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Abstract

This note contains additional material omitted in the paper. Section A1 contains an example

that illustrates how extended direct mechanisms can be put to work to identify necessary and

su¢ cient conditions for the sustainability of an outcome as a sequential common agency equilibrium.

Section A2 contains the formal statements (with corresponding proofs) of the results discussed in

Section 6 in the paper (Alternative extensive forms).

A1. Extended direct mechanisms: A buyer-sellers example

Consider a private contracting environment in which two sellers, P1 and P2, contract sequen-

tially with a common buyer, A. The buyer is interested in purchasing two complementary products,

one from each seller. An action ai = (si; ti) 2 Ai = f0; 1g � R for Pi thus consists of a decision to
trade si along with a transfer ti, with si = 0 in the case of no trade and si = 1 in the case of trade.1

The buyer�s preferences are described by the quasilinear function v(a; �) = �(s1+s2)+s1s2� t1� t2
where � = f�; �g with � > 1 and �� � (� � �) 2 (0; 1). The probability the buyer is a high type
is Pr(�) = p: The sellers�payo¤s are given by ui(a) = ti � si: It is common knowledge that the

buyer contracts �rst with P1 and then with P2 (think of P1 as a hardware supplier and of P2 as

a software provider). We assume that the buyer�s participation in either relationship is voluntary

and that the buyer can contract with P2 after rejecting P1�s o¤er. In case the buyer rejects Pi�s

o¤er, the default contract (0; 0) with no trade and zero transfer is implemented.

In this setting, it seems reasonable to assume that the agent�s behavior with P2 depends only

on the payo¤-relevant decisions contracted upstream and not on things such as the mechanism used

upstream or the message sent in this mechanism. We thus assume the agent�s strategy is Markov.

Now suppose one is interested in understanding which SCFs � : � ! �(f0; 1g2 � R2) can be
sustained as MPE when principals can o¤er any lottery over f0; 1g �R: It then su¢ ces to proceed
as follows.2

First, consider downstream contracting. Because preferences are quasilinear, the transfer t1
has no e¤ect on the agent�s preferences over A2. Without loss, we can thus simplify and let

�E2 = � � f0; 1g; with �E;12 � �; �E;22 � �; �E;32 � � + 1 and �E;42 � � + 1: Furthermore, because

P2 never �nds it optimal to introduce randomizations over the decision to trade, we can restrict

attention to deterministic extended direct mechanisms �D2 : �
E
2 ! f0; 1g � R, with s2(�E;i2 ) = si2

1 In this representation, there is no e¤ort, i.e. jE1j = jE2j = 1. Alternatively, one could assume that Ei = f0; 1g
and that Ai = R for each i: In this case, a contract yi : f0; 1g �! R speci�es a price for each decision si 2 f0; 1g:
The two representations are clearly equivalent.

2 In this example, we are restricing attention to MPE, but we not imposing any restriction on the set of feasible

lotteries Di. The approach illustrated here clearly applies also to environments where principals are restricted to

o¤er deterministic contracts.
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and t2(�
E;i
2 ) = ti2 denoting respectively the decision to trade and the price asked to the extended

type �E;i2 , i = 1; :::; 4:

Now let �i denote the (posterior) probability that P2 assigns to �
E;i
2 , with � �

�
�1; �2; �3; �4

�
.

Each �i is derived from �D1 using Bayes�rule. With a slight abuse of notation, let �1(�) = Pr(s1 = 1

j �). We then have that �1 = (1�p)[1��1(�)]; �2 = p[1��1(�)]; �3 = (1�p)�1(�) and �4 = p�1(�):

From standard results in contract theory (e.g. Maskin and Riley, 1986) we know that, in any

optimal mechanism for P2 the decision to trade is monotonic in �E2 so that s
i
2 � si+12 i = 1; 2; 3,

that all downward adjacent incentive compatibility constraints bind so that

�E;i2 si2 � ti2 = �E;i2 si�12 � ti�12 ; i = 2; 3; 4; (1)

and that the participation constraint for the lowest type binds so that �s12 � t12 = 0:
3 Substituting

the transfers

t12 = �s12; t22 = �s22 ���s12; t32 = (� + 1)s
3
2 � (1���)s22 ���s12

t42 = (� + 1)s
4
2 ���s32 � (1���)s22 ���s12

(2)

into P2�s payo¤, we have that

U2 =
4X
i=1

W i(�1)s
i
2 (3)

where W i(�1) denotes the virtual surplus of selling to type i, given the upstream decisions �1 �
(�1(�); �1(�)):

W1 � �1(� � 1)� (1� �1)��
W2 � �2

�
� � 1

�
�
�
�3 + �4

�
(1���)

W3 � �3� � �4��
W4 � �4�;

with �i = �i(�1): A mechanism �D
�

2 is thus an incentive-compatible best response to �D�1 if and

only if (a) the allocation rule si2(�) maximizes (3) subject to the monotonicity constraint si2 � si+12 ;

i = 1; 2; 3 and (b) the transfers ti2 are given by (2).
4

Next, consider upstream contracting. When the allocation rule in �D�2 is monotonic and the

transfers satisfy (2), the buyer�s payo¤ at t = 1 satis�es the single-crossing property with respect

to � and �1. This in turn implies that the optimal mechanism �D�1 : �! �(f0; 1g)� R solves the
following program

max p[t1(�)� �1(�)] + (1� p)[t1(�)� �1(�)]
3Note that, because �s1(�)� t1(�) is sunk, from the perspective of P2, it is as if the buyer�s reservation payo¤ is

zero, for all �E2 :
4That �D�2 must necessarily solve the aforementioned program follows from the fact that P2 can always make the

agent strictly prefer to truthfully reveal his private information by breaking the agent�s indi¤erence by an " > 0; for

" arbitrarily small.
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subject to

[� + (� + 1)s42 � t42]�1(�) + [�s22 � t22][1� �1(�)]� t1(�) = (4)

[� + (� + 1)s42 � t42]�1(�) + [�s22 � t22][1� �1(�)]� t1(�)

[� + (� + 1)s32 � t32]�1(�) + [�s12 � t12][1� �1(�)]� t1(�) = �s12 � t12 (5)

and

�1(��) � �1(�): (6)

Condition (4) guarantees that � is indi¤erent between (�1(�); t1(�)) and (�1(�); t1(�)), while condi-

tion (5) guarantees that � is indi¤erent between (�1(�); t1(�)) and the null contract (0; 0): The high

type�s participation is then guaranteed by (4) and (5) while incentive-compatibility for the low type

is guaranteed by the monotonicity condition (6).

Equivalently, �D�1 maximizes

U1 = p
�
�1(�)�V(�1)

�
+ (1� p) [�1(�)V(�1)] (7)

subject to �1(��) � �1(�); where

�V(�1) � � +
�
(� + 1)s42 � t42

�
�
�
(�s22 � t22)

�
� 1

V(�1) � � +
�
(� + 1)s32 � t32

�
�
�
�s12 � t12

�
� 1

� p
1�pf�� +

�
(� + 1)s42 � t42 � (�s22 � t22)

�
� [(� + 1)s32 � t32 � (�s12 � t12)]g

Two observations are in order. First note that �D�2 must specify allocations also for extended types

that may have zero measure on the equilibrium path (this is the case, for example, when �1(�) = 0

so that �3 = 0). Second note that whether �D�1 is incentive-compatible or not depends on the

mechanism �D�2 o¤ered downstream. We thus have the following result.

