesian solution, as defined by Kamenica and Gentzkow (2011), is as fol-

lows: The prosecutor induces the posterior belief (µ(i), µ(m), µ(f)) = (1, 0, 0) with

probability 1/4 and the belief (1/3, 1/3, 1/3) with probability 3/4 (by saying “inno-

cent” with probability 1/2 conditional on the state being i, and “guilty” in all other

cases). The expected payoff for the prosecutor is (3/4)x̄.

In the above situation, the prosecutor’s conjecture is that she is the sole provider

of information. However, this could turn out to be false. For example, after the

prosecutor presents her arguments, the judge could call a witness. The prosecutor

might not know the likelihood of this scenario, the amount of information that the

witness has about the state, or the witness’ motives.1

When confronted with such uncertainty, it is common to consider the worst case:

Suppose that the witness knows the true state and strategically reveals information

to minimize the sentence. Under this scenario, the prosecutor cannot do better than

fully revealing the state. Indeed, if the prosecutor chose a disclosure policy yielding

a strictly higher expected payoff, the adversarial witness could respond by fully re-

vealing the state, lowering the prosecutor’s expected payoff back to the full-disclosure

payoff of (1/4)x+ (1/4)x̄.

The key observation of our paper is that the prosecutor—even if she is primarily

concerned about the worst-case scenario—should not fully disclose the state. Consider

the following alternative partitional signal: reveal the state “innocent,” and pool

together the remaining two states. Suppose that the witness is adversarial. When

it is already revealed that the defendant is innocent, the witness has no information

1The prosecutor may have beliefs over these events, in which case such beliefs are part of what
we called the “conjecture.” Our results allow for arbitrary beliefs, not necessarily that the Receiver
is uninformed. What is important is that the Sender does not fully trust her beliefs.
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left to reveal. In the opposite case, because conditional on the state being m or f the

prosecutor’s payoff is concave, the adversarial witness will choose to disclose the state.

Thus, in the worst case, the prosecutor’s expected payoff under this policy is the same

as under full disclosure. At the same time, the policy is superior if the prosecutor’s

conjecture turns out to be true. Indeed, if the prosecutor really is the sole provider of

information, then the alternative policy yields (1/2)x̄, which is strictly greater than

the full-disclosure payoff.

It may be tempting to conclude from similar reasoning that the prosecutor might

as well stick to the Bayesian solution, even if she is concerned about the worst-case

scenario. After all, if the witness discloses the state in case she is adversarial, then it

is irrelevant what signal the prosecutor selects, so shouldn’t she focus on maximizing

her payoff under her conjecture? The problem with that argument is that the most

adversarial scenario is not always that the witness fully discloses the state. In the

Bayesian solution, when the prosecutor induces the posterior (1/3, 1/3, 1/3), the

witness may instead reveal the state f with some small probability ϵ > 0. With

remaining probability, the judge’s posterior belief that the defendant is guilty will

then shift just below the threshold of 2/3. As a result, the judge acquits the defendant

with probability arbitrarily close to one, not just when the latter is innocent but also

when they are guilty. Thus, the payoff guarantee for the prosecutor from selecting

the Bayesian solution is in fact 0, implying that the Bayesian solution need not be

robust to misspecifications in the conjecture.

When the prosecutor is unable to attach probability assessments to all relevant

events (like the appearance of a witness), any policy she chooses results in a range

of expected payoffs generated by the set of all possible scenarios. Thus, there are

many ways in which any two information policies can be compared. Our solution

concept is based on two pragmatic premises that are captured by a lexicographic

solution. First, and foremost, the Sender would like to secure the best possible payoff

guarantee. She does so by dismissing any policy that is not optimal in the “worst-case

scenario.” Second, when there are multiple policies that are worst-case optimal, the

Sender acts as in the standard Bayesian persuasion model. That is, she selects the

policy that, among those that are worst-case optimal, maximizes her expected payoff

under the conjecture. We refer to the case described by the conjecture as the base-case

scenario. The base-case scenario may correspond to the specification that the Sender

considers most plausible (for example, after calibrating on some data), focal, or a good

3



approximation (obtained, for example, by ignoring events that appear unlikely).

The combination of these two properties defines a robust solution: a policy that is

base-case optimal among those that are worst-case optimal.2 The alternative policy

described above is in fact a robust solution for the prosecutor. ■

Our baseline model studies a generalization of the above example to arbitrary

Sender-Receiver games with finite action and state spaces. To ease the exposition,

we initially assume that the base-case scenario is that the Receiver does not have

any exogenous information other than that contained in the common prior (the case

considered in most of the literature).3 We capture the Sender’s concern about the

validity of her conjecture by introducing a third player, Nature, that may send an

additional signal to the Receiver. We assume that Nature can condition on the

Sender’s signal realization, reflecting the Sender’s uncertainty over the order in which

signals are observed.

Worst-case optimal policies maximize the Sender’s expected payoff when Nature’s

objective is to minimize the Sender’s payoff. Robust solutions maximize the Sender’s

base-case payoff among all worst-case optimal policies.

Despite the fact that robust solutions involve worst-case optimality, they exist

under standard conditions, and can be characterized by applying techniques similar to

those used to identify Bayesian solutions (e.g., concavification of the value function).

However, the economic properties of robust solutions can be quite different from those

of Bayesian solutions. Our main result identifies states that cannot appear together in

the support of any of the posterior beliefs induced by a robust solution. Separation of

such states is both necessary and sufficient for worst-case optimality. Robust solutions

thus maximize the same objective function as Bayesian solutions but subject to the

additional constraint that the induced posteriors have admissible supports.

The separation theorem permits us to qualify in what sense more information is

disclosed under robust solutions than under standard Bayesian solutions: For any

Bayesian solution, there exists a robust solution that is either Blackwell more infor-

mative or not comparable in the Blackwell order. A naive intuition for why robustness

2In Section 6, we show that the lexicographic nature of our solution concept is not essential for its
properties: If the Sender instead maximizes a weighted sum of her payoffs in the worst-case and the
base-case scenarios, then, under permissive regularity conditions, the solutions coincide with robust
solutions as long as the weight on the worst-case scenario is sufficiently large.

3In the single-Receiver case, the scenario in which the Receiver is uninformed happens to be the
best possible case for the Sender, that is, the “base-case scenario” is also the “best-case scenario.”
Later in the analysis, though, we allow for arbitrary conjectures.
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calls for more information disclosure is that, because Nature can always reveal the

state, the Sender may opt for revealing the state herself. This intuition, however,

is not correct, as we already indicated in the example above. While fully revealing

the state is always worst-case optimal, it need not be a robust solution. In fact, if

Nature’s most adversarial response to any selection by the Sender is to fully disclose

the state, then any signal chosen by the Sender yields the same payoff guarantee and

hence is worst-case optimal—the Sender then optimally selects the same signal as in

the standard Bayesian persuasion model. Instead, the reason why robustness calls

for more information disclosure than standard Bayesian persuasion is that, if certain

states are not separated, Nature could push the Sender’s payoff strictly below what

the Sender would obtain by fully disclosing these states herself. This is the reason why

the Sender always reveals the state “innocent” in the robust solution in Example 1,

whereas the Bayesian solution sometimes pools that state with the other two.

When the Sender faces non-Bayesian uncertainty, it is natural for her to want

to avoid dominated policies. A dominated policy performs weakly (and sometimes

strictly) worse than some alternative policy that the Sender could adopt, no matter

how Nature responds. We show that at least one robust solution is undominated, and

that, provided that the conjecture satisfies a certain condition, all robust solutions

are undominated. Thus, robust solutions are desirable even if the Sender attaches no

significance to any particular conjecture; they can be used to generate solutions that

are worst-case optimal and undominated. Example 1 shows that focusing on worst-

case optimal solutions is not enough for this purpose: Full disclosure is worst-case

optimal but dominated.

While we focus on a simple model to highlight the main ideas, we argue in Section 4

that our approach and results extend to more general persuasion problems, and can

accommodate various assumptions about the Sender’s conjecture and the worst case.

With a single Receiver, we can allow the Sender to conjecture that the Receiver

observes a particular exogenous signal that is informative about her type or the

state; the non-Bayesian uncertainty is created by the possibility that the actual signal

observed by the Receiver is different from the one conjectured by the Sender.

Our results also generalize to the case of multiple Receivers under the assumption

that the Sender uses a public signal. In the standard persuasion framework, it is

typical to assume that the Sender not only controls the information that the Receivers

observe but also coordinates their play on the strategy profile most favorable to
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her, in case there are multiple profiles consistent with the assumed solution concept

and the induced information structure.4 In this case, a policy is worst-case optimal

if it maximizes the Sender’s payoff under the assumption that Nature responds to

the information provided by the Sender by revealing additional information to the

Receivers (possibly in a discriminatory fashion) and coordinating their play (in a way

consistent with the assumed solution concept) to minimize the Sender’s payoff. In

contrast, if the Sender’s conjecture turns out to be correct, the Receivers’ exogenous

information and the equilibrium selection are the ones consistent with the Sender’s

beliefs. As a result, robust solutions are a flexible tool that can accommodate various

assumptions about the environment. For example, a Sender may conjecture that play

will constitute a Bayes Nash equilibrium under the information structure induced by

her signal. However, she may first impose a “robustness test” to rule out policies that

deliver a suboptimal payoff in the worst Bayes correlated equilibrium. For any given

specification of the worst-case and base-case Sender’s payoffs, our separation theorem

characterizes the resulting robust solutions.

The rest of the paper is organized as follows. We review the related literature next.

In Section 2, we present the baseline model, and then we derive the main properties of

robust solutions in Section 3. Section 4 extends the model and the results to general

persuasion problems, and Section 5 illustrates the results with applications. Finally,

in Section 6, we discuss how our solution concept relates to alternative notions of

robustness. Most proofs are collected in Appendix A. The Online Appendix contains

supplementary results, most notably a discussion of a version of our model in which

Nature chooses her signal simultaneously with the Sender, rather than conditioning

on the Sender’s signal realization.

Related literature. Our paper contributes to the fast-growing literature on

Bayesian persuasion and information design (see, among others, Bergemann and Mor-

ris, 2019, and Kamenica, 2019 for surveys). Several recent papers adopt a robust

approach to the design of the optimal information structure. Inostroza and Pavan

(2022), Morris et al. (2020), Ziegler (2020), and Li et al. (2021) focus on the adver-

sarial selection of the continuation strategy profile of the Receivers. Babichenko et al.

(2021) characterize regret-minimizing signals for a Sender who does not know the Re-

4Of course, this issue is already present in the single-Receiver case when the Receiver is indifferent
between multiple actions; however, with a single Receiver, this is typically a non-generic phenomenon
which can be avoided at an arbitrarily low cost for the Sender.
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ceiver’s utility function. Most closely related are Hu and Weng (2021) and Kosterina

(2021) who study signals that maximize the Sender’s payoff in the worst-case scenario,

when the Sender faces uncertainty over the Receivers’ exogenous private information.

Hu and Weng (2021) observe that full disclosure maximizes the Sender’s payoff in the

worst-case scenario, when the Sender faces full ambiguity over the Receivers’ exoge-

nous information (as in our solution concept). They also consider the opposite case of

a Sender that faces small local ambiguity over the Receivers’ exogenous information

and show robustness of Bayesian solutions in this case. Kosterina (2021) considers a

setting in which the Sender faces ambiguity over the Receiver’s prior. This is similar

to the version of our model (analyzed in the Online Appendix) in which the Sender

and Nature move simultaneously; however, an important difference is that Nature in

Kosterina’s model chooses the Receiver’s prior, while Nature in our model chooses a

distribution of posteriors induced from a fixed (and known) prior.5

Our results are different from those in any of the above papers, and reflect a

different approach to the design of the optimal signal. Once the Sender identifies all

signals that are worst-case optimal, she looks at their performance under the base-case

scenario (as in the canonical Bayesian persuasion model). In particular, our solution

concept reflects the idea that there is no reason for the Sender to fully disclose the state

if she can benefit by withholding some information under the conjectured scenario

while still guaranteeing the same worst-case payoff. Our lexicographic approach to

the assessment of different information structures is in the same spirit as the one

proposed by Börgers (2017) in the context of robust mechanism design.

The literature on Bayesian persuasion with multiple Senders is also related, in

that Nature is effectively a second Sender in the persuasion game that we study.

Gentzkow and Kamenica (2016, 2017) consider persuasion games in which multiple

Senders move simultaneously and identify conditions under which competition leads

to more information being disclosed in equilibrium. Board and Lu (2018) consider

a search model and provide conditions for the existence of a fully-revealing equi-

librium. Au and Kawai (2020) study multi-Sender simultaneous-move games where

each Sender discloses information about the quality of her product (with the qualities

5The above papers consider robustness for the Sender. Nikzad (2021) studies a model with a
non-Bayesian Receiver who takes an action that guarantees the highest possible payoff guarantee.
Beyond information design, other papers look at the consequences of the designer’s ambiguity over
the agents’ information sources; for example, Carroll (2019) and Brooks and Du (2021) consider
informationally-robust design of trading mechanisms.
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drawn independently across Senders). They show that, as the number of Senders

increases, each Sender discloses more information, with the information disclosed by

each Sender converging to full disclosure as the number of Senders goes to infinity.

Cui and Ravindran (2020) consider persuasion by competing Senders in zero-sum

games and identify conditions under which full disclosure is the unique outcome.6

Li and Norman (2021), and Wu (2021), instead, analyze games in which Senders

move sequentially and, among other things, identify conditions under which (1) full

information revelation can be supported in equilibrium and (2) silent equilibria (that

is, equilibria in which all Senders but one remain silent) sustain all equilibrium out-

comes. These papers focus on equilibrium outcomes under competition, rather than

robustness of the policy chosen by a single Sender. A key element in Li and Norman

(2021)’s equilibrium analysis is the optimality for each Sender of inducing “stable

beliefs” that are not further split by downstream Senders. Our paper shows that

imposing a zero-sum payoff assumption generates a sharp implication on the struc-

ture of stable beliefs in terms of states that are separated under any of the induced

posteriors.

Kolotilin et al. (2017), Laclau and Renou (2017), and Guo and Shmaya (2019),

among others, consider persuasion of privately informed Receivers. Additionally,

Matysková and Montes (2021) and Ye (2021) study models in which the Receiver

optimally acquires information in response to the signal selected by the Sender. Con-

trary to the present paper, in that literature, the distribution of the Receivers’ private

information is known to the Sender.

2 Model

A payoff-relevant state ω is drawn from a finite set Ω according to a distribution

µ0 ∈ ∆Ω that is common knowledge between a Sender and a Receiver. The Receiver

has a continuous utility function u(a, ω) that depends on her action a, chosen from

a compact set A, and the state ω. Let A⋆(µ) := argmaxa∈A
∑

Ω u(a, ω)µ(ω) denote

the set of actions that maximize the Receiver’s expected payoff when her posterior

belief over the state is µ ∈ ∆Ω. The Sender has a continuous utility function v(a, ω).

She chooses an information structure q : Ω → ∆S that maps states into probability

6In the Stackelberg version of the zero-sum game between competing Senders, Cui and Ravindran
(2020) assume that the follower cannot condition its information on the realization of the leader’s
signal. This scenario corresponds to the version of our model analyzed in the Online Appendix.
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distributions of signal realizations in some finite signal space S: We denote by q(s |ω)
the probability of signal realization s ∈ S in state ω. Hereafter, we abuse terminology

and refer to q as the Sender’s signal.

The Sender faces uncertainty about the exogenous sources of information the Re-

ceiver may have access to, when learning about the state. We capture this uncertainty

by allowing Nature to disclose additional information to the Receiver that can be cor-

related with both the state and the realization of the Sender’s signal. That is, in the

eyes of the Sender, Nature chooses an information structure π : Ω × S → ∆R that

maps (ω, s) ∈ Ω×S into a distribution over a set of signal realizations in some finite

signal space R. We denote by π(r |ω, s) the probability of signal realization r ∈ R
when the state is ω and the realization of the Sender’s signal is s. The possibility

for Nature to condition her signal on the realization of the Sender’s signal reflects

the Sender’s concern that the Receiver may be able to acquire additional information

after seeing the realization of her signal.

Hereafter, we treat the signal spaces S and R as exogenous and assume that they

are subsets of some sufficiently rich space. Because Ω is finite, it will become clear

that, under our solution concept, the assumption of finite S and R is without loss

of optimality for either the Sender or Nature. We denote by Q and Π the set of all

feasible signals for the Sender and Nature, respectively. Fixing some set of signals,

for any initial belief µ ∈ ∆Ω, we denote by µx ∈ ∆Ω the posterior belief induced by

the realization x of these signals, where x could be a vector. In particular, we denote

by µs,r
0 ∈ ∆Ω the posterior belief over Ω that is obtained starting from the prior belief

µ0 and conditioning on the realization (s, r) of the signals q and π.

In the standard Bayesian persuasion model, the Sender has a belief about the

Receiver’s exogenous information and the way the Receiver plays in case of indif-

ference. We refer to this belief as the Sender’s conjecture. We denote by V̂ (µ) the

Sender’s expected payoff when her induced posterior belief µ is paired with Nature’s

disclosure and the Receiver adopts the conjectured tie-breaking rule. To simplify the

exposition, we assume in this section that the Sender’s conjecture is that the Receiver

has access to no information other than the one contained in the prior and, in case of

indifference, chooses the action most favorable to the Sender, as in the baseline model

of Kamenica and Gentzkow (2011). (This assumption is relaxed in Section 4, where

we show that all our results extend to general conjectures.) Under this simplifying
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assumption, we have that

V̂ (µ) := max
a∈A⋆(µ)

∑
ω∈Ω

v(a, ω)µ(ω).

The Bayesian persuasion problem is to maximize

v̂(q) :=
∑

ω∈Ω, s∈S

V̂ (µs
0)q(s|ω)µ0(ω)

over all signals q ∈ Q. We refer to the function v̂(·) as the base-case payoff.

In contrast, if the Sender is concerned about the robustness of her information

policy, she may evaluate her expected payoff from choosing q as

v̂(q) := inf
π∈Π

{ ∑
ω∈Ω, s∈S

(∑
r∈R

V (µs,r
0 )π(r|ω, s)

)
q(s|ω)µ0(ω)

}
,

where

V (µ) := min
a∈A⋆(µ)

∑
ω∈Ω

v(a, ω)µ(ω).

We refer to v̂(·) as the worst-case payoff. The “worst case” refers to the scenario in

which Nature responds to the Sender’s choice of signal q by selecting a signal that

minimizes the Sender’s payoff, as reflected by the infimum over all signals π ∈ Π.

Moreover, in case the Receiver is indifferent between several actions, Nature breaks

the ties against the Sender, as reflected by the definition of V .

3 Robust solutions

We now define robust solutions and derive their properties.

Definition 1. A signal q ∈ Q is worst-case optimal if it maximizes the worst-case

payoff v̂ over the set of all signals Q.

We let W = argmaxq∈Q v̂(q) denote the set of worst-case optimal signals (as we

show below, the set is non-empty).

Definition 2. A signal q ∈ Q is a robust solution if it maximizes the base-case payoff

v̂ over the set of all worst-case optimal signals W .

