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Abstract

This document contains additional material. All sections, conditions, and results specific to

this document have the suffix “S” to avoid confusion with the corresponding parts in the main

text. Section S.1 establishes the optimality of the index policy claimed in Part (1) of Theorem

1 in the main text by means of a novel proof that exploits the recursive characterization of the

search index and the categorization of the alternatives. Section S.2 contains the proof of Parts

(2) and (3) of Proposition 2 in the main text. Section S.3 shows how to use Theorem 1 and

Proposition 1 in the main body to arrive at a solution to the extension of Weitzman’s Pandora’s

boxes problem with an endogenous CS. Section S.4 contains various results for the application to

online consumer search. In particular, Subsection S.4.1 extends the eventual purchase theorem to

a setting with an endogenous CS, Subsection S.4.2 characterizes the click-through-rates (CTRs),

Subsection S.4.3 provides an example in which the CTRs, the values-per-click (VPCs), and the

purchasing probabilities are derived, whereas Subsection S.4.4 shows why additional ad space

may be detrimental to firms’ profits. Section S.5 shows how the characterization of the optimal

policy extends to certain problems with irreversible choice. Finally, Section S.6 discusses why an

index policy need not be optimal in the presence of “meta” arms with associated super-processes.

S.1 Proof of Part (1) of Theorem 1 in the main text.

The proof exploits the recursive representation of the search index established in Part (2) of Theorem

1, along with the representation of the DM’s payoff under the index rule established in Part (3) of

Theorem 1 and an appropriate description of the state space, to verify that the DM’s payoff under

the index policy satisfies the Bellman equation of the corresponding dynamic program.

Proof strategy. The proof is in two steps. Step 1 uses the representation of the DM’s payoff

under the index rule established in Part (3) of Theorem 1 in the main text to characterize how much

the DM obtains from following the index policy χ∗ from the outset rather than being forced to make
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a different decision in the first period and then reverting to χ∗ from the next period onward. Step

2 then uses the results in step 1 to establish the optimality of χ∗ through dynamic programming.

Step 1 . In the analysis below, we find it useful to describe changes in the composition of the CS,

the evolution of the search technology, as well as all information acquired about the alternatives,

entirely in terms of transitions between states. Rather than keeping track of the collection of kernels

Gξ(ϑ
m;µ) describing the conditional distributions from which the marginal signals ϑm+1 are drawn,

we describe directly the evolution of each alternative’s state ωP as follows. When the DM explores an

alternative currently in state ωP , its new state ω̃P is drawn from a distribution HωP ∈ ∆(ΩP ) that is

invariant to time.1 When the DM explores a different alternative, or expands the CS, the alternative

currently in state ωP remains in the same state with certainty at the beginning of the next period.

Similarly, each time search is conducted, given the current state of the search technology ωS , the

new state of the search technology ω̃S is drawn from a distribution HωS ∈ ∆(ΩS).The distributions

Hωs are time-homogeneous (i.e., the evolution of the search technology depends on past search

outcomes but is invariant in calendar time), and the outcome of each new search is drawn from HωS

independently from the idiosyncratic and time-varying component θ of each alternative in the CS.

Abusing notation, then denote the state of the decision problem by a function S : Ω → N
that specifies, for each ω ∈ Ω, including ω ∈ ΩS , the number of alternatives, including the search

technology, that are in state ω.2 Given this notation, for any pair of states S ′ and S ′′ then define

S ′ ∨ S ′′ ≡ (S ′(ω) + S ′′(ω) : ω ∈ Ω) and S ′\S ′′ ≡ (max{S ′(ω) − S ′′(ω), 0} : ω ∈ Ω). Any feasible

state of the decision problem must specify one, and only one, state of the search technology (i.e.,

one state ω̂S for which S(ω̂S) = 1 and such that S(ωS) = 0 for all ωS ̸= ω̂s). However, it will be

convenient to consider fictitious (infeasible) states where search is not possible, as well as fictitious

states with multiple search possibilities. If the state of the decision problem is such that either (i)

the CS is empty, or (ii) there is a single alternative in the CS and the latter cannot be expanded,

we will denote such a state by e(ω), where ω ∈ Ω is the state of the search technology in case (i)

and of the single physical alternative in case (ii).3

Lemma S.1. For any v ∈ R and states S ′ and S ′′, κ(v|S ′ ∨ S ′′) = κ(v|S ′) + κ(v|S ′′).