Example A1. The outcome �� = (��1(�); t�1(�); s�2(�); t�2(�)) can be sustained as a MPE of �D

(equivalently, of �M ) if and only if:

(I) given ��1(�); s�2(�) maximizes (3) subject to the monotonicity condition si2 � si+12 ; i = 1; 2; 3;

while t�2(�) solves (2);
(II) given s�2(�) and t�2(�), ��1(�) maximizes (7) subject to the monotonicity condition �1(��) �

�1(�) while t�1(�) solves (4) and (5).
Extended direct mechanisms thus o¤er the possibility of using familiar techniques from games

with a single mechanism designer to characterize necessary and su¢ cient conditions for equilibrium

outcomes in sequential common agency. The preceding example illustrated such a possibility in

a very simple way. In certain applications, the characterization of these conditions may require

the use of the techniques from the multi-dimensional screening literature. This need not always

be simple. However, when this is the case, assuming the principals o¤er menus instead of direct

mechanisms does not simplify the analysis. In fact, the di¢ culties with multi-dimensional screening
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simply stem from the di¢ culty of controlling for the optimality of the agent�s behavior. This is

something one has to deal with, irrespective of how the menus are described.

A2. Alternative extensive forms: Formal results

A2-1. Observability of upstream payo¤-relevant decisions

Consider an environment in which principals observe upstream payo¤-relevant decisions before

choosing their mechanisms. Let ��D denote the game in which the principals o¤er standard direct

revelation mechanisms �Di : �! Di as opposed to extended direct mechanisms. We then have

the following result.

Theorem 5 (Observable decisions). (Part I: Menus) Let � < �M : Any SCF that can be

sustained as a MPE of � can also be sustained as a MPE of �M . Furthermore, any SCF that can

be sustained as an equilibrium of �M (not necessarily in Markov strategies) can also be sustained

as an equilibrium of �:

(Part II: Direct Mechanisms) Any SCF that can be sustained as a MPE of �M can be sustained

as a pure-strategy truthful MPE of ��D: Furthermore, any SCF that can be sustained as a MPE of
��D can also be sustained as a MPE of �M :

As with Theorem 4 in the main text, the result in Part (II) presumes that Di = �(Yi) for all

i; which guarantees that outcomes in �M sustained by mixed strategies can be sustained in ��D

through mechanisms that respond to � with lotteries over contracts. In environments in which not

all possible lotteries are feasible, i.e. Di $ �(Yi) for some i; the result in Part (II) must be replaced
by the following: Any SCF that can be sustained as a MPE of �M in which the agent�s strategy is

pure can also be sustained as a truthful MPE of ��D:

Proof of Theorem 5. Part I: Menus. First, consider the claim that any SCF � that can be

sustained as a MPE of � can also be sustained as a MPE of �M . The proof follows from the same

steps used to establish Part 1 of Theorem 1 in the paper, with the following two (minor) adjustments.

(i) The transformation of the principals�strategies indicated in that proof must now be done for any

(e
_
t ; a

�
t ): (ii) The principals�strategies are now sustained by beliefs �

M over upstream histories that

satisfy Bayes�rule on the equilibrium path, whereas for any out-of-equilibrium (e_t ; a
�
t ); t = 2; :::; n;

satisfy

�̂(e�t ; a
�
t ) = �̂M (e�t ; a

�
t ) (8)

where �̂(e�t ; a
�
t ) and �̂

M (e�t ; a
�
t ) denote the marginal distribution of � and �

M over �; respectively

in the original game � and in the menu game �M : Because the agent�s strategy is Markov and

(e
_
t ; a

�
t ) is public information, any pro�le of beliefs with these properties makes the principals�

strategies sequentially optimal.
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Next, consider the claim that any SCF that can be sustained as an equilibrium of �M (not

necessarily in Markov strategies) can also be sustained as an equilibrium of �:. The proof parallels

that of Part 2 in Theorem 1. In the following, we simply construct a pro�le of beliefs that sustains

the principals�strategies.

For any i = 1; :::; n; let H�i and H
M�
i denote the sets of all possible upstream histories, respec-

tively in � and in �M , and �(H�i ) and �(H
M�
i ) the corresponding Borel sigma algebras. For any

(e
_
i ; a

�
i ), let {i(e

_
i ; a

�
i ) 2 �(H

�
i ) and {Mi (e

_
i ; a

�
i ) 2 �(H

M�
i ) denote Pi�s beliefs about upstream

histories, respectively in � and in �M . If (e_i ; a
�
i ) is on the equilibrium path, then {i(e

_
i ; a

�
i ) is

obtained from Bayes�rule using the equilibrium strategy pro�le �. If instead (e_i ; a
�
i ) is an out-

of-equilibrium observation, then {i(e
_
i ; a

�
i ) is constructed as follows. For any measurable set of

histories HM�
i 2 �(HM�

i ) in �M ; let �i(HM�
i ) 2 �(H�i ) denote the measurable set of histories in

� that are obtained by substituting each history

hM�
i =

�
�; e�i ; a

�
i ; �

M�
i ; ��i ; y

�
i

�
in HM�

i with the history

fi(h
M�
i ) �

�
�; e�i ; a

�
i ; (�l(�

M
l ))

i�1
l=1; (~�l(�l))

i�1
l=1; y

�
i

�
:

The history fi(hM�
i ) is simply the �translation�of the history hM�

i using the embedding �i: For

any out-of-equilibrium (e
_
i ; a

�
i ); then let {i(e

_
i ; a

�
i ) be the unique beliefs that satisfy

{i(�i(HM�
i )je_i ; a

�
i ) = {

M
i (H

M�
i je_i ; a

�
i ) 8H

M�
i 2 �(HM�

i ):

Together with these beliefs, the strategy pro�le � constructed from �M following the steps indicated

in the proof of Theorem 1 constitutes an equilibrium for � which sustains the same outcomes as

�M :

Part II: Direct Mechanisms. The proof parallels that of Theorem 4. The equilibrium

strategy pro�les �D and �M are sustained by any beliefs that are consistent with Bayes�rule on

the equilibrium path, whereas for any out-of-equilibrium (e
_
t ; a

�
t ); satisfy

�̂D(e�t ; a
�
t ) = �̂M (e�t ; a

�
t )

where �̂D(e�t ; a
�
t ) and �̂

M (e�t ; a
�
t ) denote the marginal distributions of �

D and �M over �; respec-

tively in the revelation game ��D and in the menu game �M :

A2-2. Observability of upstream mechanisms

Consider an environment in which every Pi, i = 2; :::; n; observes the mechanisms ��i o¤ered

upstream before choosing her own mechanism. As in the benchmark model, Pi does not observe

(m�
i ; y

�
i ; e

�
i ; a

�
i ).
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Theorem 6 (Observable mechanisms). (Part I: Menus) Let � < �M : For any � 2 E(�)
in which all principals� strategies are pure, there exists a �M 2 E(�M ) that sustains the same
outcomes. Furthermore, any SCF that can be sustained as an equilibrium of �M can be sustained

as an equilibrium of �:

(Part II: Direct Mechanisms) For any �M 2 E(�M ) in which all principals�strategies are pure,
there exists a pure-strategy truthful MPE �D 2 E(�D) that sustains the same outcomes.

Once again, the result in Part (II) presumes Di = �(Yi) for all i: When this is not the case,

Part (II) must be replaced by the following: For any �M 2 E(�M ) in which both the principals�
and the agent�s strategies are pure, there exists a pure-strategy truthful MPE �D 2 E(�D) that
sustains the same outcomes.

Proof of Theorem 6. Part I: Menus. The proof is in two steps.

Step 1. We want to prove that, for any � 2 E(�) in which all principals�strategies are pure,
there exists a �M 2 E(�M ) that sustains the same outcomes.

Let �i(��i ) denote the unique mechanism o¤ered by Pi when the pro�le of upstream mechanisms

is ��i : Next, consider the game �i in which Pi is restricted to o¤er menus, whereas all other principals

have the same strategy space as in �: Now consider the following strategy pro�le �� for �i. For all

principals Pj with j < i, simply let ��j = �j . For Pi; let ��i be the strategy that maps each ��i into

the menu �Mi whose image is Im(�Mi ) = Im(�i(�
�
i )): Finally, for any Pj with j > i, ��j is as follows.

