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Abstract

We characterize properties of optimal dynamic mechanisms using a variational approach that

permits us to tackle directly the full program. This allows us to make predictions for a consider-

ably broader class of stochastic processes than can be handled by the “first–order, Myersonian,

approach,” which focuses on local incentive compatibility constraints and has become standard

in the literature. Among other things, we characterize the dynamics of optimal allocations when

the agent’s type evolves according to a stationary Markov processes, and show that, provided the

players are sufficiently patient, optimal allocations converge to the efficient ones in the long run.
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1 Introduction

The ideas and tools developed in the mechanism design literature have found applications in a variety

of contexts, including auctions, regulation, taxation, employment, political economy, matching, and

many others. While much of the literature focuses on environments where the agents learn informa-

tion only at a single point in time, and the mechanism makes one-time decisions, many environments

are inherently dynamic. One class of problems that has been of particular interest involves an agent,

or multiple agents, whose private information (as described by their “type”) changes over time and

is serially correlated. Since a sequence of decisions needs to be made, the mechanism must elicit

this information progressively over time.

Solving these dynamic mechanism design problems is often a complicated task, but a common

approach has become popular in the literature on profit-maximizing mechanisms, building on ideas

from static mechanism design (such as Myerson, 1981). This approach focuses on solving a “relaxed

program” which accounts only for certain necessary incentive compatibility conditions, which can

be derived from the requirement that agents do not have an incentive to misreport their types

locally (e.g., by claiming to have a type adjacent to their true type). Of course, the solution to

such a relaxed program need not correspond to an optimal mechanism in the problem of interest; in

particular, some of the ignored incentive compatibility constraints may be violated. Nonetheless, the

standard approach is to choose conditions on the environment (primitives that include, in particular,

the evolution of the agents’ types) that guarantee global incentive compatibility. Unfortunately,

the conditions imposed, typically, have little to do with the economic environment as it is naturally

conceived. One is then left to wonder to what extent qualitative properties of the optimal mechanism

are a consequence of the restrictions that guarantee the validity of the “relaxed approach.”

The present paper takes an alternative route to the characterization of the qualitative features of

optimal dynamic mechanisms. This route yields insights for settings well beyond those for which the

above approach based on the relaxed program applies. The property of optimal mechanisms that

has received perhaps the most attention in the existing literature on dynamic mechanism design is

the property of vanishing distortions; i.e., optimal mechanisms become progressively more efficient

and distortions from efficient allocations eventually vanish. Examples of such work include Besanko

(1985), Battaglini (2005), Pavan, Segal and Toikka (2014), and Bergemann and Strack (2015), among

others. We investigate whether this and other related properties continue to hold in a broad class

of environments for which the familiar “relaxed approach” need not apply.

Our approach is based on identifying “admissible perturbations” to any optimal mechanism.

For any optimal, and hence incentive-compatible and individually-rational, mechanism, we obtain

nearby mechanisms which continue to satisfy all the relevant incentive-compatibility and individual-

rationality constraints. Of course, for the original mechanism to be optimal, the perturbed mech-

anism must not increase the principal’s expected payoff, which yields necessary conditions for op-

timality. These necessary conditions can in turn be translated into the qualitative properties of
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interest.

For concreteness, we focus on a canonical procurement model in which the principal (a procurer)

seeks to obtain an input in each period from an agent (the supplier). The (commonly-observed)

quantity of the input is controlled by the agent whose cost for different quantity levels (the agent’s

“type”) is his private information and evolves stochastically over time. An optimal mechanism must

ensure both participation in the mechanism at the initial date (individual rationality), as well as the

truthful revelation of the agent’s information on costs as it evolves (incentive compatibility). We

focus on settings in which the agent’s types are drawn from a finite set in each period, and then

comment (in Section 4) on ways in which the results can be extended to settings with a continuum

of types.

Our main results are along two distinct lines. Our first result pertains to the dynamics of the ex-

ante expectation of the “wedge” between the marginal benefit of additional quantity to the principal

and its marginal cost to the agent. First we show (Proposition 1) that when the process governing

the evolution of the agent’s private information satisfies the property of “Long-run Independence”,

the expected wedge vanishes in the long run. The property of “Long-run Independence” requires that

the agent’s type eventually becomes independent of its realization at the time of contracting, and is

satisfied in most cases of interest considered in the literature. Next, we show that, under additional

assumptions (namely, that types are stochastically ordered and follow a stationary Markov process),

convergence is monotone and from above, i.e., the expected wedges are positive, they decrease over

time and vanish in the long run (Proposition 2). These results hold across a broad range of processes

and preferences, and, in particular, for any discount factor for the players. They are obtained by

considering a particularly simple class of perturbations whereby quantity in a given period is either

increased or decreased by a uniform constant amount that does not depend on the history of the

agent’s types, and then adjusting the payments appropriately to maintain incentive compatibility

and individual rationality.

The above results may be seen as offering guidance on the long-run properties of optimal mech-

anisms when the agent’s initial type is uninformative about the types that will be realized far into

the relationship (mechanisms where expected wedges fail to vanish cannot be optimal). However,

because distortions may in principle be both upwards along some histories of types and downwards

along others, the results leave open the possibility that distortions away from the efficient surplus

persist in the long run (even though the expected wedge between the marginal benefit and marginal

cost of higher quantity vanishes). Our third result (Proposition 3) then provides a sufficient condi-

tion that guarantees distortions (i.e., discrepancies in the per-period surplus relative to the first best)

vanish in the long run, and that the supplied quantities converge in probability to their first-best

levels as the relationship progresses. The condition requires the process governing the evolution of

the agent’s type to be a stationary Markov processes, and the players to be sufficiently patient. We

provide a lower bound on the players’ discount factor, in terms of the other primitives of the model,

for which distortions vanish and quantities converge in probability to the first-best levels. The result
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leverages on the fact that, in a discrete-type model, the agent’s loss from misreporting his type in

an efficient mechanism (be it static or dynamic) is bounded away from zero by a constant that does

not depend on the reported type. We also extend these results (Proposition 4) to settings with

an arbitrary discount factor but where the type process is not too persistent. Such stronger results

(about convergence of surplus to the efficient level, in probability) are established through more com-

plex perturbations whereby the putative optimal policies are replaced by a convex combination of

such policies with the efficient ones, with the weights on the efficient policies growing gradually over

time at a rate that guarantees the new policies satisfy all the incentive compatibility constraints.

Importantly, it is worth emphasizing that simpler perturbations that replace the original policies

with the efficient ones at distant dates need not guarantee incentive compatibility at earlier dates.

The proposed perturbations, instead, by introducing slack in incentive compatibility gradually over

time, permit one to eventually replace the original polices with the efficient ones while preserving

incentive compatibility not just in the continuation but also at all earlier dates. However, because

such perturbations increase the agents’ informational rents at earlier periods, the players need to

be sufficiently patient for the benefits of converging to efficiency in the long-run to compensate the

increased rents at earlier dates, which explains why such stronger results require the discount factor

to be above a certain bound (whose value, naturally, is strictly less than one).

The intuition for the above results is somewhat related to the one proposed in the existing

literature based on the “relaxed approach”. The benefit of distorting quantities (or allocations)

away from the efficient levels comes from the fact that such distortions permit the principal to reduce

the information rents that must be left to an agent whose initial cost of producing larger quantities is

low (while also ensuring the participation of those agents whose initial cost is high). In environments

where, at the time of contracting, the agent’s initial type carries little information about the costs of

supplying different quantities in the distant future, such distortions at later periods have less effect on

the rents expected at the time of contracting than distortions introduced earlier on. This simple logic

suggests allocations should converge to the efficient levels over time. The complication with this logic

relates to the fact that the allocations chosen at a given date not only affect the agent’s information

rents as anticipated at the time of contracting (i.e., at the beginning of the relationship) but also the

incentive compatibility of the mechanism at all intermediate dates. In principle, this might motivate

the principal to persist with large distortions in allocations along many realizations of the agent’s

type history (although possibly abandoning distortions in favor of efficiency along others). Explained

differently, there is potentially a role for distortions in the mechanism at dates far in the future in

order to guarantee the incentive compatibility of the mechanism at earlier dates, all the way back

to the beginning of the relationship. This complication is central to the difficulty of characterizing

optimal dynamic mechanisms without resorting to the “relaxed approach” described above, and it has

precluded results establishing vanishing distortions for optimal mechanisms in general environments

(in particular, in environments where the “relaxed approach” cannot be guaranteed to be valid).

In turn, such a difficulty relates to the need to arrive at properties of optimal mechanisms without
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knowing which incentive-compatibility and individual-rationality constraints bind at the optimum.

While the focus in this paper is on the long-run properties of optimal mechanisms, our analysis

also yields implications for optimal mechanisms at fixed horizons. For instance, Corollary 1 provides

a bound on the expected distortions in each period in terms of model parameters that, for suffi-

ciently high discount factors, converges linearly to zero (i.e., the bound on distortions is a geometric

sequence). Thus our approach is applicable also to relationships that are not expected to last indef-

initely and our results also provide a conservative bound on the rate at which the allocations under

optimal mechanisms converge to the efficient levels, at arbitrary discount factors.

Understanding the dynamics of distortions under optimal mechanisms may be useful for a variety

of reasons. First, it helps guiding policy interventions in many markets where long-term contracting is

expected to play a major role. Second, such an understanding provides guidance for the actual design

of optimal long-term contracts. In this respect, our results may also be useful in settings where the

choice of the mechanism is restricted. For example, the principal may be required to restrict attention

to mechanisms in which the outcome at any date depends only on a limited number of past reports,

as is often assumed in the optimal taxation literature (see, for example, Farhi and Werning (2013),

Golosov et al (2016), and Makris and Pavan (2017), for a discussion of such restrictions). Provided

that the proposed perturbations to mechanisms within the restricted class preserve the properties

defining the class (e.g., respect the relevant measurability constraints), the approach developed in

the present paper can yield predictions also about the dynamics of distortions for such restricted

mechanisms.1

Outline. The rest of the paper is organized as follows. Below we wrap up the Introduction with

a brief discussion of the most pertinent literature. Section 2 describes the model. Section 3 contains

the results about the long-run dynamics of distortions under optimal contracts. Section 4 discusses

the case with a continuum of types. Section 5 offers a few concluding remarks. All formal proofs are

in the Appendix at the end of the document.

1.1 Related Literature

The literature on dynamic contracts and mechanism design is too broad to be described concisely

here. We refer the reader to Bergemann and Pavan (2015), Pavan (2017), and Bergemann and

Välimäki (2017) for overviews. Here, we focus on the most closely related work.

As mentioned above, the approach followed in the dynamic mechanism design literature to arrive

at a characterization of properties of optimal contracts in environments with evolving private infor-

mation is the so-called “relaxed,” or “first-order” approach, whereby global incentive-compatibility

constraints are replaced by certain local incentive-compatibility constraints. In quasilinear environ-

1For example, when the relevant measurability constraints require the policies to depend only on current reports,

the perturbations considered in the present paper guarantee that the perturbed policies continue to satisfy the relevant

measurability constraints.
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ments, this approach yields a convenient representation of the principal’s objective as “dynamic vir-

tual surplus”. The latter combines the true intertemporal total surplus with time-evolving handicaps

that capture the costs to the principal of leaving information rents to the agents. Such handicaps in

turn combine properties of the agents’ payoffs with properties of the process controlling the evolution

of the agents’ private information. Under the relaxed approach, optimal contracts are then identified

by first maximizing dynamic virtual surplus over all allocation rules, including those that need not be

incentive compatible, and then finding primitive conditions (on payoffs and type processes) guaran-

teeing that the policies that solve the relaxed program satisfy all the omitted incentive-compatibility

and participation constraints. Establishing the validity of the relaxed approach involves verifying

that the policies that solve the relaxed program are sufficiently monotone, in a sense that accounts

for the time-varying nature of the agents’ private information and the multi-dimensionality of the

decisions taken under the mechanism. Earlier contributions using the relaxed approach include

Baron and Besanko (1984), Besanko (1985), and Riordan and Sappington (1987). For more recent

contributions, see, among others, Courty and Li (2000), Battaglini (2005), Eső and Szentes (2007),

Board (2007), and Kakade et al. (2013). Pavan, Segal, and Toikka (2014) summarize most of these

contributions and extend them to a general dynamic contracting setting with a continuum of types,

multiple agents, and arbitrary time horizon.

The cornerstone of the “relaxed approach” is a dynamic envelope formula that describes the

response of each agent’s equilibrium payoff to the arrival of new private information. The formula

combines the familiar direct effect of the agent’s type on the agent’s utility with novel effects that

originate from the fact that the marginal information the agent receives in each period is also in-

formative of the information the agent expects to receive in the future. Such novel effects can be

summarized in impulse response functions describing how a change in the current type propagates

throughout the entire type process. In Markov environments, the aforementioned dynamic envelope

formula, when paired with appropriate monotonicity conditions on the allocation rule, provides a

complete characterization of incentive compatibility (see Section 4 for a brief overview of these con-

ditions in settings where the process governing the agents’ type can be described by a collection of

continuous conditional distributions).

Two recent papers that go beyond the “relaxed approach” are Garrett and Pavan (2015) and

Battaglini and Lamba (2017). The first paper uses variational arguments to identify certain prop-

erties of optimal contracts in a two-period managerial compensation model. That paper focuses on

the interaction between risk aversion and the persistence of the agent’s private information for the

dynamics of wedges under profit-maximizing contracts. Relative to that paper, the contribution of

the present work is the identification of key properties that are responsible for the long-run dynamics

of allocations under profit-maximizing contracts. Apart from permitting longer horizons, we study

here a much broader class of stochastic processes for types.2 More importantly, none of the results

2The earlier paper considers a two-period setting with continuous types, where the second-period type is determined

by a linear function of the initial type and a random “shock” that is independent of the initial type.
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in the present paper about the convergence of allocations (either in expectation or in probability)

to the first-best levels has any counterpart in Garrett and Pavan (2015). The key methodological

advance that permits these convergence results is the identification of a novel class of perturbations

to proposed optimal allocations that preserve incentive compatibility. As mentioned above, such

perturbations involve linear combinations of the putative optimal and efficient policies, with the

weight on the efficient policies increasing gradually over time from the beginning of the relationship

at a rate that guarantees incentive compatibility.

In a model with finitely many types, Battaglini and Lamba (2017) show that, with more than

two types, the “relaxed” or “first-order” approach typically yields policies that fail to satisfy the

intertemporal monotonicity conditions necessary for global incentive compatibility. In particular,

one of the key insights of that paper is in showing that monotonicity is violated when the process

governing the evolution of the agents’ private information is highly persistent. They consider a

setting where the agent’s private information is drawn from a continuous-time but finite Markov

process, and where the principal and the agent meet at discrete intervals. For generic transitions, as

the length of the intervals vanishes, the policies that solve the relaxed program violate at least one

of the ignored incentive-compatibility constraints. In a fully-solved two-period-three-type example,

they show that the optimal dynamic mechanism can exhibit bunching.

Battaglini and Lamba (2017) also seek results on convergence to efficiency. They focus on mecha-

nisms whose allocations are restricted to be “strongly monotone.” By this, it is meant that an agent

who experiences a history of higher types receives a (weakly) larger allocation in each period (in their

monopolistic screening model, higher types have a higher preference for additional quantities). They

show that optimal “strongly monotone mechanisms” involve allocations that are always (weakly)

downward distorted and converge in probability to the efficient ones with time. The key observation

is that, when allocations are restricted to be strongly monotone, the optimal such allocations must

be efficient at and after any date at which the agent’s type assumes its highest value. The result then

follows because the probability that the agent’s type has not yet assumed its highest value vanishes

(under their full-support assumption) with time. Unfortunately, optimal dynamic allocations need

not be strongly monotone. One possible justification for considering strongly monotone mechanisms,

as offered by Battaglini and Lamba (2017), is that strongly monotone mechanisms approximate the

discounted average payoffs under optimal mechanisms as the players become infinitely patient. Note,

however, that this does not imply distortions vanish with time under fully optimal mechanisms. The

distortions in the distant future may remain large and serve the purpose of guaranteeing incentive

compatibility at earlier dates, despite having a negligible (but not zero) effect on the expected welfare

in the relationship. Understanding how allocations (not only payoffs) behave under fully optimal

mechanisms can be important for an empiricist interested in testing the implications of dynamic

contracting from a long time series.

Our results thus differ from those in Battaglini and Lamba (2017) in various important dimen-

sions. First, we focus on the dynamics of distortions under fully optimal contracts, as opposed to

6



restricted ones. Second, our results are provided for fixed discount factors, and do not require con-

sidering the limit of infinite patience. Third, some implications of our analysis do not depend on

the discount factor. In particular, our predictions in Section 3.2 for the dynamics of the expected

“wedges” do not depend on the discount factor. Likewise, the bounds on distortions we identify in

Section 3.3 (Corollary 1) hold for all discount factors and our results in Proposition 4 about vanishing

distortions in the long run are valid for all discount factors.

2 The Model

Consider the following procurement problem. The principal is a procurer of an input (say a manu-

facturer), while the agent is a supplier. Their relationship lasts for T ∈ N∪{+∞} periods. Time is

discrete and indexed by t = 1, 2, ..., T.

The principal needs to procure a strictly positive quantity of the input in every period. Failure to

do so results in the worst possible payoff for the principal (for instance, one may assume the principal’s

payoff from this event is equal to −∞). This assumption, along with other Inada conditions described

above, guarantees the solution to the principal’s problem is interior at all histories, thus avoiding

complications stemming from corner solutions.

At each period, the agent can produce the good in variable quantity qt ∈ (0, q̄), with q̄ ∈ R++.

The principal’s payoff is quasi-linear in transfers. Her gross per-period benefit from procuring qt units

of the good is given by B(qt), where the function B : (0, q̄)→ R is twice continuously differentiable,

strictly increasing, strictly concave, and satisfies the Inada condition limq→0B (q) = −∞.