Proof of Lemma S.1. The result follows from the fact that the state of each alternative that

is not explored in a given period remains unchanged, along with the fact that the time-varying

components θ of the various alternatives evolve independently of one another and of the state of the

search technology, given the alternatives’ categories ξ. Similarly, the state of the search technology

remains unchanged in periods in which search is not conducted, and evolves independently of the

1Clearly, because each alternative’s category ξ is fixed, given the current state ωP = (ξ, θ), the distribution HωP

assigns probability one to states whose category is ξ and whose signal history ϑm+1 = (ϑm, ϑm+1) is a “follower” of
ϑm, meaning that it is obtained by adding a new signal realization ϑm+1 to the history ϑm.

2Clearly, with this representation, there is a unique ω̂s ∈ ΩS such that S(ωS) = 1 if ωs = ω̂s and S(ωS) = 0 if
ωs ̸= ω̂s. The special case where the DM does not have the option to search corresponds to the case where for all
ωS ∈ ΩS , S(ωS) = 0.

3Throughout the analysis below, we maintain the assumption that an outside option with value equal to zero is
available to the DM. However, to avoid possible confusion, here we do not explicitly treat the outside option as a
separate alternative.
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time-varying component θ in the state of each existing alternative, given the alternatives’ categories

ξ. Furthermore, the index of each alternative is a function only of the alternative’s state, and the

index of search is a function only of the state of the search technology. Therefore, all indexes evolve

independently of one another (conditional on the alternatives’ categories), and evolve only when

their corresponding decision (search or exploration of an alternative) is chosen. Since the decisions

are taken under the index policy χ∗, the result follows from the fact that, starting from any state

S, the total time it takes to bring all indexes (that is, those of the alternatives in the CS as well as

the index of search) below any value v is the sum (across alternatives in the CS and search) of the

individual times necessary to bring each index below v in isolation. □

Given the initial state S0, for any ωP ∈ {ω̂P ∈ ΩP : SP
0 (ω̂P ) > 0}, denote by E

[
u|ωP

]
the

immediate expected payoff from exploring an alternative in state ωP and by ω̃P the new state of

that alternative triggered by its exploration (drawn from HωP ). Let

V P (ωP |S0) ≡ (1− δ)E
[
u|ωP

]
+ δEχ∗ [

V
(
S0\e(ωP ) ∨ e(ω̃P )

)
|ωP

]
(S.1)

denote the DM’s payoff from starting with exploring an alternative in state ωP and then following

the index policy χ∗ from the next period onward. Similarly, let

V S(ωS |S0) ≡ −(1− δ)E
[
c|ωS

]
+ δEχ∗ [

V
(
S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)

)
|ωS
]

(S.2)

denote the DM’s payoff from expanding the CS when the state of search is ωS , and then following

the index policy χ∗ from the next period onward, where E
[
c|ωS

]
is the immediate expected cost

from searching (when the state of the search technology is ωS), ω̃S is the new state of the search

technology, and WP (ω̃S) is the state of the new alternatives brought to the CS by the current

search, with c and WP (ω̃S) jointly drawn from the distribution HωS .4

We introduce a fictitious “auxiliary option”which is available at all periods and yields a constant

reward M < ∞ when chosen. Denote the state corresponding to this fictitious auxiliary option by

ωA
M , and enlarge ΩP to include ωA

M . Similarly, let e(ωA
M ) denote the state of the problem in which

only the auxiliary option with fixed reward M is available. Since the payoff from the auxiliary

option is constant at M , if v ≥ M , then κ(v|S0 ∨ e(ωA
M )) = κ(v|S0), whereas if v < M , then

κ(v|S0 ∨ e(ωA
M )) = ∞. Hence, the representation of the DM’s payoff under the index policy in Part

(3) of Theorem 1 in the main text, adapted to the fictitious environment that includes the auxiliary

option, implies that

V(S0 ∨ e(ωA
M )) =

∫ ∞

0

(
1− Eχ∗

[
δκ(v)|S0 ∨ e(ωA

M )
])

dv = M +

∫ ∞

M

(
1− Eχ∗

[
δκ(v)|S0

])
dv

= V(S0) +

∫ M

0

Eχ∗
[
δκ(v)|S0

]
dv. (S.3)

The definition of χ∗, along with Conditions (S.1) and (S.2), then imply the following:

4Note that WP (ω̃S) is a deterministic function of the new state ω̃S of the search technology. To see this, recall that,
for any m ∈ N, the function Em in the definition of the state of the search technology counts how many alternatives
of each possible state ωP have been added to the CS, as a result of the m-th search.
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Lemma S.2. For any (ωS , ωP ,M),

V(e(ωS) ∨ e(ωA
M )) =

V S(ωS |e(ωS) ∨ e(ωA
M )) if M ≤ IS(ωS)

M > V S(ωS |e(ωS) ∨ e(ωA
M )) if M > IS(ωS)

(S.4)

V(e(ωP ) ∨ e(ωA
M )) =

V P (ωP |e(ωP ) ∨ e(ωA
M )) if M ≤ IP (ωP )

M > V P (ωP |e(ωP ) ∨ e(ωA
M )) if M > IP (ωP ).