If ��j is such that at t = i; �Mi =��i(�
�
i ); then

��j(�
�
i ; �

M
i ; �i+1; :::; �j�1) = �j(�

�
i ; �i(�

�
i ); �i+1; :::; �j�1):

If instead, �Mi 6=��i(��i ); then

��j(�
�
i ; �

M
i ; �i+1; :::; �j�1) = �j(�

�
i ; �i(�

M
i ); �i+1; :::; �j�1);

where �i(�Mi ) is the embedding of �
M
i into �i:

Next, consider the agent. At any t < i, ��A(ht) = �A(ht) for any ht: If at t = i; Pi o¤ers the

menu �Mi = ��i(�
�
i ); then at any downstream information set A induces the same outcomes that

he would have induced in � had Pi o¤ered the mechanism �i(�
�
i ); in the sense de�ned in the proof

of Theorem 1. If, instead, Pi o¤ers a mechanism �Mi 6= ��i(��i ); then starting from t = i; at any

subsequent information set, A behaves according to �A as if the game were � and the mechanism

o¤ered by Pi were �i(�Mi ):

This completes the description of��A at the information sets which are relevant for equilibrium.

For all other information sets (i.e. those associated to upstream deviations by the agent), simply

let ��A specify any behavior that is sequentially optimal for A given the payo¤-relevant variables

�Et and the downstream principals�strategy pro�le ��+t : Given (��
+
i )
n
i=1, the strategy ��A is clearly

sequentially optimal for the agent at any information set. Thus consider the optimality of the

6



principals�strategies. After any ��j , j = 1; :::; n, beliefs about upstream histories are necessarily

pinned down by Bayes�rule using the agent�s strategy ��A: This follows from the �no signal what

you do not know�property of PBE: the observation of ��j conveys no information about the agent�s

behavior in these mechanisms which hence must be assumed to have been consistent with what

prescribed by the equilibrium strategy. Given these beliefs, the principals�strategies are sequentially

rational. We conclude that the strategy pro�le �� with the associated beliefs described above is an

equilibrium for �i and induces the same outcomes as � in �.

Starting from t = 1 and proceeding forward, one can then apply the arguments described

above to any i = 1; :::; n to construct a pure-strategy equilibrium of �M that implements the same

outcomes as �:

Step 2. We now prove that for any �M 2 E(�M ) there exists a � 2 E(�) that sustains the same
outcomes:

First consider the agent. The strategy �A is constructed by extending the strategy �MA

over � exactly as in the proof of Theorem 1. Next, consider the principals. For any t, let

�t(�
�
t ) = �t(�

M
t (�

M�
t )), where �t(�Mt (�)) denotes the mixed strategy over �t obtained from the

mixed strategy �Mt using the embedding �t, while �M�
t denotes the pro�le of upstream menus

that is obtained from ��t by letting each �Mj be the menu whose image is Im(�Mj ) = Im(�j);

j = 1; :::; t� 1: The strategy pro�le � constructed this way, along with the beliefs for the principals
that are obtained from Bayes�rule using �A, is an equilibrium of � and sustains the same outcomes

as �M :

Part II: Direct Mechanisms. We show that, for any �M 2 E(�M ) in which all principals�
strategies are pure, there exists a pure-strategy truthful MPE �D 2 E(�D) that sustains the same
outcomes. Note that the agent�s strategy in �M need not be Markov� which explains why the

proof does not follow directly from the same arguments used to establish Theorem 4.

Consider a game �J in which �j = �Dj for all j 2 J while �j = �Mj for all j 2 NnJ; for
some J � N [ f?g: We prove the result by showing that given any equilibrium � 2 E(�J) in
which all principals�strategies are pure, there exists an equilibrium �� 2 E(�J 0) that also has the
property that all principals�strategies are pure and that sustains the same outcomes as �; for any

J 0 = J [ ftg with t 2 NnJ:
For any ��t ; let �

E
t (�

�
t ) � �Et denote the set of extended types that are consistent with �A (i.e.

that can be generated by using �A recursively in �J starting from i = 1 and proceeding forward).

For any �Et 2 �Et (��t ); then let �(�Et ; ��t ) 2 �(H�t ) denote the conditional distribution over H�t
that is obtained from Bayes�rule using the agent�s strategy �A in �J and conditioning on the event

that the extended type in period t is �Et and the mechanisms o¤ered upstream are ��:t :

Now consider the following (pure) strategy for Pt in �J 0 : For any pro�le of upstream mechanisms

��t , let �
M
t = �t(�

�
t ) denote the equilibrium menu o¤ered by Pt in �J in response to �

�
t : Then the

7



extended direct mechanism �Dt =��t(�
�
t ) that Pt o¤ers in �J 0 in response to �

�
t is such that

�Dt (�
E
t ) =

8><>:
R

h�t 2H
�
t

R
�t2MM

t

�td�(h
�
t ; �t(�

�
t ))d�(�

E
t ; �

�
t ) if �Et 2 �Et (��t )

�t 2 argmax�0t2Im(�t(��t ))
�V (�Et ; �

�
t ; �t(�

�
t ); �

0
t; �

+
t ) if �Et =2 �Et (��t )

(9)

where �V (�Et ; �
�
t ; �t(�

�
t ); �

0
t; �

+
t ) denotes the agent�s continuation payo¤in � given (�

E
t ; �

�
t ; �t(�

�
t ); �

0
t; �

+
t ):

Note that the agent�s continuation payo¤ now depends also on upstream mechanisms; this is be-

cause the latter now determine which mechanisms will be o¤ered downstream. The mechanism �Dt

described in (9) thus responds to each �Et 2 �Et (��t ) with the same distribution over Yt that A
would have induced in the menu �t(��t ) when his extended type is �

E
t and the mechanisms o¤ered

upstream are ��t : For any other �
E
t =2 �Et (��t ); the mechanism simply responds by giving the agent

one of the lotteries in the menu �Mt = �t(�
�
t ) that would have been optimal for �

E
t given the

mechanisms (��t ; �t(�
�
t )) and the pro�le of strategies �

+
t for the downstream principals in �J :

Now consider the following strategy pro�le �� for �J 0 . For all principals Pj with j < t, simply

let ��j = �j . For Pt; let ��t be the strategy described above. Finally, for any Pj with j > t, ��j is as

follows. If ��j is such that in period t; Pt o¤ered the mechanism �Dt =��t(�
�
t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �t(�

�
t ); �t+1; :::; �j�1):

If instead, �Dt 6=��t(��t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �

M
t ; �t+1; :::; �j�1):

where �Mt is the menu whose image is Im(�Mt ) = Im(�
D
t ).

Next, consider the agent. At any j < t, ��A(hj) = �A(hj) for any hj : If in period t; Pt o¤ers

the mechanism �Dt = ��t(�
�
t ); A truthfully reports his extended type and then at any subsequent

information set, he induces the same outcomes that he would have induced in �J had Pt o¤ered

the menu �t(��t ): Formally, for any yt 2 Supp[�Dt (�Et )]; let �(yt; �Et ; ��t ; �t(��t )) 2 �(H�t ��(Yt))
denote the conditional distribution over the pro�les (h�t ; �t) 2 H�t ��(Yt) in �J that is obtained
from Bayes� rule using the strategy �A; conditioning on the event that the contract selected in

period t is yt, that the agent�s extended type is �Et and that the mechanisms o¤ered at t = 1; :::; t

are (��t ; �t(�
�
t )): In the continuation game that starts after the realization of the contract yt; A

then uses the conditional distribution �(yt; �Et ; �
�
t ; �t(�

�
t )) to determine his downstream behavior.