The agent’s per-period payoff is also quasi-linear in transfers, with the per-period cost of produc-

ing the input in quantity qt given by the function C (qt, ht), where ht is the agent’s period-t “type”,

and where

C (qt, ht) = htqt + c (qt) , (1)

with c (·) twice continuously differentiable, strictly increasing, strictly convex, and satisfying the

Inada condition limq→q̄ c (q) = +∞. That the agent’s cost is linear in types facilitates the exposition.

In particular, it guarantees that the optimal mechanism is deterministic. In Proposition 5, however,

we extend the results about vanishing distortions to more general cost functions.

The agent’s types ht are drawn from a finite set Θ = {θ1, . . . , θN}, with 0 < θ1 < · · · < θN < +∞,

N ≥ 2, and ∆θ ≡ θN − θ1 (in Section 4, we discuss the case where the agent’s types are drawn from

absolutely continuous distributions with compact support Θ =
[
θ, θ̄
]
, with θ > 0).

Both the principal and the agent have expected-utility preferences over lotteries over streams

of quantities and payments and their Bernoulli utility functions take the familiar time-additively-

separable form

UP =
∑
t

δt−1(B(qt)− pt) and UA =
∑
t

δt−1(pt − C(qt, ht)),
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where pt is the total payment from the principal to the agent in period t, and δ ∈ (0, 1] is the common

discount factor (with δ < 1 in case T = +∞).

The process governing the evolution of the agent’s type is described by the collection of ker-

nels (aka conditional probabilities) F ≡ (Ft). Let hts ≡ (hs, . . . , ht), h
t ≡ (h1, . . . , ht) and ht−s ≡

(h1, . . . , hs−1, hs+1, . . . , ht). The function F1 denotes the cumulative distribution function from which

h1 is drawn while, for all t ≥ 2, Ft(· | ht−1) denotes the cumulative distribution function from which

ht is drawn, given ht−1. In particular, for each n ∈ {1, . . . , N}, each ht−1 ∈ Θt−1,

F1 (θn) =
n∑
i=1

f1 (θi) and F (θn|ht−1) =
n∑
i=1

ft
(
θi|ht−1

)
,

where, for i ∈ {1, . . . , N}, f1 (θi) denotes the probability the agent’s initial type is θi, while ft
(
θi|ht−1

)
denotes the probability his period-t type is θi, following history ht−1. We assume the process cor-

responding to the kernels F has full support, meaning that, for all i, t, and ht−1, f1 (θi) > 0 and

ft
(
θi|ht−1

)
> 0.

The sequence of events is the following:

• At t = 0, the agent privately learns h1.

• At t = 1, the principal offers a mechanism ϕ = (M, φ), where M≡ (Mt)
T
t=1 is a collection of

message spaces, one for each period, and φ ≡ (φt(·))Tt=1 is a collection of mappings from such

spaces to payments and output levels. In particular, for each t, the mapping

φt :M1 × · · · ×Mt → R× (0, q̄) ,

specifies a payment-quantity pair for each possible profile of messages mt ≡ (m1, ...,mt) ∈
M1 × · · · × Mt sent by the agent up to period t included. A mechanism is thus equivalent

to a menu of long-term contracts. If the agent refuses to participate in ϕ, the game ends.

As explained above, this is taken to be the worst possible outcome for the principal. In this

case, the agent earns a payoff equal to zero. If, instead, the agent accepts to participate in

ϕ, he is then committed to produce a strictly positive quantity in every period, the level of

which depends on the agent’s reports. In particular, in period one, the choice of the message

m1 ∈M1 translates into the obligation to supply a quantity q1(m1) in exchange of a payment

p1(m1) .

• At the beginning of each period t ≥ 2, the agent privately learns his period-t type, ht. Provided

the agent accepted to participate at t = 1, he then sends a new message mt ∈Mt, is asked to

supply a quantity qt(m
t), receives a payment pt(m

t), and the game moves to period t+ 1.

• · · ·

• At t = T + 1 (in case T is finite), the game ends.
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Remark. As standard in the literature on dynamic mechanism design, the game described above

assumes the principal perfectly commits to the mechanism ϕ. It also assumes that, at any period

t ≥ 2, the agent is constrained to stay in the relationship if he signed the contract in period one.

When the agent has deep pockets, there are simple ways to distribute the payments over time that

guarantee that it is in the agent’s interest to remain in the relationship at all periods, irrespective of

what he did in the past.

The principal’s problem consists in designing a mechanism that maximizes her ex-ante expected

payoff. Because the principal can commit, the Revelation Principle applies.3 Without loss of opti-

mality, one can restrict attention to direct mechanisms in which Mt = Θ for all t and that induce

the agent to report truthfully at all periods, conditional on having reported truthfully in the past.

Because the message space is fixed across all such mechanisms, hereafter we economize on notation

and identify a direct mechanism with the associated policies ψ = 〈q,p〉, where q = (qt(·))Tt=1 and

p = (pt(·))Tt=1, with qt : Θt → (0, q̄) and pt : Θt → R, t ≥ 1.

Let σ denote an arbitrary reporting strategy for the agent in ψ and qσ and pσ the quantity and

transfer policy induced by the strategy σ in ψ.

For any ψ, let

V ψ
t (ht; ĥt−1) ≡ E

[ ∞∑
s=t

δs−t
(
ps

(
ĥt−1, h̃st

)
− C

(
qs

(
ĥt−1, h̃st

)
, h̃s

))
|ht
]

denote the agent’s expected continuation payoff from date t onwards, when the realized sequence of

types up to period t is ht, the agent reported the sequence of types ĥt−1 in previous periods, and the

agent reports truthfully from date t onwards. Then let V ψ
t (ht) ≡ V ψ

t (ht;ht−1) denote the agent’s

continuation payoff at a generic truthful history, i.e., when past reports coincide with the true types

(throughout, hatted variables represent reports, while random variables are denoted with tildes.)

The principal selects the mechanism ψ from the set Ψ of individually-rational and incentive-

compatible mechanisms. Formally, a mechanism belongs in Ψ if and only if it satisfies the individual-

rationality constraints (in short, IR)

V ψ
1 (h1) ≥ 0 for all h1 ∈ Θ, (2)

and the incentive-compatibility constraints (in short, IC)

E
[
V ψ

1 (h̃1)
]
≥ E

∑
t≥1

δt−1
(
pσt

(
h̃t
)
− C

(
qσt

(
h̃t
)
, h̃t

)) , (3)

for all possible reporting strategies σ. Condition (2) requires that the agent prefers to participate

in period one and report truthfully in each period, rather than not participating and receiving the

3See, among others, Myerson (1981).
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payoff associated with his outside option (zero). Condition (3) requires that the agent prefers to

follow a truthful reporting strategy rather than any other reporting strategy σ.4

The principal’s problem thus consists of maximizing

E

[∑
t

δt−1
(
B
(
qt

(
h̃t
))
− pt

(
h̃t
))]

(4)

by choice of ψ ∈ Ψ. We refer to a mechanism ψ that maximizes (4) over Ψ as an optimal mechanism.

3 Robust predictions

3.1 Preliminary properties of optimal mechanisms

We start by establishing a few preliminary properties of optimal mechanisms, starting with the

optimality of deterministic policies. As usual, quasi-linearity of payoffs in transfers implies that

deterministic payments are without loss of optimality. Perhaps less obvious is the property that

optimal mechanisms involve a deterministic provision of quantity at all histories. Note that, because

the optimal mechanism need not coincide with the solution to the relaxed program (i.e., the various

dynamic monotonicity constraints on the output schedules may bind at the optimum), the optimality

of deterministic mechanisms does not follow from the arguments in Strausz (2006). To see that

deterministic policies are optimal, note that, in this environment, a stochastic output policy would

stipulate, for any sequence of reports ht ∈ Θt, and past quantity realizations qt−1 ∈ (0, q̄)t−1,

a probability distribution µt
(
ht, qt−1

)
on the interval of quantities (0, q̄), with µt

(
ht, qt−1

)
(q) =

Pr (q̃ ≤ q) denoting the probability that the realized quantity is in (0, q). After receiving the agent’s

period-t report, the mechanism would draw a quantity according to the probability distribution

µt
(
ht, qt−1

)
, which the agent would then be compelled to produce. Note that the linearity of the

cost function in the agent’s type implies that, for any probability distribution µt
(
ht, qt−1

)
, any i and

j,

Eµt(ht,qt−1) [C (q̃, θi)− C (q̃, θj)] = C
(
Eµt(ht,qt−1) [q̃] , θi

)
− C

(
Eµt(ht,qt−1) [q̃] , θj

)
.

Hence, if the proposed stochastic mechanism is IR and IC and calls for a non-degenerate distribution

over quantities µt
(
ht, qt−1

)
at history ht, the mechanism that coincides with the proposed mechanism

at all histories other than
(
ht, qt−1

)
and that, at history

(
ht, qt−1

)
, calls for a deterministic quantity

Eµt(ht,qt−1) [q̃] and pays the agent

pt(h
t, qt−1)−

{
Eµt(ht,qt−1) [c (q̃)]− c

(
Eµt(ht,qt−1) [q̃]

)}
is also IR and IC and gives the agent the same expected payoff (at all histories) as the original

mechanism. Because of the concavity of B (·), the principal’s expected payoff is higher under the

new mechanism, thus establishing the optimality of deterministic mechanisms.

4The condition in (3) is an ex-ante (i.e., period-0) incentive-compatibility condition. However, because of the

assumption of full support, (3) holds if and only if incentive compatibility holds at all period-t truthful histories (that

is, at all histories (ht, ĥt−1) such that ĥt−1 = ht−1), all t ≥ 0.
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The second property pertains to the distribution of payments over time. Because both the

principal’s and the agent’s payoffs are linear in transfers (and because the players are equally patient),

continuation payoffs at any date t depend on the sum of discounted future payments, but not on the

precise timing of these payments. This observation leads to the following result:

Lemma 1. For any mechanism ψ ∈ Ψ, there exists a mechanism ψ′ ∈ Ψ yielding the principal a

payoff at least as large as ψ and such that, for all t ≥ 2 , all ht−1 ∈ Θt−1,

E
[
V ψ′

t

(
h̃t
)
|ht−1

]
= 0. (5)

Furthermore, in any mechanism satisfying Condition (5), for all t ≥ 2, all ht ∈ Θt,

∣∣pt (ht)− C (qt (ht) , ht)∣∣ ≤ q̄∆θ

1− δ
. (6)

Finally, any optimal mechanism satisfying Condition (5), all t ≥ 2, all ht ∈ Θt, is such that Condition

(6) holds also for t = 1.

The first part of the result states that there is no loss for the principal in restricting attention to

mechanisms in which, when the agent follows a truthful reporting strategy, his expected continuation

payoff in the subsequent period is always equal to zero. This property follows directly from the

possibility of shifting the payments over time in a way that preserves the agent’s incentives.

The second part of the result can then be read as a bound on the agent’s flow payoff at any history

ht. This follows from combining the first part of the lemma with the agent’s incentive compatibility

constraints. Note that the right-hand side of (6) is the maximal difference in the expected net

present value of the costs of producing any stream of quantities across any two types. Hence, when

continuation payoffs satisfy Condition (5), flow payoffs must satisfy Condition (6) (otherwise, there is

some date t and type h′t such that an agent with period-t type equal to h′t has a profitable deviation

of claiming to be of type ht at period t, and then continuing making reports at later dates that

mimick the distribution of type ht’s reports under truthful reporting).

Below, we use these properties to establish several results, including the existence of an optimal

mechanism as stated in the next lemma.

Lemma 2. An optimal mechanism ψ∗ = 〈q∗,p∗〉 exists. Furthermore, any optimal mechanism has

the same allocation rule q∗.

Given that payoffs are quasi-linear in transfers, the indeterminacy of the optimal payment rules p∗

is to be expected. That, instead, the optimal allocation rule q∗ is unique follows from the convexity

of the agent’s cost function C (·, h) for each type h ∈ Θ, along with the concavity of the principal’s

gross payoff B (·).
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3.2 Convergence of wedges in expectation

We are now ready to state our first main result.

Condition 1. [Long-run Independence] Suppose T = +∞. The dependence of the date-t

distribution on the date-1 types vanishes in the long run, in the following sense:

lim
t→∞

max
h1,h′1,ht∈Θ

∣∣∣Pr
(
h̃t ≤ ht|h1

)
− Pr

(
h̃t ≤ ht|h′1

)∣∣∣ = 0.

The property in Condition “Long-run Independence” thus captures the idea that, eventually, the

agent’s initial type becomes uninformative about the agent’s later types. Note that this condition

trivially holds when the agent’s type evolves according to an irreducible aperiodic Markov chain, as

typically assumed in the literature.

The next result identifies robust predictions for the dynamics of the ex-ante expected distortions.

To understand the result, note that efficiency requires that, at any history ht ∈ Θt, output be equal

to the level qE (ht) given by the unique solution to

B′
(
qE (ht)

)
= Cq

(
qE (ht) , ht

)
, (7)

where Cq (qt, ht) denotes the partial derivative of the agent’s total cost with respect to period-t output

when his period-t type is ht, and is equal to Cq (qt, ht) = ht + c′ (qt) when the agent’s cost takes the

linear form in (1).

Proposition 1. Suppose T = +∞ and Condition “Long-run Independence” holds.

1. The optimal mechanism satisfies

E
[
B′
(
q∗t

(
h̃t
))
− Cq

(
q∗t

(
h̃t
)
, h̃t

)]
→ 0 as t→∞. (8)

2. If distortions are always downwards (i.e., B′
(
q∗t
(
ht
))
− Cq

(
q∗t
(
ht
)
, ht
)
≥ 0 for all t, all ht),

or if distortions are always upwards (i.e., the above inequality is reversed at all t, all ht), then

E
[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
→ E

[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
as t→∞, (9)

and hence q∗t
(
ht
)

converges in probability to qE (ht). That is, for any η > 0,

lim
t→∞

Pr
(∣∣∣q∗t (h̃t)− qE (h̃t)∣∣∣ > η

)
= 0.

Part 1 of the proposition states that the ex-ante expected “wedge” between the marginal benefit to

the principal and the marginal cost to the agent of higher output (to borrow a term from the dynamic

public finance literature) vanishes as the relationship progresses. As explained in the Introduction,

the result is established by considering a certain class of perturbations to any putative optimal

mechanism ψ∗ in which the ex-ante expected wedge fails to vanish. In particular, the perturbations
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consist in increasing (alternatively, decreasing) by a fixed amount the quantity supplied at dates t

long after the relationship has commenced and at which the ex-ante expected wedge remains away

from zero. Because the perturbation in quantity is by a uniform constant (that is, it is uniform

over all reported histories ht), appropriate adjustments to the agent’s payments can be found that

ensure that the new mechanism is in Ψ (i.e., it is individually rational and incentive compatible).

Ensuring participation, i.e. the satisfaction of the constraints in (2), may require leaving the agent

with additional expected rents. However, Condition “Long-run Independence” guarantees that

such additional rents are small if the period t at which the perturbation takes place is far in the

future, since the agent has little relevant private information about his period-t type at the time

of contracting. Thus, when t is sufficiently large, irrespective of the discount factor, the proposed

perturbations increase ex-ante expected surplus more than they increase the agent’s expected rents,

and thus increase the principal’s payoff. This would contradict the optimality of the proposed

mechanism implying that, under optimal mechanisms, ex-ante expected wedges must vanish in the

long run.

Importantly, note that the convergence of ex-ante expected wedges to zero, by itself, need not

imply that the surplus from the relationship converges to the efficient level over time. In particular,

a pattern of allocations such that quantities are upward distorted along some histories but downward

distorted along others is not inconsistent with Part 1 of Proposition 1. While downward distortions

have been shown to be a fairly robust feature of policies solving the “relaxed approach,” they need

not be a robust feature of optimal mechanisms in general settings where the validity of the relaxed

approach cannot be taken for granted. The main difficulty in establishing whether distortions are

always downwards lies in the difficulty of discerning which incentive-compatibility and individual-

rationality constraints bind (see, for example, the discussion in Section 6 of Battaglini and Lamba

(2017) of the challenges in establishing which incentive-compatibility constraints bind in a simple

two-period setting with three possible types5). Part 2 of the proposition then establishes that, if

the direction of distortions was known to always be either upwards or downwards (this knowledge

may be a consequence of additional structure assumed in the model), then one could conclude that

necessarily distortions would vanish in the long-run, not just in expectations, but in probability.

This is because, when distortions are always of the same sign, failure of total surplus to converge to

the efficient level cannot be consistent with convergence of the expected wedges, thus implying the

result.

The result in the proposition does not require any assumption on the process governing the

evolution of the agent’s type other than “Long-run Independence.” In environments where there is

additional structure on the evolution of the agent’s private information, sharper predictions on the

dynamics of expected wedges are possible, as we show next.

5That paper assumes that types are dynamically ordered by FOSD, in which case the individual-rationality con-

straints always bind at the extreme of the type support.
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Condition 2. [FOSD] Kernels are stochastically ordered by previous realizations: For any t, any

h̆t−1, h̄t−1 ∈ Θt−1 such that h̆t−1 ≥ h̄t−1, any ht ∈ Θ, Ft

(
ht|h̆t−1

)
≤ Ft

(
ht|h̄t−1

)
.

Condition “FOSD” requires that the history of the agent’s types up to any date t stochastically

orders the period-t distributions. Such assumption is commonly made in the literature and implies

that a type’s static comparative advantage vis-a-vis another type also brings a dynamic advantage.

Another assumption often encountered in the literature is the following:

Condition 3. [Markov] The process F is a time-homogeneous first-order Markov chain: In par-

ticular for any s, t ≥ 2, any ht and hs such that (ht−1, ht) = (hs−1, hs), Ft
(
ht|ht−1

)
= Fs

(
hs|hs−1

)
.

Under the full support assumption (a transition to each of the N states has strictly positive prob-

ability after all histories), Condition “Markov” implies that the process is aperiodic and irreducible

and hence has a unique steady state (or “ergodic”) distribution. One can then associate the Markov

transitions with an N ×N matrix A, whose generic element Aij denotes the probability of moving

from type i to type j in one period. A further possible restriction on the process is then that the

initial distribution coincides with the ergodic:

Condition 4. [Stationary Markov] The process F is a first-order Markov process whose initial

distribution F1 coincides with the ergodic distribution for the time-homogeneous Markov transitions

associated with F .