As foreshadowed in the Introduction, the definition of a robust solution reflects the

Sender’s lexicographic attitude towards the uncertainty she faces. First, the Sender

seeks a signal that is worst-case optimal, i.e., that is not outperformed by any other
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signal, in case Nature plays adversarially. Second, if there are multiple signals that

pass this test, the Sender seeks one among them that maximizes her payoff in case her

conjecture is correct. In short, a robust solution is a signal that is base-case optimal

among those that are worst-case optimal.

Because the Sender’s payoff depends only on the induced posterior belief, it is

natural to optimize directly over distributions of posterior beliefs (rather than signals).

For any µ ∈ ∆Ω, let

V̂ (µ) := inf
π: Ω→∆R

{ ∑
ω∈Ω, r∈R

V (µr)π(r|ω)µ(ω)

}
denote the expected payoff to the Sender conditional on inducing a posterior belief

µ under the worst-case scenario, that is, when Nature responds to the induced belief

µ by minimizing the Sender’s payoff with the choice of π (and the Receiver breaks

ties adversarially). Note that π no longer depends on the realization of the Sender’s

signal because the function V̂ (µ) is defined at the interim stage, conditional on the

Sender inducing some belief µ with her signal realization.

Next, for any ω ∈ Ω, let δω denote the Dirac distribution assigning measure one

to the state ω and, for any induced posterior µ ∈ ∆Ω, denote by

V full(µ) :=
∑
ω∈Ω

V (δω)µ(ω)

the Sender’s payoff when, starting from µ, the state is fully disclosed to the Receiver

(hereafter, the “full-disclosure” payoff).

Lemma 1. Let W ⊂ ∆∆Ω denote the set of all distributions ρ over posterior beliefs

that satisfy �
V̂ (µ)dρ(µ) = V full(µ0), (WC)

and Bayes plausibility �
µdρ(µ) = µ0. (BP)

A signal q ∈ Q is a robust solution if and only if the distribution over posterior beliefs

ρq ∈ ∆∆Ω that q induces maximizes
�
V̂ (µ)dρ(µ) over W.

Lemma 1 is intuitive. Since Nature can always disclose the state, the Sender’s pay-

off in the worst-case scenario is upper bounded by the full-disclosure payoff. Clearly,

this upper bound can be achieved by the Sender disclosing the state herself. Hence,

a signal q is worst-case optimal (i.e., q ∈ W ) if and only if v̂(q) = V full(µ0). In
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particular, full disclosure belongs to W . The lemma then expresses this observation

in terms of distributions of posterior beliefs, using the property that a distribution

can be induced by some signal if and only if it is Bayes-plausible, that is, it satisfies

(BP). Hereafter, we abuse terminology and call ρRS a robust solution if it maximizes�
V̂ (µ)dρ(µ) over all Bayes-plausible distributions ρ ∈ ∆∆Ω satisfying (WC), with

no further reference to the underlying signal q.

It is useful at this point to contrast a robust solution with a Bayesian-persuasion

solution (henceforth, Bayesian solution; see Kamenica and Gentzkow, 2011).

Definition 3. A signal qBP is a Bayesian solution if it maximizes the base-case

payoff v̂ over the set of all signals Q. This is the case if and only if the distribution

ρBP ∈ ∆∆Ω over posterior beliefs induced by qBP maximizes
�
V̂ (µ)dρ(µ) over all ρ

satisfying (BP).

By Lemma 1, the only difference between a Bayesian solution and a robust solution

is that a robust solution must additionally satisfy constraint (WC).

While the result in Lemma 1 offers a useful perspective, to compute V̂ (µ), one

must solve a Bayesian persuasion problem with µ as a prior. This problem con-

sists in choosing a distribution over posterior beliefs averaging out to µ to mini-

mize the Sender’s expected payoff, with the latter given by V (η) for any posterior

η ∈ ∆Ω induced by Nature. Let lco(V ) denote the lower convex closure of V , that

is, lco(V ) = −co(−V ), where the concave closure co(·) of a function is defined as the

lowest concave upper bound, as in Kamenica and Gentzkow (2011). It follows that

V̂ (µ) = lco(V )(µ). Note that V̂ (µ) is a convex function that coincides with V (µ) at

Dirac deltas µ = δω. Computing lco(V )(µ) can be difficult, especially when the state

space is large. The next result shows an alternative characterization of W .

For any function V : ∆Ω → R, and Y ⊆ ∆Ω, let V |Y denote a function defined

on the domain Y that coincides with V on Y . Given any µ ∈ ∆Ω, let supp(µ) denote

the support of µ, that is, the smallest subset of Ω with measure one under µ.

Proposition 1. Let

F := {B ⊆ Ω : V |∆B ≥ V full|∆B}.

Then,

W = {ρ ∈ ∆∆Ω : ρ satisfies (BP) and, ∀µ ∈ supp(ρ), supp(µ) ∈ F}.
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Proposition 1 states that a Bayes-plausible distribution ρ ∈ ∆∆Ω is worst-case

optimal if and only if the support of any of the posteriors induced by ρ is “admissible.”

Moreover, the proposition describes exactly what the admissible sets are: The set

B ⊆ Ω is admissible if (and only if) any posterior supported on B gives the Sender

an expected payoff no smaller than the one the Sender could obtain, starting from

µ, by fully disclosing the state. Informally, B is admissible if the Sender prefers

obfuscation to transparency on that set of states. Importantly, this condition is

expressed effectively in terms of the primitives of the model (apart from solving

for the Receiver’s best-response correspondence), and checking it does not require

computing the lower convex closure of V .

To gain intuition, fix a posterior belief µ ∈ ∆Ω in the support of the belief

distribution chosen by the Sender. Then, for any belief η ∈ ∆Ω with supp(η) ⊆
supp(µ), starting from µ, Nature can induce the belief η with positive probability,

and disclose the state with remaining probability. Thus, if there exists an η such that

V (η) < V full(η), then by inducing µ, the Sender exposes herself to a payoff strictly

below what she would obtain by revealing the state. The only way for the Sender

to avoid that exposure is to separate some states in the support of µ so that Nature

can no longer induce η. Conversely, if no such η exists for which V (η) < V full(η),

then, conditional on µ, Nature minimizes the Sender’s payoff by fully disclosing the

states in the support of µ. Because the Sender’s payoff under the worst-case scenario

is upper bounded by the payoff she obtains under full disclosure (by Lemma 1), any

such µ can be part of a worst-case optimal distribution.

This logic is illustrated in Figure 3.1 where, for simplicity, we consider a binary

state space. The solid line depicts the payoff function V , while the dashed line

(connecting the payoffs from inducing degenerate beliefs) represents the full-disclosure

payoff V full. Because there exists a belief η at which V lies strictly below V full, worst-

case optimality rules out inducing any posterior belief whose support contains the

support of η (in the figure, this means any belief in the interior of the simplex). To

see this, suppose, for example, that the Sender induces the posterior µ (see Figure

3.1) that is part of the Bayesian solution. Then, conditional on µ realizing, Nature

can split µ into η and a set of Dirac deltas. Because V (η) < V full(η), and because V

and V full always coincide at degenerate beliefs, the resulting expected payoff for the

Sender is strictly below her full-disclosure payoff. Hence, µ cannot be induced under

any policy generating the optimal payoff guarantee. A similar argument applies to
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any other posterior belief whose support contains the support of η.

The example also illustrates the convenience of Proposition 1. To identify worst-

case optimal policies, one does not actually need to compute lco(V ), which can be

difficult with more than two states. The existence of a belief η for which V (η) <

V full(η) suffices to rule out all distributions ρ ∈ ∆∆Ω that generate beliefs whose

supports contain the support of η.

Figure 3.1: Illustration of Proposition 1

The following theorem, which is our main characterization result, then follows

directly from what we established above.

Theorem 1 (Separation Theorem). ρRS ∈ ∆∆Ω is a robust solution if and only if it

maximizes �
V̂ (µ)dρ(µ)

over all distributions ρ ∈ ∆∆Ω satisfying (BP) and such that

supp(ρ) ⊆ ∆FΩ := {µ ∈ ∆Ω : supp(µ) ∈ F}.

Theorem 1 implies that the only difference between a Bayesian solution and a

robust solution is that the latter must satisfy an additional constraint on the sup-

ports of the posterior beliefs it induces: A robust solution can only attach positive
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probability to posterior beliefs supported on “admissible” subsets of the state space,

as described by the collection F from Proposition 1.

For illustration, consider Example 1 from the Introduction. First, note that a

robust solution cannot induce a posterior belief that mixes the state i with some other

state from {m, f}; indeed, by Theorem 1, such supports are not admissible because

any posterior belief that puts sufficiently high (but not full) probability on the state

i yields a zero payoff for the Sender, which is strictly worse than the full-disclosure

payoff. Second, states m and f need not be separated because, when restricted to

beliefs supported on {m, f}, the Sender’s payoff V is concave, and hence lies above

the linear function V full with which it coincides at the end points (degenerate beliefs).

Thus, we have that F = {{i}, {m}, {f}, {m, f}}. Theorem1 then predicts that a

robust solution must reveal the state i, and that it maximizes the Sender’s expected

payoff V̂ conditional on states {m, f}. Because V̂ is concave on ∆{m, f}, it is

optimal not to reveal any information conditional on these states. This confirms our

assertion that revealing i and pooling m and f is a robust solution for Example 1.

Theorem 1 yields a number of direct corollaries that we describe next.

Corollary 1 (Existence). A robust solution exists.

Indeed, the set W of worst-case optimal distributions is closed, and thus compact

(this follows because the collection F is closed with respect to taking subsets, i.e., if

B ∈ F , then all subsets of B also belong to F). It is non-empty because it contains

a distribution corresponding to full disclosure of the state. Finally, the function V̂ is

upper semi-continuous, so existence follows from Weierstrass Theorem.

It is well-known that requiring exact worst-case optimality often precludes exis-

tence of solutions in related models. Indeed, we show in the Online Appendix that

existence may fail when Nature selects a signal simultaneously with the Sender. How-

ever, when Nature can condition on the realization of the Sender’s signal, existence

is guaranteed by the fact that Nature’s optimal response to each signal realization

convexifies the Sender’s value function, hence making it continuous.

Hereafter, we will say that states ω and ω′ are separated by a distribution ρ ∈ ∆∆Ω

if there is no posterior µ ∈ supp(ρ) such that {ω, ω′} ⊆ supp(µ). Intuitively, given

any posterior belief µ induced by ρ, the Receiver never faces any uncertainty between

ω and ω′.
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Corollary 2 (State separation). Suppose that there exists λ ∈ (0, 1) and ω, ω′ ∈ Ω

such that V (λδω + (1 − λ)δω′) < λV (δω) + (1 − λ)V (δω′). Then any robust solution

must separate the states ω and ω′.

Under the assumptions of Corollary 2, F does not contain the set {ω, ω′}. Thus,
by Theorem 1, a worst-case optimal distribution cannot induce posterior beliefs that

have both of these states in their support. Note that the assumption is that there

exists some belief supported on {ω, ω′} under which full disclosure is strictly better

for the Sender, while the conclusion says that a robust solution cannot induce any

posterior belief that puts strictly positive mass on both ω and ω′.

In the special case when there are two states, Corollary 2 exhausts all possibilities.

Corollary 3 (Characterization for binary-state case). Suppose that Ω = {ωL, ωH},
and V (p) is the Sender’s payoff when the posterior probability of state ωH is p. Then,

� if for some p, V (p) < (1 − p)V (0) + pV (1), then full disclosure is the unique

robust solution;

� otherwise, the set of robust solutions coincides with the set of Bayesian solutions.

For a quick application of Corollary 3, consider the original judge example of

Kamenica and Gentzkow (2011): For low posterior probabilities p > 0 of the de-

fendant being guilty, the prosecutor’s payoff is zero, while the prosecutor’s expected

payoff would be strictly positive under full disclosure at p. Thus, full disclosure is the

unique robust solution for the prosecutor in the original judge example of Kamenica

and Gentzkow (2011).

Beyond the binary-state case, by Corollary 2, full disclosure is the unique robust

solution in any problem for which the separation condition holds for any pair of states.

Similarly, we can extend the conditions under which robust solutions coincide with

Bayesian solutions.

Corollary 4 (Robust and Bayesian solutions coincide). All Bayes-plausible distribu-

tions are worst-case optimal if, and only if, Ω ∈ F ; then, the set of robust solutions

coincides with the set of Bayesian solutions.

For an illustration of Corollary 4, consider the baseline model of Bergemann et

al. (2015): A monopolistic seller quotes a price to a buyer who is privately informed

about her value ω for the seller’s good. A Sender reveals information to the seller
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(who acts as a Receiver) about ω. When the Sender maximizes the buyer’s surplus,

Corollary 4 applies. Because the buyer’s surplus is 0 at all degenerate beliefs, we

have that V full(µ) = 0 and V (µ) ≥ 0 for all µ. Thus, Ω ∈ F , and the optimal signal

identified by Bergemann et al. (2015)—although quite complicated—is in fact robust.

If the Sender instead maximizes the seller’s profit, then Corollary 2 applies to any

pair of states: If ω and ω′ are not separated by the Sender, Nature can ensure that the

seller does not extract all the surplus. Thus, in this case, F only contains singletons,

and full disclosure is the unique robust solution.

In all the examples discussed thus far, a robust solution discloses weakly more

information than a Bayesian solution. To see whether this property holds generally,

we use Blackwell dominance to formalize the idea that one distribution of posteriors

is more informative than another one.7 We start with a useful observation.

Corollary 5 (Worst-case optimality preserved under more information disclosure).

W is closed under Blackwell dominance: If ρ′ ∈ W, and ρ Blackwell dominates ρ′,

then ρ ∈ W.

The conclusion follows directly from Theorem 1 by noting that if B ∈ F , then

any subset of B must also be in F . An increase in the Blackwell order on ∆∆Ω can

only make the supports of posterior beliefs smaller, so such an increase cannot take

a distribution out of the set W .

Suppose that there exists a Bayesian solution that Blackwell dominates a robust

solution. Then, by Corollary 5, that Bayesian solution must be worst-case optimal,

and hence it is also a robust solution. Therefore, we obtain the following conclusion:

Corollary 6 (Comparison of informativeness). Take any Bayesian solution ρBP .

Then, there exists a robust solution ρRS such that either ρRS and ρBP are not com-

parable in the Blackwell order, or ρRS Blackwell dominates ρBP .

Corollary 6 provides a formal sense in which (maximally informative) robust solu-

tions provide (weakly) more information than Bayesian solutions.8 This is a relatively

weak notion—it is certainly possible that the two solutions are not comparable in the

7Formally, we say that ρ ∈ ∆∆Ω Blackwell dominates ρ′ ∈ ∆∆Ω if, for all convex functions
V : ∆Ω → R,

�
V (µ)dρ(µ) ≥

�
V (µ)dρ′(µ). Equivalently, ρ is a mean-preserving spread of ρ′.

8By a “maximally informative” solution we mean a solution that is not Blackwell dominated by
any other robust solution. Note that without that qualifier the statement is obviously false. For
example, when both V and V̂ are affine, all distributions are both robust and Bayesian solutions
and hence there exist Bayesian solutions that strictly Blackwell dominate some robust solutions.
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Blackwell order. However, it can never happen that a Bayesian solution strictly Black-

well dominates a maximally informative robust solution. Whenever a robust solution

ρRS is strictly more informative than the Bayesian solution ρBP , Theorem 1 implies

that ρRS separates states that are not separated under ρBP .

While the result in Corollary 6 is intuitive, we emphasize that it is not trivial.

Because Nature can only provide additional information, one may expect more infor-

mation to be disclosed overall under robust solutions than under Bayesian solutions.

However, Corollary 6 says that the Sender herself will provide more (or at least

not less) information than she would in the Bayesian-persuasion model. Moreover,

we show in the Online Appendix that the conclusion of Corollary 6 actually fails in

the version of the model in which Nature chooses a signal simultaneously with the

Sender.9

Finally, we show that robust solutions can be found using the concavification

technique (see Aumann and Maschler, 1995, and Kamenica and Gentzkow, 2011).

Indeed, because the state-separation condition applies posterior by posterior, we can

incorporate the constraints into the objective function V̂ by modifying its value on

∆c
FΩ := ∆Ω \ ∆FΩ (that is, on the set of posteriors not supported in F) to be a

sufficiently low number. Formally, let vlow := minω∈Ω V̂ (δω)− 1, and define10

V̂F(µ) :=

V̂ (µ) if µ ∈ ∆FΩ and V̂ (µ) ≥ vlow,

vlow otherwise.
(3.1)

Observe that posteriors µ with V̂ (µ) ≤ vlow are never induced in either a robust or

a Bayesian solution because a strictly higher expected value for the Sender could be

obtained by decomposing such µ into Dirac deltas, by the definition of vlow. There-

fore, Bayesian solutions under the objective function V̂F correspond exactly to ro-

bust solution with the original objective, by Theorem 1. Moreover, we have defined

the modification V̂F of V̂ so that it remains upper-semi-continuous because the set

{µ ∈ ∆Ω : supp(µ) ∈ F and V̂ (µ) ≥ vlow} is closed.

9Corollary 6 relates to the comparative statics in Li and Norman (2021). They show that, in
general, adding a new Sender who speaks after the existing Senders need not increase the amount of
information that is passed on to the Receiver; our result shows that adding a new Sender (Nature)
to the end of the line never induces the first Sender to reduce the informativeness of her signal as
long as the preferences of the new Sender are opposite to hers.

10Note that, in general, V̂ (µ) ≥ vlow is not implied by µ ∈ ∆FΩ. The latter condition guarantees
that V̂ (µ) = V full(µ). However, it is possible that V full(µ) < vlow. This is because the Receiver

breaks ties adversarially under V full(µ) but favorably under V̂ (µ).
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Corollary 7 (Concavification). A Bayes-plausible distribution ρ ∈ ∆∆Ω is a robust

solution if and only if
�
V̂F(µ)dρ(µ) = co(V̂F)(µ0).

Corollary 7 implies that the problem of finding a robust solution can be reduced

to finding a Bayesian solution with a modified objective function. As a result, robust

solutions inherit many of the properties of Bayesian solutions. For example, Kamenica

and Gentzkow (2011) show that there always exists a Bayesian solution that uses at

most as many signal realizations as there are states, implying in particular that the

restriction to finite signal spaces is without loss of optimality for the Sender.

Corollary 8 (Support). There always exists a robust solution ρ with |supp(ρ)| ≤ |Ω|.

4 Extensions

By direct inspection of the proofs, all the results of the previous section rely only on

the following properties of the reduced-form payoffs:

� V : ∆Ω → R is lower semi-continuous;

� V̂ : ∆Ω → R is the lower convex closure of V .11

� V̂ : ∆Ω → R is upper semi-continuous.

By Lemma 1, robust solutions can be defined in terms of these reduced-form payoff

functions. Because the specific micro-foundation for these payoffs plays no role, the

conclusions established in the previous section extend to any primitive environment

that generates reduced-form payoffs satisfying the above properties.