That is, at any downstream information set, A behaves according to the strategy �A as if the game

were �J , and before choosing et; the history had been (h
�
t ; �t(�

�
t ); �t):

Finally, consider the continuation game that starts after Pt o¤ers a mechanism �Dt 6= ��t(��t ):
Starting from period t; at any subsequent information set, A behaves according to �A as if the game

were �J and the menu o¤ered by Pt were �Mt , where �
M
t is the menu whose image is Im(�Mt ) =

Im(�Dt ).
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This completes the description of��A at the information sets which are relevant for equilibrium.

For all other information sets (i.e. those associated to upstream deviations by the agent), simply

let��A specify any behavior that is sequentially optimal for A given the payo¤-relevant variables �Et
and the downstream principals�strategy pro�le ��+t : Given the principals�strategies, the strategy

��A is sequentially optimal for the agent at any information set.

Next, consider the optimality of the principals�strategies. Given (��A;���i); the optimality of

��i follows from the same arguments as in the proof of Part I�Step 1. We conclude that the strategy

pro�le �� with the associated beliefs �� obtained from �� using Bayes�rule, is an equilibrium for �J 0

and induces the same outcomes as � in �J .

Iterating across all periods, starting from t = 1 and proceeding forward by letting J 0 = J [
ft+ 1g, then gives a pure-strategy truthful equilibrium of �D that implements the same outcomes

as �M :

Note that, contrary to the benchmark model of private contracting and to the case of observable

decisions considered above, the result in Part (II) in Theorem 6 does not have a converse. There

may exist SCFs that can be sustained as equilibria of �D and that cannot be sustained as equilibria

of �M : To see this, consider the following example where n = 2; j�j = jEij = 1, i = 1; 2; A1 = ft; bg
and A2 = fl; rg: The payo¤s, respectively for P1; P2 and A are given by the triples (u1; u2; v) in

the following table:

a1na2 l r

t 1 3 0 3 3 4

b 2 0 5 2 2 3

Game A1

For simplicity, assume that only deterministic mechanisms are feasible so that Di = Ai; i = 1; 2:
Now consider the revelation game �D: Here a direct mechanism for P1 coincides with the choice

of an element of A1 whereas a direct mechanism for P2 is a mapping �D2 : A1 ! A2. The following
is then a pure-strategy equilibrium for �D: P2 reacts to the direct mechanism of P1 that selects t

with the mechanism that responds to both t and b with l and to the mechanism that selects b with

the mechanism that responds to both t and b with r: Given this reaction, P1 in equilibrium chooses

the mechanism that selects b. The equilibrium outcome is thus (b; r):

Next consider the menu game �M : Suppose P1 o¤ers the menu ft; bg. Because l is weakly
dominated for P2, there are only two possible outcomes in the continuation game between A and

P2 that starts after P1 o¤ers ft; bg. In the �rst one, A selects t and P2 selects r: In the second, A
selects t and P2 randomizes over l and r; respectively with probability 1=6 and 5=6: In both cases,

P1 obtains a payo¤ of 16=6 > 2: It follows that the SCF that selects (b; r) with certainty cannot be

sustained as an equilibrium in the menu game because P1 has a pro�table deviation.
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A2-3. Endogenous sequence of bilateral relationships

Consider the following game with endogenous sequence of contractual relationships. There are

T < 1 periods. In each period, all principals simultaneously o¤er the agent a mechanism �i;t

from a set �i;t: The agent chooses at most one mechanism, say �i;t, to participate in, then chooses

a message mi;t from Mi;t and a contract yi;t is selected by the lottery �i;t(mi;t) 2 �(Yi;t): Given
yi;t; the agent then chooses an action ei;t from Ei;t and �nally the contract yi;t : Ei;t ! �(Ai;t)
determines Pi�s decision: The agent may, or may not, participate in a mechanism o¤ered by the

same principal multiple times. For those principals who are not selected in period t, simply let

ej;t = e?j;t and aj;t = a?j;t; where (e
?
j;t; a

?
j;t) are the exogenous default decisions that are implemented

in the absence of contracting, such as no trade at a null price.

Payo¤s, respectively for Pi, i = 1; :::; n; and for A continue to be denoted by ui(�; e; a) and

v(�; e; a); with e� � (e1;� ; :::; en;� ) and a� � (a1;� ; :::; an;� ) now denoting an entire pro�le of payo¤-
relevant decisions for period � , one for each possible bilateral relationship, and e � (e1; :::; eT ) and
a � (a1; :::; aT ).

For any t = 1; :::; T , any i = 1; :::; n and any upstream history h�t ; let zi;t = fi;t(h
�
t ) denote

the elements of h�t that are observed by Pi in period t:
5 The function fi;t : H�t ! Zi;t maps each

possible upstream history h�t 2 H�t into an observation zi;t 2 Zi;t, where Zi;t � fzi;t : zi;t = fi;t(h
�
t );

h�t 2 H�t g: As in the benchmark model, contracting is private in the sense that principals do not
observe other principals�mechanisms, nor the messages, the contracts, or the decisions taken in

these mechanisms. These restrictions are embedded in the mappings fi;t:

For any zi;t 2 Zi;t, let  (zi;t) denote the payo¤-relevant component of zi;t; that is, the part

of the agent�s extended type �Et = (�; e�t ; a
�
t ) that is observed by Pi at date t: Note that the

agent�s extended type now contains pro�les of payo¤-relevant decisions e� � (e1;� ; :::; en;� ) and

a� � (a1;� ; :::; an;� ), one for each bilateral relationship, with e�t � (e� )t�1�=1 and a
�
t � (a� )t�1�=1.

Principal i�s behavioral strategy in period t is now described by the distribution �i;t(zi;t) 2
�(�i;t) over the mechanisms in �i;t: The agent�s behavioral strategy �A(h

�
t ; �t) given the upstream

history h�t 2 H�t and the pro�le of mechanisms �t � (�1;t; :::; �n;t) o¤ered in period t, is decomposed
as follows: wt(h�t ; �t) 2 �(N[?) denotes the agent�s participation strategy; �t(h�t ; �t; It) 2 �( ~Mt)

denotes the agent�s message strategy after he chooses to participate in principal It�s mechanism,

where It 2 N [? denotes the identity of the principal selected in period t and ~Mt �
Q
i (Mi;t [?);

�nally, �(h�t ; �t; It;mt; yt) 2 �( ~Et) denotes the agent�s e¤ort strategy, with ~Et �
Q
i (Ei;t [?) :6

De�nition A1. Principal i�s strategy in period t is Markov if and only if, for any zi;t; z0i;t 2 Zi;t
such that  (zi;t) =  (z0i;t); �i;t(zi;t) = �i;t(z

0
i;t):

5A history h�t now also includes the agent�s upstream participation decisions.
6The vector mt � (m1;t; :::;mn;t) denotes the pro�le of messages sent by the agent in period t; with mj;t = ? for

any j 6= It. Similarly, yt � (y1;t; :::; yn;t) and et � (e1;t; :::; en;t) denote, respectively, the vector of contracts and the
vector of e¤ort choices, for period t; with yj;t; ej;t = ? for any j 6= It:
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The agent�s strategy in period t is Markov if and only if the following are true:

(a) for any (h�t ; �t) and (~h�t ; �t) such that �
E
t is the same in h�t and ~h�t ; w

t(h�t ; �t) =

wt(~h�t ; �t);

(b) for any (h�t ; �t; It) and (~h
�
t ;
~�t; It) such that �Et is the same in h

�
t and ~h

�
t and �It;t is the

same in �t and ~�t, �t(h�t ; �t; It) = �t(~h
�
t ;
~�t; It);7

(c) for any (h�t ; �t; It;mt; yt) and (~h�t ; ~�t; It; ~mt; yt) such that �Et is the same in h�t and ~h
�
t ,

�(h�t ; �t; It;mt; yt) = �(~h�t ;
~�t; It; ~mt; yt).

An equilibrium � 2 E(�) is a MPE if and only if all players� strategies are Markov at any

t = 1; :::; T .