The next result identifies additional robust predictions that are implications of the above as-

sumptions.

Proposition 2. 1. Suppose Condition “FOSD” holds. Then, irrespective of whether T is finite

or infinite, the expected wedge

E
[
B′
(
q∗t

(
h̃t
))
− Cq

(
q∗t

(
h̃t
)
, h̃t

)]
(10)

is non-negative for any t ≥ 1.

2. If, in addition to Condition “FOSD”, Condition “Stationary Markov” also holds, the expected

wedge (10) is decreasing in t.

3. Hence, if T = +∞ and Conditions “FOSD” and “Stationary Markov” hold, the convergence

of the expected wedges to zero is from above and monotone in time.

For processes satisfying Condition “FOSD”, it is fairly straightforward to see that the participa-

tion constraint in (2) binds uniquely at the least efficient period-1 type, θN , (a similar observation

has been made in other works, although typically by envelope-type arguments, as, e.g., in Pavan,

Segal and Toikka (2014)). To appreciate the result in part 1 in the proposition, note that if the

expected wedge (10) were strictly negative at some date t, one could reduce the quantity at date
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t by a uniform constant, while adjusting payments to ensure incentive compatibility and that the

participation constraint (2) continues to bind at θN . The perturbation would increase ex-ante ex-

pected surplus. Furthermore, because the initial type θN expects the greatest cost reduction from

the change in the quantity schedule and the new mechanism leaves the initial type θN with the same

expected rent (zero) as the original mechanism, under the new mechanism, the expected rent for any

initial type below θN is lower than under the original mechanism. Hence, profits are unambiguously

higher under the new mechanism, which would contradict the optimality of the proposed policies.

Next, consider part 2 in the proposition. That, for stationary Markov processes, the expected

wedge (10) decreases monotonically with time follows from the fact that, for such processes, the initial

types become progressively less informative about the distribution of the later types. Increases in

quantity at later dates thus have progressively smaller effect on the agent’s expected rents. When

coupled with the result that expected wedges are positive at all histories, this latter property implies

that expected output must increase, on average, with time under optimal mechanisms, for, otherwise,

the principal could transfer output from earlier to later dates in a way that preserves surplus while

reducing the agent’s rents, thus contradicting the optimality of the putative policies.

The result in part 3 then follows directly from the above properties along with the result in

Proposition 1.

3.3 Convergence of policies in probability

The results above establish that distortions (or, more precisely, “wedges”) vanish in expectation for a

large class of processes (those satisfying Condition “Long-run Independence”). As discussed above,

these results, however, draw no conclusions regarding the long-run efficiency of the relationship,

except when coupled with additional (exogenous) information on the direction of the distortions.

Below, we identify primitive conditions that guarantee convergence (in probability) of the allocations

under optimal contracts to their efficient counterparts. Throughout, we assume Condition “Markov”

holds, although we expect that arguments similar to the ones below can be used to establish that

the same results extend to non-Markov finite-state processes provided that such processes are not

too persistent, in the sense of Proposition 4. Notice that while Condition “Long-run Independence”

is implied by Condition “Markov,” the results below do not impose either Condition “FOSD,” or

Condition “Stationary Markov.” Rather, the important economic restriction is that the players are

sufficiently patient.

Let A denote the transition matrix associated with the time-autonomous Markov process and

define

α ≡ min
i,j∈{1,...,N}

Aij .

Since each Aij is strictly positive, α > 0. Note that the value of α is related to the persistence of

the process: for larger values of α, the process cannot be too persistent, since the probability of

15



transiting from any state i to any other state j is bounded from below by α. In addition, let

b ≡
N∑
i=1

θi

and

κ ≡ min
i,j∈{1,...,N} s.t. i6=j

{
B
(
qE (θi)

)
− C

(
qE (θi) , θi

)
−
(
B
(
qE (θj)

)
− C

(
qE (θj) , θi

))}
.

(11)

Note that κ > 0 is the smallest loss in total surplus due to some type θi supplying the efficient

quantity for some other type θj , j 6= i. Next, let

δ̄ ≡

{
2q̄b−κ

2q̄b−κ+2κα if κ < 2q̄b

0 otherwise
. (12)

Note that δ̄ is decreasing in κ and α and increasing in b and q̄ (a brief explanation is provided below).

Proposition 3. Suppose T = +∞ and the process F satisfies Condition “Markov.” Then, for all

δ ∈
(
δ̄, 1
)
,

E
[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
→ E

[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
as t→∞. (13)

Hence, the quantity supplied at date t under an optimal mechanism, q∗t
(
ht
)
, converges in probability

to the efficient quantity qE (ht).

The proof of Proposition 3 in the Appendix shows that if a mechanism 〈q∗,p∗〉 in Ψ violates

the convergence property in Condition (13), then one can identify a “perturbation” of 〈q∗,p∗〉 that

yields the principal a strictly higher payoff. A naive attempt at such a construction might involve

a switch at some date long after the relationship has commenced to a fully efficient policy (with

allocation qE (·) as given in (7)). Intuitively, one may conjecture that such a mechanism increases

the expected surplus from the relationship at a negligible cost in terms of additional rents to the

agent at the time of contracting (i.e., at date 1); after all, if the perturbation occurs far in the future,

the agent is poorly informed about his types at the time of the perturbation implying that the effect

of such perturbation on his informational rent should be negligible.

The problem with such a naive approach is that it does not account for the effect of the pertur-

bation on the agent’s incentive constraints prior to the switch to the efficient policy. In particular,

it does not account for the fact that the original mechanism 〈q∗,p∗〉 might have induced truthful

reporting at early dates precisely because of distortions away from the efficient allocation in the

distant future.
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As anticipated in the Introduction, the proof in the Appendix overcomes such difficulty by con-

sidering a more complex class of perturbations whereby the efficient allocations are approached

gradually over time. We show that, provided the rate of convergence is chosen appropriately, such

perturbations can be constructed to guarantee that the perturbed mechanism continues to reside in

Ψ (that is, is IR and IC).

A first observation is that, in a setting with time-additively separable payoffs and Markov pro-

cesses, the sub-optimality of one-stage deviations from truth-telling at all histories implies incentive

compatibility. A second observation is that a static mechanism that prescribes an efficient allocation

qE (ht) along with a payment

pE (ht) = B
(
qE (ht)

)
(14)

guarantees that the agent’s incentive-compatibility constraints are satisfied as strict inequalities, with

slack that is bounded away from zero by the amount κ defined in (11). In turn, such observation

implies that, if the original mechanism 〈q∗,p∗〉 is IC, then there exists a mechanism 〈q,p〉 in which

the output policy is given by

qt
(
ht
)

= γqE (ht) + (1− γ) q∗t
(
ht
)

for all t, all ht, in which the agent’s incentive-compatibility constraints hold strictly at all histories,

and where the agent’s loss from deviating from truth-telling is at least γκ.

The above observations also imply existence of incentive-compatible mechanisms that place in-

creasing weight on the efficient policy, i.e. such that qt
(
ht
)

= γtq
E (ht) + (1− γt) q∗t

(
ht
)

for all t, all

ht, for some increasing sequence of scalars (γt)
∞
t=1. Furthermore, the sequence (γt)

∞
t=1 can be chosen

so that the perturbed mechanism becomes fully efficient, i.e. γt = 1, after any period t where the

allocation in 〈q∗,p∗〉 is distorted. Note, however, that, for the perturbed mechanism to be incentive

compatible, it is essential that the allocations be perturbed also in earlier periods, i.e., at s < t. In

particular, it may be necessary to start the adjustments directly in period one by setting γ1 > 0.

Since, from the perspective of the time of contracting, the agent is relatively well informed about

his type early in the relationship, such adjustments may necessitate leaving the agent with addi-

tional rents to guarantee participation, and these additional rents are larger, the larger are γt for

small t. Whether the gains in surplus can be guaranteed to exceed the increase in additional rents

then depends on the primitives of the problem, the dates and size of the distortions in the original

mechanism 〈q∗,p∗〉, and the weights assigned by the perturbed mechanism to the efficient output

policy early in the relationship. The key difficulty in establishing the proposition comes precisely

from the need to relate the lower bounds on the weights γs to the efficient policies at periods s < t

that guarantee incentive compatibility of the perturbed mechanism to the upper bounds on the same

weights that guarantee the profitability of the proposed perturbation.

When the players are sufficiently patient, namely when δ > δ̄, with δ̄ as given in (12), the size

of distortions in 〈q∗,p∗〉 that are necessary for one to be able to find a perturbation along the lines

indicated above that improves upon 〈q∗,p∗〉 shrink with the date at which such distortions occur,
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which is precisely what allows us to establish the convergence result in Proposition 3. Intuitively,

because the perturbations may involve an increase in the agent’s rents from the very early periods

and an increase in total surplus only in the distant feature, players need to be sufficiently patient

for such perturbations to be profitable. We will come back to the dependence of the threshold δ̄ on

the primitive parameters momentarily. Before we do so, we highlight that the same arguments that

establish Proposition 3 above also imply that distortions under optimal contracts must be bounded

at any date, for else perturbations along the lines indicated above exist yielding a strictly higher

payoff to the principal. Furthermore, such bounds can be established for any degree of patience.

The following Corollary summarizes the above observations and is a direct implication of the proof

of Proposition 3 in the Appendix:

Corollary 1. Suppose the process F satisfies Condition “Markov.” (The horizon length T may be

finite or infinite.) Let λ = q̄b
1−δ(1−2α) . Then, for any date t, and any δ ∈ [0, 1] :

E
[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
− E

[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
≤ 2λ(

δ + κ
2λ

)t−1 ,

When δ ∈
(
δ̄, 1
)
, δ + κ

2λ > 1, and hence the above bounds decrease monotonically with t and vanish

in the long run.

Note that, in certain environments, the bounds in the above corollary need not be sharp. However,

when coupled with the assumption that players are sufficiently patient (namely, that δ ∈
(
δ̄, 1
)
), the

above bounds imply that convergence of the output policies to the efficient level cannot occur too

slowly: distortions must decline with t at least at a geometric rate, whose value
(
δ + κ

2λ

)t−1
can be

easily related to the various parameters of the model.

Next, consider the dependence of the patience threshold δ̄ on the primitive parameters. First,

note that the threshold δ̄ can be reduced if the sequence (γt)
∞
t=1 can be taken to increase more quickly

(while still rendering an incentive-compatible and individually-rational perturbed mechanism). We

can then observe that, as κ increases, the amount of slack in the incentive constraints of an (ap-

propriately chosen) efficient mechanism increases, which permits (γt)
∞
t=1 to increase more quickly

(that is, less weight γt must be placed on the efficient mechanism at early periods). In turn, this

reduces the rents granted to the agent to ensure participation and hence the critical level of patience

δ̄ guaranteeing the profitability of the above perturbations. The same is true as α increases, or as b

or q̄ are reduced.

Related to the dependence of δ̄ on the persistence parameter α, one might naturally expect the

convergence in (13) to occur for any fixed discount factor δ when the persistence of the process is

sufficiently small. We formalize this idea in the following result.

Proposition 4. Suppose T = +∞ and F satisfies Condition “Markov”. For any δ ∈ (0, 1),

there exists ε (δ) > 0 such that the following is true. If, for all t ≥ 2, all
(
ht−1, h

′
t−1, ht

)
∈ Θ3,
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∣∣ft (ht|ht−1)− ft
(
ht|h′t−1

)∣∣ < ε (δ), then

E
[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
→ E

[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
as t→∞.

The proof of Proposition 4 is similar to that of Proposition 3 and involves many of the same steps.

The key difference is that the lack of persistence of the agent’s types (i.e., the condition that, for all(
ht−1, h

′
t−1, ht

)
∈ Θ3,

∣∣ft (ht|ht−1)− ft
(
ht|h′t−1

)∣∣ < ε (δ) where ε (δ) is small) is used to guarantee the

existence of a perturbation of 〈q∗,p∗〉 that is incentive compatible and that prescribes the efficient

allocation early in the relationship, while prescribing outcomes close to those prescribed by the

original mechanism (i.e., (q∗1 (h1) , p∗1 (h1))) at the very first period. The condition in the proposition

then implies that, because the persistence of types is limited, the additional rents expected by the

agent under the perturbed mechanism are small relative to the increase in the discounted surplus,

thus making such perturbations profitable to the principal.

Finally, note that the result in Proposition 3 can be extended to more general cost functions

C (·, ·) : (0, q̄) × Θ → R+ (subject to weak restrictions to be introduced momentarily) provided

we allow for stochastic mechanisms. In particular, we now consider mechanisms 〈µ,p〉 with the

mechanism specifying distributions over quantities according to µ = (µt (·))Tt=1, and with payments

given (as before) by p = (pt (·))Tt=1. As noted above, deterministic payment rules are without loss

of optimality in light of the quasi-linearity of payoffs in transfers. Given that payoffs are separable

across time, the fact that payments and the distribution of quantities at each date are independent

of past quantity realizations qt−1 is also without loss of optimality.

There are two important reasons for considering stochastic mechanisms. First, for reasons

similar to those explained in Strausz (2006) for static environments, a restriction to deterministic

mechanisms can in general imply a reduction in the principal’s payoff (as explained above, this is

not the case when C (q, h) = hq + c (q)). Strausz (2006) shows that, in static environments, the

optimality of deterministic mechanisms is implied when the “relaxed approach” that focuses on local

(in particular, upwards in the present setting) incentive-compatibility constraints succeeds, but also

suggests that this conclusion need not hold more generally. While Strausz’s result for the optimality

of deterministic mechanisms applies also to dynamic environments where the “relaxed approach”

succeeds, the main objective of our work is precisely the identification of robust predictions that also

apply to environments where this approach is not guaranteed to be valid.

The second reason relates to our approach of extending Proposition 3 to more general cost

functions. Our approach relies on perturbations to the proposed mechanisms that fail to satisfy

the property of interest, i.e., the convergence of the expected surplus to the efficient levels. The

perturbed mechanisms we construct involve randomizations between the policies of the mechanism of

interest and the policies of efficient mechanisms. That is, the perturbed mechanisms are stochastic.

Motivated by the aforementioned considerations, hereafter we thus extend the analysis to stochas-

tic mechanisms. We start by explaining how the incentive compatibility and the participation con-
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straints must be adapted to accommodate for stochastic mechanisms 〈µ,p〉. Hereafter, we confine

attention to processes F that satisfy Condition “Markov.” In this case, the agent’s expected (contin-

uation) payoff from reporting truthfully in a mechanism 〈µ,p〉, given past reports ht−1 and period-t

type ht, is given by

V
〈µ,p〉
t (ht) ≡ E

[ ∞∑
s=t

δs−t
(
ps

(
ht−1, h̃st

)
−
∫
C
(
q̃, h̃s

)
dµt

(
ht−1, h̃st

))
|ht

]
.

The participation constraints then amount to the requirement that

V
〈µ,p〉

1 (h1) ≥ 0 for all h1 ∈ Θ, (15)

while the incentive-compatibility constraints amount to the requirement that, for all reporting strate-

gies σ,

E
[
V
〈µ,p〉

1 (h̃1)
]
≥ E

∑
t≥1

δt−1

(
pσt

(
h̃t
)
−
∫
C
(
q̃, h̃t

)
dµσt

(
h̃t
)) , (16)

where (µσt )Tt=1 and (pσt )Tt=1 are, respectively, the probability measures over the quantities supplied and

the payments induced by the reporting strategy σ.6 Let ΨS denote the set of (possibly stochastic)

mechanisms satisfying these above constraints. The principal’s problem thus consists in maximizing

Π (µ,p) = E

∑
t≥1

δt−1

(∫
B (q̃) dµt

(
h̃t
)
− pt

(
h̃t
)) ,

over the set ΨS .

Our result below establishes convergence of the output policies to the efficient ones when the

players are sufficiently patient, with the degree of patience given by a value δ̄S in terms of the model

parameters. We restrict attention to continuously differentiable and non-negative cost functions

C (q, h) such that the following condition holds.

Condition 5. [Cost restriction] The following two properties are satisfied:

1. There exists a unique function qE : Θ → [0, q̄] such that, for each ht ∈ Θ, qE (ht) maximizes

B (q)− C (q, ht); moreover qE (·) is one-to-one.

2. There exists u ∈ R+ such that, for all q ∈ (0, q̄) and h, h′ ∈ Θ, |C (q, h)− C (q, h′)| ≤ u.

Recall that α ≡ mini,j∈{1,...,N}Aij , and let κ be given as before by (11). Note that κ > 0 by

the first requirement in Condition “Cost restriction.” The result below on long-run efficiency then

applies to any environment in which δ > δ̄S , with δ̄S given by

δ̄S ≡

{
2Nu−κ

2Nu−κ+2κα if κ < 2Nu

0 otherwise
. (17)

6Note that the strategy σ is allowed to condition the reports on past output realizations.
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Note that, for this more general environment, we lack an argument guaranteeing existence of an

optimal mechanism. The result in the next proposition is thus stated in a way that permits us to

deliver interesting properties even in the event an optimal mechanism does not exist.

Proposition 5. Suppose T = +∞ and F satisfies Condition “Markov”. Suppose, in addition, that

the cost function C (·, ·) satisfies Condition “Cost restriction”. If the mechanism 〈µ∗,p∗〉 is optimal,

then, for all δ ∈
(
δ̄S , 1

)
,

E
[∫ (

B (q̃)− C
(
q̃, h̃t

))
dµ∗t

(
h̃t
)]
→ E

[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
as t→∞. (18)

More generally, take any δ ∈
(
δ̄S , 1

)
and consider any sequence of stochastic mechanisms

(〈
µk,pk

〉)
with limk→∞Π

(
µk,pk

)
= sup〈µ,p〉∈ΨS Π (µ,p). For any ε > 0, there exists a t̄ ∈ N and a sequence

(sk), sk →∞, such that, for all t̄ ≤ t ≤ t̄+ sk,

E
[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
− E

[∫ (
B (q̃)− C

(
q̃, h̃t

))
dµkt

(
h̃t
)]

< ε. (19)

The first part of Proposition 5 confirms that, when an optimal mechanism exists, the convergence

of expected surplus under the optimal mechanism to the efficient level occurs also for the more

general cost functions covered by Condition “Cost restriction”. In environments where existence of

an optimal mechanism cannot be guaranteed, the second part of the result provides a weaker sense

in which distortions vanish that applies to mechanisms for which the principal earns a payoff close

to the supremum.