4.1 General conjectures in the single-Receiver model

In the baseline model, the Sender conjectures that the Receiver does not have any

information other than that contained in the common prior. Moreover, she conjec-

tures that, in case of indifference, the Receiver will resolve the indifference in her

favor. Suppose, instead, that the Sender conjectures that Nature will respond to her

disclosure with some signal π0 : Ω ×∆Ω → ∆R. That is, when the Sender’s signal

realization induces a posterior belief µ, the Sender conjectures that the Receiver will

11Because V̂ is the lower convex closure of a lower semi-continuous function, it is also continuous;
this follows from the so-called GKR Theorem (see Gale et al., 1968), which states that any convex
function on a closed convex bounded polytope is upper semi-continuous.
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observe an additional signal realization r drawn from R with probability π0(r|ω, µ).
The dependence of π0(·|ω, µ) on µ captures the possibility that the additional in-

formation collected by the Receiver may depend on the Sender’s signal realization.12

Moreover, the Sender conjectures that the Receiver will use a (potentially) stochastic

and belief-dependent tie-breaking rule ξ0 : ∆Ω → ∆A, where ξ0(·|µ′) is a probability

distribution over the Receiver’s actions when the final posterior belief is µ′, with the

property that ξ0(A
⋆(µ′)|µ′) = 1, for any µ′ ∈ ∆Ω. The Sender’s expected payoff from

inducing the posterior µ under her conjecture is then equal to

V̂ (µ) =
∑

ω∈Ω, r∈R

(�
A

v(a, ω)dξ0(a|µr)

)
π0(r|ω, µ)µ(ω). (4.1)

Provided that V̂ is upper semi-continuous, all the results from Section 3 continue

to hold. A special case is when the Sender conjectures that the Receiver will play

favorably to her when indifferent, and that the additional information the Receiver

has access to is invariant to the realization of the Sender’s signal. This is true,

for example, when the Receiver observes the realization of such an additional signal

before observing the realization of the Sender’s signal. Such conjectures are captured

by π0(r|ω, µ) that do not depend on µ. In Section 5, we characterize robust solutions

in an example from Guo and Shmaya (2019) featuring a privately-informed Receiver

where the Sender’s conjecture has these precise properties.

4.2 Multiple Receivers

In the baseline model, the Sender faces a single Receiver. Our approach extends to the

case of multiple Receivers under the assumption that the Sender is restricted to public

signals. Under such an assumption, many persuasion problems can be characterized

in terms of reduced-form payoffs satisfying the properties discussed above.

With multiple Receivers, however, robustness to strategy selection (corresponding

to tie-breaking in the single-Receiver case) can be just as important as robustness

to additional information. In the Bayesian-persuasion literature, it is customary to

assume that the Sender is able to coordinate the Receivers on the strategy profile most

favorable to her, among those consistent with the assumed solution concept.13 Under

12The above formulation implicitly assumes that such additional information does not depend on
the specific signal q used by the Sender to generate the posterior µ. This assumption permits us to
formulate the Sender’s problem as choosing a distribution of posterior beliefs rather than a signal.

13Notable exceptions include Inostroza and Pavan (2022), Mathevet et al. (2020), Morris et al.
(2020), Ziegler (2020), and Li et al. (2021)
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robust design, instead, the Sender may not trust that the Receivers will play favorably

to her. Instead, she may seek a signal that yields the maximal payoff guarantee when

Nature provides additional information to the Receivers and coordinates them on the

strategy profile most adversarial to her (among those consistent with the assumed

solution concept).

The case of public disclosures by Nature. Consider first the case in

which Nature is expected to disclose the same information to all the Receivers. The

Receivers are assumed to share a common prior µ0. Given the common posterior

µs
0 induced by the Sender’s signal realization s, Nature reveals an additional public

signal r to the Receivers drawn from a distribution π(·|ω, µs
0) ∈ ∆R. Given the

final (common) posterior µs,r
0 induced by the combination of the realizations of the

Sender’s and Nature’s signals, the Receivers play some Bayesian game. For any

common posterior µ ∈ ∆Ω, denote by EQ⋆(µ) the set of strategy profiles that are

consistent with the assumed solution concept and the common posterior µ. Finally,

let ξ(·|µ) ∈ ∆EQ⋆(µ) denote a (possibly stochastic) rule describing the selection of a

strategy profile fromEQ⋆(µ).

In this setting, V (µ) represents the Sender’s expected payoff when, given the

common posterior µ, Nature induces the Receivers to play according to the selection

ξ(·|µ) ∈ ∆EQ⋆(µ) that is least favorable to the Sender. Under regularity conditions,

the function V is lower semi-continuous. The function V̂ is then the Sender’s expected

payoff when, in addition to coordinating the Receivers to play adversarially, Nature

also discloses additional (public) information to the Receivers so as to minimize the

Sender’s expected payoff. As in the baseline model, we then have V̂ = lco(V ).

The Sender’s conjecture is that the Receivers observe exogenous public signals

with distribution π0(·|ω, µ), and that, for any final common posterior µ′, they play

according to a selection rule ξ0(·|µ′) ∈ ∆EQ⋆(µ′). The combination of π0 and ξ0

defines the Sender’s conjecture. Given such a conjecture, the Sender’s expected payoff

from inducing the common posterior µ is equal to V̂ (µ). Provided that this function

is upper semi-continuous, all the results from the previous section continue to hold.

The case of private disclosures by Nature. Our approach can also

accommodate discriminatory disclosures by Nature, whereby Nature sends different

signals to different Receivers. This case can be relevant for settings in which the

Sender is restricted to public disclosures (e.g., because of regulatory constraints) but
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is nevertheless concerned about the possibility that the Receivers may be endowed

with private signals and/or be able to acquire additional information in a decentralized

fashion, after hearing the Sender’s public announcement.

With private signals, the distinction between strategy selection and additional in-

formation provided by Nature becomes blurred. This is best illustrated by the solution

concept of Bayes Correlated Equilibrium (BCE) in which private recommendations

that are potentially informative about the state are part of the solution concept (see

Bergemann and Morris, 2016). If the worst-case scenario originates in Nature coordi-

nating the Receivers on the BCE that minimizes the Sender’s expected payoff among

all BCE consistent with the common posterior that she induces, then specifying the

information provided by Nature becomes redundant. Thus, it is no longer helpful to

derive the worst-case payoff for the Sender in two steps, by first looking at strategy

profiles for given information, and then at different disclosures by Nature.

In such cases, we can bypass the function V by assuming that V ≡ V̂ . The

function V̂ (µ) is then interpreted as the Sender’s payoff from inducing the common

posterior belief µ when Nature responds by disclosing (possibly private) signals to the

Receivers and coordinating them on a strategy profile that minimizes the Sender’s

expected payoff given the assumed solution concept. This definition will guarantee

that V̂ (µ) is convex (if it were not, Nature could disclose additional public information

to further decrease the Sender’s payoff, contradicting the definition of V̂ ); moreover,

it will typically be lower semi-continuous. Hence, V̂ is trivially the lower convex

closure of V . The Sender’s payoff under the assumed conjecture, V̂ , is then defined as

above, with the exception that the Sender’s conjecture can now specify discriminatory

disclosures by Nature. Provided that V̂ is upper semi-continuous, all our results apply.

Bypassing V might be seen as conceptually compelling: It means that equilibrium

selection and information provision by Nature are put on an equal footing. However,

under this symmetric approach, some of the assumptions of our results become more

difficult to verify. For example, to identify the set F in Theorem 1, one would

in principle need to compute V̂ , which can be challenging in some applications.

For example, when the assumed solution concept is BCE, computing V̂ requires

characterizing the Sender’s payoff in the worst BCE consistent with any given common

posterior µ ∈ ∆Ω. In certain cases, the set F can be identified without computing

the entire set of BCE: To show that states in the support of some belief µ must be

separated, it suffices to construct a single BCE consistent with µ that yields a payoff
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to the Sender below the full-disclosure level—see Subsection 5.4 for an illustration.

An alternative approach to incorporating private disclosures into our analysis is

by applying the results of Mathevet et al. (2020) who propose a formal decomposition

of any signal into a public and a (purely) private component. Relying on their charac-

terization, we can define V (µ) as the expected payoff of the Sender in the worst-case

equilibrium when Nature complements µ with purely private signals. Then, relative

to V , V̂ captures the effects of additional public disclosure by Nature, implying that

V̂ is the lower convex closure of V . This approach is more tractable than the one

discussed previously if computing such V is easier than computing V̂ directly.

5 Applications

In this section, we present four applications, illustrating the four cases we have consid-

ered: the baseline model, the single-Receiver case under a general conjecture, and two

models with multiple Receivers and public or private disclosure by Nature, respec-

tively. The results follow as straightforward consequences of our general theory—we

include the proofs for completeness in the Online Appendix.

5.1 Lemons problem

The Sender is a seller, and the Receiver is a buyer. The seller values an indivisible

good at ω while the buyer values it at ω + D, where D > 0 is a known constant.

The value ω is observed by the seller but not by the buyer. To avoid confusion,

we use a “tilde” (ω̃) whenever we refer to ω as a random variable. The seller can

commit to an information disclosure policy about the object quality, ω. We consider

a simple trading protocol in which, after the information structure is determined, a

random exogenous price p is drawn from a uniform distribution over [0, 1] and trade

happens if and only if both the buyer and the seller agree to trade at that price

(the exogenous price can be interpreted as a benchmark price in the market, or can

be seen as coming from an exogenous third party, e.g., a platform). That is, if the

state is ω and the buyer’s belief about the state is µ, then trade happens if and only

if p ≥ ω and Eµ[ω̃|ω̃ ≤ p] + D > p.14 To avoid trivial cases, we assume that the

support of the price distribution contains Ω, that is, Ω ⊆ (0, 1). The seller chooses

the signal before observing ω (hence the choice of the signal by the seller reveals

14Because p is drawn from a continuous distribution, the way the buyer’s indifference is resolved
plays no role in this example.
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no additional information to the buyer). We are interested in finding the robustly

optimal policy for the seller, under the conjecture that the buyer does not have any

exogenous information other than the one contained in the prior.

The payoff to the seller under the conjecture is given by15

V̂ (µ) =
∑
ω∈Ω

(� 1

ω

(p− ω)1{Eµ[ω̃|ω̃≤p]+D>p}dp

)
µ(ω).

In this example, V = V̂ because the buyer’s tie-breaking rule does not influence

the Sender’s payoff in expectation. The following lemma identifies a key property of

robust solutions.

Lemma 2. Any two states ω and ω′ such that |ω− ω′| > D must be separated under

any robust solution.

For intuition, suppose that only types ω′ and ω are present in the market, and

ω > ω′. If the buyer’s posterior belief µ puts sufficient mass on the low state ω′,

namely, Eµ[ω̃] + D < ω, then the high type ω does not trade. Indeed, any price

below ω is rejected by the ω-type seller, and any price above ω is rejected by the

buyer. In contrast, the high type ω would trade with positive probability if her type

were disclosed to the buyer. At the same time, type ω′ does not benefit from the

presence of the higher type ω because of adverse selection: Eµ[ω̃|ω̃ ≤ p] = ω′ for all

prices p ∈ [ω′ + D,Eµ[ω̃] + D] that could be accepted by the buyer if she did not

condition on the fact that ω̃ ≤ p. In short, if ω and ω′ are not separated, Nature can

induce posterior beliefs that reduce the high type’s probability of trade (relative to

full disclosure) without improving the terms of trade for the low type. It follows that

Nature can push the seller’s expected payoff below what she could obtain by fully

disclosing the state.

The preceding argument does not apply to types that are less thanD apart because

the adverse selection problem is mute for such types, as the next lemma shows.

Lemma 3. Suppose that supp(µ) ⊆ [ωµ, ωµ+D], where ωµ is the minimum of supp(µ).

Then, 1{Eµ[ω̃|ω̃≤p]+D>p} = 1{Eµ[ω̃]+D>p} for any p ≥ ωµ.

Intuitively, Lemma 3 states that when µ puts mass on types that are less than

D apart, adverse selection has no bite – the buyer trades under the same prices as if

15Note that the seller’s payoff is computed before the price p is realized and before the seller learns
her value ω for the good.
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the seller did not possess private information (that is, she does not need to condition

on p ≥ ω̃). We can now use this observation to prove a result that helps characterize

robust solutions. For any B ⊆ Ω, we let diam(B) := max(B)−min(B).

Lemma 4. Fix any B ⊆ Ω such that diam(B) ≤ D. Then, V |∆B(µ) is concave on

∆B (and non-affine if |B| ≥ 2).

Lemma 4 states that the seller does not benefit from splitting posterior beliefs

with sufficiently small supports. The reason is that, once the possible detrimental

effects of adverse selection are eliminated (which is the case when diam(B) ≤ D),

further informing the buyer of her value for the good only reduces the seller’s ability

to extract surplus from the buyer. The next result is then a simple corollary.

Lemma 5. F = {B ⊂ Ω : diam(B) ≤ D}.

Indeed, we know that diam(B) ≤ D is necessary for B ∈ F by Lemma 2. Lemma

4 tells us that this condition is sufficient as well: Because V |∆B(µ) is concave when

diam(B) ≤ D, it lies everywhere above the full-disclosure payoff on that subspace.

Lemma 5 states that any worst-case optimal distribution must disclose enough

information to make the adverse selection problem mute. Furthermore, there is no

need to disclose any additional information. Because disclosing additional information

is detrimental to the Sender, as implied by Lemma 4 combined with the fact that

V = V̂ , any robust solution discloses just enough information to eliminate the adverse

selection problem.

Proposition 2. Under any robust solution ρRS, for any µ, µ
′ ∈ supp(ρRS), diam(supp(µ)) ≤

D; diam(supp(µ′)) ≤ D; but diam(supp(µ) ∪ supp(µ′)) > D.

The result says that robust solutions are minimally informative among those that

remove the adverse selection problem. Indeed, since V̂ |∆B(µ) is concave but not affine

on ∆B whenever diam(B) ≤ D, if diam(supp(µ) ∪ supp(µ′)) ≤ D, the Sender could

merge µ and µ′ into a single posterior, improve her expected payoff, while maintaining

worst-case optimality. In particular, full disclosure is not a robust solution as long as

there exist ω and ω′ in Ω that are less than D apart.

A closed-form characterization of the optimal policy seems difficult (for the same

reasons that make it difficult to solve for a Bayesian solution). However, one of the

benefits of the proposed solution concept is that it permits one to identify important
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properties that all robust solutions must satisfy. Here, that property is that robust

solutions must disclose just enough information to neutralize the adverse selection

problem. Note that such property need not extend to Bayesian solutions. We can

verify that by looking at the tractable binary-state case: When the two states are

more than D apart, the unique Bayesian solution pools these states with positive

probability, whereas a robust solution separates them, by Lemma 2.

5.2 Informed Receiver: Guo and Shmaya (2019)

We now analyze another simple model of buyer-seller interactions along the lines of

Guo and Shmaya (2019): The seller owns an indivisible good of quality ω and gets

a payoff of 1 if and only if the buyer accepts to trade at an exogenously specified

price p. The seller’s conjecture is that the buyer has private information about the

product’s quality ω summarized by the realization r of a signal drawn from a finite

set R ⊂ R, according to the distribution π0(r|ω). The seller also conjectures that,

in case of indifference, the buyer will play favorably to the seller, which amounts to

accepting to trade. The seller can provide any information about ω to the buyer.

Guo and Shmaya (2019) show that, when π0(r|ω) satisfies MLRP (formally, when

π0(r|ω) is log-supermodular), a Bayesian solution for the above conjecture has an

interval structure: Each buyer’s type r is induced to trade on an interval of states,

and less optimistic types trade on an interval that is a subset of the interval over

which more optimistic types trade. Here, we characterize the robust solution for the

seller. To avoid uninteresting cases, we assume that π0 is not fully revealing.16

Given any final posterior µs,r
0 ∈ ∆Ω for the buyer, the seller’s payoff under the

least-favorable tie-breaking rule is

V (µs,r
0 ) = 1{∑ω∈Ω ωµs,r

0 (ω)>p}.

The seller’s payoff from inducing a posterior µs
0 under her conjecture (where the

posterior is obtained by conditioning only on the realization of the seller’s signal s)

is equal to

V̂ (µs
0) =

∑
ω∈Ω

∑
r∈R

1{∑
ω′∈Ω ω′π0(r|ω′)µs0(ω

′)∑
ω′∈Ω π0(r|ω′)µs0(ω

′) ≥ p

}π0(r|ω)µs
0(ω).

The following result is then a simple implication of Corollary 2.

16That is, conditional on any state ω, there is positive conditional probability that the signal
realization r from π0 does not reveal that the state is ω.
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Proposition 3. Any robust solution separates any state ω ≤ p from any state ω′ > p.

A robust solution thus eliminates buyer’s uncertainty over whether or not to pur-

chase the product. In other words, when the seller faces uncertainty about the buyer’s

exogenous information, she cannot benefit from disclosing information strategically.

Intuitively, if a posterior belief pools together states that are both below and above

p, Nature could send a signal that induces a sufficiently pessimistic belief about the

quality of the good to induce the buyer not to trade, even when the good is of high

quality. By fully disclosing the state, the seller guards herself against such a possibility

and ensures that all high-quality goods (ω > p) are bought with certainty.

5.3 Regime change

Next, we study an application featuring multiple Receivers in which Nature is re-

stricted to disclosing information publicly and where the functions V and V̂ repre-

sent the Sender’s payoff under the lowest and the highest rationalizable profiles in the

continuation game among the Receivers, respectively.

Consider the following stylized game of regime change. A continuum of agents

of measure 1, uniformly distributed over [0, 1], must choose between two actions,

“attack” or “not attack.” Let ai = 1 (respectively, ai = 0) denote the decision by

agent i to attack (respectively, not attack), and A the aggregate size of the attack.

Regime change happens if and only if A ≥ ω, where ω ∈ Ω ⊂ R parametrizes the

strength of the regime (the underlying fundamentals) and is commonly believed to be

drawn from a distribution µ0 whose support intersects each of the following three sets:

(−∞, 0), [0, 1], and (1, ∞). Each agent’s payoff from not attacking is normalized

to zero, whereas his payoff from attacking is equal to g in case of regime change

and b otherwise, with b < 0 < g. Hence, under complete information, for ω ≤ 0

(alternatively, ω > 1), it is dominant for each agent to attack (alternatively, not to

attack), whereas for ω ∈ (0, 1] both attacking and not attacking are rationalizable

actions (see, among others, Inostroza and Pavan, 2022 and Morris et al., 2020 for

similar games of regime change). The Sender’s payoff is equal to 1− A (that is, she

seeks to minimize the size of the aggregate attack). The Sender is constrained to

disclose the same information to all agents, as in the case of stress testing. Contrary

to what is typically assumed in the literature, the Sender is uncertain about the

exogenous information the agents are endowed with.