Theorem 7 (Endogenous sequence). (Part I: Menus) Let � < �M :8 Any SCF that can be
sustained as a MPE of � can also be sustained as a MPE of �M . Furthermore, any SCF that can

be sustained as an equilibrium of �M (not necessarily in Markov strategies) can also be sustained

as an equilibrium of �:

(Part II: Direct Mechanisms) Suppose the agent can contract with each principal at most once.

Then any SCF that can be sustained as a MPE of �M can also be sustained as a truthful MPE of

�D: Furthermore, any SCF that can be sustained as a MPE of �D can also be sustained as a MPE

of �M :

Proof of Theorem 7. Part (I). The proof is in two steps and combines arguments from

the proofs of Theorems 1 and 5.

Step 1. We want to show that given any MPE � 2 E(�), there exists a MPE �M 2 E(�M ) that
sustains the same outcomes as �. The arguments here are similar to those in the proof of Theorem

1. The only di¤erences come from the fact that (a) one has to adjust the replication arguments

to take into account that the principals�strategies are now contingent on what they have observed

upstream and (b) that one must specify supporting beliefs for the principals�strategies.

Consider the partition game �Qi;t in which, in period t; Pi chooses a cell Qi;t from the partition

Qi;t of �i;t simultaneously with the other principals choosing their mechanisms �j;t from �j;t,

j 6= i: Given (Qi;t; (�j;t)j 6=i); A �rst selects a mechanism �i;t from Qi;t and then, given the pro�le

(�i;t; (�j;t)j 6=i), he chooses which mechanism to participate in. The choice of �i;t is observed by Pi,

but not by the other principals. For any other principal and any other date, the choice set in �Qi;t

is the same as in �; that is, for any (j; �) 6= (i; t); the strategy space for Pj at date � remains �j;� :
7 If It = ?; then �I;t = ?:
8The game � is an enlargement of �M if, for any i = 1; :::; n, and any t = 1; :::; T; the following are true:

(a) Im(�i;t) is compact, for any �i;t 2 �i;t;
(b) there exists a injective mapping �i;t : �Mi;t ! �i;t such that, for any pair of mechanisms �Mi;t; �i;t with �i;t =

�i;t(�
M
i;t);(i) Im(�

M
i;t) = Im(�i;t); and (ii) there exists an injective function ~�i;t :MM

i;t !Mi;t such that �Mi;t(�i;t) =

�i;t = �i(~�i(�i;t)) for any �i;t 2MM
i;t;

(c) there exists an injective mapping ��i;t : ZMi;;t ! Zi;t from the set of possible signals ZMi;t in �
M to the set of

possible signals Zi;t in �:
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Now let Qi;tbe the partition of �i;t given by the equivalence relation

�i;t �i;t �0i;t () Im(�i;t) = Im(�
0
i;t): (10)

Following the same construction as in Step 1 in the proof of Theorem 1, it is easy to see that there

exists an equilibrium �̂ for �Qi;t which sustains the same outcomes as � in �: In this equilibrium,

all Pj with j 6= i; follow the same strategy as in �; i.e. b�j = �j : As for Pi; at any � 6= t and for any

zi;� 2 Zi;� ; b�i(zi;� ) = �i(zi;� ):
9 In period t; for any zi;t 2 Zi;t; Pi randomizes over any subset R of

Qi;t whose union is measurable with probability

b�i(R ; zi;t) = �i(
S
R ; zi;t):

The agent�s strategy is such that at any � < t; b�A(h� ) = �A(h� ) for any h� 2 H� : In period t;
given any (Qi;t; (�j;t)j 6=i); A uses the conditional probability distribution �i;t(�jQi;t; zi;t) to select a
mechanism �i;t from Qi;t. At any subsequent informational set, A then behaves as if the game were

� and the mechanism o¤ered by Pi were �i;t: As far as beliefs are concerned, at any information

set, all principals have the same marginal beliefs over upstream payo¤-relevant information as in

� (note that, on the equilibrium path, this is consistent with principals�beliefs be obtained from

Bayes rule). Because all players� strategies in �̂ are Markov, given these beliefs, all principals�

strategies are sequentially rational.

Next, consider the game �Mi;t in which, in period t; Pi�s choice set is �Mi;t , whereas for any

(j; �) 6= (i; t), Pj�s choice set in period � is the same as in �: Now, for any � = 1; :::; T; let ZMj;�
denote the set of possible signals that Pj can receive in �Mi;t in period �; with Z

M
j;� = Zj;� for any

(j; �) such that either j 6= i; or � � t:

Because all players�strategies are Markov in �̂, starting from �̂ and following essentially the

same construction as in Step 2 in the proof of Theorem 1, one can show that there exists a MPE

�� 2 E(�Mi;t) that sustains the same outcomes as �. We refer the reader to that proof for the

details of how to construct the strategies in �� from the strategies in �̂. The only important

observation is that, given the menu �Mi;t o¤ered by Pi in period t; the agent uses the conditional

distribution �i;t(�jQi;t(�Mi;t); zi;t) to determine not only the messages to send to Pi in case he decides
to participate in �Mi;t but also his participation decision. That is, given any pro�le of mechanisms

(�Mi;t ; (�j;t)j 6=i); A uses the conditional probability distribution �i;t(�jQi;t(�Mi;t); zi;t) to select in his
mind a mechanism �i;t from Qi;t(�

M
i;t) � f�i;t : Im(�i;t) = Im(�Mi;t)g and then uses the original

strategy wt(h�t ; (�i;t; (�j;t)j 6=i)) for � to determine his participation decision. At all subsequent

information sets, the construction of �� parallels that of �̂ in �Qi;t :

The principals�strategies in �� can be sustained by beliefs ��j;� (zMj;� ) 2 �(H�� ) over upstream
histories that satisfy the following properties.

9Formally, for any � > t; zi;� now includes the cell Qi;t. However, because to any �i;t corresponds a unique cell

Qi;t; we can drop Qi;t from zi;� :
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Case (i). If zMj;� is such that, given the mechanisms (�j;l)
��1
l=1 o¤ered by Pj upstream, the

decisions in zMj;� are consistent with ��A and (��k)k 6=j , then ��j;� (z
M
j;� ) are obtained from Bayes�rule

using ��A and (��k)k 6=j . For all Pj with j 6= i, these beliefs necessarily have the same marginal

distribution over �E� as in �
Qi;t given zj;� = zMj;� : Clearly, the same is true for Pi if � � t, but not

necessarily if � > t: In fact, if � > t; then Pi�s posterior beliefs about �E� in �Mi;t after Pi o¤ered

the menu �Mi;t in period t are a convex combination of the beliefs she would have had in �Qi;t

had she o¤ered Qi;t(�mi;t) in period t: More precisely, let zi;� = (
�
zMi;�n�mi;t

�
^ �i;t) 2 Zi;� denote

the observation that is obtained from zMi;� by substituting the mechanism �mi;t with �i;t. Similarly,

let zi;� = (
�
zMi;�n�mi;t; �i;t

�
^ �i;t;mi;t) 2 Zi;� denote the observation that is obtained from zMi;� by

substituting the mechanism �mi;t and the message �i;t with �i;t and mi;t: Now let ��i;� and �i;�
denote Pi�s marginal beliefs over �E� , respectively in �

M
i;t in �

Qi;t . First, suppose the agent did not

participate in Pi�s mechanism in period t; so that It 6= i. Then Pi�s posterior beliefs over �E� in

period � > t satisfy

��i;� (z
M
i;� ) =

Z
�i;t(�mi;t)

�i;t(
�
zMi;�n�mi;t

�
^ �i;t)d�i;t(�i;tjzMi;� )

where �i;t(�i;tjzMi;� ) denote Pi�s beliefs that the agent in period t behaved as if the game were �Qi;t

and selected �i;t from �i;t(�
m
i;t); given z

M
i;� : Next, suppose It = i and let Mi;t(�i;t) denote the set

of messages in �i;t(�mi;t) that lead to the lottery �i;t. Then Pi�s posterior beliefs over �
E
� in period

� > t satisfy

��i;� (z
M
i;� ) =

Z
�i;t(�mi;t)

Z
Mi;t(�i;t)

�i;t(
�
zMi;�n�mi;t; �i;t

�
^ �i;t;mi;t)d
i;t(�i;t;mi;tjzMi;� )

where 
i;t(�i;t;mi;tj�Mi;t ; �i;t) denote Pi�s beliefs that the agent in period t behaved as if the game
were �Qi;t , he selected �i;t from �i;t(�

m
i;t); and then sent the message mi;t: This di¤erence in beliefs

with respect to �Qi;t is due to the fact that the choice of the mechanism �i;t from �i;t(�
m
i;t) and of

the message mi;t fromMi;t(�i;t) is now only in the agent�s mind and is thus not directly observed

by Pi.