4 Continuum of types

We now turn to the case where the agent’s types are drawn from continuous distributions with

compact support Θ =
[
θ, θ̄
]
. As for most of the analysis above, we return to the case where the

agent’s cost function takes the form C (q, h) = hq + c (q), and where mechanisms are deterministic.

The main economic trade-offs involved in the design of optimal dynamic mechanisms are closely

related to those in the discrete-type case. However, there are a few differences from a methodological

perspective. Most notably, the expected net present value of the payments to the agent is uniquely

pinned down by the quantity schedule, up to a scalar that depends on the surplus expected by the

least productive period-1 type. Such a property, which is referred to in the literature as “payoff

equivalence” (see, e.g., Pavan, Segal, and Toikka, 2014) implies a tighter relationship between the

quantity schedule in any incentive-compatible mechanism and the agent’s expected rents (and hence

the principal’s expected profits). As we show below, such a property in turn may permit a direct

calculation of the expected “wedge” between the marginal benefit of higher output to the principal

and its marginal cost to the agent under any optimal mechanism. Below, we first revisit the steps

that permit one to leverage on the above “payoff equivalence” result to express the principal’s payoff
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as “dynamic virtual surplus” (i.e., as total surplus, net of handicaps that depend entirely on the

quantity schedule and of the surplus expected by the least efficient period-1 type). We then show

how variational arguments similar to those in the previous section permit us to identify robust

predictions for the dynamics of wedges under optimal mechanisms akin to those in the discrete case.

Consider an environment identical to that in Section 2 except for the stochastic process F ≡ (Ft)

governing the evolution of the agent’s types, which, in addition to Conditions “Markov” and “FOSD,”

is assumed to satisfy the following properties. For any t ≥ 2, any ht−1 ∈ Θ, F (·|ht−1) is absolutely

continuous over the entire real line with density f (·|ht−1) strictly positive over Θ (full support). The

same absolute continuity property applies to the period-1 distribution F1 (with density f1). Given

the process F , we say that Z is a state representation of F , if, for any s ≥ 1, any t ≥ s, ht can

be written as ht = Z(s),t(hs, ε), where ε ≡ (ετ ) ∈ E ⊂ R∞ is a random vector drawn independently

from F , and where Z(s),t(·) are functions satisfying the following properties.7 Let ‖·‖ denote the

discounted L1 norm on R∞, defined by ‖y‖ ≡
∑∞

t=0 δ
t|yt|.

Condition 6. [Regularity] The process F is “regular” if it admits a state representation Z satisfying

the following conditions:

1. There exist functions K(s) : E → R∞, s ≥ 1, with E[||K(s) (ε̃) ||] ≤ B for some constant B

independent of s, such that for all t ≥ s, hs ∈ Θs, and ε ∈ E , Z(s),t(hs, ε) is a differentiable

function of hs with
∣∣∂Z(s),t(hs, ε)/∂hs

∣∣ ≤ K(s),t−s (ε).8

2. For each s, log
[
∂Z(s),t(hs, ε)/∂hs

]
is continuous in hs uniformly over t ≥ s and (hs, ε) ∈ Θs×E .

Given the above notation, for any t > s, any ht, then let

I(s),t(h
t
s) =

∂Z(s),t(hs, ε)

∂hs

∣∣∣∣
ε:Zt

(s)
(hs,ε)=hts

denote the impulse response of ht to hs. The impulse response of ht to hs captures the effects of a

marginal variation in hs on ht across all histories of shocks that, starting from hs lead to hts. When

s = 1, we simplify the notation by dropping (s) from the subscripts and define such functions by

It(h
t). Finally, we let I(s),s(hs) = 1, all s ≥ 1, all hs ∈ Θ.9

7For example, the following is a state representation of F . For any t ≥ 2, any εt ∈ (0, 1), any ht−1 ∈ Θ, let

F−1(εt|ht−1) ≡ inf{ht : F (ht|ht−1) ≥ εt}. Let each εt be drawn from a Uniform distribution over (0, 1), independently

across t. For any s ≥ 1, then let Z(s),s(hs, ε) = hs, while for any t > s, let Z(s),t(hs, ε) = F−1
t (εt|Z(s),t−1(hs, ε)). The

above representation is referred to as the canonical representation of F in Pavan, Segal and Toikka (2014).
8For any ε, the term K(s),t−s(ε) is the (t− s)-component of the sequence K(s)(ε).
9As an example, note that, when ht follows an AR(1) process, then It(h

t) = γt−1. More generally, such impulse

response functions are themselves stochastic processes. Also note that, when the process is Markov, as assumed

here, and the kernels F (ht|ht−1) are continuously differentiable in (ht, ht−1) — a property not assumed here, for

inconsequential to the results — the canonical representation introduced above yields the following expression for the

impulse responses:

I(s),t(h
t
s) =

t∏
τ=s+1

(
−∂F (hτ |hτ−1)/∂hτ−1

f(hτ |hτ−1)

)
.
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Next, for any t, any ht−1 ∈ Θt−1, any ht, ĥt ∈ Θt, let

Dt(h
t; ĥt) ≡ −E

∑
s≥t

δs−tI(t),s(h̃
s
t )qs(h̃

s
−t, ĥt) | ht

 .
Under Conditions “Markov”, “FOSD”, and “Regularity”, a mechanism ψ = 〈q,p〉 is individually

rational and incentive compatible if and only if the following conditions jointly hold for all t ≥ 1,

all ht−1, all ht, ĥt ∈ Θ (see Pavan, Segal and Toikka (2014)): (a) V
〈q,p〉

1 (θ̄) ≥ 0, (b) V
〈q,p〉
t (ht) is

equi-Lipschitz continuous in ht with

∂V
〈q,p〉
t (ht)

∂ht
= −E

∑
s≥t

δs−tI(t),s(h̃
s
t )qs(h̃

s) | ht
 a.e. ht ∈ Θ, (20)

and (c) ∫ ht

ĥt

[Dt((h
t−1, x);x)−Dt((h

t−1, x); ĥt)]dx ≥ 0. (21)

Condition (20) is the dynamic analog of the usual envelope formula for static environments. In

a Markov environment, such condition, when paired with the integral monotonicity condition (21),

yields a complete characterization of incentive compatibility.10,11

That V
〈q,p〉

1 (h1) must satisfy Condition (20) for almost all h1 ∈ Θ in turn implies that the

principal’s payoff in any mechanism ψ = 〈q,p〉 that is individually rational and incentive compatible

is equal to “Dynamic Virtual Surplus”, defined as12

E

∑
t

δt−1

B (qt (h̃t))− C (qt (h̃t) , h̃t)− F1

(
h̃1

)
f1

(
h̃1

) It(h̃t)qt (h̃t)
− V 〈q,p〉1 (θ̄). (22)

10The role played by the Markov assumption is that it implies that an agent’s incentives in any period depend only

on his current true type and his past reports, but not on his past true types. In turn this implies that, when a single

departure from truthful reporting is suboptimal, then truthful reporting (at all histories) yields a higher payoff than

any other strategy.
11The integral monotonicity condition (21) generalizes the more familiar monotonicity condition for static settings

requiring the allocation rule to be nondecreasing. As the above condition reveals, what is required by incentive

compatibility in dynamic settings is that the derivative of the agent’s payoff with respect to his true type be sufficiently

monotone in the reported type. In particular, note that (21) holds in the dynamic environment under examination

here if the NPV of expected future output, discounted by impulse responses,

E

∑
s≥t

δs−tI(t),s(h̃
t
s)qs(h̃

s
−t, ĥt) | ht


is nonincreasing in the current report ĥt. Output need not be monotone in each period. It suffices it is sufficiently

monotone, on average, where the average is both over states and time.
12The expression in (22) can be obtained from (20) integrating by parts.
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The terms F1

(
h̃1

)
It(h̃

t)qt

(
h̃t
)
/f1

(
h̃1

)
in (22) are handicaps that control for the cost to the prin-

cipal of asking for higher output at various histories. The assumption that the process satisfies

Condition “FOSD” implies that impulse responses are non-negative. Condition (20) then implies

that the agent’s period-1 expected payoff, V
〈q,p〉

1 (·), reaches its minimum at h1 = θ̄. Hence, under

any optimal mechanism, the participation constraint (2) binds for the least efficient period-1 type,

i.e., V
〈q,p〉

1 (θ̄) = 0, whereas all other participation constraints are slack. The principal’s problem thus

reduces to the maximization of (22) over all quantity schedules q satisfying the integral monotonicity

conditions in (21).

As discussed above, solving such a problem is tedious. The approach typically followed in the

literature is to solve a relaxed program where the integral monotonicity conditions are dropped and

verified ex-post. In the contest of the model under consideration here, given the concavity of B (·)
and the convexity of C (·) in output, the policies that solve such relaxed program are those identified

by the following first-order conditions

B′
(
qt
(
ht
))

= Cq
(
qt
(
ht
)
, ht
)

+
F1 (h1)

f1 (h1)
It(h

t)

for all t ≥ 1, all ht ∈ Θt.

In general, however, there is no guarantee that the allocation rule that solves the relaxed program

satisfies all the “integral monotonicity” conditions in (21), unless additional conditions are imposed.

As explained above, such conditions are typically identified through “reverse engineering,” i.e., by

using monotone comparative statics results to guarantee that the quantity schedule that solves the

above first-order conditions is sufficiently monotone. Unfortunately, such conditions can be stringent

and may lack compelling economic foundations.

Consistently with the analysis in the previous section, the approach followed here is therefore

different. We look for perturbations to the putative optimal quantity rule q∗ that preserve the

integral monotonicity conditions in (21). Note that, given any such perturbed rule, there always

exists a payment rule that (i) yields an individually rational and incentive compatible mechanism

and (ii) gives the least efficient period-1 type a payoff V
〈q,p〉

1 (θ̄) = 0. One such rule that satisfies the

additional property of Lemma 1 that, for all t ≥ 2, all ht−1 ∈ Θt−1, E
[
V
〈q∗,p∗〉
t

(
h̃t
)
|ht−1

]
= 0, is

the following:

p1 (h1) = C (q1(h1), h1) +

∫ θ̄

h1

E

[ ∞∑
s=1

δs−1Is(h̃
s)qs(h̃

s) | x

]
dx, (23)

for all h1 ∈ Θ, while, for all t ≥ 2, all ht,

pt
(
ht
)

= C
(
qt(h

t), ht
)

+
∫ θ̄
ht
E
[∑

s≥t δ
s−tI(t),s(h̃

s
t )q
∗
s(h̃

s) | (ht−1, x)
]
dx

−E
[
F(h̃t|ht−1)
f(h̃t|ht−1)

∑
s≥t δ

s−tI(t),s(h̃
s
t )qs(h̃

s) | ht−1

]
.

(24)

Clearly, for the putative mechanism 〈q∗,p∗〉 to be optimal it must be that no perturbation to the

quantity schedule q∗ preserving the integral monotonicity conditions in (21) increases the principal’s
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expected payoff, as given by (22). In particular, suppose that q∗ is such that the period-t schedule

q∗t (·) is bounded away from the boundaries of the set of feasible quantity levels; namely, suppose

that there exist ιt, ῑt ∈ R++, with 0 < ιt ≤ ῑt < q̄, such that, for all ht, q∗t
(
ht
)
∈ (ιt, ῑt). Then adding

a constant ν ∈ R to the schedule q∗t (·) yields a new policy that continues to satisfy the integral

monotonicity conditions in (21) (the arguments are similar to those yielding to Proposition 1). The

variation in the principal’s expected payoff relative to her payoff under 〈q∗,p∗〉 is then equal to

δt−1E

B (q∗t (h̃t)+ ν
)
− C

(
q∗t

(
h̃t
)

+ ν, h̃t

)
−

F1

(
h̃1

)
f1

(
h̃1

) It(h̃t)
(q∗t (h̃t)+ ν

) (25)

−δt−1E

B (q∗t (h̃t))− C (q∗t (h̃t) , h̃t)−
F1

(
h̃1

)
f1

(
h̃1

) It(h̃t)
 q∗t

(
h̃t
) .

Dividing the expression in (25) by ν and taking the limit for ν going to zero yields the following

expression for the derivative of the principal’s expected payoff with respect to ν evaluated at ν = 0:

δt−1E

B′ (q∗t (h̃t))− Cq (q∗t (h̃t) , h̃t)−
F1

(
h̃1

)
f1

(
h̃1

) It(h̃t)
 .

A necessary condition for the optimality of 〈q∗,p∗〉 is that such derivative vanishes. We then have

the following result:

Definition 1. The mechanism 〈q,p〉 is “eventually interior” if there exists T and sequences of scalars

(ιt) and (ῑt), with 0 < ιt ≤ ῑt < q̄, all t, such that, for any t > T , any ht, qt
(
ht
)
∈ [ιt, ῑt].

Proposition 6. Assume the process F satisfies Conditions “Markov,” “FOSD,” and “Regularity”.

If 〈q∗,p∗〉 is “eventually interior,” then, for all t large enough,

E
[
B′
(
q∗t

(
h̃t
))
− Cq

(
q∗t

(
h̃t
)
, h̃t

)]
= E

F1

(
h̃1

)
f1

(
h̃1

) It(h̃t)
 . (26)

That the quantity schedule under the optimal mechanism is eventually interior appears dif-

ficult to guarantee in general. Naturally, given the Inada conditions (limq→q̄ c (q) = +∞ and

limq→0B (q) = −∞), such interiority can be guaranteed if one imposes continuity restrictions on

the optimal schedules, such as requiring allocations to be Lipschitz continuous with a fixed Lipschitz

constant. Under such a restriction, the perturbations to the optimal policies described above are

then feasible, which in turn guarantees that the expected wedge under the optimal mechanism is

given by the right hand side of (26).

Note that the result in Proposition 6 is related to the result in the literature that focuses on

environments for which the relaxed approach is valid, but with important differences. When the

optimal policies are those that solve the relaxed approach, and such policies are interior, the wedge,
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at any history ht, is given by the marginal handicap F1(h1)It(h
t)/f1(h1). This need not be true more

generally, i.e., for environment where the relaxed approach is not guaranteed to be valid. What

remains true, though, is that the expected wedge is equal to the expected marginal handicap. By

studying the dynamics of the expected marginal handicaps, one can then identify useful properties

for the dynamics of the expected wedges, as we show below. Let B(Θ) be the Borel sigma algebra

associated with the set Θ. For any A ∈ B(Θ), h ∈ Θ, and t ≥ 1, then let

P t(h,A) ≡ Pr
(
h̃t ∈ A|h̃1 = h

)
.

Condition 7. [Ergodicity] The process F is ergodic if there exists a unique (invariant) probability

measure π on B(Θ) whose support has a nonempty interior such that, for all h ∈ Θ,

sup
A∈B(Θ)

∣∣P t(h,A)− π(A)
∣∣→ 0 as t→∞. (27)

Under the additional Condition “Ergodicity,” we are able to establish a result analogous to the

one in (8) for discrete types.

Proposition 7. Assume F satisfies Conditions “Regularity” and “Ergodicity.” Then

E
[
F1(θ1)

f1(θ1)
It(θ

t)

]
→ 0 as t→∞.

If, in addition, F satisfies Condition “FOSD,” then convergence is from above, i.e., E
[
F1(θ1)
f1(θ1) It(θ

t)
]
≥

0 for all t. Furthermore, if, in addition to the above conditions, the period-1 distribution is the

stationary (ergodic) distribution of F , then convergence is monotone in time, i.e., E
[
F1(θ1)
f1(θ1) It(θ

t)
]

is

decreasing in t.

Together, Propositions 6 and 7 thus provide implications for the dynamics of expected wedges

analogous to those in the discrete case. We summarize such implications in the following Corollary:

Corollary 2. Suppose F satisfies Conditions “Markov,” “Regularity,” “FOSD,” and “Ergodicity,”

and that the optimal policies are “eventually interior.” Then the expected wedges are eventually

positive and vanish in the long run. If, in addition, the period-1 distribution of F coincides with the

ergodic distribution, then, eventually, convergence becomes monotone in time.

As in the discrete case, the result in Corollary 2 does not imply convergence of of the quantity

schedules to the efficient ones in probability. Nonetheless, we expect that the same restrictions on the

quantity schedules that guarantee the eventual interiority of the policies, such as the requirement that

qt(·) be Lipschitz with known Lipschitz constants, also rule out pathological behavior, permitting

arguments analogous to those in the discrete case to establish convergence of the allocations to the

efficient levels (in probability) when players are sufficiently patient.
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5 Conclusions

We develop a novel variational approach that permits us to study the long-run dynamics of allocations

under fully optimal contracts. The approach permits us to bypass many of the technical restrictions

required to validate the “relaxed” approach typically followed in the literature. In particular, the

analysis identifies primitive conditions guaranteeing convergence of the allocations under fully optimal

contracts to the first-best levels.