The Sender’s conjecture is that the agents do not have access to any information
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other than that contained in the common prior µ0 and that, in case of multiple

rationalizable profiles, the agents play the profile most favorable to the Sender. The

Bayesian solution for the above conjecture is similar to the one in the judge example

of Kamenica and Gentzkow (2011). To see this, note that for the Receivers to abstain

from attacking, it must be that their common posterior assigns probability at least

α := g/(g+ |b|) to the event that ω > 0.17 Let µ+
0 := µ0(ω > 0) denote the probability

assigned by the prior µ0 to the event that ω > 0 and (to make the problem interesting)

assume that µ+
0 < α, so that, in the absence of any disclosure, all agents attack under

the unique rationalizable profile. Under the assumed conjecture, the Sender then

maximizes her payoff through a policy that, when ω > 0, sends the “null” signal

s = ∅ with certainty, whereas, when ω ≤ 0, fully discloses the state with probability

ϕBP ∈ (0, 1) and sends the signal s = ∅ with the complementary probability, where

ϕBP is defined by µ+
0 /[µ

+
0 + (1− µ+

0 )(1− ϕBP )] = α.

The above Bayesian solution, however, is not robust. First, when the agents assign

sufficiently high probability to the event ω ∈ (0, 1], while it is rationalizable for each of

them to abstain from attacking, it is also rationalizable for them to attack. Hence, if

the Sender does not trust that the agents will coordinate on the rationalizable profile

most favorable to her, it is not enough to persuade them that ω > 0; the Sender must

persuade them that ω > 1. Furthermore, if the agents may have access to information

other than the one contained in the prior, then worst-case optimality requires that

all states ω > 1 be separated from all states ω ≤ 1. (For any induced posterior whose

support contains both states ω > 1 and states ω ≤ 1, Nature can construct another

posterior under which it is rationalizable for all agents to attack also when ω > 1,

thus bringing the Sender’s payoff below her full-disclosure payoff.) One may then

conjecture that full disclosure of the state is a robust solution under the conjecture

described above. This is not the case. The reason is that, in case Nature (and the

agents) play according to the Sender’s conjecture, fully disclosing the state triggers

an aggregate attack of size A = 1 for all ω ≤ 0. The Sender can do better by pooling

states below 0 with states in [0, 1] and then hope that Nature (and the agents) play

as conjectured. The next proposition summarizes the above results.

Proposition 4. The following policy is a Bayesian solution. If ω ≤ 0, the state is

fully revealed with probability ϕBP ∈ (0, 1) whereas, with the complementary probabil-

ity, the Sender sends the “null” signal s = ∅. If ω > 0, the signal s = ∅ is sent with

17When, instead, P(ω > 0) < α, the unique rationalizable profile is for each agent to attack.
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certainty. Such a policy, however, is not robust. The following policy, instead, is a

robust solution. If ω ≤ 0, the state is fully revealed with probability ϕRS ∈ (0, 1), with

ϕRS > ϕBP , whereas, with the complementary probability, the signal s = ∅ is sent. If

ω ∈ (0, 1], the signal s = ∅ is sent with certainty. Finally, if ω > 1, the state is fully

revealed with certainty.

While neither the Bayesian nor the robust solutions in the above proposition are

unique, any robust solution must fully separate states ω > 1 from states ω ≤ 1,

whereas any Bayesian solution pools states ω > 1 with states ω ≤ 1. The robust

solution displayed in the proposition Blackwell dominates the Bayesian solution, con-

sistently with Corollary 6.

5.4 Multiple Receivers and private disclosures by Nature

Our last application is a variant of the prosecutor-judge example of Section 1 in

which the prosecutor faces two judges. Each judge has the same preferences as in the

original example, but with the sentence of each judge now interpreted as the judge’s

recommendation.18 The defendant is convicted only if both judges vote to convict

him. In this case, the sentence specifies a number of years equal to the minimum

of the numbers asked by the two judges. Let xj ∈ [x, x̄], with x > 0, denote the

number of years asked by judge j = 1, 2. As in the original game, each judge feels

morally obliged to convict if her posterior belief that the defendant is guilty exceeds

2/3 and to acquit otherwise. When she recommends to convict, the number of years

that the judge asks is linearly increasing in the conditional probability she assigns to

state f , exactly as in the original example of Section 1. Denote by Aj = {0} ∪ [x, x̄]

the judge’s action set, with aj = 0 denoting the recommendation to acquit, and by

µj(ω) the judge’s posterior belief that the state is ω. Then,

aj(µj) = 1{µj(m)+µj(f)>
2
3}min{x̄, x+

2µj(f)

µj(f) + µj(m)
(x̄− x)},

whereas the actual sentence is given by x(µ1, µ2) = min {a1(µ1), a2(µ2)}.
As before, the prosecutor maximizes the expected number of years determined

by the actual sentence. Her conjecture is that each judge’s only information is that

associated with the common prior µ0, given by µ0(i) = 1/2, and µ0(m) = µ0(f) = 1/4.

It is easy to see that the Bayesian solution is the same as in the original version

18That is, each judge’s utility depends only on the recommendation she makes, not on the actual
sentence—the judges are Kantianists rather than Consequentialists.
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with a single judge. It is also easy to see that, when Nature is expected to disclose

the same information to both judges, the unique robust solution is the same as in the

single-judge case: separate the state ω = i and pool the other two states. Indeed, in

this case, we have that V (µ) = x(µ, µ) = a1(µ), and thus the objective function of

the prosecutor is the same as in the single-judge case.

Suppose, instead, that the prosecutor does not exclude the possibility that Na-

ture discloses different information to the two judges, perhaps because they can call

different witnesses and question them independently. As explained in Section 4, in

case of private disclosure by Nature, it is not helpful to define V and V̂ separately.

Instead, we set V = V̂ with V̂ (µ) defined as the Sender-worst BCE payoff con-

sistent with the common posterior belief µ. Even though the game between the

judges is simple, computing V̂ is difficult. Instead, we make use of Corollary 2:

States ω, ω′ must be separated by a robust solution whenever, for some λ ∈ (0, 1),

V̂ (λδω +(1−λ)δω′) < λ V̂ (δω)+ (1−λ) V̂ (δω′). The right-hand side of this condition

does not depend on what the Sender expects Nature to do: when the state is dis-

closed, there is a unique BCE. Furthermore, because the left-hand side is never larger

than the payoff that the Sender expects when Nature is restricted to public disclo-

sures, we have that any worst-case optimal policy (and hence any robust solution)

must separate the state ω = i from ω′ ∈ {m, f}, just like when Nature is restricted

to public disclosures. Suppose the states ω = m and ω′ = f are not separated. Then,

starting from any posterior with support {m, f} induced by the Sender, Nature can

first generate the common posterior (1/2)δm + (1/2)δf using a public signal, and

then engineer an additional discriminatory disclosure that fully reveals the state to

judge 1, and discloses a binary signal r2 ∈ {m, f} to judge 2 that matches the true

state with conditional probability 2/3 in each state. Under such a policy, when the

state is m, the actual sentence is equal to x because this is the sentence asked by

the fully-informed judge 1. When, instead, the state is f , the fully-informed judge 1

recommends x̄, whereas the less-informed judge 2 recommends x̄ with probability 2/3

(after observing r2 = f) and (1/3)x + (2/3)x̄ with probability 1/3 (after observing

r2 = m). We thus have that

V̂

(
1

2
δm +

1

2
δf

)
<

1

2
x+

1

2
x̄ =

1

2
V̂ (δm) +

1

2
V̂ (δf ).

By Corollary 2, states m and f must also be separated by any robust solution. Full

disclosure is therefore the unique robust solution. This application of Corollary 2
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illustrates the force of Theorem 1: We are able to characterize the unique robust

solution by constructing one BCE at a particular posterior belief (as opposed to

computing all BCE at all possible beliefs).

Suppose that the two judges are obliged to share all their information before

making the decision, and the Sender knows that. By Aumann’s theorem, this case

is equivalent to assuming that Nature can only send public signals. An interesting

conclusion obtains: If the Sender is sure that the judges share their information, she

should reveal less information than if she thought that it is possible that the judges

are asymmetrically informed.

6 Alternative approaches to robustness

6.1 Weighted objective function

Our solution concept assumes that the Sender follows a lexicographic approach: She

first maximizes her objective in the worst-case scenario, and only in case of indifference

chooses between worst-case optimal policies based on her conjecture. In this section,

we examine an alternative objective function under which the Sender attaches a weight

λ ∈ [0, 1] to the worst-case scenario, and a weight 1− λ to the base-case scenario.19

A possible interpretation is that the Sender is Bayesian, and the weights reflect the

assessed probabilities of Nature being adversarial and behaving as conjectured by the

Sender. We show that, under mild regularity conditions, robust solutions correspond

exactly to solutions for the weighted objective function provided that the weight λ

on the worst-case scenario is sufficiently large.20

Throughout, we work with reduced-form payoff functions that satisfy the proper-

ties listed in Section 4. Formally, for some λ ∈ [0, 1], the Sender’s problem is

sup
ρ∈∆∆Ω

{
λ

�
V̂ (µ)dρ(µ) + (1− λ)

�
∆Ω

V̂ (µ)dρ(µ)

}
(6.1)

subject to (BP). Recall that V̂ is assumed upper semi-continuous (we also assume

that it is bounded), and V̂ is convex and continuous (see footnote 11). Therefore,

the problem for a fixed λ is equivalent to a standard Bayesian persuasion problem

19When the Sender’s conjecture is that Nature behaves favorably to her (as in the analysis in
Section 3), this approach shares some similarities with the literature on alpha-max-min preferences
(Hurwicz, 1951, Gul and Pesendorfer, 2015, Grant et al., 2020).

20We thank Emir Kamenica and Ron Siegel for suggesting we investigate the validity of this result.
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with an upper semi-continuous objective function V̂λ(µ) := λ V̂ (µ)+(1−λ)V̂ (µ), and

a Bayes-plausible ρ is a solution if and only if it concavifies V̂λ at the prior µ0. Our

goal is to relate the solutions to the problem defined by (6.1) (which we denote by

S(λ) and refer to as λ-solutions) to robust solutions. Note that 0-solutions coincide

with Bayesian solutions whereas 1-solutions are worst-case optimal solutions.

We first introduce some notation. Let d denote a metric on ∆Ω; since Ω is finite,

all metrics are equivalent, and we can use the L1 metric for convenience: d(µ, η) :=∑
ω∈Ω |µ(ω)−η(ω)|. For any µ ∈ ∆Ω and A ⊆ supp(µ), let µ|A be the belief obtained

from µ by conditioning on the event A, that is, µ|A(ω) = µ(ω)/µ(A) for ω ∈ A.

Definition 4. The function V̂ is regular if there exists a constant L such that for

any non-degenerate µ ∈ ∆Ω and A ⊆ supp(µ), coV̂ (µ|A) ≥ V̂ (µ)− Ld(µ, µ|A).

Regularity requires that, for any µ and any subset A of its support, the designer

can generate an expected payoff that is “not much worse” than V̂ (µ) by only relying

on beliefs supported on A, with the allowed loss scaling linearly with the distance

between µ and ∆A. Since d(µ, µ|A) = 2µ(Ac), where Ac denotes the complement of

the set A, regularity only has bite when µ(Ac) is small; else the condition follows from

boundedness of the function V̂ . Lipschitz continuous functions are trivially regular

since coV̂ (µ|A) ≥ V̂ (µ|A). However, the condition is significantly weaker because (i)

the Lipschitz condition is required to hold only for pairs of beliefs of the form (µ, µ|A),

(ii) only one direction of the Lipschitz inequality is required, and (iii) coV̂ (µ|A) is in

general higher than V̂ (µ|A). The condition only rules out functions V̂ that decrease

at an infinite rate along a sequence of beliefs assigning a vanishing probability to

some subset of their support. And, indeed, regularity allows for highly discontinuous

objective functions. For example, when Ω is binary, regularity only requires that V̂

has bounded steepness (as defined by Gale, 1967) at the two endpoints of the interval

∆Ω. In the mean-measurable case, in which V̂ (µ) = v(Eµ[ω]) for some upper-semi

continuous function v, it can be shown that V̂ is regular if v has bounded steepness

at the (finitely many) points ω ∈ Ω.

Theorem 2. Suppose that V̂ is regular. There exists λ < 1 such that, for all λ ∈
(λ, 1), S(λ) coincides with the set of robust solutions.

It may seem puzzling that the equivalence between λ-solutions and robust solu-

tions is achieved exactly at sufficiently high λ, rather than only in the limit as λ ↗ 1.
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This is a consequence of Proposition 1 which shows that worst-case optimality imposes

restrictions only on the supports of the induced posteriors, and not on the weights

assigned to any admissible posterior. Combined with regularity of V̂ this property

implies that, for high λ, the gain from inducing any non-admissible posterior under

the base-case scenario is always dominated by the loss under the worst-case scenario.

In the Online Appendix, we show that, even without the regularity condition,

a slightly weaker version of one direction of the equivalence holds: Any limit of λ-

solutions as λ ↗ 1 is a robust solution (and therefore some robust solution is a limit

of λ-solutions). However, we also show, by means of an example, that there exist

robust solutions that cannot be obtained as the limit of λ-solutions.

6.2 Dominance

In this section, we examine the relationship between robustness and the notion of

undominated policies. When the Sender faces non-Bayesian uncertainty over the

Receivers’ information and strategy selection, it is natural for her to avoid signals that

are dominated. Informally, we say that a signal dominates another one if it performs

weakly better for any choice of Nature, and strictly better for some. Our next result

shows that—under certain conditions—any robust solution is undominated.

To define dominance formally, we again bypass the distinction between informa-

tion disclosure and strategy selection. We introduce a function V interpreted as the

Sender’s payoff from inducing a common posterior µ, when Nature selects a signal

and a strategy profile (consistent with the assumed solution concept) that maximize

the Sender’s payoff. Note that V must be concave under this interpretation (other-

wise, Nature could further increase the Sender’s payoff by concavifying V with an

additional public signal). Formally, let V be any concave continuous function such

that V ≥ V̂ ≥ V̂ . If Nature is allowed to respond to any posterior µ induced by

the Sender with an arbitrary signal and strategy profile (consistent with the assumed

solution concept), then it can generate any payoff function V that lies between V̂

and V . This motivates the following definition of dominance.

Definition 5. A Bayes-plausible distribution ρ ∈ ∆∆Ω dominates a Bayes-plausible

distribution ρ′ ∈ ∆∆Ω if, for any measurable V : ∆Ω → R such that V (µ) ∈
[ V̂ (µ), V (µ)] for any µ ∈ ∆Ω, we have that

�
V (µ)dρ(µ) ≥

�
V (µ)dρ′(µ), with the

inequality strict for at least one such function V . A Bayes-plausible distribution ρ is

undominated if there exists no Bayes-plausible distribution ρ′ that dominates it.
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Theorem 3. (a) At least one robust solution is undominated. (b) If coV̂ = V , then

all robust solutions are undominated.

The result in part (a) follows from the fact that a robust solution can be dominated

only by another robust solution (by the definition of robustness). The result in part

(b) is more convoluted. Heuristically, it follows from the fact that, given any pair

of robust solutions ρ and ρ′, if, for some feasible response V by Nature, ρ performs

strictly better than ρ′, then one can construct another feasible response V ′ under

which ρ′ performs strictly better than ρ. The construction of V ′ hinges on the fact

that the two solutions perform equally well both under the worst-case scenario and

under the Sender’s conjecture, along with the fact that the Sender’s payoff under

the conjecture is linked to the maximal feasible payoff over all possible responses by

Nature (by the condition coV̂ = V ). Without the last property, the fact that the

policies are both robust solutions does not impose enough structure on the way they

may perform under alternative responses by Nature, and one may dominate the other.

As an illustration, in the judge-prosecutor example of Section 1, when the Sender’s

conjecture is that Nature always fully reveals the state, then full disclosure is robust.

However, such a policy is dominated by the one that separates {i} from {f,m}.
One may wonder whether Bayesian solutions are also undominated. The answer

is no, even when coV̂ = V . We provide an example in the Online Appendix.

6.3 Alternative extensive forms

It is common in the mechanism-design literature to model robustness as worst-case

optimality of a designer’s policy in a game against adversarial Nature. Under this

modeling convention, the properties of worst-case optimal policies generally depend on

the assumptions about the extensive form. It is also known that randomization may

sometimes improve the designer’s payoff guarantee when Nature does not observe the

designer’s policy choice.21 In this subsection, we discuss alternative extensive forms

and randomization in the context of our model. We start by restricting attention to

non-stochastic choices of a policy by the Sender, and consider three cases:

1. Baseline model: Nature chooses its signal after observing both the Sender’s

signal q and its realization s;

21For a discussion of this point, see for example Ke and Zhang (2020).
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2. Conditionally independent signals: Nature chooses its signal after observing the

Sender’s signal q (but not its realization s);

3. Simultaneous-move game: The Sender and Nature choose their respective sig-

nals simultaneously, without observing each other’s choices.

Our baseline definition of worst-case optimality (case 1) is motivated by the Sender’s

uncertainty about the order in which various sources of information are consulted

by the Receiver. This assumption is appropriate whenever the Sender does not feel

confident that she is the last one to speak. In particular, this case captures the

possibility that the Receiver may acquire additional information after learning the

Sender’s signal realization.

Case 2 of conditionally independent signals arises when the exogenous sources

of information depend on the Sender’s choice of a signal but not on the Sender’s

signal realization. This corresponds to a situation in which the Sender must publicly

commit to her signal ex-ante, and she is concerned that the Receiver might receive

some information before observing the Sender’s signal realization. Formally, having

observed q, Nature selects a signal π(r|ω) that is independent of q(s|ω) conditional
on the state ω.

Case 3 of a simultaneous-move game arises when the Sender believes that the

exogenous sources of information, captured by Nature’s signal π(r| ω), have been

already determined but are unknown to her. In this case, the Sender assumes that

she is the last one to speak, and Nature’s choice is a way of capturing the Sender’s

ambiguity about the fixed environment she is facing.

Cases 2 and 3 are equivalent in our model, in the sense that they lead to the

same set of worst-case optimal policies for the Sender. We show this formally in

the Online Appendix. Intuitively, a version of the minimax theorem holds in our

setting, and the full-disclosure payoff is the value of the zero-sum game between the

Sender and Nature. Given the equivalence, we refer to these two cases jointly as

simultaneous-move (SM) robustness, and examine properties of SM-robust solutions

in the Online Appendix. As we discuss there, some of the results are in common

to those in the baseline case but there are also important differences (for example,

existence of a SM-robust solution is not guaranteed and Bayesian solutions can be

more informative than SM-robust solutions).

When Nature observes the Sender’s choice of a signal q (in cases 1 and 2), it clearly
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does not benefit the Sender to randomize over her choice of a policy. Perhaps more

surprisingly, randomization also does not help in case 3. Formally, the Sender cannot

expand the set of worst-case optimal distributions of posterior beliefs by randomizing

over signals. Indeed, in the Bayesian persuasion model, any randomization over

signals is itself a signal; thus, if the Sender can induce some distribution of posteriors

via a random choice of a signal, then she can also generate the same distribution

by deterministically choosing a composite signal (Nature’s problem is the same in

both cases, so the optimal response by Nature is unaffected). Thus, our restriction

to deterministic choices of policies is without loss of generality.