Given the aforementioned beliefs, the (behavioral) strategies ��j;� (zMj;� ) = �̂j;� (z
M
j;� ) for all (j; �)

such that either j 6= i or � < t are clearly sequentially optimal.10 Thus consider j = i and

� > t: Because the strategy �̂i;� was Markov in �Qi;t , then �̂i;� (zi;� ) = �̂i;� (z
0
i;� ) for any zi;�

and z0i;� that contain the same payo¤-relevant information, i.e. such that  (zi;� ) =  (z0i;� ): Now,

suppose zMi;� is such that It 6= i and let Zi;� (zMi;� ) denote the set of observations zi;� 2 Zi;� such

that zi;� = (
�
zMi;�n�mi;t

�
^ �i;t) 2 Zi;� ; with �i;t 2 �i;t(�mi;t): Clearly  (zi;� ) =  (z0i;� ) for any pair

zi;� ; z
0
i;� 2 Zi;� (zMi;� ): That in �Qi;t the strategy �̂i;� was Markov implies that �̂i;� (zi;� ) was optimal

for any zi;� 2 Zi;� (zMi;� ) and hence for any beliefs �i;t(
�
zMi;�n�mi;t

�
^�i;t); with �i;t 2 �i;t(�mi;t): Because

��i;� (z
M
i;� ) is a convex combination of �i;t(

�
zMi;�n�mi;t

�
^ �i;t); with �i;t 2 �i;t(�mi;t); this necessarily

implies that ��i;� (zMi;� ) = �̂i;� (zi;� ), with zi;� 2 Zi;� (zMi;� ); is sequentially optimal.
10Recall that for these (j; �); ZMj;� = Zj;� :
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Next, suppose that zMi;� is such that It = i and let Zi;� (zMi;� ) denote the set of observations

zi;� 2 Zi;� such that zi;� = (
�
zMi;�n�mi;t; �i;t

�
^ �i;t;mi;t); with �i;t 2 �i;t(�mi;t) and �i;t(mi;t) = �i;t:

The same arguments as for It 6= i imply that the strategy��i;� (zMi;� ) = �̂i;� (zi;� ), with zi;� 2 Zi;� (zMi;� );
is sequentially optimal.

Case (ii). Next, suppose the observation zMj;� indicates that a departure from equilibrium play

occurred by either A or some Pj , j 6= i. Then let��j;� (zMj;� ) be any beliefs that are consistent with
11

zMj;� and satisfy ��j;� (z
M
j;� ) = �j;� (zj;� ), where ��j;� and �j;� denote Pj�s marginal beliefs over �E� ,

respectively in �Mi;t conditional on z
M
j;� and in �

Qi;t conditional on zj;� ; where zj;� is any signal that

contains the same payo¤-relevant information as zMj;� .

Because �Mi;t < �M and because�� is a MPE of �Mi;t ; one can keep iterating the same construction

described above across all i and all t; starting from t = 1 and proceeding forward. This gives a

MPE �M 2 E(�M ) that sustains the same outcomes as �.

Step 2. Next, we prove that, given any �M 2 E(�M ) (not necessarily in Markov strategies)
there exists a � 2 E(�) that sustains the same outcomes as �M . The construction parallels that in
the proof of Theorems 1 and 5.

First, consider the agent. The strategy �A is constructed from �MA as in the proof of Theorem

1. After any history ht = (�; (�� ; I� ;m� ; y� ; e� ; a� )
t�1
�=1; �t); the agent behaves according to �

M
A

(in the same sense as in the proof of Theorem 1 in the main text) as if the game were �M and

the history were hMt = (�; (�M� ; I� ; �� ; y� ; e� ; a� )
t�1
�=1; �

M
t ) where the history h

M
t is obtained from ht

replacing ((�� )t�1�=1; �t) with ((�
M
� )

t�1
�=1; �t) and (m� )

t�1
�=1 with (�� )

t�1
�=1, where each �

M
j;� in h

M
t is the

menu whose image is Im(�Mj;� ) = Im(�j;� ) and where �j;� = �j;� (mj;� ).12

Next, consider the principals. For any t; any i and any zi;t 2 Zi;t, let �i(zi;t) = �i(�
M
i (�(zi;t))),

where �i(�Mi ) is the distribution over �i obtained from �Mi using the embedding �i and where

zMi;t = �(zi;t) is the observation obtained from zi;t, using the same transformation of �i;� and mi;�

indicated above for the agent.

The principals�strategies are supported by the following beliefs. For any t; let H�t and HM�
t

denote the sets of all possible upstream histories, respectively in � and in �M , and �(H�t ) and
�(HM�

t ) denote the corresponding Borel sigma algebras. For any zi;t and zMi;t ; let {i;t(zi;t) 2 �(H�t )
and {Mi;t (zMi;t ) 2 �(HM�

t ) denote Pi�s period-t beliefs about upstream histories, respectively in � and

in �M . If zi;t is such that, given the mechanisms (�i;� )t�1�=1 o¤ered by Pi upstream, the decisions

in zi;t are consistent with �A and (�k)k 6=i, then {i;t(zi;t) is obtained from Bayes� rule using �A
and (�k)k 6=i. Otherwise, {i;t(zi;t) are constructed as follows. For any measurable set of upstream
histories HM�

t 2 �(HM�
t ) in �M ; let �t(HM�

t ) 2 �(H�t ) denote the measurable set of histories in

11The beliefs ��j;� (zMj;� ) 2 �(H�
� ) are consistent with z

M
i;t if they assign positive measure only to upstream histories

h�t such that fi;t(h
�
t ) = zi;t:

12For any principal i not selected in period �; �i;� ; yi;� = ?.
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� that are obtained by substituting each history

hMt = (�; (�M� ; I� ; �� ; y� ; e� ; a� )
t�1
�=1)

in HM�
t with the family of histories ft(hM�

t ) 2 �(H�t ) such that, each history

h�t = (�; (�� ; I� ;m� ; y� ; e� ; a� )
t�1
�=1)

in ft(hM�
t ) has the following properties: (a) (�; (I� ; y� ; e� ; a� )t�1�=1) is the same as in h

M
t ; (b) each

�i;� is such that Im(�i;� ) = Im(�Mi;� ); eachmi;� is such thatmi;� = ? if �i;� = ? and �i;� (mi;� ) = �i;�

if �i;� 6= ?: For any out-of-equilibrium zi;t; then let {i(zi;t) be the unique beliefs that are consistent
with zi;t and satisfy

{i;t(�t(HM�
t ) j zi;t) = {Mi;t (HM�

t j �(zi;t)) 8HM�
t 2 �(HM�

t )

where zMi;t = �(zi;t) is obtained from zi;t, using the transformation of �i;� and mi;� indicated above

for the agent. With these beliefs, the strategy �i given by �i(zi;t) = �i(�
M
i (�(zi;t))) for any zi;t is

sequentially rational for Pi; given �A and (�k)k 6=i .