In future work, it would be desirable to extend the analysis to a richer class of dynamic con-

tracting problems, for example by accommodating for endogenous private information and for the

competition between multiple privately informed agents. It would also be interesting to apply a

similar methodology to study the dynamics of allocations under restricted contracts, where the re-

strictions could originate in a quest for “simplicity” such as the requirement that allocations be

invariant in past reported types, as in the new dynamic public finance literature (e.g., Farhi and

Werning (2013), Golosov et al. (2016), and Makris and Pavan (2017)), or the quest for “robustness

to model mis-specification,” as in the recent literature on robustly optimal contracts (e.g., Carroll

(2015)). In particular, the variational approach developed in the present paper could also be useful

to identify certain properties of optimal contracts in settings in which the principal lacks detailed

information about the process governing the evolution of the agents’ private information.
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Appendix: Proofs

Proof of Lemma 1. Consider any mechanism ψ = 〈q,p〉. Let ψ′ be the mechanism constructed

from ψ as follows. The payment rule p′ ≡ (p′t(·))t≥1 is such that, for t = 1,

p′1 (h1) = p1 (h1) + δE
[
V ψ

2

(
h̃2
)
|h1

]
for all h1 ∈ Θ, whereas for t > 1,

p′t
(
ht
)

= pt
(
ht
)
− E

[
V ψ
t

(
h̃t
)
|ht−1

]
+ δE

[
V ψ
t+1

(
h̃t+1

)
|ht
]

all ht ∈ Θt. The allocation rule q′ ≡ (q′t(·))t≥1 is the same as in ψ, i.e., q′ = q. The mechanism

ψ′ = 〈q′,p′〉 satisfies (5) for all t ≥ 2, all ht ∈ Θt. Moreover, if ψ ∈ Ψ, then ψ′ ∈ Ψ. Clearly, ψ and

ψ′ yield the principal the same expected payoff. This establishes the first claim.

Next, notice that, in any mechanism ψ = 〈q,p〉 satisfying (5), for all t ≥ 2, all ht ∈ Θt, necessarily

V ψ
t

(
ht
)
≤ q̄∆θ

1− δ
.

To see this, suppose that, instead, V ψ
t

(
ht
)
> q̄∆θ

1−δ for some ht. That the mechanism ψ satisfies

the property in the first part of the lemma implies that there exists a type h′t ∈ Θ such that

V ψ
t

(
ht−1, h′t

)
≤ 0. An agent whose history of private types is

(
ht−1, h′t

)
, who reported truthfully up

to period t − 1, could then replicate the distribution of reports from period t onwards of an agent

whose period-t history of private types is
(
ht−1, ht

)
. By misreporting in this way, the former agent

(the one with history of private types
(
ht−1, h′t

)
) earns an expected payoff (from t onwards) at least

equal to

V ψ
t

(
ht
)
− q̄∆θ

1− δ
.

This is because, in each period, the additional costs of the former type (relative to the one being

mimicked) is bounded by q̄∆θ. That V ψ
t

(
ht
)
> q̄∆θ

1−δ thus implies that the former agent has a

profitable deviation. Since
(
ht−1, h′t

)
has positive probability by the full-support assumption, there

exists a reporting strategy σ that induces a strictly higher expected payoff for the agent than the

truthful one, thus violating Condition (3).

A similar argument implies that V ψ
t

(
ht
)
≥ − q̄∆θ

1−δ for all t, all ht. Again, suppose this is

not the case. That the mechanism satisfies the property in the first part of the lemma implies

that there exists a h′t such that V ψ
t

(
ht−1, h′t

)
≥ 0. An agent whose period-t continuation payoff

satisfies V ψ
t

(
ht
)
< − q̄∆θ

1−δ could then replicate the distribution of reports of an agent whose period-t

type is h′t (who truthfully reported ht−1 in the past) and secure herself a payoff at least equal to

V ψ
t

(
ht−1, h′t

)
− q̄∆θ

1−δ which is larger than V ψ
t

(
ht
)
. The former agent would thus have a profitable

deviation, contradicting that ψ ∈ Ψ.

That in any mechanism satisfying (5), all t ≥ 2, all ht ∈ Θt, necessarily∣∣pt (ht)− C (qt (ht) , ht)∣∣ ≤ q̄∆θ

1− δ

29



then follows from the above properties along with the fact that, in any such mechanism,

V ψ
t

(
ht
)

= pt
(
ht
)
− C

(
qt
(
ht
)
, ht
)
,

all t ≥ 2, all ht.

Finally, to see that, in any optimal mechanism satisfying (5), all t ≥ 2, all ht ∈ Θt, Condition

(6) holds also for t = 1, note that, in any such mechanism, the date-1 participation constraint (2)

necessarily binds for some type, for otherwise the principal could reduce the payments of all types

uniformly by ε > 0 increasing her payoff. That the mechanism satisfies (5), all t ≥ 2, all ht ∈ Θt,

then implies that condition (6) holds also for t = 1. The arguments are the same as for the case

t ≥ 2 discussed above. Q.E.D.

Proof of Lemma 2. It is easy to see that there exist sequences of scalars (bt) and
(
b̄t
)
, with 0 <

bt < b̄t < q̄, such that the following is true: For any mechanism ψ = 〈q,p〉 ∈ Ψ with qt
(
ht
)
/∈ [bt, b̄t]

for some t and ht, there exists another mechanism ψ′ = 〈q,p〉 with ψ′ ∈ Ψ and q′t
(
ht
)
∈ [bt, b̄t] for

all t and all ht, that yields the principal a higher payoff. The existence of such bounds follows from

the combination of the Inada conditions with the discreteness of the process. Let Ψ̄ denote those

mechanisms in Ψ that satisfy the above bounds on allocations in each period as well as both (5) and

(6) for all t ≥ 2, all ht−1, with the latter also holding at t = 1. When T is finite, the design problem

amounts to maximizing the principal’s continuous objective on the compact set Ψ̄, so existence of a

solution follows from standard results.

Next, consider the case where T = +∞. Let
(
ψk
)

=
(〈

qk,pk
〉)

denote a sequence of mechanisms

in Ψ̄ such that

sup
ψ∈Ψ̄

{
E

[ ∞∑
t=1

δt−1
(
B
(
qt

(
h̃t
))
− pt

(
h̃t
))]}

− E

[ ∞∑
t=1

δt−1
(
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
))]

< 1/k.

(28)

We can then construct an optimal policy as follows. Let
((
qk1 (·) , pk1 (·)

))
denote the sequence

of period-1 policies defined by the above sequence of mechanisms. From the Bolzano-Weierstrass

Theorem, there exists a subsequence of
((
qk1 (·) , pk1 (·)

))
converging to some (q∗1 (·) , p∗1 (·)). Letting

(kl) index this subsequence, there exists a further subsequence, indexed by
(
kl(m)

)
, of the same

original sequence of mechanisms such that
((
q
kl(m)

2 (·) , pkl(m)

2 (·)
))

converges to some (q∗2 (·) , p∗2 (·)).

Clearly, this also implies that, along the subsequence indexed by
(
kl(m)

)
,
((
q
kl(m)

1 (·) , pkl(m)

1 (·)
))

converges to (q∗1 (·) , p∗1 (·)). Proceeding this way, we obtain a mechanism ψ∗ = 〈q∗,p∗〉.
We now show that ψ∗ is incentive compatible. To do so, we make use of the fact that each ψk

satisfies Condition (6) (since ψk ∈ Ψ̄) and that the maximal difference across types is ∆θ. This

implies that the (absolute value of the) agent’s per-period payoff in a mechanism ψk is bounded by

a constant M > 0, uniformly over k, dates t ≥ 2, histories ht ∈ Θt and strategies σ. Furthermore,

by construction of ψ∗, the same property (and the same bound M) applies to ψ∗.
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Now, suppose that ψ∗ is not incentive compatible. Then, there exists a reporting strategy σ such

that the agent’s ex-ante expected payoff under σ is higher than under the truthful reporting strategy

by some amount η > 0. Let ε = η/3. The above property (i.e., the boundedness of the agent’s

per-period payoff) implies that there exists k such that the agent’s ex-ante payoffs in ψ∗, under σ

and the truthful reporting strategy, respectively, are within an ε-ball of the respective payoffs in ψk.

Abusing notation, let ψ∗,σ and ψk,σ denote the outcomes induced under σ in the mechanisms ψ∗ and

ψk, respectively. Then,

E
[
V ψk

1

(
h̃1

)]
− E

[
V ψk,σ

1

(
h̃1

)]
≤ E

[
V ψ∗

1

(
h̃1

)]
− E

[
V ψ∗,σ

1

(
h̃1

)]
+ 2ε

= −ε

< 0,

where the equality follows from the assumption that E
[
V ψ∗

1

(
h̃1

)]
−E

[
V ψ∗,σ

1

(
h̃1

)]
= η = 3ε. This

implies that the mechanism ψk is not incentive compatible, a contradiction. A similar logic implies

that ψ∗ is individually rational, and hence ψ∗ ∈ Ψ.

We now show that ψ∗ is optimal in Ψ . Using the fact that the agent’s per-period payoffs in ψ∗

are bounded in absolute value by M > 0 uniformly over histories ht, t ≥ 2, it is easy to see that ψ∗

satisfies (5) for all t ≥ 2 (a property which is inherited from the mechanisms ψk). It follows that, for

all t ≥ 2,

E
[
B
(
q∗t

(
h̃t
))
− p∗t

(
h̃t
)]

= E
[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
(where the expectations are ex-ante). Moreover,

B
(
q∗t
(
ht
))
− C

(
q∗t
(
ht
)
, ht
)
≤ S̄ ≡ max

q∈(0,q̄)
{B (q)− C(q, θ1)}

uniformly over t and ht. Hence,

E

[ ∞∑
t=1

δt−1
(
B
(
q∗t

(
h̃t
))
− p∗t

(
h̃t
))]

= E
[
B
(
q∗1

(
h̃1

))
− p∗1

(
h̃1

)]
+E

[ ∞∑
t=2

δt−1
(
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

) )]
= E

[
B
(
q∗1

(
h̃1

))
− p∗1

(
h̃1

)]
+ lim
T→∞

T∑
t=2

δt−1E
[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

) ]
. (29)

The first equality uses the fact that, by construction of ψ∗, E
[
B
(
q∗1

(
h̃1

))
− p∗1

(
h̃1

)]
is finite. The

second equality, and the existence of the limit in the last line of (29), follow because per-period

surplus is uniformly bounded from above by S. Hence, expected profits under ψ∗ are well defined

and equal to some value π∗ ∈ R∪{−∞}.
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Now, let πsup ≡ supψ∈Ψ̄

{
E
[∑∞

t=1 δ
t−1
(
B
(
qt

(
h̃t
))
− pt

(
h̃t
))]}

∈ R. Suppose then that ψ∗ is

not optimal. This means that there exists a (finite) η > 0 such that πsup − π∗ ≥ η. Because the

series in the last line of (29) is convergent, we have that, for any ε > 0, there exists T ∗(ε), such

that, for any T ≥ T ∗(ε),

E
[
B
(
q∗1

(
h̃1

))
− p∗1

(
h̃1

)]
+

T∑
t=2

δt−1E
[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
< πsup − η + ε.

Now fix ε > 0 and let T ∗∗(ε) be the smallest positive integer such that δT
∗∗(ε)−1

1−δ < ε. Then let

T̄ (ε) = max {T ∗(ε), T ∗∗(ε)}. Considering mechanisms ψk in the original sequence, for any k ≥ 1
ε

and any T ≥ T̄ (ε), we have

E

[
T∑
t=1

δt−1
(
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
))]

=
T∑
t=1

δt−1E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]

=

∞∑
t=1

δt−1E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]

−
∞∑

t=T+1

δt−1E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]

> πsup − 2ε.

The inequality follows from the fact that (a) the original sequence was constructed so that

∞∑
t=1

δt−1E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]

= E

[ ∞∑
t=1

δt−1
(
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
))]

> πsup − 1

k

≥ πsup − ε

and (b)
∞∑

t=T+1

δt−1E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]

<
δT
∗∗(ε)−1

1− δ
S̄ < ε,

which in turn follows because, for all k and all t ≥ 2,

E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]

= E
[
B
(
qkt

(
h̃t
))
− C

(
qkt

(
h̃t
)
, h̃t

)]
≤ S̄.

Now, take ε = η/6, where η is the constant defined above. We then have, for any T ≥ T̄ (ε),

T∑
t=1

δt−1E
[
B
(
qkt

(
h̃t
))
− pkt

(
h̃t
)]
−

T∑
t=1

δt−1E
[
B
(
q∗t

(
h̃t
))
− p∗t

(
h̃t
)]

> η/2. (30)

Then fix T ≥ T̄ (ε). By construction of ψ∗, for any ν > 0, we can find a k > 1/ε such that

|q∗t
(
ht
)
− qkt

(
ht
)
|, |p∗t

(
ht
)
− pkt

(
ht
)
| ≤ ν for all t = 1, . . . , T , all ht ∈ Θt. Taking ν sufficiently small,
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and using the fact that B (q) − p is continuous in (q, p), we can then find a k > 1/ε such that (30)

fails, a contradiction. This proves that the principal’s expected payoff under ψ∗ is equal to πsup and

hence that ψ∗ is optimal.

Finally, to see that the allocation rule in any optimal mechanism is unique, suppose, on the

contrary, that ψA =
〈
qA,pA

〉
and ψB =

〈
qB,pB

〉
are optimal mechanisms with qA 6= qB. Let

γ ∈ (0, 1) and consider the mechanism ψγ = 〈qγ ,pγ〉 defined by

qγt (ht) = γqAt (ht) + (1− γ)qBt (ht)

and

pγt (ht) = γpA(ht) + (1− γ)pB(ht) + c(qγt (ht))− γc
(
qAt (ht)

)
− (1− γ)c

(
qBt (ht)

)
,

all t, all ht. For each initial type h1, the mechanism ψγ so constructed yields the agent an expected

payoff

V ψγ

1 (h1) = γV ψA

1 (h1) + (1− γ)V ψB

1 (h1)

under a truthful reporting strategy, and hence it is individually rational, since ψA, ψB ∈ Ψ. Similarly,

the agent’s payoff in the mechanism ψγ under any reporting strategy σ is a convex combination (with

weights γ and 1 − γ) of the agent’s payoffs under the same strategy σ in ψA and ψB. Hence, ψγ is

incentive compatible; i.e. ψγ ∈ Ψ. The result then follows from the fact that the principal’s payoff

under any mechanism is equal to expected total surplus net of the agent’s expected rent, along with

the fact that the strict concavity of B(q)− C(q, h) in q, for all h, implies that, for all t,

E
[
B
(
qγt

(
h̃t
))
− C

(
qγt

(
h̃t
)
, h̃t

)]
≥γE

[
B
(
qAt

(
h̃t
))
− C

(
qAt

(
h̃t
)
, h̃t

)]
+ (1− γ)E

[
B
(
qBt

(
h̃t
))
− C

(
qBt

(
h̃t
)
, h̃t

)]
with the inequality strict whenever qAt

(
ht
)
6= qBt

(
ht
)

for some ht. Q.E.D.

Proof of Proposition 1. [Part 1]. Suppose the result is not true and let 〈q∗,p∗〉 denote an

optimal mechanism (recall that the quantity schedule q∗ is unique across all optimal mechanisms).

Then there exists κ > 0 and a strictly increasing sequence of dates (tk) such that either

E
[
B′
(
q∗tk

(
h̃tk
))
− h̃tk − c

′
(
q∗tk

(
h̃tk
))]

> κ

for all k, or

E
[
B′
(
q∗tk

(
h̃tk
))
− h̃tk − c

′
(
q∗tk

(
h̃tk
))]

< −κ

for all k. Consider the first case. Then, for any k, consider the mechanism ψ′ =
〈
q
′
,p
′
〉

whose

allocation rule is given by q′t (·) = q∗t (·) for all t 6= tk, and by q′tk (·) = q∗tk (·) + νk for t = tk,

for some constant νk ∈
(
0, q̄ −maxhtk∈Θtk

{
q
(
htk
)})

. As for the payments, the new mechanism is

defined by p′1 (·) = p∗1 (·) + δtk−1νk maxh1∈Θ

{
E
[
h̃tk |h1

]}
, p′t (·) = p∗t (·) for all t ≥ 2, t 6= tk, and by

p′tk
(
htk
)

= p∗tk
(
htk
)

+ c
(
q′tk
(
htk
))
− c
(
q∗tk
(
htk
))

for all htk ∈ Θtk . Note that the new mechanism ψ′
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is incentive compatible. This follows from the fact that the original mechanism 〈q∗,p∗〉 is incentive

compatible, along with the fact that, for any reporting strategy σ, any h1,13

V
〈q′,p′〉

1 (h1)− V 〈q
′,σ ,p′,σ〉

1 (h1) = V
〈q∗,p∗〉

1 (h1)− V 〈q
∗,σ ,p∗,σ〉

1 (h1).

Moreover, the adjustment in payments ensures that ψ′ is individually rational, and hence ψ′ ∈ Ψ.

For νk sufficiently small, the increase in total surplus exceeds δtk−1νkκ, while the expected rent

of the agent conditional on his initial type being h1 increases by

δtk−1νk

(
max
h1∈Θ

{
E
[
h̃tk |h1

]}
− E

[
h̃tk |h1

])
.

Since maxh1∈Θ

{
E
[
h̃t|h1

]}
− E

[
h̃t|h1

]
vanishes with t by Condition “Long-run independence,” it

follows that the increase in the principal’s payoff (i.e., in total surplus, net of the agent’s rents) is pos-

itive for k sufficiently large. The new mechanism thus improves over the original one, contradicting

the optimality of the latter.

Next, consider the second case. The proof is analogous to the one above, except that the mech-

anism ψ′ used to establish the improvement over ψ∗ is such that νk ∈
(
−minhtk∈Θtk

{
qtk
(
htk
)}
, 0
)
,

and p′1 (·) = p∗1 (·) + δtk−1νk minh1∈Θ

{
E
[
h̃tk |h1

]}
. Now expected surplus increases by at least

−δtk−1νkκ, while the rent expected by an agent whose initial type is h1 increases by

δtk−1νk

(
min
h1∈Θ

{
E
[
h̃tk |h1

]}
− E

[
h̃tk |h1

])
.

Again, the quantity in brackets vanishes as k →∞, by virtue of Condition “Long-run independence,”

thus establishing the result.

[Part 2]. Suppose that distortions are always downwards, but that the convergence in (9) does

not occur. Note that, because total surplus is concave in output, for any history ht,

B
(
qEt (ht)

)
− C

(
qEt (ht) , ht

)
−
(
B
(
q∗t
(
ht
))
− C

(
q∗t
(
ht
)
, ht
))

≤
(
B′
(
q∗t
(
ht
))
− Cq

(
q∗t
(
ht
)
, ht
)) (

qEt (ht)− q∗t
(
ht
))

.