We briefly comment on two additional models of robustness. First, one may

consider a situation where the Sender is uncertain about the Receiver’s prior (see

Kosterina (2021)). If the prior is generated by providing an additional experiment to

the Receiver, then this corresponds to the case considered in our Online Appendix.

If, instead, such a requirement is not imposed, as in Kosterina (2021), then Nature’s

problem is no longer a Bayesian persuasion problem, and our techniques do not apply.

Second, one may contemplate extensive forms in which Nature is able to obfuscate

the information provided by the Sender (e.g., through signal jamming). This would

correspond to a robust approach to the case of an inattentive Receiver (considered

by Lipnowski et al., 2020, and Bloedel and Segal, 2021), and is worth investigating

in future research.22

7 Conclusions

We introduce and analyze a novel solution concept for information design in settings

in which the Sender faces uncertainty about the Receivers’ sources of information

and strategy selection. The Sender first identifies all information structures that are

“worst-case optimal,” i.e., that yield the highest payoff when Nature provides infor-

mation and coordinates the Receivers’ play in an adversarial fashion. The Sender

then picks an information structure that maximizes her expected payoff under her

conjecture—much like in the standard Bayesian persuasion model—but among infor-

mation structures that are worst-case optimal. Our main technical result identifies

sets of states that can be present together in one of the induced posteriors and states

22See also Arieli et al. (2022) for a model in which information provided by the Sender to the
Receiver is mediated by a mediator observing the realization of the Sender’s signal but not the
state.
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that must be separated. We show that robust solutions exist and can be character-

ized using canonical tools; we qualify in what sense they lead to more information

disclosure than Bayesian solutions; we argue that, under reasonable conditions, ro-

bustness guarantees that the solution is undominated; and we illustrate the results in

the context of existing and novel applications.

Throughout the analysis, we restrict attention to the case of public persuasion

in which the Sender discloses the same information to all the Receivers. In future

work, it would be interesting to extend the analysis to private persuasion, whereby

the Sender discloses different signals to different Receivers. Our analysis also relies

on the assumption that Nature can engineer any signal. It is natural to ask how

the properties of robust solutions change as we impose constraints on the set of

signals that Nature can choose from. Finally, it would be interesting to see how

existing results in the persuasion literature change once robustness is accounted for,

and whether robust solutions can provide insights about problems that are inherently

intractable in the Bayesian framework.
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A Appendix

A.1 Proof of Lemma 1

Fix the Sender’s signal q. For any realized s ∈ supp(q), Nature’s problem of mini-

mizing the Sender’s payoff is

− sup
π: Ω×{s}→∆R

∑
ω∈Ω, r∈R

−V (µs, r
0 ) π(r|ω, s)µs

0(ω). (A.1)

The optimization problem (A.1) is a Bayesian-persuasion problem with a finite state

space and an upper semi-continuous objective function (because V is lower semi-

continuous). By Kamenica and Gentzkow (2011), it is without loss of generality to
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restrict attention to π with |supp(π)| = |Ω|, the supremum is attained, and the value

of the problem is given by the negative of the concave closure of −V , evaluated at µs
0.

It is immediate (see also Hu and Weng, 2021) that worst-case optimality of q is

equivalent to generating the full-disclosure payoff V full(µ0) in the worst-case scenario.

Indeed, V full(µ0) is an upper bound because Nature can always disclose the state; but

this upper bound can be achieved by the Sender if she fully discloses the state herself.

Using this observation and the definition of V̂ , we have that a signal q is worst-case

optimal if and only if ∑
ω∈Ω, s∈S

V̂ (µs
0)q(s|ω)µ0(ω) = V full(µ0), (A.2)

and, moreover, V̂ = −co(−V ). A distribution ρ of posterior beliefs can be induced

by some signal q : Ω → ∆S if and only if ρ satisfies (BP). We conclude that a signal

q satisfies (A.2) if and only if the distribution of posterior beliefs ρq that it induces

satisfies (WC) and (BP).

A.2 Proof of Proposition 1

Let X = {ρ ∈ ∆∆Ω : ρ satisfies (BP) and supp(ρ) ⊆ ∆FΩ}, where ∆FΩ := {µ ∈
∆Ω : supp(µ) ∈ F}. It is enough to prove that W = X .23

Proof of W ⊆ X : Let ρ ∈ W . By definition of W , ρ satisfies (BP). We will show

that supp(ρ) ⊆ ∆FΩ. Suppose not. Then, there exists A ⊆ supp(ρ), with ρ(A) > 0,

such that for any µ ∈ A, supp(µ) /∈ F . That is, given µ, there exists η ∈ ∆Ω

with supp(η) ⊆ supp(µ) such that V (η) < V full(η). Recall that lco(V ) denotes the

lower convex closure of V , and that V̂ = lco(V ). Because lco(V ) ≤ V , we have that

V̂ (η) < V full(η). Because supp(η) ⊆ supp(µ), there exists a small enough λ > 0 such

that µ = λη + (1− λ)η′, for some η′ ∈ ∆Ω. We have

V̂ (µ) = V̂ (λη + (1− λ)η′) ≤ λ V̂ (η) + (1− λ) V̂ (η′)

< λV full(η) + (1− λ)V full(η
′) = V full(µ), (A.3)

where the first inequality follows from the convexity of V̂ , the second (strict) inequal-

ity from the fact that V̂ (η) < V full(η) and V̂ ≤ V full, and the final equality from the

fact that V full is affine.

We are ready to obtain a contradiction. Recall from Lemma 1 that since ρ is a

23The proof below works for arbitrary distributions, even though it would suffice for our purposes
to prove the equivalence for finite-support distributions, given the assumption of finite signal spaces.
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worst-case optimal distribution, it must satisfy
�
V̂ (µ)dρ(µ) = V full(µ0) which, by

(BP) and the fact that V full is affine, can also be written as�
[ V̂ (µ)− V full(µ)] dρ(µ) = 0. (A.4)

Because V̂ ≤ V full, we must have V̂ (µ) = V full(µ) for ρ-almost all µ, contradict-

ing (A.3) which holds for a ρ-positive-measure set A of posteriors µ.

Proof of W ⊇ X : Suppose that ρ ∈ X . It suffices to show that ρ satisfies

(WC). Because supp(ρ) ⊆ ∆FΩ, we have that, for any µ ∈ supp(ρ), V |∆supp(µ) ≥
V full|∆supp(µ). Because V dominates an affine function V full on ∆supp(µ), so does

its lower convex closure V̂ . We conclude that V̂ (µ) ≥ V full(µ) for all µ ∈ supp(ρ).

Because disclosing the state is always possible for Nature, V̂ (µ) = V full(µ) for all µ ∈
supp(ρ). Together with the fact that V full is affine, this implies that ρ satisfies (WC).

A.3 Proof of Theorem 2

We state three lemmas that imply Theorem2, and then prove them. We will use the

observation that, for any µ ∈ ∆Ω, and any A ⊆ supp(µ),

d(µ, µ|A) =
∑

ω∈supp(µ)

|µ(ω)− µ|A(ω)| =
∑
ω∈A

(
µ(ω)

µ(A)
− µ(ω)

)
+
∑
ω/∈A

µ(ω) = 2µ(Ac),

(A.5)

where Ac denotes the complement of the set A (in Ω). Abusing notation slightly,

we define, for any µ ∈ ∆Ω, the distance between µ and the set of admissible beliefs

according to F as

d(µ, ∆FΩ) := inf
η∈∆FΩ

d(µ, η).

We first observe that if the Sender decides to induce a belief µ that does not belong to

∆FΩ, then the loss that she incurs in the worst-case scenario (relative to a worst-case

optimal policy) is increasing in the distance between µ and beliefs in the admissible

set ∆FΩ.

Lemma 6. There exists a constant δ > 0 such that, for any µ /∈ ∆FΩ,

V full(µ)− V̂ (µ) ≥ δ · d(µ, ∆FΩ).

For regular functions, we can correspondingly bound from above the gains from

inducing a belief µ /∈ ∆FΩ in the base-case scenario. The Sender can always achieve

co(V̂F)(µ) without sacrificing worst-case optimality, by Corollary 7. For µ /∈ ∆FΩ, it

41



is possible that V̂ (µ) > co(V̂F)(µ) but the difference can be upper bounded, and is

small when µ is close to ∆FΩ.

Lemma 7. For a regular function V̂ , there exists ∆ > 0 such that for any µ /∈ ∆FΩ,

V̂ (µ)− co(V̂F)(µ) ≤ ∆ · d(µ, ∆FΩ).

Together, the above two lemmas imply the following result:

Lemma 8. Suppose that V̂ is regular. There exists λ < 1 such that, for all λ ∈ (λ, 1],

if ρ solves problem (6.1), then ρ must assign probability one to ∆FΩ.

Theorem 2 follows from Lemma 8. Indeed, because, for high λ, any λ-solution

assigns probability one to beliefs in ∆FΩ, any λ-solution delivers the same expected

payoff to the Sender in the worst-case scenario (namely, the full-disclosure payoff).

As long as the weight 1− λ on the base-case scenario is strictly positive, a λ-solution

must then maximize the Sender’s payoff in the base-case scenario, conditional on

being worst-case optimal, that is, it must be a robust solution.24

A.3.1 Proof of Lemma 6

For any B ⊆ Ω, with B /∈ F , fix an arbitrary µB ∈ ∆Ω with supp(µB) ⊆ B such

that V (µB) < V full(µB), and hence V̂ (µB) = lco(V )(µB) < V full(µB). Then, let

δB := V full(µB)− V̂ (µB) and δ⋆ := minB/∈F δB > 0.

Consider any µ /∈ ∆FΩ. Let B ⊆ supp(µ) be such that B /∈ F . We can write

µ = κµB+(1−κ)µ′ for some µ′ and κ, as long as µ(ω) ≥ κµB(ω) for all ω ∈ supp(µ)—

this equality can be written in particular for κ = minω∈B{µ(ω)}. Because V full − V̂

is a non-negative and concave function (concavity follows from the fact that it is the

difference between an affine function and a convex function), we have that

(V full − V̂ ) (µ) = (V full − V̂ ) (κµB + (1− κ)µ′) ≥

κ (V full − V̂ ) (µB) + (1− κ) (V full − V̂ ) (µ′) ≥ δB ·min
ω∈B

{µ(ω)} ≥ δ⋆ ·min
ω∈B

{µ(ω)}.

We can order that states in supp(µ) = {ω1, ..., ωk} so that µ(ω1) ≥ µ(ω2) ≥ ... ≥
µ(ωk), and then find the highest i < k such that A = {ω1, ω2, ..., ωi} ∈ F (such i

exists since {ω1} ∈ F but {ω1, ..., ωk} /∈ F). Then, setting B = A ∪ {ωi+1} /∈ F , we

24Formally, for λ ∈ (λ, 1), ρ concavifies λ V̂ + (1− λ)V̂ at µ0 if and only if it concavifies V̂ at µ0

on ∆FΩ. This, however, is equivalent to concavifying V̂F at µ0. By virtue of Corollary 7, ρ is thus
a robust solution.
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have that

δ⋆ · min
ω∈A∪{ωi+1}

{µ(ω)} = δ⋆ · µ(ωi+1) ≥
δ⋆

|Ω|
· µ(Ac) =

δ⋆

|Ω|
1

2
· d(µ, µ|A),

where the last step follows from equation (A.5). Putting the above inequalities to-

gether, and using the fact that µ|A ∈ ∆FΩ, we obtain

(V full − V̂ ) (µ) ≥ δ⋆

|Ω|
1

2
· d(µ, µ|A) ≥

δ⋆

|Ω|
1

2
· inf
η∈∆FΩ

d(µ, η) =
δ⋆

|Ω|
1

2
· d(µ, ∆FΩ),

which finishes the proof if we set δ := δ⋆

|Ω|
1
2
.

A.3.2 Proof of Lemma 7

Fix µ /∈ ∆FΩ. We first claim that for any A ⊆ supp(µ), we can write

µ = κµ|A + (1− κ)η

for some η ∈ ∆Ω, and κ = 1 − 1
2
d(µ, µ|A). Indeed, since µ|A = µ(ω)/µ(A) for every

ω ∈ A, we can take κ = µ(A); but then equation (A.5) implies that

κ = 1− µ(Ac) = 1− 1

2
d(µ, µ|A).

We will use this fact for a particular set A. Namely, let A ⊆ supp(µ) be such that

A ∈ F and d(µ, ∆FΩ) = d(µ, ∆A).25 Using the fact that a concave closure is a

concave function, we have that

co(V̂F)(µ) = co(V̂F)(κµ|A + (1− κ)η) ≥ κco(V̂F)(µ|A) + (1− κ)co(V̂F)(η)

= co(V̂F)(µ|A) + (1− κ)[co(V̂F)(η)− co(V̂F)(µ|A)] ≥ co(V̂F)(µ|A)− (1− κ)2M,

where M < ∞ is an upper bound on the norm of co(V̂F) (which exists since V̂ was

assumed to be bounded). Moreover, since κ = 1− 1
2
d(µ, µ|A), we obtain that

co(V̂F)(µ) ≥ co(V̂F)(µ|A)−Md(µ, µ|A).

Since µ|A ∈ ∆FΩ, we have that co(V̂F)(µ|A) = co(V̂ )(µ|A). Using the assumption

that V̂ is regular, we can conclude that

co(V̂F)(µ) ≥ co(V̂ )(µ|A)−Md(µ, µ|A) ≥ V̂ (µ)− (M + L)d(µ, µ|A).

25To see why such a set A exists, note that the infimum in the definition d(µ, ∆FΩ) :=
infη∈∆FΩ d(µ, η) is attained at some feasible η⋆ (∆FΩ is a compact set, and d is a continuous func-
tion), and we can take A := supp(η⋆). Moreover, supp(η⋆) ⊂ supp(µ) because otherwise we could
decrease the distance between η⋆ and µ by shifting mass under η⋆ from some ω ∈ supp(η⋆)\ supp(µ)
to some ω′ such that µ(ω′) > η⋆(ω′), contradicting the definition of η⋆.
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Finally, using equation (A.5) and our definition of the set A, we obtain that

d(µ, µ|A) = 2µ(Ac) ≤ 2d(µ, ∆A) = 2d(µ, ∆FΩ),

which establishes the desired conclusion if we set ∆ := 2(M + L).

A.3.3 Proof of Lemma 8

It is enough to prove that, for high enough λ, if supp(ρ) ⊈ ∆FΩ, then the Sender’s ob-

jective
� [

λ V̂ (µ) + (1− λ)V̂ (µ)
]
dρ(µ) increases strictly by splitting any µ ∈ supp(ρ)

such that µ /∈ ∆FΩ into beliefs that yield co(V̂F)(µ)—such a split is always available

to the Sender and, by definition of co(V̂F), yields the payoff V full(µ) in the worst-case

scenario. By Lemma 6 and 7, we have that, for some ∆ > 0 and δ > 0,[
λV full(µ) + (1− λ)co(V̂F)(µ)

]
−
[
λ V̂ (µ) + (1− λ)V̂ (µ)

]
= λ [V full (µ)− V̂ (µ)] + (1− λ)

[
co(V̂F)(µ)− V̂ (µ)

]
≥ (λδ − (1− λ)∆) · d(µ, ∆FΩ) > 0

if λ > λ where λ := ∆
∆+δ

< 1.

A.4 Proof of Theorem 3

Part (a). Let S⋆ be the set of robust solutions, represented as distributions of pos-

terior beliefs. This set is non-empty and closed (by Berge’s theorem), hence compact

in the weak⋆ topology. Note that if an element ρ⋆ of S⋆ is dominated, it must be

dominated by another element of S⋆. Indeed, a policy that is not a robust solution

cannot dominate ρ⋆ because, by definition, it either yields a strictly lower payoff when

Nature responds to each µ with V̂ (µ), or, it yields a strictly lower payoff when Nature

responds to each µ with V̂ (µ) (by assumption, V = V̂ and V = V̂ are both feasible

choices by Nature).

Let P be the set of all feasible functions V that are additionally upper semi-

continuous. By Zermelo’s theorem, every set can be well-ordered. We thus introduce

a well-order ⊏ on P . For any V ∈ P , let B⋆(V ) ⊂ S∗ be the subset of S∗ constructed

inductively as follows. Let V0 be the lowest element of P according to the order ⊏.

Then, let

B⋆(V0) := argmax
ρ∈S⋆

{�
V0(µ)dρ(µ)

}
,

that is, the subset of robust solutions that are optimal for the Sender against V0.
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The set B⋆(V0) is non-empty and closed (and hence compact in the weak⋆ topology)

because V0 is upper semi-continuous and S⋆ is non-empty and compact. For any

V ∈ P , then let

B(V ) :=
⋂

V ′⊏V

B⋆(V ′),

B⋆(V ) := argmax
ρ∈B(V )

{�
V (µ)dρ(µ)

}
.

The sets B⋆(V ) are nested, in the sense that B⋆(V ′) ⊆ B⋆(V ) if V ⊏ V ′. There

are also non-empty and compact (again by Berge’s theorem). By an application

of the Finite Intersection Axiom, we can conclude that
⋂

V ∈P B⋆(V ) ̸= ∅ and any

ρ⋆ ∈
⋂

V ∈P B⋆(V ) is an undominated robust solution when we restrict attention to

functions V that are upper semi-continuous.

To finish the proof, suppose that such a ρ⋆ is dominated. Then, it must yield the

Sender a payoff strictly lower than the one achieved by another robust solution ρ′

when Nature responds with a feasible V that is not upper semi-continuous. However,

any measurable V can be approximated point-wise by a sequence Vn of upper semi-

continuous functions. By Lebesgue’s dominated convergence theorem, the Sender’s

expected payoff differential between ρ⋆ and ρ′ under Vn must converge to her expected

payoff differential under the limit function V . If the expected payoff differential under

the limit function V is strictly negative, the expected payoff differential must also be

negative under Vn, for large n, contradicting the fact that ρ⋆ is undominated when

Nature responds with upper semi-continuous functions, as shown above.

Part (b). We now establish that, when coV̂ = V , any robust solution is undom-

inated. Pick any robust solution ρ′. Again, it suffices to show that ρ′ is not domi-

nated by any other robust solution ρ. By Corollary 7, any robust solution achieves

co(V̂F)(µ0) under the conjecture, which corresponds to Nature selecting V = V̂ . Sup-

pose first that there exists µ ∈ ∆Ω such that co(V̂F)(µ) > V̂ (µ) and ρ′(µ) ̸= ρ(µ).

There are two subcases: Either (a) ρ′(µ) > ρ(µ) or (b) ρ′(µ) < ρ(µ).

In case (a), consider the feasible response by Nature V that responds to µ accord-

ing to the Sender’s conjecture, and that responds adversarially to any other posterior:

V (µ) = V̂ (µ), and V (µ′) = V̂ (µ′) for all µ′ ̸= µ. Because µ is induced under some

robust solution (that is, µ ∈ supp(ρ′) ∪ supp(ρ)), by Corollary 7, it must be that

V̂ (µ) = co(V̂F)(µ). Thus, under the specified response by Nature, the Sender’s ex-
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pected payoff under a robust solution ρ⋆ ∈ {ρ, ρ′} is given by

ρ⋆(µ)co(V̂F)(µ) +

(�
V̂ (µ′)dρ⋆(µ′)− V̂ (µ)ρ⋆(µ)

)
.