Furthermore, given the principals�strategies (�i)ni=1 constructed above, the agent�s strategy �A
is clearly sequentially rational. We conclude that � 2 E(�): That � implements the same SCF as
�M is then immediate.

Proof of Part (II). The proof is in two steps.

Step 1. Consider an environment in which the agent contracts with each principal at most

once. We want to show that given any MPE �M 2 E(�M ), there exists a MPE �D 2 E(�D) that
sustains the same SCF as �M . To ease the exposition, hereafter we allow the principals to o¤er

mechanisms also in periods subsequent to the one they contracted with the agent. This is clearly

inconsequential for the arguments below.

Let �J denote a game in which �j;� = �Dj;� for all (j; �) 2 J , while �j;� = �Mj;� for all (j; �) 2
RnJ; for some J � R [ f?g; where T � f1; :::; Tg and R � (N � T ): We prove the result by
showing that, given any MPE � 2 E(�J), there exists an MPE ~� 2 E(�J 0), with J 0 = J [ fi; tg for
some fi; tg 2 RnJ , that sustains the same outcomes.

That the agent�s strategy in � is Markov implies that, for any �Mi;t 2 �Mi;t ; there is a single
probability distribution �i;t(�Et ; �

M
i;t) 2 �(Yi;t) over Yi;t such that, conditional on having decided to

participate in �Mi;t , whatever the particular upstream history h�t that conducted to �
E
t ; A always

induces the distribution �i;t(�Et ; �
M
i;t) when his extended type is �

E
t :

The MPE ~� that sustains � in �J 0 is obtained from � as follows. For any � 6= t; all players�

(Markov) strategies are the same as in �: For � = t; if j 6= i; then ~�j;t = �j;t. If instead j = i; then

~�i;t is obtained from �i;t as follows. For any menu �Mi;t , let �
D
i;t = gi;t(�

M
i;t) be the direct mechanism

given by

�Di;t(�
E
t ) = �i;t(�

E
t ; �

M
i;t) 8�Et 2 �Et :13
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Now, let �Di;t(gi;t) � f�Di;t : �Di;t = gi;t(�
M
i;t); �

M
i;t 2 �Mi;tg. After any zi;t 2 ZJ

0
i;t ; Pi uses his original

behavioral strategy �i(zi;t) to randomize over �Di;t; formally, for any measurable subset K � �Di;t

~�i(K; zi;t) = �i(BK ; zi;t)

where BK � f�Mi;t 2 �Mi : gi;t(�
M
i;t) 2 Kg: Clearly, any menu in BK is payo¤-equivalent for the agent.

Given any pro�le of mechanisms (�Di;t; (�j;t)j 6=i) with �
D
i;t 2 �Di;t(gi;t); A then uses the conditional

distribution �i(� j B�Di;t) to determine his participation decision. That is, with probability �i(�
M
i;t

j B�Di;t); A behaves according to the participation strategy w
t(�Et ; �

M
i;t ; (�j;t)j 6=i)) 2 �(N [?) as if

the game were �J and the mechanisms o¤ered by the principals were �t = (�Mi;t ; (�j;t)j 6=i): If the

lottery wt(�Et ; �
M
i;t ; (�j;t)j 6=i)) selects Pi, A reports his extended type truthfully to Pi. If instead,

wt(�Et ; �
M
i;t ; (�j;t)j 6=i)) selects a Pj with j 6= i; then A uses the same Markov strategy as in �J to

select which messages to send to Pj . In either case, the agent�s choice of e¤ort is governed by the

same Markov strategy as in �J :

Next, consider a (�Di;t; (�j;t)j 6=i) such that �
D
i;t =2 �Di;t(gi;t):Then, at any downstream information

set A behaves as if the game were �J and the menu o¤ered by Pi were �Mi;t where �
M
i;t is the menu

whose image is Im(�Mi;t) = Im(�
D
i;t):

The principals�strategies in ~� can be sustained by beliefs over upstream histories that satisfy

the (analog of the) properties described in the proof of Part 1� Step 1.14 Along with these beliefs,

the strategy pro�le ~� is a MPE for �J 0 and sustains the same outcomes as � in �J :

Iterating across all i; t gives the result.

Step 2. We now prove that for any MPE �D 2 E(�D), there exists a MPE �M 2 E(�M ) that
sustains the same outcomes. The proof parallels that of Theorems 4 and 5.

Let �J denote a game in which �j;� = �Mj;� for all (j; �) 2 J , while �j;� = �Dj;� for all (j; �) 2
RnJ; for some J � R [ f?g with R � N � T . We prove the result by showing that, given any
MPE � 2 E(�J); there exists an MPE ~� 2 E(�J 0), with J 0 = J [ fi; tg for some fi; tg 2 RnJ; that
sustains the same outcomes.

The (Markov) strategy pro�le ~� is constructed from � as follows. For any (j; �) 6= (i; t);

~�j;� = �j;� . For (j; �) = (i; t); the strategy ~�i;t is such that, for any measurable set R � �Mi;t and
any zi;t 2 Zi;t

~�i;t(R j zi;t) = �i;t

0@ S
�Mi;t2R

f�Di;t : Im(�Di;t) = Im(�Mi;t)g j zi;t

1A :

Next, consider the agent. Let

��Mi;t � f�Mi;t : Im(�Mi;t) = Im(�Di;t) for some �Di;t 2 �Di;tg
14Take a zi;� such that, given (�i;l)��1l=1 , zi;� is consistent with �A and ��i: If � > t and It = i; then it is no longer

true that Pi�s marginal beliefs over �E� are a convex combination of her beliefs in �
J . However, because in this case

A will never contract again with Pi; this is irrelevant for the result.
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and for any �Mi;t 2 ��Mi;t ; let �
D
i;i(�

M
i;t) � f�Di;t : Im(�Di;t) = Im(�Mi;t)g: At any � 6= t, ~�A induces

the same behavior as �A in �J (recall that �A is Markov). At � = t; for any (�Mi;t ; (�j;t)j 6=i) such

that �Mi;t 2 ��Mi;t ; A uses the conditional distribution �i(� j �Di;i(�Mi;t)) to determine his participation
decision. That is, with probability �i(�Di;t j �Di;i(�Mi;t)); A behaves according to the participation

strategy wt(�Et ; �
D
i;t; (�j;t)j 6=i)) 2 �(N [?) as if the game were �J and the mechanisms o¤ered by

the principals were (�Di;t; (�j;t)j 6=i). In case the lottery w
t(�Et ; �

M
i;t ; (�j;t)j 6=i)) selects Pi, A then also

induces the same distribution over Yi;t as in �J given (�Et ; �
D
i;t); where �

D
i;t is the same mechanism

selected by the distribution �i(� j �Di;i(�Mi;t)): If instead, wt(�Et ; �Mi;t ; (�j;t)j 6=i)) selects a Pj with j 6= i;

then A uses the same Markov strategy as in �J to select which messages to send to Pj . In either

case, the agent�s choice of e¤ort is governed by the same Markov strategy as in �J :

Next, consider a (�Mi;t ; (�j;t)j 6=i) such that �
M
i;t =2 ��Mi;t : At any downstream information set A

behaves as if the game were �J and the direct mechanism o¤ered by Pi were �Di;t where �
D
i;t is

obtained from �Mi;t as follows:

�Di;t(�
E
t ) 2 arg max

�i;t2Im(�Mi;t)
V (�Et ; �i;t; �

+
t ) 8�Et 2 �Et

where V (�Et ; �i;t; �
D+
t ) denotes the agent�s continuation payo¤ in �J 0 when his extended type is �Et ,

he chooses to participate in Pi�s mechanism and the principals�downstream strategies are �+t :
15

Because all players�strategies are Markov, the principals�strategies in ~� can be sustained by

beliefs over upstream histories that satisfy the analog of the properties in Part 1� Step 1. Together

with these beliefs, the strategy pro�le ~� is a MPE for �J 0 and sustains the same outcomes as � in