Hence, if the convergence in (9) fails, there exists ε > 0 and a sequence of dates (tk), such that, for

any tk,

E
[(
B′
(
q∗tk

(
h̃tk
))
− Cq

(
q∗tk

(
h̃tk
)
, h̃tk

))(
qEtk

(
h̃tk

)
− q∗tk

(
h̃tk
))]
≥ ε.

This implies that

E
[
B′
(
q∗tk

(
h̃tk
))
− Cq

(
q∗tk

(
h̃tk
)
, h̃tk

)]
≥ ε

q̄
.

13The equality follows because the quantity adjustments used to obtain the new mechanism 〈q′,p′〉 are uniform over

histories of types htk , and hence the effect of the adjustment on the linear part of the agent’s cost is the same under

truthtelling and σ. Furthermore, any effect on the convex part of the cost is undone by the adjustment in the payment

(i.e., by the adjustment c
(
q′tk
(
htk
))
− c

(
q∗tk
(
htk
))

, for each htk ).
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But this contradicts the convergence of the wedges established in Part 1. The argument for upward

distortions is analogous.

Finally, to see that convergence in expected surplus implies convergence in probability of the

allocation rule, suppose this is not the case. Then there exists a sequence of dates (tk), together with

a constant η > 0, such that

Pr
(∣∣∣q∗tk (h̃tk)− qE (h̃tk)∣∣∣ > η

)
> η

along the sequence (tk). It is then easy to check, given the strict concavity of B (·) and the convexity

of C (·, h), that

E
[
B
(
q∗tk

(
h̃tk
))
− C

(
q∗tk

(
h̃tk
)
, h̃tk

)]
remains strictly below

E
[
B
(
qEtk

(
h̃tk

))
− C

(
qEtk

(
h̃tk

)
, h̃tk

)]
by a constant uniform along the sequence (tk), contradicting (9). Q.E.D.

Proof of Proposition 2 [Part 1]. When Condition “FOSD” holds, the agent’s period-1 rent

V ψ∗

1 (·) is strictly decreasing in type, under any optimal mechanism ψ∗ = 〈q∗,p∗〉. To see this, we

introduce the following “canonical” representation of the evolution of the agent’s types, in which

the agent is viewed as receiving independently distributed “shocks” to his cost in each period. In

particular, for any t ≥ 2, let ε̃t be drawn from a uniform distribution over [0, 1], independently of h̃1

and of any ε̃s, s 6= t. The evolution of the agent’s types can then be thought of as determined by the

initial draw of h1 (according to F1) and by the subsequent “shocks” εt (drawn independently from

a uniform distribution over [0, 1]) via the equation

ht = F−1
t (εt|h1, F

−1
2 (ε2|h1), F−1

3 (ε3|h1, F
−1
2 (ε2|h1)), ...),

where, for any t ≥ 2, any εt ∈ [0, 1], any ht−1 ∈ Θt−1, F−1
t (εt|ht−1) ≡ inf{ht : F (ht|ht−1) ≥ εt}. By

the Integral Transform Probability Theorem, the above representation is “equivalent” to the original

representation, in the sense that, for any t ≥ 2, any ht−1 ∈ Θt−1, the distribution of h̃t given ht−1,

as given by the kernel Ft(·|ht−1), is the same as the distribution of

F−1
t (ε̃t|h1, F

−1
2 (ε2|h1), F−1

3 (ε3|h1, F
−1
2 (ε2|h1)), ...)

for any vector of shocks (ε2, ..., εt−1) such that F−1
2 (ε2|h1) = h2, F

−1
3 (ε3|h1, F

−1
2 (ε2|h1)) = h3,...,

F−1
t−1(εt−1|h1, F

−1
2 (ε2|h1), F−1

3 (ε3|h1, F
−1
2 (ε2|h1)), ...) = ht−1.

Now, consider a period-1 type θi who reports θi+1 in period 1, and then goes on to report in

subsequent periods in such a way that the process for reports is indistinguishable from that for an

agent whose true initial type is θi+1 and who reports truthfully in each period. In particular, in an

arbitrary period t ≥ 2 in which the agent has already reported ĥt−1 and his true type history is ht−1,
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with ht = θj , the agent draws ε̃t from the uniform distribution on
[
Ft
(
θj−1|ht−1

)
, Ft
(
θj |ht−1

)]
if

j > 1, and from the uniform distribution over
[
0, Ft

(
θ1|ht−1

)]
otherwise, and then reports

ĥt = F−1
t (εt|ĥt−1).

Then note that, given F satisfies Condition “FOSD”, for each t ≥ 1, we must have ht ≤ ĥt (with a

strict inequality occurring with positive probability in at least one period, in particular, for t = 1).

Hence, given that output is strictly positive at each period, by following the above reporting strategy

the agent with initial type θi must expect the same payoff V ψ∗

1 (θi+1) as the type θi+1 mimicked

in period 1, augmented by the strictly positive cost savings that occur due to having a lower true

cost than the reported one in each period (with the cost saving strictly positive at least in period

one). This implies that, if the mechanism ψ∗ is incentive compatible, then V ψ∗

1 (·) must be strictly

decreasing, as claimed.

Now, suppose, towards a contradiction, that (10) is strictly negative for some date t′ under the

putative optimal mechanism ψ∗. Consider decreasing q∗t′ (·) uniformly by an arbitrary constant

ν ∈
(

0,minht′∈Θt′

{
q∗t′
(
ht
′
)})

. Formally, consider a new mechanism whose allocation rule q′ is

such that q′t (·) = q∗t (·) for t 6= t′, while, for t = t′, q′t′ (·) = q∗t′ (·) − ν, and whose payment rule

p′ is such that p′t (·) = p∗t (·) for all t 6= t′, while, for t = t′, p′t′
(
ht
′
)

= p∗t′
(
ht
′
)

+ c
(
q′t′
(
ht
′
))
−

c
(
q∗t′
(
ht
′
))
− νE

[
h̃t′ |θN

]
for all ht

′ ∈ Θt′ . Note that the incentive constraints (3) are unaffected

by these changes, i.e., the mechanism 〈q′,p′〉 so constructed is incentive compatible. Furthermore,

the payoff expected by the least efficient period-1 type θN under the new mechanism 〈q′,p′〉 is the

same as under the original mechanism 〈q∗,p∗〉. That the participation constraints of all other types

in the new mechanism are also satisfied follows from the fact that the new mechanism is incentive

compatible and that, under “FOSD”, the participation of type θN implies the participation of any

other type (this property follows from the the arguments above). Hence the new mechanism is in

Ψ .

Next observe that, under the new mechanism, for each period-1 type h′1 6= θN , the expected

payoff under the new mechanism is equal to

V
〈q′,p′〉

1 (h′1) = V ψ∗

1 (h′1)− δt′−1ν
(
E
[
h̃t′ |θN

]
− E

[
h̃t′ |h′1

])
< V ψ∗

1 (h′1).

Furthermore, because (10) is strictly negative at t′, provided ν is small, the reduction in output

at t′ increases expected total surplus. The new mechanism, by reducing rents and increasing total

surplus, thus increases the principal’s profits, contradicting the optimality of ψ∗.

[Part 2]. Suppose, towards a contradiction, that the result is not true. Then there are adjacent

periods s and s′ = s+ 1 such that the expected wedge in (10) is larger at t = s′ than at t = s under

the optimal mechanism ψ∗. Let xt ∈ RN represent the period-t marginal probability distribution

over Θ (each element xit denotes the probability of type i). That the process satisfies “Stationary

Markov” implies that xt = x for all t, where x is the unique ergodic distribution for the Markov

process with transition matrix A.
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Now let eN = (0, ..., 0, 1) represent the vector whose elements are all 0, except the N th element

which is equal to 1. The distribution of types at date t, conditional on the initial type being θN is

then eNA
t−1. Clearly, eN first-order stochastically dominates eNA. Furthermore, the assumption

that F satisfies “FOSD” implies that A is a “stochastically monotone matrix” in the sense of Daley

(1968). Give that eNA
s′−1 = (eNA)As−1, Corollary 1a of Daley implies that eNA

s−1 stochastically

dominates eNA
s′−1. This implies that

E
[
h̃s′ |θN

]
≤ E

[
h̃s|θN

]
. (31)

Now, consider the mechanism ψ′ = 〈q′,p′〉 defined as follows. Let

ν ∈
(

0,min

{
min
hs∈Θs

{q∗s (hs)} , δ
(
q̄ − max

hs′∈Θs′

{
q∗s′
(
hs
′
)})})

.

The allocation rule q′ is such that

q′s (·) = q∗s (·)− ν

q′s′ (·) = q∗s′ (·) +
ν

δ

whereas, for all t /∈ {s, s′}, q′t (·) = q∗t (·). In turn, the payment rule p′ is such that p′t (·) = p∗t (·) for

t /∈ {s, s′}, whereas, for t ∈ {s, s′} ,

p′t
(
ht
)

= p∗t
(
ht
)

+ c
(
q′t
(
ht
))
− c

(
q∗t
(
ht
))

all ht.

Because the stochastic process F satisfies Condition “Stationary Markov,” the marginal distribu-

tion of types is the same at each date. Hence, the ex-ante expected (discounted) payoff of the agent

is the same under the original and the new mechanisms.

That the expected wedge under the original mechanism is larger at t = s′ than at t = s also

implies that, when ν is sufficiently small, the new mechanism improves over the original one in terms

of ex-ante expected (discounted) surplus. Because the new mechanism improves over the original

one both in terms of rents and expected surplus, it yields the principal a higher ex-ante expected

payoff.

That the new mechanism is incentive compatible follows for the same reason as in the proof of

Proposition 1; i.e., because, for any reporting strategy σ, any h1,

V
〈q∗,p∗〉

1 (h1)− V 〈q
∗,σ ,p∗,σ〉

1 (h1) = V
〈q′,p′〉

1 (h1)− V 〈q
′,σ ,p′,σ〉

1 (h1).

Finally, to see that the new mechanism is also individually rational, consider type θN . By (31),

under ψ
′

= 〈q′,p′〉, the reduction in the linear part of the expected costs at period s is larger (in

present value terms) than the increase in the linear part of the expected costs at s′. Furthermore, by

the way the payments p′ are constructed, the variation in the convex part of the agent’s costs both
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at t = s and at t = s′ is neutralized by the adjustment in the payments at these two dates. As a

result, type θN ’s period-1 expected payoff under ψ
′

is higher than under ψ∗. That the participation

of all other types is also guaranteed in ψ
′

follows from the fact that V ψ′

1 (θN ) > 0, along with the fact

that the mechanism ψ
′

is incentive compatible and F satisfies Condition “FOSD.”

We conclude that the new mechanism ψ
′

is in Ψ and achieves strictly higher ex-ante profits than

ψ∗, contradicting the optimality of the latter. Q.E.D.

Proof of Proposition 3. When the process satisfies Condition “Markov”, the agent’s continua-

tion payoff at any date t depends on past reports, ĥt−1, and current true period-t type ht, but not on

past true types ht−1. As a result, for any mechanism 〈q,p〉, hereafter we abuse notation by denoting

the agent’s expected continuation payoff at any period-t history (ht, ĥt−1) by V
〈q,p〉
t (ĥt−1, ht).

The idea of the proof is the following. Let 〈q∗,p∗〉 be a putative optimal mechanism. From

Lemmas 1 and 2, without loss of generality, we can assume that 〈q∗,p∗〉 ∈ Ψ̄, where Ψ̄ is the class of

mechanisms defined in the proof of Lemma 2 (recall that mechanisms in this class satisfy Conditions

(5) and (6) for all t ≥ 2, all ht−1, with (6) holding also at t = 1, and that the quantity schedules

q∗t (·) are bounded by time-varying constants, uniformly across histories). Now suppose that the

mechanism 〈q∗,p∗〉 fails to satisfy the convergence property in the first part of the proposition. We

then show that there exists another individually-rational and incentive-compatible mechanism that

yields the principal a strictly higher expected payoff. The new mechanism is obtained by taking linear

convex combinations of the policies of the original mechanism 〈q∗,p∗〉 with the policies of a certain

efficient mechanism that also belongs in Ψ̄. Importantly the weights that the new mechanism assigns

to the efficient policies increase gradually over time at a rate that preserves incentive compatibility

while also guaranteeing the profitability of the proposed perturbation.

The proof unfolds through several lemmas. The first one illustrates the incentive properties of

the specific efficient mechanism we use below to construct the perturbation.

Lemma 3. Let qE denote the efficient quantity rule, as defined in (7). Let p̂E denote the payment

scheme defined, for all t, all ht, by p̂Et
(
ht
)

= B
(
qE (ht)

)
. Then let p̄E be the payment rule obtained

from p̂E using the transformation in the proof of Lemma 1 to guarantee that the mechanism
〈
qE , p̄E

〉
satisfies Equation (5) for all t ≥ 2, all ht−1 ∈ Θt−1. Finally, let pE be the payment rule obtained

from p̄E by adding a (possibly negative) constant M to the period-1 payment rule p̄1
E (independent

across the period-1 reports h1) so as to guarantee that the agent’s participation constraints (2) are

satisfied in
〈
qE ,pE

〉
for all types, i.e., V

〈qE ,pE〉
1 (h1) ≥ 0 for all h1 ∈ Θ, with the inequality holding

as equality for at least one value of h1. The mechanism
〈
qE ,pE

〉
so constructed is individually

rational, incentive compatible, and implements the efficient allocation rule. Since, for t ≥ 1, the

bounds bt and b̄t on the quantity schedules defining the set Ψ̄ can be taken to be arbitrarily close to

zero and q̄, respectively, the set Ψ̄ can be chosen to include the mechanism
〈
qE ,pE

〉
. Furthermore,
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the mechanism
〈
qE ,pE

〉
so constructed is such that, for any t, any

(
ht−1, ht

)
∈ Θt, and any h′t ∈ Θ,

with h′t 6= ht,

V
〈qE ,pE〉
t

(
ht
)
≥ pEt

(
ht−1, h′t

)
− C

(
qE
(
h′t
)
, ht
)

+ δE
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

+ κ, (32)

where κ is the constant defined in (11) in the main text.

Proof of Lemma 3. That the mechanism
〈
qE ,pE

〉
is individually rational, incentive compat-

ible, and implements the efficient allocation rule is immediate, given the way the payment rule is

constructed (note that the mechanism
〈
qE ,pE

〉
gives the agent the entire surplus, net of a con-

stant that guarantees participation; incentive compatibility then trivially holds). Moreover, using

the same arguments as in Lemma 1, the construction of
〈
qE ,pE

〉
in the lemma guarantees that〈

qE ,pE
〉

belongs to Ψ̄ (with the bounds on output (bt) and (b̄t) specified appropriately, as explained

in the lemma).

Thus consider the final claim of the lemma, i.e., the property that continuation payoffs in
〈
qE ,pE

〉
satisfy Condition (7). Because F is Markov, it is readily verified that, for any t, any ht−1, the

difference in discounted expected payoffs between truthful reporting from t onwards and reporting

h′t 6= ht in period t and then reporting truthfully thereafter is equal to

V
〈qE ,pE〉
t

(
ht
)
−
(
pEt
(
ht−1, h′t

)
− C

(
qE
(
h′t
)
, ht
)

+ δE
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

(33)

= B
(
qE (ht)

)
− C

(
qE (ht) , ht

)
−
(
B
(
qE
(
h′t
))
− C

(
qE
(
h′t
)
, ht
))

.

Note that, if t = 1, the equality in (33) follows by noting that, given the way the payments in〈
qE ,pE

〉
are constructed, an agent with initial type h1 who reports truthfully at all periods expects

a payoff equal to

V
〈qE ,pE〉

1 (h1) =M +B
(
qE (h1)

)
− C

(
qE (h1) , h1

)
+ E

[ ∞∑
t=2

δt−1
(
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

))
|h1

]
.

On the other hand, an agent whose initial type is h1, who reports ĥ1 at t = 1 and then reports

truthfully from t = 2 onwards, expects a payoff equal to

M +B
(
qE
(
ĥ1

))
− C

(
qE
(
ĥ1

)
, h1

)
+ E

[ ∞∑
t=2

δt−1
(
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

))
|h1

]
.

If, instead, t ≥ 2, the equality in (33) follows from the observation that an agent who truthfully
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reports from period t onwards expects a payoff equal to

V
〈qE ,pE〉
t

(
ht
)

=− E

[ ∞∑
s=t

δs−t
(
B
(
qE
(
h̃s

))
− C

(
qE
(
h̃s

)
, h̃s

))
|ht−1

]

+ E

[ ∞∑
s=t

δs−t
(
B
(
qE
(
h̃s

))
− C

(
qE
(
h̃s

)
, h̃s

))
|ht

]
,

whereas an agent who lies in period t by reporting h′t and then reports truthfully from t+ 1 onwards

expects a payoff equal to

− E

[ ∞∑
s=t

δs−t
(
B
(
qE
(
h̃s

))
− C

(
qE
(
h̃s

)
, h̃s

))
|ht−1

]
+B

(
qE
(
h′t
))
− C

(
qE
(
h′t
)
, ht
)

+ E

[ ∞∑
s=t+1

δs−t
(
B
(
qE
(
h̃s

))
− C

(
qE
(
h̃s

)
, h̃s

))
|ht

]
.

That the equality in (33) holds for all histories then follows from the fact that, by the definition of

κ, for any ht, h
′
t ∈ Θ with ht 6= h′t,

B
(
qE (ht)

)
− C

(
qE (ht) , ht

)
−
[
B
(
qE
(
h′t
))
− C

(
qE
(
h′t
)
, ht
)]
≥ κ.

Q.E.D.

The result in Lemma 3 implies that, under the mechanism
〈
qE ,pE

〉
, incentive constraints do not

bind at any history and the difference in continuation payoffs between telling the truth from period

t onwards and lying in period t and then reverting to truthtelling from t+ 1 onwards is bounded by

a constant κ, uniformly over histories.