Under a robust solution, by Lemma 1, we have that
�

V̂ (µ′)dρ⋆(µ′) = V full(µ0), and

thus the difference in expected payoffs between ρ′ and ρ when Nature responds with

V is given by

[ρ′(µ)− ρ(µ)]
[
co(V̂F)(µ)− V̂ (µ)

]
> 0,

where the inequality follows from the fact that ρ′(µ) > ρ(µ). Thus, ρ does not domi-

nate ρ′.

In case (b), consider the following response by Nature: V (µ) = V̂ (µ) and V (µ′) =

V̂ (µ′) for all µ′ ̸= µ. Under this response by Nature, the expected payoff under a

robust solution ρ⋆ ∈ {ρ′, ρ} is equal to

co(V̂F)(µ0)− ρ⋆(µ)[co(V̂F)(µ)− V̂ (µ)].

To see this, recall that when Nature responds to any induced posterior with V̂ , then

ρ⋆ generates an expected payoff equal to co(V̂F)(µ0)—this follows directly from the

fact that ρ⋆ is a robust solution.26 Conditional on inducing µ (which has probability

ρ⋆(µ)), instead of V̂ (µ) = co(V̂F)(µ), the Sender gets V̂ (µ).

Thus, the difference in expected payoffs between ρ′ and ρ is given by

[ρ(µ)− ρ′(µ)]
[
co(V̂F)(µ)− V̂ (µ)

]
> 0,

because ρ(µ) > ρ′(µ). Hence, ρ does not dominate ρ′ also in this case.

The final case to consider is when there exists no µ ∈ ∆Ω such that co(V̂F)(µ) >

V̂ (µ) and ρ′(µ) ̸= ρ(µ). Put differently, for any µ such that ρ′(µ) ̸= ρ(µ) (such

a µ must exist because otherwise the two solutions would coincide), we must have

co(V̂F)(µ) = V̂ (µ) (since co(V̂F) ≥ V̂ ). Note, however, that co(V̂F) is a concave

function while V̂ is a convex function, and thus they can be equal at µ if and only if

they are both affine functions on ∆supp(µ): In fact, we must have V̂ = V̂ = V full on

∆supp(µ). Moreover, because V̂ is affine on ∆supp(µ), we have that coV̂ (µ) = V̂ (µ)

for any such µ. Finally, using the assumption of Theorem 3 that coV̂ = V , we

conclude that V = V̂ on ∆supp(µ). But this means that any V that Nature can

select is affine on ∆supp(µ). This implies that Nature’s response conditional on any

26In fact, from Corollary 7,
�
V̂F (µ)dρ

⋆(µ) = co(V̂F )(µ0). The property then follows from the fact

that, for any µ′ ∈ supp(ρ⋆), V̂ (µ′) = V̂F (µ
′).
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such µ is payoff-equivalent for the Sender. Because this is true for any µ at which ρ′

and ρ differ, and because both distributions are robust solutions, it follows that these

two signals are payoff-equivalent, and hence ρ does not dominate ρ′.
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Online Appendix

OA.1 Proofs for Section 5

OA.1.1 Proof of Lemma 2

Pick any two states ω and ω′ such that ω > ω′ + D and let B = {ω′, ω}. To

simplify the notation, for any λ ∈ [0, 1], let v(λ) := V (λδω + (1 − λ)δω′). It is

enough to prove that v′(0) < v(1) − v(0) as this implies that v(λ) is strictly below

the payoff from full disclosure λv(1) + (1 − λ)v(0) for small enough λ > 0. Indeed,

this means that V |∆B(µ) is below the full-disclosure payoff V full|∆B(µ) for posterior

beliefs µ supported on B that put sufficiently small mass on ω; the conclusion then

follows from Corollary 2. For low enough λ, using the fact that ω > ω′ + D, we

have v(λ) = (1 − λ)
(� ω′+D

ω′ (p− ω′)dp
)
. That is, only the low type ω′ trades if

the buyer believes the seller’s type to be ω′ with high probability. We thus have

v′(0) = −
� ω′+D

ω′ (p− ω′)dp, so that v′(0)− v(1) + v(0) = −
� min{ω+D, 1}
ω

(p− ω)dp < 0

by the assumption that maxΩ < 1.

OA.1.2 Proof of Lemma 3

Clearly, 1{Eµ[ω̃|ω̃≤p]+D>p} ≤ 1{Eµ[ω̃]+D>p}. Suppose that the inequality is strict for some

p ≥ ωµ : Eµ[ω̃] +D > p but Eµ[ω̃|ω̃ ≤ p] +D ≤ p. This is only possible when p < ωµ,

where ωµ is the maximum of supp(µ). But then

p ≥ Eµ[ω̃|ω̃ ≤ p] +D ≥ ωµ +D ≥ (ωµ −D) +D = ωµ > p,

a contradiction.

OA.1.3 Proof of Lemma 4

By Lemma 3, we can write

V (µ) =
∑

ω∈supp(µ)

(� Eµ[ω̃]+D

ω

(p− ω)dp

)
µ(ω) =

1

2

∑
ω∈supp(µ)

(Eµ[ω̃] +D − ω)2 µ(ω).

Let B = {ω1, ..., ωn} with ω1 < ω2 < ... < ωn, and let µi = µ(ωi). Then, V can be

treated as a function defined on a unit simplex in Rn:

V (µ) =
1

2

n∑
i=1

µi

(
n∑

j=1

µjωj +D − ωi

)2

.
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To prove the lemma, it is enough to prove that the function Ṽ defined by Ṽ (µ2, ..., µn) =

V (1− µ2 − ...− µn, µ2, ..., µn) has a negative semi-definite hessian. By a direct cal-

culation, denoting ω−1 = [ω2, ..., ωn], we obtain that Hessian(Ṽ ) = −(ω−1 − ω1)
T ·

(ω−1 − ω1), which is a negative semi-definite matrix (of rank 1).

OA.1.4 Proof of Proposition 4

Given any µ ∈ ∆Ω, let µ+ := µ(ω > 0) denote the probability that µ assigns to the

event that ω > 0. In this application, the Sender’s conjecture is that the Receivers

do not have any exogenous information other than the one contained in the prior µ0.

Furthermore, for any common posterior µ, all agents attack if µ+ < α, and refrain

from attacking if µ+ ≥ α, where α := g/(g + |b|), implying that V̂ (µ) = 0 if µ+ < α

and V̂ (µ) = 1 if µ+ ≥ α.

Let µ+
0 < α, as assumed in the main text. The following policy is then a Bayesian

solution. The Sender randomizes over two announcements, s = 0 and s = 1. She

announces s = 0 with certainty when ω > 0, and with probability (1− ϕBP ) ∈ (0, 1)

when ω ≤ 0, with ϕBP satisfying P(ω > 0|s = 0) = µ+
0 /[µ

+
0 +(1−µ+

0 )(1−ϕBP )] = α.

To see that this is a Bayesian solution, first note that, without loss of optimality,

the Sender can confine attention to policies with two signal realizations, s = 0 and

s = 1, such that, when s = 0 is announced, P(ω > 0|s = 0) ≥ α and all agents

refrain from attacking, whereas when s = 1 is announced, P(ω > 0|s = 1) < α and all

agents attack.27 Next, note that, starting from any binary policy announcing s = 1

with positive probability over a positive measure subset of R+, one can construct

another binary policy that announces s = 0 (thus inducing all agents to refrain

from attacking) with a higher ex-ante probability, contradicting the optimality of

the original policy. Hence, any binary Bayesian solution must announce s = 0 with

certainty for all ω > 0. Furthermore, under any Bayesian solution, the ex-ante

probability
∑

ω∈Ω:ω<0 π(0|ω)µ0(ω) is uniquely pinned down by the condition P(ω >

0|s = 0) = µ+
0 /[µ

+
0 +

∑
ω∈Ω:ω<0 π(0|ω)µ0(ω)] = α. Because the Sender’s preferences

depend only on 1 − A, the specific way the policy announces s = 0 when ω < 0 is

irrelevant, thus implying that the binary policy described above is indeed a Bayesian

27The arguments for this result are the usual ones. Starting from any policy with more than two
signal realizations, one can pool into s = 0 all signal realizations leading to a posterior assigning
probability at least α to the event that ω > 0 and into s = 1 all signal realizations leading to a
posterior assigning probability less than α to ω > 0. The binary policy so constructed is payoff-
equivalent to the original one.
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solution. By the same token, the above binary policy is payoff-equivalent to one that

announces s = 0 with certainty when ω > 0, whereas, when ω < 0, fully reveals the

state with probability ϕBP , and announces s = 0 with the complementary probability.

The signal realization s = 0 can then be interpreted as the decision not to disclose any

information (equivalently, as the “null signal”s = ∅), as claimed in the proposition.

To see that the above Bayesian policy is not robust, let µ(0,1] := µ(ω ∈ (0, 1])

denote the probability that µ assigns to the interval (0, 1]. Recall that, given any

posterior µ, if µ+ := µ(ω > 0) < α, the unique rationalizable action is to attack. If

µ+ ∈ [α, α + µ(0,1]], both attacking and not attacking are rationalizable. Finally, if

µ+ > α + µ(0,1], the unique rationalizable action is to refrain from attacking. Hence,

under the most adversarial selection, V (µ) = 0 if µ+ ≤ α + µ(0,1], and V (µ) = 1

if µ+ > α + µ(0,1]. Next, observe that worst-case optimality requires that all states

ω > 1 be separated from all states ω ≤ 1. Indeed, V full(µ) = µ(ω > 1) = µ+ − µ(0,1]

and, given any common posterior µ induced by the Sender, Nature always minimizes

the Sender’s payoff by using a signal that discloses the same information to all agents.

Arguments similar to those in the judge’s example in Section 3 imply that any worst-

case optimal distribution (and hence any robust solution) must separate states ω > 1

from states ω ≤ 1.

Because the above restriction is the only one imposed by worst-case optimality,

on the restricted domain Ω̄ := {ω ∈ Ω : ω ≤ 1}, any robust solution must coincide

with a Bayesian solution. Let ϕRS ∈ (0, 1) be implicitly defined by µ
(0,1]
0 /[µ

(0,1]
0 +(1−

µ+
0 )(1−ϕRS)] = α. Arguments similar to the ones above then imply that the following

policy is a Bayesian solution on the restricted domain. When ω ∈ (0, 1], the Sender

announces s = 0 with certainty. When, instead, ω ≤ 0, with probability ϕRS > ϕBP ,

the Sender fully reveals the state, and with the complementary probability 1− ϕRS,

announces s = 0. Lastly, observe that, given any posterior µ with supp(µ) ⊂ (1, ∞),

the unique rationalizable profile features all agents refraining from attacking. This

means that, once the Sender fully separates the states ω ≤ 1 from the states ω > 1,

she may as well fully reveal the state when the latter is strictly above 1.

Combining all the arguments above together, it is then easy to see that the fol-

lowing policy is a robust solution. When ω ≤ 0, with probability ϕRS ∈ (0, 1), the

Sender fully reveals the state, whereas, with the complementary probability 1− ϕRS,

she announces s = ∅. When ω ∈ (0, 1], the Sender announces s = ∅ with certainty.

Finally, when ω > 1, the Sender fully reveals the state, as claimed in the proposition.
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OA.2 Auxiliary results for Section 6

OA.2.1 Relaxing the regularity assumption in Theorem 2

In this appendix, we examine the consequences of relaxing the regularity condition in

Theorem 2. One direction of Theorem 2 continues to hold in a slightly weaker form.

Theorem OA.1. If λn ↗ 1, and ρn ∈ S(λn) converges to ρ in the weak∗ topology as

n → ∞, then ρ is a robust solution.

Proof. Take ρn as in the statement of the theorem. By optimality of ρn, the value of

the Sender’s objective (with weight λn) cannot be increased strictly by switching to

a robust solution. That is,�
∆Ω

[
(1− λn)V̂ (µ) + λn V̂ (µ)

]
dρn(µ) ≥ (1− λn)co(V̂F)(µ0) + λnV full(µ0).

Lemma 6 and the above inequality jointly imply that there exists δ > 0 such that�
∆Ω

V̂ (µ)dρn(µ)− co(V̂F)(µ0) ≥
λn

1− λn

· δ ·
�
∆c

FΩ

d(µ, ∆FΩ) dρn(µ). (OA.1)

Because the left hand side of the above inequality is bounded, and λn/(1−λn) diverges

to infinity, we must have that�
∆c

FΩ

d(µ, ∆FΩ) dρn(µ) → 0.

The function d(µ, ∆FΩ) is continuous and bounded. By definition of convergence in

the weak∗ topology, we have,�
∆c

FΩ

d(µ, ∆FΩ) dρ(µ) = 0.

Because the integrand is strictly positive, we must have that supp(ρ) ⊆ ∆FΩ, and

thus ρ is worst-case optimal.

Since the right hand side of inequality (OA.1) is non-negative, we have that

co(V̂F)(µ0) ≤ lim sup
n

�
∆Ω

V̂ (µ)dρn(µ) ≤
�
∆Ω

V̂ (µ)dρ(µ) ≤ co(V̂F)(µ0),

where the second inequality comes from upper-semi continuity of V̂ , and the last

inequality follows from the fact that ρ is worst-case optimal, while co(V̂F)(µ0) is the

upper bound on the conjectured payoff that a worst-case optimal distribution can

yield. This, however, means that
�
∆Ω

V̂ (µ)dρ(µ) = co(V̂F)(µ0), and thus ρ is a robust

solution, by Corollary 7.
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Next, we show that, without the regularity condition (Definition 4), there exist

robust solutions that cannot be approximated by λ-solutions.

Example OA.1. Let Ω = {1, 2, 3}, and µ0 = (1/3, 1/3, 1/3). Let V be equal to 0

everywhere except at µ = µ0 where V (µ0) = −1. Let V̂ be such that

V̂ (1, 0, 0) = V̂ (0, 1, 0) = V̂ (0, 0, 1) = V̂ (1/2, 1/2, 0) = V̂ (1/2, 0, 1/2) = 0,

and

V̂ (1− 2x, x, x) =
√
x, ∀x ≤ 1/3,

and V̂ (µ) = −1 anywhere else. Notice that V̂ violates regularity because along the

line segment (1 − 2x, x, x), as x → 0, V̂ decreases at an infinite rate to 0, while

V̂ (µ) ≤ 0 for all µ that do not have full support.

By definition of V , and Proposition 1, any worst-case optimal solution puts no

mass on beliefs with full-support. Thus, a robust solution is any Bayes-plausible

convex combination of beliefs µ at which V̂ (µ) = 0. However, we will show that in

the limit as λ ↗ 1, all λ-solutions must put positive (bounded away from zero) mass

on the belief µ = (1, 0, 0). Therefore, the distribution ρRS that puts mass 1/3 on

µ = (1/2, 1/2, 0), mass 1/3 on µ = (1/2, 0, 1/2), mass 1/6 on µ = (0, 1, 0), and mass

1/6 on µ = (0, 0, 1) is a robust solution but is not a limit of λ-solutions.

Note first that V̂ (µ) := lco(V )(µ) = −3minω µ(ω). Consider a distribution ρ

that attaches weight m (potentially m = 0) to beliefs of the form (1 − 2x, x, x) for

x ∈ (0, 1/3]. Because the objective function V̂λ(µ) := λ V̂ (µ)+ (1−λ)V̂ (µ) is strictly

concave on that line segment, a λ-solution attaches the entire weight m to a single

x⋆. For a fixed λ, the optimal choice of x⋆ is

x⋆ =

(
1− λ

6λ

)2

.

The remaining mass 1 − m must be distributed over the beliefs (1, 0, 0), (0, 1, 0),

(0, 0, 1), (1/2, 1/2, 0), and (1/2, 0, 1/2), with weights satisfying the Bayes-plausibility

constraint. Because the Sender’s payoff is equal to 0 on any such belief, a λ-solution

is characterized by the level of m that maximizes

(1−m)[0] +m[−3λx⋆ + (1− λ)
√
x⋆] = m

(1− λ)2

12λ
subject to the Bayes-plausbility constraint. Because the above function is increasing

in m, any λ-solution, for λ < 1, attaches probability m⋆ to the belief (1−2x⋆, x⋆, x⋆),

where m⋆ ≥ 1/3 is the largest value of m consistent with Bayes plausibility. Next
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observe that (1 − 2x⋆, x⋆, x⋆) converges to (1, 0, 0) as λ ↗ 1. Hence, all limits of

λ-solutions put at least 1/3 mass on (1, 0, 0) which is what we wanted to prove.

OA.2.2 Example showing that Bayesian solutions can be dom-

inated

In this subsection, we construct an example showing that a Bayesian solution can be

dominated even under the assumption made in case (b) of Theorem 3.

Consider the following conjecture V̂ (equal to V ) defined over the set [0, 1] of

posteriors over a binary state, with prior µ0 = 1/2: V̂ (µ) =
(
|µ− 1

2
| − 1

4

)2
. That is,

V̂ (µ) ≤ 1/16 and V̂ (µ) = 1/16 exactly at µ ∈ {0, 1/2, 1}. Then let V = coV̂ , and

V̂ = lcoV̂ in Definition 5 of dominance.

No disclosure is a Bayesian solution, yielding a payoff of 1/16. However, no

disclosure is dominated by full disclosure: Full disclosure yields 1/16 always, that

is, regardless of what Nature does. On the other hand, there are signals for Nature

(corresponding to some selection of the function V ) under which no disclosure by the

Sender generates strictly less than 1/16; for example, Nature can induce the beliefs

1/4 and 3/4 with probability 1/2 each, yielding a zero payoff for the Sender.

It is instructive to see which step of the proof of Theorem 3(b) fails for Bayesian

solutions: In case (a) of that proof, we relied on Lemma 1 to argue that for a robust

solution ρ,
�

V̂ (µ)dρ(µ) = V full(µ0), which is a property equivalent to worst-case

optimality. This is not true for no disclosure in the above example, because no

disclosure is a Bayesian solution that is not worst-case optimal.

OA.3 Simultaneous-move-robust solutions

In our baseline model, we did not impose any restrictions on the signal chosen by

Nature. In particular, Nature’s choice of the signal could depend on the Sender’s

signal realization. In this appendix, we study a solution concept under which Nature

chooses a signal simultaneously with the Sender. The assumption might be appro-

priate for settings in which Nature’s move reflects the Sender’s ambiguity over the

information the Receivers possess prior to receiving the Sender’s information, and

acquiring additional information after receiving the Sender’s information is too costly

or otherwise infeasible for the Receivers.

To simplify exposition, we work with the baseline model of Section 2, except that
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we allow for general conjectures. Unless specified otherwise, we maintain all the

assumptions imposed in the main text.