�J :

A2-4. Sequential o¤ering as opposed to sequential contracting

Finally, consider an environment in which principals o¤er their mechanisms sequentially, but

where the agent sends the messages (m1; :::;mn) simultaneously at t = n+1. Assume that any Pt,

t = 2; :::; n; observes the mechanisms ��t selected upstream before choosing her own mechanism. A

(pure) strategy for Pi thus consists of a function �i : ��i ! �i such that �i(��i ) is the mechanism

o¤ered by Pi when the pro�le of upstream mechanisms is ��i :

Since the agent�s decisions are now taken only at the end of the game, the de�nition of extended

type must be modi�ed as follows. For any i = 1; :::; n; let �Ei � (�; ��i) with ��i � (�j)j 6=i. From
the perspective of Pi, the agent�s extended type thus consists of his exogenous type � along with the

lotteries ��i he is inducing at t = n+ 1 with the other principals. An extended direct mechanism

�Di : �
E
i ! Di is then de�ned as in the benchmark model. The de�nition of incentive-compatibility

and truthful equilibrium must however be adjusted as follows. Let V (�; �) denote the maximal

payo¤ that type � can obtain by choosing the lotteries �:

15Because all principals�strategies are Markov, V depends on any upstream history only through �Et :
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De�nition A2. (i) A mechanism �Di is incentive-compatible if and only if, for any �
E
i 2 �Ei ,

�Di (�
E
i ) 2 arg max

�i2Im(�Di )
V (�Ei ; �i)

(ii) Given a pro�le of mechanisms �D 2 �D, the agent�s strategy is truthful in �Di if and only
if, for any � 2 � and any (mD

i ;m
D
�i) 2 Supp[�(�; �D)];

mD
i = (�; (�

D
j (m

D
j ))j 6=i)

(iii) A strategy pro�le �D 2 E(�D) is a pure-strategy truthful equilibrium of �D if and only

if it is a pure-strategy equilibrium in which, given any pro�le of mechanisms �D such that jfj 2
N : �Dj 6= �Dj (�

D�
j )gj � 1; the agent�s strategy is truthful in every mechanism �Di for which

�Di = �Dj (�
D�
j ).

A mechanism �Di is thus incentive-compatible if and only if, conditional on being a type � and

choosing the lotteries ��i with all principals other than i; the lottery �i = �Di (�
E
i ) that the agent

obtains by reporting �Ei � (�; ��i) truthfully to Pi leads to an expected payo¤ for the agent that is
at least as high as the one that he obtains by reporting any other �̂Ei 2 �Ei : Given a pro�le �D of
extended direct mechanisms, the agent�s strategy is then truthful in �Di if the message each type

� sends to Pi coincides with his true type along with the true decisions ��i = �Dj (m
D
j ))j 6=i that he

induces (by sending the messages mD
�i) to the other principals. A strategy pro�le �

D 2 E(�D) is
a pure-strategy truthful equilibrium of �D if and only if, whenever at most one principal deviated

from her equilibrium strategy (i.e. o¤ered a mechanism �Dj 6= �Dj (�
D�
j )), the agent�s strategy at

t = n+ 1 is truthful in the mechanisms of any of the principals who conformed to the equilibrium

strategy.

The following is then a natural adaptation of the notion of Markov strategies to this setting.

De�nition A3. Let � be a game with arbitrary choice sets for the principals. Given any

pure-strategy pro�le � 2 E(�), we say that the agent�s strategy �A is Markov with Pi if and only
if, for any � 2 �, ��i 2 D�i and �i 2 �i; there exists a unique lottery �i(�; ��i;�i) 2 Im(�i) such
that A always selects �i(�; ��i;�i) with Pi when the latter o¤ers the mechanism �i; the agent�s type

is � and the decisions A induces with the other principals are ��i: We then say that the agent�s

strategy is Markov if and only if it is Markov with all Pi; i 2 N :

We then have the following result.

Theorem 8 (Sequential o¤ering). (Part I: Menus) Let � < �M : For any � 2 E(�) in which
all principals� strategies are pure, there exists a �M 2 E(�M ) that sustains the same outcomes.
Furthermore, any SCF � that can be sustained as an equilibrium of �M can be sustained as an

equilibrium of �:
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(Part II: Direct Mechanisms) For any pure-strategy equilibrium �M 2 E(�M ) in which the
agent�s strategy is Markov, there exists a pure-strategy truthful equilibrium �D 2 E(�D) that sustains
the same outcomes.

Proof of Theorem 8. Part I: Menus. The proof parallels that of Part I in Theorem 6

and is thus omitted (one can easily verify that the proof is actually simpler when the agent takes

decisions only at t = n+ 1).

Part II: Direct Mechanisms. We show that, for any pure-strategy �M 2 E(�M ) in which
the agent�s strategy is Markov, there exists a pure-strategy truthful equilibrium �D 2 E(�D) that
sustains the same outcomes.

Consider a game �J in which �j = �Dj for all j 2 J while �j = �Mj for all j 2 NnJ; for some
J � N [ f?g: We prove the result by showing that given any pure-strategy equilibrium � 2 E(�J)
in which the agent�s strategy is Markov there exists a pure-strategy equilibrium�� 2 E(�J 0) in which
the agent�s strategy is also Markov that sustains the same outcomes as �; for any J 0 = J [ftg with
t 2 NnJ: The construction of �� will also reveal that the strategy pro�le �D obtained from �M by

iterating across all t;starting from t = 1 and moving forward, is such that �DA is truthful.

Consider the following (pure) strategy for Pt in �J 0 : For any pro�le of upstream mechanisms

��t , let �
M
t = �t(�

�
t ) denote the equilibrium menu that Pt would have o¤ered in �J in response to

��t : The extended direct mechanism �Dt = ��t(�
�
t ) that Pt o¤ers in �J 0 in response to �

�
t is such

that, for any �Et 2 �Et ;
�Dt (�

E
t ) = �t(�; ��t;�t(�

�
t ))

Clearly, �Dt =��t(�
�
t ) is incentive-compatible. Now consider the following strategy pro�le�� for �J 0 .

For all principals Pj with j < t, simply let ��j = �j . For Pt; let ��t be the strategy described above.

Finally, for any Pj with j > t, ��j is constructed from �j as follows. If ��j is such that in period t;

Pt o¤ered the mechanism �Dt =��t(�
�
t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �t(�

�
t ); �t+1; :::; �j�1):

If instead, �Dt 6=��t(��t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �

M
t ; �t+1; :::; �j�1):

where �Mt is the menu whose image is Im(�Mt ) = Im(�
D
t ).

Next, consider the agent. Given any pro�le of mechanisms (��t ; �
D
t ; �t+1; :::; �n) such that

�Dt = ��t(�
�
t ), at t = n + 1 each type � of the agent induces the same outcomes he would have

induced in �J had the mechanisms o¤ered been (�
�
t ; �t(�

�
t ); �t+1; :::; �n). Note that this can be

achieved by reporting (�; (�j(mj))j 6=t) truthfully to Pt: If, instead, �Dt 6=��t(��t ); then A induces the
same outcomes he would have induced in �J had the mechanisms o¤ered been (�

�
t ; �

M
t ; �t+1; :::; �n);

where �Mt is the menu whose image is Im(�Mt ) = Im(�Dt ): Clearly, this strategy is sequentially

optimal for the agent. Furthermore, given (��A;���i); no principal has a pro�table deviation. We
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conclude that the strategy pro�le �� constructed this way is an equilibrium for �J 0 and induces the

same outcomes as � in �J .

Iterating across all periods, starting from t = 1 and letting J = f?g and proceeding forward
by letting J 0 = J [ft+1g, gives a pure-strategy truthful equilibrium of �D that sustains the same

outcomes as �M :
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