Equipped with the result in Lemma 3, we now specify the proposed perturbation to the putative

optimal mechanism. Let γ ≡ (γt)
∞
t=1 be any collection of constants with γt ∈ [0, 1] all t. Let

〈qγ ,pγ〉 =
〈(
qγt
)∞
t=1

,
(
pγt
)∞
t=1

〉
be the mechanism constructed from taking a liner convex combination

of the putative optimal mechanism the efficient 〈q∗,p∗〉 and the efficient mechanism
〈
qE ,pE

〉
of

Lemma 3 as follows. For each t, each ht,

qγt (ht) = γtq
E
t (ht) + (1− γt)q∗t (ht) (34)

and

pγt (ht) = γtp
E
t (ht) + (1− γt)p∗t (ht) + c(qγt (ht))− γtc

(
qEt (ht)

)
− (1− γt)c

(
q∗t (h

t)
)
.

Note that the mechanism 〈qγ ,pγ〉 so constructed ensures that, for all t ≥ 1, all ht,

V
〈qγ ,pγ〉
t

(
ht
)

=γtV
〈qE ,pE〉
t

(
ht
)

+ (1− γt)V 〈q
∗,p∗〉

t

(
ht
)

+

∞∑
s=t+1

δs−t (γs − γs−1)E
[
E
[
V
〈qE ,pE〉
s

(
h̃s
)
− V 〈q∗,p∗〉s

(
h̃s
)
|h̃s−1

]
|ht
]

=γtV
〈qE ,pE〉
t

(
ht
)

+ (1− γt)V 〈q
∗,p∗〉

t

(
ht
)

. (35)
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The first equality follows from the definition of the mechanism 〈qγ ,pγ〉 along with the law of iterated

expectations, while the second equality follows from the fact that 〈q∗,p∗〉 and
〈
qE ,pE

〉
satisfy

Condition (5).

We now establish that, if the sequence γ is appropriately chosen, the mechanism 〈qγ ,pγ〉 is

individually rational and incentive compatible (that the mechanism 〈qγ ,pγ〉 belongs in Ψ̄ then

follows directly from (35)).

To see that the mechanism 〈qγ ,pγ〉 is individual rational note that the payoff that each period-1

type expects in 〈qγ ,pγ〉 under truthful reporting is a linear convex combination of the payoffs that

the same type expects in
〈
qE ,pE

〉
and 〈q∗,p∗〉 (with linear weight equal to γ1; see Equation (35)).

The individual rationality of 〈qγ ,pγ〉 then follows directly from the individual rationality of
〈
qE ,pE

〉
and 〈q∗,p∗〉.

Next, consider incentive compatibility. Note that, for arbitrary sequences of weights γ, the

mechanism 〈qγ ,pγ〉 is not guaranteed to be incentive compatible; that is, incentive compatibility

of 〈qγ ,pγ〉 need not be inherited from the incentive compatibility of
〈
qE ,pE

〉
and 〈q∗,p∗〉. In

particular, the mechanism 〈qγ ,pγ〉 may fail to be incentive compatible if the weights (γt)
∞
t=1 grow

too fast, e.g., if, for some t > 1, γs = 0 for all s ∈ {1, . . . , t}, while γs = 1 for all s ∈ {t+ 1, . . . ,+∞},
in which case incentive compatibility may fail at date t. This may happen because, in 〈q∗,p∗〉,
truthtelling from period t onwards may be optimal for the agent only because of the dependence of

the allocations
(
q∗s

(
ĥs
)
, p∗s

(
ĥs
))

at dates s > t on the period-t report ĥt.

Building on the above observations, below we show how, despite the problems discussed above,

the incentive compatibility of 〈qγ ,pγ〉 can be guaranteed by appropriate choice of the sequence of

weights γ, whereby the weights to the efficient policy increase gradually over time at an appropriate

rate. The results rely on two preliminary observations. The first makes use of the assumption that

every element of the transition matrix A is positive to provide a sense in which, after enough time,

an agent’s expected type becomes independent of the initial conditions, in a sense made precise in

the following lemma:

Lemma 4. For all j ∈ {1, ..., N}, and all s ≥ 1,(
max
k

Askj −min
k
Askj

)
≤ (1− 2α)s .

Furthermore, for any t ≥ 2, any s ≥ 0,

max
k,l

∣∣∣E [h̃t+s|h̃t = θk

]
− E

[
h̃t+s|h̃t = θl

]∣∣∣ ≤ b (1− 2α)s . (36)

Proof of Lemma 4. The first result is a well-known property of positive transition matrices;

see Lemma 4.3.2 of Gallager (2013). For the second claim, it is enough to note that

|E
[
h̃t+s|h̃t = θk

]
− E

[
h̃t+s|h̃t = θl

]
| ≤ (1− 2α)s

N∑
i=1

θi.
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Q.E.D.

The second observation is that the agent’s continuation payoff in any mechanism 〈q,p〉 ∈ Ψ̄

satisfying the participation constraints in (2) as an equality for at least one type h1 ∈ Θ is bounded

uniformly across histories. The result is presented in the next lemma (Note that the value of the

bound in Lemma 5 is an alternative to the one in Condition (6), which is a defining feature of the

set Ψ̄).

Lemma 5. Consider any mechanism 〈q,p〉 ∈ Ψ̄ satisfying the participation constraints in (2) as an

equality for at least one type h1 ∈ Θ. Then for any t ≥ 1, any ht ∈ Θt

∣∣∣V 〈q,p〉t

(
ht
)∣∣∣ ≤ q̄b

1− δ (1− 2α)
≡ λ.

Proof of Lemma 5. The proof follows from arguments similar to those establishing Lemma

1. Suppose the inequality fails to hold at some history ht, and assume V
〈q,p〉
t

(
ht
)
> q̄b

1−δ(1−2α) .

The assumption that the participation constraint in (2) holds as an equality for at least one type

h1 ∈ Θ, along with the assumption that 〈q,p〉 ∈ Ψ̄ (which implies that Condition (5) holds for

all t ≥ 2) jointly imply that, irrespective of whether t = 1 or t > 1, there exists a type θj for

whom V
〈q,p〉
t

(
ht−1, θj

)
≤ 0 (with ht−1 = ∅ if t = 1). Suppose such a type uses the “canonical”

representation of the process F described in the proof of Proposition 2 to mimic the distribution

of reports of type ht in the continuation starting with period t (see the proof of Proposition 2 for

the details). Lemma 4, along with the fact that output in each period is bounded from above by q̄

implies that, in any period t + s, for s ≥ 0, the difference in expected per-period payoffs across the

two types (i.e., type θj using the canonical representation to mimic type ht and type ht reporting

truthfully) is no more than

q̄b (1− 2α)s .

This implies that, by mimicking type ht from period t onwards, an agent whose true period-t type

is θj can guarantee himself a continuation payoff at least equal to

V
〈q,p〉
t

(
ht
)
− q̄b

1− δ (1− 2α)
.

Hence, if V
〈q,p〉
t

(
ht
)
> q̄b

1−δ(1−2α) , the mechanism is not incentive compatible. A similar argument

implies that a necessary condition for incentive compatibility is that V
〈q,p〉
t

(
ht
)
≥ − q̄b

1−δ(1−2α) all t,

all ht. Combining the two properties leads to the result in the lemma. Q.E.D.

We now use the properties in the previous two lemmas to specify a sequence γ ∈ [0, 1]∞ for which

the mechanism 〈qγ ,pγ〉 is incentive compatible and hence belongs to Ψ̄.
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Lemma 6. Let γ ∈ [0, 1]∞ be any non-decreasing sequence of scalars such that γ1 ∈ (0, 1] and, for

all t ≥ 2,

γt = min

{
γ1

(
1 +

κ

2δλ

)t−1
, 1

}
, (37)

where λ is the constant defined in Lemma 5. The mechanism 〈qγ ,pγ〉 is in Ψ̄.

Proof of Lemma 6. First, observe that 〈qγ ,pγ〉 satisfies Condition (5) for all t ≥ 2, all ht−1,

and Condition (6) for all t ≥ 1, all ht. These properties follow directly from the fact that 〈qγ ,pγ〉
satisfies Condition (35) along with the fact that the mechanisms 〈q∗,p∗〉 and

〈
qE ,pE

〉
satisfy the

same properties.

Second, observe that, because 〈q∗,p∗〉 and
〈
qE ,pE

〉
belong in Ψ̄, there exist sequences of scalars

(bt) and
(
b̄t
)
, as specified in the definition of Ψ̄, with 0 < bt < b̄t < q̄, such that q∗t

(
ht
)
, qEt

(
ht
)
∈

[bt, b̄t], all t and all ht. That the output schedule qγ satisfies the same property (i.e., that qγt
(
ht
)
∈

[bt, b̄t] for all t, all ht) then follows directly from (34).

Third, observe that, in 〈qγ ,pγ〉, each period-1 type expects a non-negative payoff under truthtelling.

This follows again from the fact that 〈qγ ,pγ〉 satisfies Condition (35) along with the fact that the

mechanisms 〈q∗,p∗〉 and
〈
qE ,pE

〉
are individually rational. Hence, 〈qγ ,pγ〉 is also individually

rational.

It remains to show that 〈qγ ,pγ〉 is incentive compatible. That 〈qγ ,pγ〉 satisfies Condition (6)

for all t implies that the agent’s flow payoffs under 〈qγ ,pγ〉 are bounded for all t, all (ht, ĥ
t).

This means that payoffs under 〈qγ ,pγ〉 are continuous at infinity, for any reporting strategy σ,

implying that the one-shot-deviation principle holds. Together with Condition “Markov” and the

fact that every element of A is strictly positive, this implies that, if, in 〈qγ ,pγ〉, no one-shot deviation

from truthtelling is profitable at any truthful history (that is, at any history (ht, ĥt−1) such that

ĥt−1 = ht−1), then no deviation from truthtelling is profitable at any history and hence 〈qγ ,pγ〉 is

incentive compatible.

To establish incentive compatibility of the mechanism 〈qγ ,pγ〉 it thus suffices to show that, for

all t, all ht ∈ Θt, all h′t ∈ Θ,

V
〈qγ ,pγ〉
t

(
ht
)
≥ pγt

(
ht−1, h′t

)
− C

(
qγt
(
ht−1, h′t

)
, ht
)

+ δE
[
V
〈qγ ,pγ〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

. (38)

To see that 〈qγ ,pγ〉 satisfies Condition (38) note that, for all t, all ht ∈ Θt, all h′t ∈ Θ,

V
〈qγ ,pγ〉
t

(
ht
)

= γtV
〈qE ,pE〉
t

(
ht
)

+ (1− γt)V 〈q
∗,p∗〉

t

(
ht
)

≥ γt
(
pE
(
h′t
)
− C

(
qE
(
h′t
)
, ht
)

+ δE
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

(39)

+ (1− γt)
(
p∗t
(
ht−1, h′t

)
− C

(
q∗t
(
ht−1, h′t

)
, ht
)

+ δE
[
V
〈q∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ γtκ.

The equality is (39) simply follows from the fact that 〈qγ ,pγ〉 satisfies Condition (35), whereas

the inequality follows from the fact that the efficient mechanism
〈
qE ,pE

〉
satisfies Condition (32),
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together with the fact that the mechanism 〈q∗,p∗〉 is incentive compatible. Next note that, by virtue

of (37),

γtκ ≥ 2λδ (γt+1 − γt) .

Hence, using the fact that the mechanisms 〈q∗,p∗〉 and
〈
qE ,pE

〉
both satisfy the condition in Lemma

5 and the triangle inequality, we have that

γtκ ≥ δ (γt+1 − γt)

 E
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

−E
[
V
〈q∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]
 .

Combining the last inequality with (39), we then have that

V
〈qγ ,pγ〉
t

(
ht
)
≥ γt

(
pEt
(
ht−1, h′t

)
− C

(
qE
(
h′t
)
, ht
)

+ δE
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ (1− γt)
(
p∗t
(
ht−1, h′t

)
− C

(
q∗t
(
ht−1, h′t

)
, ht
)

+ δE
[
V
〈q∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ δ (γt+1 − γt)

 E
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

−E
[
V
〈q∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]
 .

(40)

Now note that the right-hand-side of (40) is equal to the right-hand side of (38). To see this it suffices

to note that, for
(
ht−1, h′t, ht+1

)
∈ Θt+1,

(1− γt+1)V
〈q∗,p∗〉
t+1

(
ht−1, h′t, ht+1

)
+ γt+1V

〈qE ,pE〉
t+1

(
ht−1, h′t, ht+1

)
= V

〈qγ ,pγ〉
t+1

(
ht−1, h′t, ht+1

)
.

The last equality holds by Condition (35) (note that, while this was established for truthful histories,

Condition “Markov” ensures the same property holds also for date t misreports h′t, provided the

agent reports truthfully after date t). The inequality in (40) thus implies that 〈qγ ,pγ〉 is incentive

compatible. We conclude that 〈qγ ,pγ〉 ∈ Ψ̄, as claimed. Q.E.D.

When the sequence γ satisfies Condition (37), the mechanism 〈qγ ,pγ〉 thus places progressively

more weight on the outcomes of the efficient mechanism of Lemma 3 as time passes. Eventually, i.e.

as soon as γt = 1, the mechanism is fully efficient. The less weight is initially placed on the efficient

mechanism, i.e. the smaller γ1, the longer it takes for the mechanism 〈qγ ,pγ〉 to induce an efficient

output.

Building on the above results, the final lemma in the proof (Lemma 7 below) shows that, when

players are sufficiently patient, i.e., when δ > δ̄, with δ̄ as defined in (12), if expected surplus under

〈q∗,p∗〉 fails to converge to the efficient level, then there exists a mechanism 〈qγ ,pγ〉, obtained by

taking γ1 sufficiently close to zero, which is not only individually rational and incentive compatible,

but generates an expected payoff for the principal strictly higher than 〈q∗,p∗〉.

44



Lemma 7. Suppose δ > δ̄, with δ̄ as defined in (12). Then any optimal mechanism must satisfy the

convergence results in the proposition.

Proof of Lemma 7. Consider first convergence of expected surplus. Suppose 〈q∗,p∗〉 is an

optimal mechanism and, under 〈q∗,p∗〉, convergence of expected surplus to the efficient level fails.

Recall that this means that exists ε > 0 and a strictly increasing sequence of dates (tk) such that,

for all k,

E
[
B
(
qE
(
h̃tk

))
− C

(
qE
(
h̃tk

)
, h̃tk

)]
− E

[
B
(
q∗tk

(
h̃tk
))
− C

(
q∗tk

(
h̃tk
)
, h̃tk

)]
> ε.

Now, for any k ∈ N , let

γ1(k) ≡
(

1 +
κ

2δλ

)1−tk
.

Then consider the mechanism 〈qγ ,pγ〉 whose weights are given by Condition (37), with γ1 = γ1(k).

Note that, when γ1 = γ1(k), γtk = 1. Now suppose the principal replaces the original mechanism

〈q∗,p∗〉 with the mechanism 〈qγ ,pγ〉. Clearly, the increase in ex-ante expected surplus is more

than δtk−1ε (this follows from (a) the fact that the new mechanism 〈qγ ,pγ〉 delivers at least ε more

than the original mechanism in expected surplus in period tk along with (b) the fact that the new

mechanism implements the efficient output policies at all t > tk and (c) the fact that, by strict

concavity of the total surplus function B(q)−C(q, h), the new mechanism, by implementing policies

that are a convex combination of those in 〈q∗,p∗〉 with the efficient ones at all t < tk, yields more

expected surplus than the original mechanism also in all periods t < tk).

Then use Condition (35) to observe that the increase in the agent’s ex-ante expected rent is equal

to (
1 +

κ

2δλ

)1−tk
(
E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈q∗,p∗〉

1

(
h̃1

)])
.

Combining the two effects, we have that the total change in the principal’s ex-ante expected payoff

is such that

E

[
+∞∑
t=1

δt−1
(
B
(
qγt

(
h̃t
))
− pγt

(
h̃t
))]
− E

[
+∞∑
t=1

δt−1
(
B
(
q∗t

(
h̃t
))
− p∗t

(
h̃t
))]

≥ δtk−1ε−
(

1 +
κ

2δλ

)1−tk
(
E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈q∗,p∗〉

1

(
h̃1

)])
= δtk−1

[
ε−

(
δ +

κ

2λ

)1−tk
(
E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈q∗,p∗〉

1

(
h̃1

)])]
. (41)
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Next observe that, when δ > δ̄,

δ +
κ

2λ
= δ +

κ (1− δ (1− 2α))

2q̄b

= δ

(
1− κ (1− 2α)

2q̄b

)
+

κ

2q̄b

>
2q̄b− κ

2q̄b− κ+ 2κα

(
1− κ (1− 2α)

2q̄b

)
+

κ

2q̄b

=
1− κ

2q̄b

1− κ(1−2α)
2q̄b

(
1− κ (1− 2α)

2q̄b

)
+

κ

2q̄b

= 1.

Hence, by taking k large enough, the right-hand side of the inequality (41) is strictly positive. This

means that the mechanism 〈qγ ,pγ〉 is more profitable than 〈q∗,p∗〉, contradicting the optimality of

the latter.

Given that expected surplus under 〈q∗,p∗〉 converges to expected surplus under the efficient

policy, we then have that q∗t
(
ht
)

must converge, in probability, to qE (ht). The arguments are the

same as those establishing Part 2 of Proposition 1. Q.E.D.

This completes the proof of the proposition. Q.E.D.