The Sender continues to choose an information structure q : Ω → ∆S which

maps states ω into probability distributions of signal realizations s ∈ S, but we do

not assume that S is finite (this would be with loss of generality). We also modify

Nature’s strategy space: Nature selects a signal π : Ω → ∆R that is independent of

the Sender’s signal conditional on the state, with a signal space R that is potentially

infinite. Let ΠCI be the set of signals available to Nature, where “CI” stands for

“conditionally independent.”28

The base-case payoff v̂(q) obtained when the Sender selects a signal q is computed

under the conjecture that Nature selects some fixed (conditionally independent) signal

π0 : Ω → ∆R:

v̂(q) :=
∑
ω∈Ω

�
S

�
R

(�
A

v(a, ω)dξ0(a|µs,r
0 )

)
dπ0(r|ω)dq(s|ω)µ0(ω),

where ξ0 is the conjectured tie-breaking rule, with ξ0(A
⋆(µ)|µ) = 1 for all µ.29 We can

similarly define V̂ as in formula (4.1) in Section 4, except that the conjecture about

Nature is that it uses a signal π0 ∈ ΠCI (π0 is not a function of the posterior belief

generated by the Sender). Throughout, we assume that V̂ is upper semi-continuous.

Let

v(q, π) :=
∑
ω∈Ω

�
S

�
R
V (µs,r

0 )dπ(r|ω)dq(s|ω)µ0(ω),

denote the Sender’s payoff from choosing q when Nature chooses π, under the adver-

sarial selection V (defined as in the main text). We define two notions of worst-case

optimality, corresponding to cases 2 and 3 introduced in Section 6.3.

Definition OA.1. A signal q ∈ Q is CI-worst-case optimal if it maximizes the worst-

case payoff:

q ∈ argmaxq′∈Q

{
inf

π∈ΠCI

v(q′, π)

}
.

Definition OA.2. A signal q ∈ Q is SM-worst-case optimal if it is part of a Bayes-

Nash equilibrium of a simultaneous-move game against Nature: There exists π ∈ ΠCI

28As in the main text, we assume that R and S are subsets of some sufficiently rich but fixed
space.

29We continue to denote by A⋆(µ) := argmaxa∈A

∑
Ω u(a, ω)µ(ω) the set of actions that maximize

the Receiver’s expected payoff when her posterior belief is µ.
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such that

q ∈ argmaxq′∈Q v(q′, π),

π ∈ argminπ′∈ΠCI
v(q, π′).

CI-worst-case optimality captures the idea that Nature can best respond to the

Sender’s choice of a signal but cannot condition on the Sender’s signal realization.

SM-worst-case optimality corresponds to a simultaneous-move game, in which Nature

does not observe the Sender’s choice of a signal. As foreshadowed in Section 6.3, we

can prove that these two definitions are equivalent in our problem.

Lemma OA.1. The following statements are equivalent:

1. q is CI-worst-case optimal;

2. q is SM-worst-case optimal;

3. q generates the full-disclosure payoff in the worst-case scenario:

inf
π∈ΠCI

v(q, π) = V full(µ0).

Proof. (1) =⇒ (2). Suppose that q ∈ argmaxq′∈Q {infπ∈ΠCI
v(q′, π)}. We argue that

(q, πfull) is a Bayes-Nash equilibrium of the simultaneous-move game between Nature

and the Sender, where πfull is the full-disclosure signal. Optimality of q for the Sender

is trivial since any policy q′ leads to the full-disclosure payoff V full(µ0) against πfull.

Optimality of πfull for Nature follows from the fact that q maximizes infπ∈ΠCI
v(q′, π)

over all q′ ∈ Q, which implies that, given q, Nature cannot bring the Sender’s payoff

below V full.
30

(2) =⇒ (3). Suppose that (q, π) is a Bayes-Nash equilibrium of the simultaneous-

move game between Nature and the Sender. Since the Sender can always fully disclose

the state, we have that v(q, π) ≥ V full(µ0); but since Nature can also choose to fully

disclose the state, we have that v(q, π) ≤ V full(µ0). It follows that minπ∈ΠCI
v(q, π) =

V full(µ0) which gives us (3).

(3) =⇒ (1). Because infπ∈ΠCI
v(q′, π) ≤ V full(µ0) for all q

′ ∈ Q, (3) implies that

q maximizes infπ∈ΠCI
v(q′, π), and hence q is CI-worst-case optimal.

30Else, the Sender could improve upon q by fully disclosing the state, making Nature’s move
irrelevant, which contradicts the assumption that q ∈ argmaxq′∈Q {infπ∈ΠCI

v(q′, π)}.
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Lemma OA.1 has the flavor of the minimax theorem, with the full-disclosure

payoff playing the role of the value of the zero-sum game between the Sender and

Nature. Our minimax theorem does not require any continuity assumptions because

full disclosure can always be obtained by either player, regardless of the sequence of

moves. Given Lemma OA.1, we can use any of the three equivalent definitions of

worst-case optimality. The lemma reveals that the key difference to the baseline case

is that Nature must select a signal that is conditionally independent of the Sender’s

signal; the sequence of moves is not important.

We let WSM denote the set of SM-worst-case optimal signals. Then, we define a

SM-robust solution analogously to Definition 2: A signal q is a SM-robust solution if

it maximizes v̂(q) over WSM .

OA.3.1 Summary of results

We start by summarizing the relationship between robust and SM-robust solutions.

The summary serves as a road map for the next subsections where the results fore-

shadowed here are formally developed.

Characterizing SM-robust solutions turns out to be significantly more compli-

cated than characterizing robust solutions. In particular, the restrictions imposed

by SM-worst-case optimality do not take the tractable form described in Theorem 1.

Therefore, the results that we obtain for this case are more limited in scope:

� Corollary 1 fails for SM-robust solutions, i.e., a SM-robust solution may fail

to exist. We show in Subsection OA.3.3 (Theorem OA.2) that a SM-robust

solution exists under a stronger assumption of continuity of V . Moreover, we

introduce a notion of weak SM-robust solutions (that relaxes the condition of

SM-worst-case optimality), and show that a weak SM-robust solution exists

under no further assumptions on V .

� In Subsection OA.3.5, we provide a sufficient condition (Theorem OA.3) for

state separation under a SM-robust solution. This condition is weaker than

the one in Corollary 2; that is, whenever two states must be separated under a

SM-robust solution, they also must be separated under a robust solution.

� Corollary 4 does not extend to SM-robust solutions because we do not have a

characterization similar to the one in Theorem 1. In Subsection OA.3.2 and

Subsection OA.3.5, we obtain various (weaker) sufficient conditions for either
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full-disclosure to be the unique SM-robust solution, or for all distributions to

be SM-worst-case optimal.

� In Subsection OA.3.4, we analyze the binary-state case. Unlike robust solutions,

as described by Corollary 3, SM-robust solutions for binary-state problems may

coincide with neither Bayesian solutions nor full disclosure. However, we give

sufficient conditions for Bayesian solutions and full disclosure, respectively, to

constitute SM-robust solutions.

� In Subsection OA.3.6, we show that Corollary 5 and Corollary 6 fail for SM-

robust solutions. That is, it is possible that a Bayesian solution is strictly more

informative than all SM-robust solutions.

� Corollaries 7 and 8 also fail: In fact, a SM-robust solution may require infinitely

many signal realizations even when the state space is finite.

OA.3.2 Preliminary observations

We first make a couple of observations to simplify the problem of finding a SM-robust

solution.

Lemma OA.2. The set of SM-robust solutions when the signal space used by Nature

is equal to Ω is the same as when it is equal to R, for any R ⊃ Ω.

Proof. Observe that, for any π : Ω → ∆R,

v(q, π) =
∑
ω∈Ω

�
R

�
S
V (µs,r

0 )dπ(r|ω)dq(s|ω)µ0(ω)

=

�
R

(∑
ω∈Ω

[�
S
V (µs,r

0 )dq(s|ω)
]
µr
0(ω)

)
︸ ︷︷ ︸

V q(µ
r
0)

(∑
ω∈Ω

dπ(r|ω)µ0(ω)

)
,

where

V q(µ) :=
∑
ω∈Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω).

Therefore,

v(q, π) =

�
R
V q(µ

r
0)dΠµ0,π(r),

where Πµ0,π ∈ ∆R denotes the unconditional distribution over R induced by µ0 and

π. From this observation, it is easy to see that, without loss of generality, we can
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assume that Nature chooses a distribution ν ∈ ∆∆Ω over posterior beliefs over Ω,

subject to Bayes plausibility. In particular, to minimize the Sender’s payoff, Nature

solves the following problem: infν∈∆∆Ω

�
V q(µ)dν(µ) subject to Bayes-plausibility�

µdν(µ) = µ0. When V (µ) is lower semi-continuous, so is V q(µ), for any q. Formally,

for any sequence {µn} of posterior beliefs over Ω converging to µ ∈ ∆Ω, we have that

lim inf
n

V q(µn) = lim inf
n

∑
Ω

[�
S
V (µs

n)dq(s|ω)
]
µn(ω)

= lim inf
n

{∑
Ω

[�
S
V (µs

n)dq(s|ω)
]
µ(ω) +

∑
Ω

[�
S
V (µs

n)dq(s|ω)
]
[µn(ω)− µ(ω)]

}

≥
∑
Ω

[�
S
lim inf

n
V (µs

n)dq(s|ω)
]
µ(ω) + lim inf

n

∑
Ω

[�
S
V (µs

n)dq(s|ω)
]
[µn(ω)− µ(ω)]

≥
∑
Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω)− ∥V ∥ · lim inf

n

∑
Ω

|µn(ω)− µ(ω)|

=
∑
Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω) = V q(µ),

where the first inequality follows from Fatou’s lemma, whereas the second inequality

follows from the fact that V is bounded, along with the continuity of posterior beliefs

in the prior.

Therefore, Nature’s problem has a solution. Furthermore, minimizing the Sender’s

payoff requires at most |Ω| signals (by the same argument as in Kamenica and

Gentzkow, 2011). Thus, it is without loss of generality to set R = Ω to charac-

terize SM-worst-case optimal signals.

From now on we assume that R = Ω (unless stated otherwise) and abuse notation

slightly by letting π(r|ω) denote the probability Nature sends signal r in state ω

(using the fact that the signal space is finite).

We apply a similar transformation to the Sender’s problem next. By the law of

total probability,∑
ω,r∈Ω

�
S
V (µs,r

0 )π(r|ω)dq(s|ω)µ0(ω) =

�
S

(∑
ω,r∈Ω

V (µs,r
0 )π(r|ω)µs

0(ω)

)
︸ ︷︷ ︸

V π(µ
s
0)

(∑
ω∈Ω

dq(s|ω)µ0(ω)

)
,

where

V π(µ) :=
∑
ω,r∈Ω

V (µr)π(r|ω)µ(ω),
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and hence ∑
ω,r∈Ω

�
S
V (µs,r

0 )π(r|ω)dq(s|ω)µ0(ω) =

�
S
V π(µ

s)dQµ0,q(s),

where Qµ0,q ∈ ∆S is the unconditional distribution over S induced by µ0 and q.

Therefore, the problem of finding a SM-robust solution is equivalent to the problem

of finding a Bayes-plausible ρ ∈ ∆∆Ω that maximizes
�
V̂ (µ)dρ(µ) among all SM-

worst-case optimal distributions. By an argument analogous to the one used to prove

Lemma 1, SM-worst-case optimality is equivalent to

inf
π: Ω→∆R

�
V π(µ)dρ(µ) = V full(µ0). (SM-WC)

As before, we will abuse terminology slightly by calling ρ a SM-robust solution. We

also introduce the set WSM of worst-case optimal distributions of posterior beliefs

(induced by the set WSM of worst-case optimal signals).

Condition (SM-WC), contrasted with condition (WC) from Lemma 1, highlights

the difference between worst-case optimality and SM-worst-case optimality. In Lemma1,

the infimum operator (embedded in the definition of V̂ ) is inside the integral, i.e.,

the infimum over Nature’s signals is computed posterior by posterior. For SM-worst-

case optimality, instead, the infimum operator is outside the integral because Nature

cannot respond differently to each realized posterior induced by the Sender’s signal.

OA.3.3 Existence

Unlike in the baseline model, without additional restrictions on V , existence of a

SM-robust solution cannot be guaranteed. Example OA.2 illustrates the difficulty.

Example OA.2 (Non-existence of SM-robust solutions). Suppose the state ω is

binary, Ω = {0, 1} , ∆Ω = [0, 1], µ ∈ [0, 1] is the probability that ω = 1, and

µ0 = 1/2. Define the correspondence

V(µ) :=


{2µ} µ < 1/2,

[−1, 1] µ = 1/2,

{2− 2µ} µ > 1/2,

and let V̂ and V be, respectively, the point-wise highest and lowest selection from the

correspondence V . Then, V̂ is continuous, whereas V has a discontinuity at µ = 1/2.

A distribution ρ is SM-worst-case optimal if and only if it guarantees the Sender a

payoff of 0 (this is the payoff from full disclosure of the binary state). Any Bayes-
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plausible continuous distribution of posterior beliefs (for example, ρ ∈ ∆∆Ω that

is uniform on [0, 1]) yields a payoff guarantee of 0 because Nature cannot induce a

posterior belief of 1/2 with positive probability. This conclusion relies crucially on the

assumption that Nature’s signal is conditionally independent of the Sender’s signal.

To see why a SM-robust solution does not exist, note that the set WSM is not

closed. For example, consider any sequence of Bayes-plausible distributions of pos-

terior beliefs such that (i) each distribution in the sequence is atomless, and (ii)

the sequence converges (in the weak⋆ topology) to a Dirac delta at 1/2 (induced by

the uninformative signal). Then, each distribution in the sequence belongs to WSM

but the limit does not. Moreover, the sequence yields expected base-case payoffs

that converge to the upper bound of 1. The supremum of 1 cannot be achieved by

any SM-worst-case optimal distribution because the only candidate—a Dirac delta at

1/2—is not SM-worst-case optimal.

Note that a Dirac delta at 1/2 (which corresponds to no disclosure) can be ap-

proximated by a sequence of distributions that are SM-worst-case optimal. ■

The observations in the example above motivate a weaker definition of robustness

for which existence is guaranteed.

Definition OA.3. A Bayes-plausible distribution of posterior beliefs ρ ∈ ∆∆Ω is a

weak SM-robust solution if it maximizes
�
V̂ (µ)dρ(µ) over cl(WSM), where cl(WSM)

denotes the closure (in the weak∗ topology) of the set of SM-worst-case optimal dis-

tributions of posterior beliefs.

A weak solution thus relaxes the requirement that the distribution ρ is SM-worst-

case optimal. Instead, it requires that it can be approximated by distributions that

are SM-worst-case optimal. We establish the following existence result.

Theorem OA.2. A weak SM-robust solution exists. If V is continuous, then a SM-

robust solution also exists.

Proof. Define

v(ρ) := inf
π: Ω→∆R

�
V π(µ)dρ(µ)

as the SM-worst-case value for the Sender when she chooses the distribution ρ. We

will prove that this function is continuous in ρ when V is continuous. Throughout,

we use the weak⋆ toplogy on the space of distributions.

13



First, by a result in Kamenica and Gentzkow (2011), for any Bayes-plausible

distribution of posterior beliefs ρ ∈ ∆∆Ω there exists a signal qρ : Ω → ∆S that

induces this distribution (the subsequent results do not depend on which particular

qρ we select). From the proof of Lemma OA.2, we then have that v(ρ) is equal to

the value of the following minimization problem by Nature: infν∈∆∆Ω

�
V qρ(µ)dν(µ)

subject to
�
µdν(µ) = µ0, where, for any signal q, V q is defined as in the proof of

Lemma OA.2.

Second, note that, under the assumption that V is continuous,
�
V qρ(µ)dν(µ)

is continuous in (ν, ρ) (this amounts to saying that, under a continuous objective

function, the payoff from any pair of signals is continuous in their distribution).

Third, because the set of distributions ν ∈ ∆∆Ω satisfying the Bayes plausibility

constraint
�
µdν(µ) = µ0 is compact, and because the objective function V is con-

tinuous, it follows from Berge’s theorem of maximum that the value function v(ρ) is

continuous in ρ. Hence, the problem of finding a distribution ρ ∈ ∆∆Ω that maxi-

mizes v(ρ) over the set of Bayes-plausible distributions has a solution, and the set of

solutions, WSM , is non-empty and compact.

When, instead, V is not continuous, what remains true is that the set cl(WSM)

is non-empty (because full disclosure belongs to it, by Lemma OA.1) and compact

because it is a closed subset of a compact space (the space of all Bayes-plausible

distributions).

We can now finish the proof of both parts of Theorem OA.2 with a single argument

by observing that in the case when V is continuous, we have WSM = cl(WSM). Thus,

the problem of finding a (weak) SM-robust solution is equivalent to the problem of

finding a distribution ρ ∈ ∆∆Ω that maximizes
�
V̂ (µ)dρ(µ) over cl(WSM). Because

the objective function is upper semi-continuous in ρ (this follows from the fact that,

by assumption, V̂ is upper semi-continuous), and the domain cl(WSM) is compact, a

solution to the above problem exists, thus establishing existence of (weak) SM-robust

solutions.

When Nature can send arbitrary signals, including signals that are correlated

with the Sender’s signal, existence of robust solutions does not require the additional

assumption that V is continuous (see Corollary 1 in the main text). This is because,

in that case, given any induced posterior µ, adversarial Nature always brings the

conditional expected payoff of the Sender down to lco(V )(µ)—the lower convex closure

of V evaluated at µ. The lower convex closure is a convex function, and convex
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functions are continuous on the interior of the domain. This guarantees that the set

W of worst-case optimal distributions is closed, while, in general, the set of SM-worst-

case optimal distributions WSM need not be closed.

OA.3.4 SM-robustness for binary state

In this subsection, we consider the case of a binary Ω. Unlike in the baseline model,

considering this case first is useful because our general characterization of state sepa-

ration in the next subsection relies on the analysis of the binary case. Let Ω = {0, 1},
and, with a slight abuse of notation, let V (µ) denote the payoff to the Sender when

the posterior belief µ puts probability µ on state 1. Let s := V (1)− V (0) denote the

slope of the (affine) function describing the full-disclosure payoff.

Proposition OA.1. If either (i) V is right-differentiable at 0 and V ′(0) < s, or (ii)

V is left-differentiable at 1 and V ′(1) > s, then full disclosure is the unique SM-robust

solution.

Proof. We only prove the result for case (i)—the proof for case (ii) is analogous.

We do so by showing that full disclosure is the unique signal that is SM-worst-case

optimal. Without loss of generality, normalize V (0) = 0 so that s = V (1). Full

disclosure yields the payoff of µ0V (1) regardless of what Nature does. We will prove

that the only way to guarantee a payoff of µ0V (1) is to disclose all information. To

show this, it suffices to show that for all Bayes-plausible ρ ∈ ∆∆Ω with support other

than {0, 1} (where µ = 0 and µ = 1 are the two Dirac distributions assigning measure

one to ω = 0 and ω = 1, respectively), there exists a (binary) signal π for Nature

such that the Sender’s payoff given ρ and π is strictly below µ0V (1).

Let π be the binary signal given by π(1|1) = π̄, π(0|1) = 1 − π̄, and π(0|0) = 1,

where π̄ ∈ [0, 1]. Under this signal, given any posterior belief µ induced by the Sender,

Nature splits µ into p = 1 with probability µπ̄, and p = (1−π̄)µ
1−µπ̄

with probability 1−µπ̄.