Proof of Corollary 1. The result follows from essentially the same arguments that establish the

convergence results in Proposition 3. Suppose the mechanism 〈q∗,p∗〉 fails to satisfy the property in

the corollary for some t. Then let 〈qγ ,pγ〉 be the mechanism constructed in the proof of Proposition

3 with the weights γ satisfying Condition (37) in Lemma 6 and with γ1 =
(
1 + κ

2δλ

)1−t
. Recall

that such a mechanism is individually rational and incentive compatible and implements the efficient

policies from period t onwards. Furthermore, from the same arguments that lead to Condition (41)

in the proof of Lemma 7, we have that the differential in the principal’s ex-ante expected payoff

under 〈qγ ,pγ〉 and 〈q∗,p∗〉, respectively, is such that

E

[
+∞∑
t=1

δt−1
(
B
(
qγt

(
h̃t
))
− pγt

(
h̃t
))]
− E

[
+∞∑
t=1

δt−1
(
B
(
q∗t

(
h̃t
))
− p∗t

(
h̃t
))]

≥ δt−1

[
∆−

(
δ +

κ

2λ

)1−t
(
E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈q∗,p∗〉

1

(
h̃1

)])]
, (42)

where

∆ = E
[
B
(
qE
(
h̃t

))
− C

(
qE
(
h̃t

)
, h̃t

)]
− E

[
B
(
q∗t

(
h̃t
))
− C

(
q∗t

(
h̃t
)
, h̃t

)]
is the loss in period-t expected surplus under the mechanism 〈q∗,p∗〉 . Now use the result in Lemma

5 to observe that

E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈q∗,p∗〉

1

(
h̃1

)]
≤ 2λ.
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Irrespective of whether the horizon is finite or infinite, we thus have that, whenever ∆ > 2λ
(
δ + κ

2λ

)1−t
,

the mechanism 〈qγ ,pγ〉 strictly improves upon 〈q∗,p∗〉. We conclude that, under any optimal mech-

anism, the loss in period-t expected surplus relative to the efficient level must be bounded from above

by 2λ
(
δ + κ

2λ

)−(t−1)
, as claimed. Q.E.D.

Proof of Proposition 4. The proof follows from arguments similar to those establishing Propo-

sition 3. Without loss of generality, assume 〈q∗,p∗〉 ∈ Ψ̄ and suppose 〈q∗,p∗〉 violates the property

in the proposition. Then let
〈
qE ,pE

〉
be the efficient mechanism defined in Lemma 3 (again, choose

the sequence of bounds on output defining the set Ψ̄ so that Ψ̄ includes
〈
qE ,pE

〉
). Now let 〈qγ ,pγ〉

be a mechanism derived from 〈q∗,p∗〉 and
〈
qE ,pE

〉
using the same construction as in the proof of

Proposition 3, for some sequence of weights γ = (γt)
∞
t=1, with γt ∈ [0, 1] for all t.

The point of departure from the proof of Proposition 3 is in establishing the incentive compati-

bility of the mechanism 〈qγ ,pγ〉, for an appropriate choice of the sequence γ. We proceed as follows.

In any mechanism 〈q,p〉 ∈ Ψ̄, for any t ≥ 1, ht−1 ∈ Θt−1, ht, h
′
t ∈ Θ,∣∣∣E [V 〈q,p〉t+1

(
ht−1, h′t, h̃t+1

)
|ht
]∣∣∣

=
∣∣∣E [V 〈q,p〉t+1

(
ht−1, h′t, h̃t+1

)
|ht
]
− E

[
V
〈q,p〉
t+1

(
ht−1, h′t, h̃t+1

)
|h′t
]∣∣∣

≤ q̄∆θ

1− δ
Nε (δ) . (43)

Note that the equality in (43) follows from the fact that 〈q,p〉 satisfies Condition (5), while the

inequality follows from the fact that
∣∣∣V 〈q,p〉t+1

(
ht+1

)∣∣∣ is bounded by q̄∆θ
1−δ uniformly over t ≥ 1 and

ht+1 ∈ Θt+1, as established in Lemma 1, together with the fact that |ft+1 (ht+1|ht)− ft+1 (ht+1|h′t)| <
ε (δ) for any (ht, h

′
t, ht+1).

Now, let γ = (γt)
∞
t=1 ∈ [0, 1]∞ be any sequence of scalars satisfying γ1 ∈ (0, 1) and, for all t ≥ 2,

γt = min

{
γ1

(
(1− δ)κ+ 2δq̄∆θNε (δ)

2δq̄∆θNε (δ)

)t−1

, 1

}
. (44)

From the same arguments as in the proof of Lemma 6, the mechanism 〈qγ ,pγ〉 is incentive compatible

if and only if it satisfies Condition (38) for all t, ht ∈ Θt, and h′t ∈ Θ.

Now observe that (44) implies that the sequence (γt)
∞
t=1 described above satisfies

γtκ ≥ 2δ (γt+1 − γt)
q̄∆θ

1− δ
Nε (δ)

for all t ≥ 1. Furthermore, because
〈
qE ,pE

〉
, 〈q∗,p∗〉 ∈ Ψ̄, Condition (43) above (together with the

triangle inequality) implies that, for all t ≥ 1, all ht−1, ht and h′t,

2δ (γt+1 − γt)
q̄∆θ

1− δ
Nε (δ) ≥ δ (γt+1 − γt)

 E
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

−E
[
V
〈q∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]
 .
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The above two inequalities, combined with the fact that the mechanism 〈qγ ,pγ〉 satisfies Condition

(39) for all t, all ht, all h′t, then imply that the mechanism 〈qγ ,pγ〉 satisfies all the inequalities in

(40). As explained in the proof of Proposition 3, these inequalities coincide with those in (38). This

means that the mechanism 〈qγ ,pγ〉 is incentive compatible.

Arguments similar to those establishing Lemma 7 in the proof of Proposition 3 then imply that,

if, under 〈q∗,p∗〉, convergence in expected surplus fails, then, provided

δ

(
(1− δ)κ+ 2δq̄∆θNε (δ)

2δq̄∆θNε (δ)

)
> 1, (45)

one can construct an incentive compatible and individually rational mechanism 〈qγ ,pγ〉, with an

appropriate choice of γ1 and (γt)
∞
t=2 satisfying (44), that yields the principal a higher expected payoff

than 〈q∗,p∗〉. The result in the proposition then follows from the fact that the inequality in (45) is

satisfied for ε (δ) sufficiently small. Q.E.D.

Proof of Proposition 5. The proof follows from arguments similar to those in the proof of

Proposition 3, with the key difference being that the perturbations now involve randomizations over

the schedules in the putative optimal mechanism 〈µ∗,p∗〉 and in an efficient mechanism
〈
µE ,pE

〉
,

with the agent’s expected production cost thus linear in the probabilities the perturbation assigns

the two mechanisms 〈µ∗,p∗〉 and
〈
µE ,pE

〉
, (the details are explained below).

Arguments similar to those establishing Lemma 1 imply that we can restrict attention to mech-

anisms 〈µ,p〉 ∈ ΨS such that (a) for all t ≥ 2 and ht−1 ∈ Θt−1,

E
[
V
〈µ,p〉
t

(
ht−1, h̃t

)
|ht−1

]
= 0, (46)

and (b) the participation constraint (15) is satisfied with equality for at least one type h1. Arguments

analogous to those establishing Lemma 5 then imply that such mechanisms satisfy∣∣∣V 〈µ,p〉t

(
ht
)∣∣∣ ≤ Nu

1− δ (1− 2α)
≡ λ̄, (47)

for all t and all ht ∈ Θt, where u is the Lipschitz constant in Property 2 of Condition “Cost

restriction”.

Next, for any t ≥ 1, any ht, let µEt
(
ht
)

be the degenerate distribution assigning probability

mass one on the efficient quality qE (ht). Then observe that arguments similar to those establishing

Lemma 3 imply the existence of a (deterministic) efficient mechanism
〈
µE ,pE

〉
satisfying the above

conditions and such that, for all t ≥ 1, all ht, and all h′t 6= ht,

V
〈µE ,pE〉
t

(
ht
)
≥ pEt

(
ht−1, h′t

)
− C

(
qE
(
h′t
)
, ht
)

+ δE
[
V
〈qE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

+ κ, (48)

where κ > 0 is the constant defined in (11).

We now show how one can construct a mechanism 〈µγ ,pγ〉 ∈ ΨS whose policies are obtained

by taking convex combinations of the policies in 〈µ∗,p∗〉 and
〈
qE ,pE

〉
with time-varying weights γt

48



that grow over time at an appropriate rate that guarantees incentive compatibility of the mechanism

〈µγ ,pγ〉. The arguments here parallel those establishing Lemma 6. Let γ = (γs) ∈ [0, 1]∞ be any

non-decreasing sequence of positive scalars satisfying γ1 ∈ (0, 1) and

γt = min

{
γ1

(
1 +

κ

2δλ̄

)t−1
, 1

}
(49)

for all t ≥ 2. Then let 〈µγ ,pγ〉 be the mechanism whose policies are given, for each t ≥ 1 and each

ht, by

µγt
(
ht
)

= γtµ
E
t

(
ht
)

+ (1− γt)µ∗t
(
ht
)

(50)

and

pγt
(
ht
)

= γtp
E
t

(
ht
)

+ (1− γt) p∗t
(
ht
)

. (51)

Note that, unless µ∗ happens to coincide with the efficient policy, the mechanism 〈µγ ,pγ〉 involves

randomizations over quantities (with probability γt placed on the efficient quantity and 1− γt on a

draw from the distribution µ∗t
(
ht
)
).

For any t, ht and h′t 6= ht,

V
〈µγ ,pγ〉
t

(
ht
)

=γtV
〈µE ,pE〉
t

(
ht
)

+ (1− γt)V 〈µ
∗,p∗〉

t

(
ht
)

≥γt
(
pEt
(
ht−1, h′t

)
−
∫
C (q̃, ht) dµ

E
t

(
ht−1, h′t

)
+ δE

[
V
〈µE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ (1− γt)
(
p∗t
(
ht−1, h′t

)
−
∫
C (q̃, ht) dµ

∗
t

(
ht−1, h′t

)
+ δE

[
V
〈µ∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ γtκ

≥γt
(
pEt
(
ht−1, h′t

)
−
∫
C (q̃, ht) dµ

E
t

(
ht−1, h′t

)
+ δE

[
V
〈µE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ (1− γt)
(
p∗t
(
ht−1, h′t

)
−
∫
C (q̃, ht) dµ

∗
t

(
ht−1, h′t

)
+ δE

[
V
〈µ∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
])

+ δ (γt+1 − γt)

 E
[
V
〈µE ,pE〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]

−E
[
V
〈µ∗,p∗〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]


=pγt
(
ht−1, h′t

)
−
∫
C (q̃, ht) dµ

γ
t

(
ht−1, h′t

)
+ δE

[
V
〈µγ ,pγ〉
t+1

(
ht−1, h′t, h̃t+1

)
|ht
]
. (52)

The first equality follows by the fact that both
〈
µE ,pE

〉
and 〈µ∗,p∗〉 satisfy (46), implying that, at

any truthful history, the agent’s continuation payoff under 〈µγ ,pγ〉 satisfies the same decomposition

as in (35) with
〈
µE ,pE

〉
and 〈µ∗,p∗〉 replacing

〈
qE ,pE

〉
and 〈q∗,p∗〉. The first inequality follows

from the incentive compatibility of the mechanism 〈µ∗,p∗〉 along with Condition “Markov” and the

fact that
〈
µE ,pE

〉
satisfies (48). The second inequality follows by the choice of the sequence γ = (γs)

and the fact that the agent’s continuation payoffs under both
〈
µE ,pE

〉
and 〈µ∗,p∗〉 satisfy the bound
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in (47) (the arguments are the same as in the proof of Lemma 6). The final equality follows from the

same equality as in (35). The last inequality in (52) implies that one-shot deviations from truthful

reporting are unprofitable for the agent. This property, along with the fact that the process satisfies

Condition “Markov” and that payoffs are continuous at infinity then implies incentive compatibility

of 〈µγ ,pγ〉 (the details of the arguments are omitted because they are essentially the same as in

the proof of Proposition 3). Individual rationality of 〈µγ ,pγ〉 in turn follows from the individual

rationality of
〈
µE ,pE

〉
and 〈µ∗,p∗〉 along with the fact that the agent’s payoffs in 〈µγ ,pγ〉 satisfy

the same decomposition as in (35). We thus conclude that 〈µγ ,pγ〉 ∈ ΨS .

The first claim in the proposition then follows from arguments similar to those in the proof of

Lemma 7. In particular, suppose that the assumed optimal mechanism 〈µ∗,p∗〉 fails to satisfy the

property of convergence of expected surplus to the efficient level specified in the proposition. This

means that there exists ε > 0 and a strictly increasing sequence (tk) such that, for all k,

E
[
B
(
qE
(
h̃tk

))
− C

(
qE
(
h̃tk

)
, h̃tk

)]
− E

[∫ (
B (q̃)− C

(
q̃, h̃tk

))
dµ∗tk

(
h̃tk
)]

> ε.

Now, for any k ∈ N, let 〈µγ ,pγ〉 be the mechanism defined above with weights γ given by γ1 = γs1(k)

with

γs1(k) ≡
(

1 +
κ

2δλ̄

)1−tk

and, for any t ≥ 2, γt satisfying (49). Note that the γ1 = γs1(k) guarantees that, in such a mechanism,

γtk = 1. The increase in ex-ante expected surplus from switching from 〈µ∗,p∗〉 to 〈µγ ,pγ〉 is at least

δtk−1ε (the arguments are similar to those in the proof of Proposition 3). Furthermore, because the

agent’s period-1 rents satisfy the decomposition property in (35), the increase in the agent’s ex-ante

expected rents is equal to

γ1(k)

{
E
[
V
〈µE ,pE〉

1

(
h̃1

)]
− E

[
V
〈µ∗,p∗〉

1

(
h̃1

)]}
.

It follows that the change in the principal’s ex-ante expected payoff associated with the switch from

〈µ∗,p∗〉 to 〈µγ ,pγ〉 is equal to

E

[∑
t

δt−1

(∫
B (q̃) dµγt

(
h̃t
)
− pγt

(
h̃t
))]

− E

[∑
t

δt−1

(∫
B (q̃) dµ∗t

(
h̃t
)
− p∗t

(
h̃t
))]

≥ δtk−1ε−
(

1 +
κ

2δλ̄

)1−tk
(
E
[
V
〈µE ,pE〉

1

(
h̃1

)]
− E

[
V
〈µ∗,p∗〉

1

(
h̃1

)])
= δtk−1

(
ε−

(
δ +

κ

2λ̄

)1−tk
(
E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈µ∗,p∗〉

1

(
h̃1

)]))
. (53)

Provided δ + κ
2λ̄

> 1, the expression above is strictly positive for tk sufficiently large. This is

guaranteed for δ > δ̄s, with δ̄s as given in (17), thus establishing the claim in the first part of the

proposition.

Next, consider the second claim in the proposition. Let
(〈
µk,pk

〉)
denote a sequence of mech-

anisms in ΨS , with limk→∞Π
(
µk,pk

)
= sup〈µ,p〉∈ΨS Π (µ,p), and satisfying the same properties as
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the mechanism 〈µ∗,p∗〉 considered above for the case where an optimal mechanism exists. Suppose,

towards a contraddiction, that there is ε > 0 for which there is no value t̄ ∈ N and corresponding

sequence (sk), with sk →∞, for which (19) is satisfied for all t̄ ≤ t ≤ t̄+ sk. Then, for any t̄, there

is s̄ (t̄) such that, for any k ∈ N, there exists t (t̄; k) ∈ {t̄, t̄+ 1, . . . , t̄+ s̄ (t̄)} with

E
[
B
(
qE
(
h̃t(t̄;k)

))
− C

(
qE
(
h̃t(t̄;k)

)
, h̃t(t̄;k)

)]
−E

[∫ (
B (q̃)− C

(
q̃, h̃t(t̄;k)

))
dµkt(t̄;k)

(
h̃t(t̄;k)

)]
≥ ε.

Now, consider mechanisms
〈
µk,γ ,pk,γ

〉
whose policies are given, for each t ≥ 1 and each ht, by

µk,γt
(
ht
)

= γtµ
E
t

(
ht
)

+ (1− γt)µkt
(
ht
)

and

pk,γt
(
ht
)

= γtp
E
t

(
ht
)

+ (1− γt) pkt
(
ht
)
,

with γt = min

{
γ1

(
1 + κ

2δλ̄

)t−1
, 1

}
and γ1 =

(
1 + κ

2δλ̄

)1−t(t̄;k)
. Arguments analogous to those used

above to establish the first clam in the proposition imply that the mechanism
〈
µk,γ ,pk,γ

〉
increases

the principal’s expected profits by at least

δt(t̄;k)−1

(
ε−

(
δ +

κ

2λ̄

)1−t(t̄;k)
(
E
[
V
〈qE ,pE〉

1

(
h̃1

)]
− E

[
V
〈µk,pk〉

1

(
h̃1

)]))
,

which, provided t̄ is taken sufficiently large, exceeds zero by at least some amount that is independent

of k. For k large enough, this implies the principal obtains expected profits that are strictly higher

than sup〈µ,p〉∈ΨS Π (µ,p), a contradiction. Q.E.D.

Proof of Proposition 6. The result follows from the arguments in the main text. Q.E.D.

Proof of Proposition 7. Observe that, when the process satisfies Condition “Regularity,”

E[It(h̃
t)h1] = d

dh1
E[h̃t|h1]. Thus,

E
[
F1(h̃1)

f1(h̃1)
It(h̃

t)
]

= E
[
F1(h̃1)

f1(h̃1)
E[It(h̃

t) | h̃1]
]

=

∫ θ̄

θ
F1(θ1)E[It(h̃

t) | θ1]dθ1

= F1(θ1)E[h̃t| θ1]
∣∣∣θ1=θ̄

θ1=θ
+

∫ θ

θ
f1(θ1)E[h̃t| θ1]dθ1

= E[h̃t | θ̄]− E[h̃t].

When, in addition, F satisfies Condition “Ergodicity,” then E[h̃t | θ̄]−E[h̃t]→ 0, as t→∞, implying

that E
[
F1(h̃1)

f1(h̃1)
It(h̃

t)
]
→ 0, as t→∞, as claimed.

If, in addition to Condition “Ergodicity,” F satisfies Condition “FOSD,” then

E[h̃t | θ̄]− E[h̃t] ≥ 0
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so that the convergence is from above.

Finally, if, in addition to the conditions above, F is stationary, then

E
[
F1(h̃1)

f1(h̃1)
It(h̃

t)
]
− E

[
F1(h̃1)

f1(h̃1)
Is(h̃

s)
]

= E[h̃t | θ̄]− E[h̃s | θ̄] ≤ 0

for any t > s, which implies that convergence is monotone in time. Q.E.D.
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