Let Uρ(π̄) denote the conditional expected payoff to the Sender when the latter chooses

the distribution ρ ∈ ∆∆Ω and Nature chooses the signal π with parameter π̄:

Uρ(π̄) =

� 1

0

[
µπ̄V (1) + (1− µπ̄)V

(
(1− π̄)µ

1− µπ̄

)]
dρ(µ)

= µ0π̄V (1) +

� 1

0

(1− µπ̄)V

(
(1− π̄)µ

1− µπ̄

)
dρ(µ).

In particular, we have that Uρ(1) = µ0V (1) because π̄ = 1 corresponds to a signal

by Nature that fully discloses the state. Let U ′
ρ(1) denote the left derivative of Uρ(π̄)
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with respect to π̄, evaluated at π̄ = 1 (let ∆ρ(1) be the probability mass that ρ puts

on the belief µ = 1). We then have that

U ′
ρ(1) = lim

ϵ→0

Uρ(1)− Uρ(1− ϵ)

ϵ
= µ0V (1)− lim

ϵ→0

� 1

0
(1− µ(1− ϵ))V

(
ϵµ

1−µ(1−ϵ)

)
dρ(µ)

ϵ

(1)
= µ0V (1)−

�
[0, 1)

lim
ϵ→0

V
(

ϵµ
1−µ(1−ϵ)

)
ϵµ

1−µ(1−ϵ)

µ− µ2 + µ2ϵ

1− µ+ µϵ

 dρ(µ)− V (1)∆ρ(1)

= µ0V (1)− V ′(0) [µ0 −∆ρ(1)]− V (1)∆ρ(1) = [µ0 −∆ρ(1)] [s− V ′(0)] > 0,

(OA.1)

as long as µ0 > ∆ρ(1)—which is true except when ρ is full disclosure. In step (1)

above, we have used the Lebesgue dominated convergence theorem (using the fact that

V is bounded, and has a right derivative at µ = 0). The reason why we separated the

integral over [0, 1] into an integral over [0, 1) and its value at 1 is that, for all µ < 1,

we have that limϵ→0
ϵµ

1−µ(1−ϵ)
= 0, but for µ = 1, ϵµ

1−µ(1−ϵ)
= 1.

Summarizing, unless ρ = ρfull, where ρfull denotes the distribution induced by full

disclosure, we have U ′
ρ(1) > 0, and hence µ0V (1) = Uρ(1) > Uρ(1 − ϵ) for small

enough ϵ. This means that, when ρ ̸= ρfull, Nature can bring the Sender’s payoff

strictly below the full-disclosure payoff V full(µ0) by selecting a binary signal π that is

almost fully revealing. Therefore, full disclosure is the unique SM-worst-case optimal

distribution, and hence the unique SM-robust solution.

The judge example of Kamenica and Gentzkow (2011) satisfies assumption (i) of

Proposition OA.1 because the derivative of V at 0 is 0, while the slope s = V (1)−V (0)

is strictly positive. Therefore, the unique SM-robust solution is full disclosure of the

state.

The proof of Proposition OA.1 shows that, through an appropriate binary signal,

Nature can decompose any non-degenerate posterior belief µ induced by the Sender

into a Dirac delta at ω = 1 and a posterior arbitrarily close to a Dirac at ω = 0. The

condition s > V ′(0) implies that any posterior belief close to (but different from) a

Dirac at ω = 0 gives the Sender a payoff strictly less that a Dirac at ω = 0. In turn,

this implies that, unless the Sender fully reveals the state herself, Nature can bring

the Sender’s expected payoff strictly below the full-disclosure payoff. In such cases,

full disclosure is the unique SM-robust solution.

Loosely speaking, the Sender fully reveals the state not because she is worried
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that, else, Nature will do it, but because she is worried that Nature will almost fully

reveal the state. Under the conditions in Proposition OA.1, almost full revelation is

strictly worse than full revelation.

The above intuition can also be used to compare SM-worst-case optimality to

worst-case optimality (and hence SM-robustness to robustness). As explained in the

main text, a sufficient condition for full disclosure to be the unique robust solution

is that the payoff V (µ) lies below the full-disclosure payoff (1 − µ)V (0) + µV (1) at

some interior µ̂. A sufficient condition for full disclosure to be the unique SM-robust

solution is that V (µ) is below the full-disclosure payoff (1 − µ)V (0) + µV (1) for µ

sufficiently close to one of the two bounds, µ = 0 or µ = 1. When Nature can condition

her disclosure on the realization of the Sender’s signal (equivalently, on the posterior

µ induced by the Sender), for any interior µ, Nature can induce the “final” posterior

belief µ̂ with positive probability, without restricting its own ability to influence the

Receivers’ beliefs conditional on other realizations of the Sender’s signal. In contrast,

when Nature’s signal is conditionally independent, and Nature chooses to induce the

posterior belief µ̂ with positive probability conditional on the Sender inducing µ, it

can no longer independently choose what posterior beliefs the Receivers will have

conditional on other realizations of the Sender’s signal. In particular, even if Nature’s

signal realization shifts µ to a µ̂ that yields a low payoff to the Sender, the same

signal realization could shift some other η induced by the Sender to a η̂ that has a

high payoff to the Sender. In short, Nature cannot target the same posterior belief µ̂

regardless of the realization of the Sender’s signal.

There is an important exception though: By “almost” fully disclosing the state,

Nature can ensure that, no matter the posterior belief induced by the Sender, the

final posterior is in an arbitrary small neighborhood of a Dirac belief δω, with a

probability arbitrarily close to 1 conditional on ω (effectively, in this case, although

Nature cannot always target a particular µ̂, it can target an arbitrarily small region).

If the Sender’s payoff V (µ) is below the full-disclosure payoff for µ in a neighborhood

of δω, Nature can exploit any discretion left by the Sender to push the Sender’s payoff

strictly below V full. This is what makes the neighborhoods of Dirac measures special

in the analysis of SM-worst-case optimality.

As a partial converse to Proposition OA.1, we have the following result:

Proposition OA.2. If V (µ) ≥ V full(µ) for all µ, then all Bayes-plausible distribu-

tions ρ ∈ ∆∆Ω are SM-worst-case optimal. In this case, a distribution ρ ∈ ∆∆Ω is
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a SM-robust solution if and only if it is a Bayesian solution.

Proof. By Proposition 1 in the main text, all Bayes-plausible distributions are worst-

case optimal under the assumptions of Proposition OA.2; hence they are also SM-

worst-case optimal. For ρ ∈ ∆∆Ω to be a SM-robust solution, ρ must maximize

V̂ over the entire set of Bayes-plausible distributions, which means that ρ must be

a Bayesian solution. Likewise, if ρ is a Bayesian solution, it maximizes V̂ over the

entire set of SM-worst-case optimal solutions and hence it is SM-robust.

We can summarize the results for the binary-state case as follows. If V (µ) ≥
V full(µ) for all µ, then, neither worst-case nor SM-worst-case optimality have any bite.

In this case, the set of SM-robust solutions coincides with the set of robust solutions,

which coincides with the set of Bayesian solutions. If, instead, V (µ) < V full(µ) for

some µ, then full disclosure is the unique robust solution but not necessarily the

unique SM-robust solution. However, full disclosure is the unique SM-robust solution

if V (µ) < V full(µ) for µ in some neighborhood of either 0 or 1. When V (µ) < V full(µ)

for some interior µ but not in any neighborhood of either 0 or 1, the set of SM-robust

solutions may be difficult to characterize.

OA.3.5 State separation under SM-robustness

In this subsection, we characterize properties of SM-robust solutions for the general

case with an arbitrary number of states. The analysis parallels the one leading to

Theorem 1 in the main text, but the results are not as sharp as in the case of robust

solutions.

Given a function V : ∆Ω → R, let dV (µ; µ′) denote the Gateaux derivative of V

at µ in the direction of µ′. The latter is defined by

dV (µ; µ′) := lim
ϵ→0

V ((1− ϵ)µ+ ϵµ′)− V (µ)

ϵ
,

whenever the limit exists. Recall that V full(µ) =
∑

Ω V (δω)µ(ω) is the expected payoff

from full disclosure. We then have that, starting from the Dirac measure µ = δω, the

Gateaux derivative of V full(µ) in the direction of the Dirac measure δω′ is equal to

dV full(δω; δω′) = lim
ϵ→0

V full((1− ϵ)δω + ϵδω′)− V full(δω)

ϵ
= V (δω′)− V (δω).

Theorem OA.3. Suppose that for some ω, ω′ ∈ Ω, dV (δω; δω′) < V (δω′) − V (δω).

Then, any SM-worst-case optimal distribution ρ must separate states ω and ω′ with

probability one.
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Proof. The proof relies on insights developed for the binary-state case (see Proposition

OA.1). Nature can always fully reveal the states Ω \ {ω, ω′}, so that, conditional on

the state belonging to {ω, ω′}, the results for the binary-state case apply.

Suppose that some SM-worst-case optimal distribution ρ does not separate ω and

ω′. That is, there exists a non-zero-measure set of µ ∈ supp(ρ) such that µ(ω)µ(ω′) >

0. Consider a signal π by Nature that reveals all states other than ω and ω′ perfectly,

and, conditional on the state belonging to {ω, ω′}, sends signals as in the proof of

Proposition OA.1. The condition dV (δω; δω′) < V (δω′) − V (δω) implies that the

assumptions of Proposition OA.1 hold. Given π, the Sender’s expected payoff is

strictly below her full-disclosure payoff, and hence ρ is not a SM-worst-case optimal

distribution.

We can also identify a simple sufficient condition under which no states need to

be separated, and hence SM-robust solutions coincide with Bayesian solutions.

Corollary OA.1. If V ≥ V full, then all Bayes-plausible distributions are SM-worst-

case optimal.

This is the same condition as the one identified by Corollary 4 in the main text.

Moreover, Corollary 4 actually implies Corollary OA.1 because if a distribution is

worst-case optimal when Nature can choose any signal, then it is also worst-case

optimal when Nature is restricted to choosing conditionally independent signals.

Theorem OA.3 takes a more tractable form in the case when Ω ⊂ R, and the

Sender’s payoff depends only on the expected state.

Corollary OA.2. Suppose that V (µ) = u(Eµ[ω]) for some differentiable function u.

If u′(ω) < u(ω′)−u(ω)
ω′−ω

, then any SM-worst-case optimal distribution must separate the

states ω and ω′ with probability one.

OA.3.6 A Bayesian solution can Blackwell dominate a SM-

robust solution

Corollary 6 in the main text states that, for any Bayesian solution ρBP , one can

find a robust solution ρRS that is either incomparable to, or more informative than,

ρBP in the Blackwell sense. In this subsection, we show that this conclusion does

not extend to SM-robust solutions. We do this by means of a counterexample. Our

counterexample is rather contrived and has no immediate economic interpretation.
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The example exploits the fact that Corollary 5 in the main text does not extend

to SM-robust solutions: A mean-preserving spread of a SM-worst-case optimal distri-

bution need not be SM-worst-case optimal. For intuition, think of a mean-preserving

spread as an additional signal, on top of the original signal selected by the Sender.

When Nature can condition her signal on the realization of the Sender’s signal, she

can entertain mean-preserving spreads that provide additional information to the Re-

ceivers for some realizations of the Sender’s signals but not for others. This means

that any mean-preserving spread engineered by the Sender can also be engineered

by Nature. The result that mean-preserving spreads of worst-case optimal policies

are worst-case optimal then follows from the fact that Nature can always engineer

such spreads herself starting from the original distribution selected by the Sender.

Hence, for the original distribution to be worst-case optimal, it must be that any

mean-preserving spread of such distribution is also worst-case optimal.

This conclusion does not extend to the case of conditionally independent signals.

The reason is that, when Nature is not allowed to condition her signal on the real-

ization of the Sender’s signal, any mean-preserving spread of the Sender’s signal that

Nature can choose provides more information to the Receivers than the original sig-

nal for all non-degenerate µ in the support of the Sender’s original distribution. This

means that certain mean-preserving spreads by the Sender cannot be replicated by

Nature. As a result, there is no guarantee that a mean-preserving spread designed by

the Sender preserves SM-worst-case optimality. In turn, this implies that the Sender

can strictly benefit from withholding information.

Counterexample. The state is binary, Ω = {0, 1}, and the prior is uniform.

Letting µ denote the probability assigned to the state ω = 1, the Sender’s base-

case payoff is given by V̂ (µ) = 2 if µ /∈ G and V̂ (µ) = 3 if µ ∈ G, where G :=

{1/3, 7/12, 2/3, 3/4}. Clearly, given V̂ , there are many Bayesian solutions—any

Bayes-plausible distribution of posteriors with support in G is optimal. Consider the

solution ρBP that puts mass 1/2 on 1/3, mass 1/4 on 7/12, and mass 1/4 on 3/4. This

solution is Blackwell more informative than the Bayesian solution ρR that puts mass

1/2 on 1/3, and mass 1/2 on 2/3. Indeed, the distribution ρBP can be obtained from

the distribution ρR by sending an additional signal whenever the posterior induced

by ρR is 2/3 (the additional signal then decomposes 2/3 into the posteriors 7/12 and

3/4). Figure OA.3.1 illustrates the base-case payoff function V̂ (the black solid line)

and the fact that ρBP is a mean-preserving spread of ρR (this fact is indicated by the
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Figure OA.3.1: The functions V and V̂

red solid arrows).

We complete the construction of the counterexample by selecting the Sender’s

payoff under the adversarial tie-breaking V so that ρR is the unique SM-robust so-

lution. We first give an intuitive description of how we derive V from the properties

required for the counterexample to work, and then provide a formal definition of V

and prove the result.

The idea is to construct a function V under which the Sender gets a low payoff

from beliefs 7/12 and 3/4, so that ρBP is not SM-worst-case optimal. Suppose that

V (µ) = 0 except over a finite set of points, and that V (7/12) = V (3/4) = −1. Then,

ρBP is clearly not SM-worst-case optimal, because, by not disclosing any information,

Nature guarantees that the Sender’s expected payoff under ρBP is strictly below her

full-disclosure payoff, which is equal to zero. Note, however, that this is not enough,

because under such V , ρR is also not SM-worst-case optimal. Indeed, by choosing

π appropriately, Nature can induce the posterior µ = 7/12 and/or the posterior

µ = 3/4 with positive probability, thus bringing the Sender’s payoff strictly below

the full-disclosure payoff. Therefore, we construct V so that, whenever Nature’s

response results in a low payoff for the Sender conditional on one of her posterior

beliefs under ρR, it must result in a sufficiently high payoff for the Sender conditional

on the other posterior belief. For example, Nature can split 2/3 into 7/12 and 3/4;
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however, the unique signal that achieves this split—precisely because the signal must

be conditionally independent—must also split the other posterior 1/3 into 7/27 and

3/7 (as illustrated by the green dotted arrows in Figure OA.3.1). Thus, we choose

the values of V to be sufficiently high at 7/27 and 3/7.

Figure OA.3.1 depicts one more possible response by Nature—indicated by the

orange dashed arrows—that constrains the values of V . To take into account all the

relevant responses by Nature, we can use Lemma OA.2 which says that, to mini-

mize the Sender’s expected payoff, Nature can restrict attention to binary signals.

If V (7/12) = V (3/4) = −1, and V (µ) ≥ 0 for all µ /∈ {7/12, 3/4}, it suffices to

consider binary signals that, given ρR, induce a final posterior of either 7/12 or 3/4

with strictly positive probability. We also know from the proof of Lemma OA.2

that Nature’s problem can be thought of as choosing a distribution over [0, 1] that

minimizes the expectation of V q(µ) over all Bayes-plausible distributions, where q

is any Sender’s signal that induces the distribution ρR. One such signal is given by

S = {l, h}, q(l|0) = 2/3, and q(l|1) = 1/3. Given this q, the Sender’s expected payoff

when Nature induces the posterior µ is equal to

V q(µ) =
∑
ω∈Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω) =

(
2

3
− 1

3
µ

)
V

(
µ

2− µ

)
+

(
1

3
+

1

3
µ

)
V

(
2µ

1 + µ

)
.

To guarantee that ρR is a SM-worst-case optimal distribution, it then suffices to choose

a V that (i) takes value 0 almost everywhere (including at µ = 0 and at µ = 1), (ii)

is such that V (µ) < 0 only for µ ∈ {7/12, 3/4}, at which it takes value V (7/12) =

V (3/4) = −1, and (iii) induces V q(µ) ≥ 0 for all µ. There are only four values of µ

at which V q(µ) could be potentially negative: µ ∈ {7/17, 3/5, 14/19, 6/7}. Indeed,

only for these four posteriors, given the Sender’s signal q, the final posterior takes a

value equal to either 7/12 or 3/4. These four posteriors are given by the solutions to

µ/(2−µ) = 7/12, µ/(2−µ) = 3/4, (2µ)/(1+µ) = 7/12, and (2µ)/(1+µ) = 3/4. At

each such µ, we want V q(µ) = 0. This gives us four equations in four unknowns—the

values of V at the posterior beliefs 2µ/(1 + µ) and µ/(2− µ) when the latter beliefs,

computed for µ ∈ {7/17, 3/5, 14/19, 6/7}, differ from either 7/12 or 3/4. Solving

this system, we obtain that

V

(
7

27

)
=

8

9
, V

(
3

7

)
=

8

7
, V

(
28

33

)
=

8

11
, V

(
12

23

)
=

8

13
, (OA.2)

as illustrated in Figure OA.3.1. This completes the construction of the function V .
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The following claim is then true.31

Claim OA.1. Let Ω = {0, 1}, the prior be uniform, V (µ) = 0 except that V (7/12) =

V (3/4) = −1 and (OA.2) holds, and V̂ (µ) = 2 except that V̂ (1/3) = V̂ (7/12) =

V̂ (2/3) = V̂ (3/4) = 3. Then, there exists a Bayesian solution ρBP that strictly

Blackwell dominates the unique SM-robust solution ρR.

By the construction of V , ρR is SM-worst-case optimal, and because it yields the

maximal payoff of 3 under V̂ , it is a SM-robust solution. It only remains to show that

ρR is the unique SM-robust solution. To see this, note that any other distribution ρ′

that yields a payoff of 3 under V̂ must assign strictly positive probability to either

7/12 or 3/4 and no mass outside of {1/3, 7/12, 2/3, 3/4} (since this is the only

way to guarantee an expected payoff of 3 which is required for being a SM-robust

solution). Furthermore, for ρ′ to be SM-worst-case optimal, it must yield a non-

negative expected payoff under V when Nature discloses no information which is

impossible if ρ′ assigns positive probability to {7/12, 3/4}.
Summarizing, we have constructed an example of a Bayesian solution ρBP that

strictly dominates the unique SM-robust solution ρR in the Blackwell order.

31Note that, contrary to what we assumed throughout the analysis, the function V considered in
this example is not lower semi-continuous. However, this is not essential for the result. The specific
function V considered here simplifies the calculations but the result remains true also for certain
lower semi-continuous functions.
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