(S.5)

Proof of Lemma S.2. First note that the index corresponding to the auxiliary option is equal to

M . Hence, if M ≤ IS(ωS), given e(ωS) ∨ e(ωA
M ), χ∗ prescribes to start with search, implying

that V(e(ωS) ∨ e(ωA
M )) = V S(ωS |e(ωS) ∨ e(ωA

M )). If, instead, M > IS(ωS), χ∗ prescribes to

select the auxiliary option forever, with an expected (per period) payoff of M. To see why, in this

case, M > V S(ωS |e(ωS) ∨ e(ωA
M )), observe that the payoff V S(ωS |e(ωS) ∨ e(ωA

M )) from starting

with search and then following χ∗ in each subsequent period is equal to V S(ωS |e(ωS) ∨ e(ωA
M )) =

Eχ∗

>1

[
(1− δ)

∑τ̄−1
s=0 δ

sUs + δτ̄M |ωS
]
, where τ̄ is the first time at which the index of search and of

all the alternatives brought to the CS by search fall weakly below M , and where the expectation

is under the process that obtains starting from e(ωS) ∨ e(ωA
M ) by searching in the first period and

then following the index policy in each subsequent period (the notation Eχ∗

>1[·] is meant to highlight

that the expectation is under such a process). This follows from the fact that, once the DM, under

χ∗, opts for the auxiliary option, he will continue to select that option in all subsequent periods.

By definition of IS(ωS),

M > IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

] ≥
Eχ∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]

Eχ∗

>1

[∑τ̄−1
s=0 δ

s|ωS
] .

Rearranging, MEχ∗

>1

[∑τ̄−1
s=0 δ

s|ωs
]
> Eχ∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]
. Therefore,

Eχ∗

>1

[
(1− δ)

τ̄−1∑
s=0

δsUs + δτ̄M |ωS

]
< MEχ∗

>1

[
(1− δ)

τ̄−1∑
s=0

δs + δτ̄ |ωS

]
= M.

Similar arguments establish Condition (S.5). □

Next, for any initial state S0 of the decision problem, and any state ωP ∈ {ω̂P ∈ ΩP : S0(ω̂
P ) >

0} of the alternatives in the CS corresponding to S0, letD
P (ωP |S0) ≡ V(S0)−V P (ωP |S0) denote the

payoff differential between (a) starting by following the index rule χ∗ right away and (b) exploring

first one of the alternatives in state ωP and then following χ∗ thereafter. Similarly, let DS(ωS |S0) ≡
V(S0)−V S(ωS |S0) denote the payoff differential between (c) starting with χ∗ and (d) starting with

search in state ωS and then following χ∗. The next lemma relates these payoff differentials to the

corresponding ones in a fictitious environment with the auxiliary option.5

Lemma S.3. Let S0 be the initial state of the decision problem, with ωS ∈ ΩS denoting the state of

5In the statement of the lemma, S0 \ e(ωS) is the state of a fictitious problem where search is not possible, whereas
SP
0 \e(ωP ) is the state of the CS obtained from SP

0 by subtracting an alternative in state ωP .
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the search technology, as specified in S0. We have that6

DS(ωS |S0) =

∫ I∗(SP
0 )

0

DS(ωS |e(ωS) ∨ e(ωA
v ))dEχ∗

[
δκ(v)|S0 \ e(ωS)

]
(S.6)

+ Eχ∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA

0 )).

Similarly, for any alternative in the CS in state ωP ∈ {ω̂P ∈ ΩP : SP
0 (ω̂P ) > 0},

DP (ωP |S0) =

∫ max{I∗(SP
0 \e(ωP )),IS(ωS)}

0

DP (ωP |e(ωP ) ∨ e(ωA
v ))dEχ∗

[
δκ(v)|S0 \ e(ωP )

]
(S.7)

+ Eχ∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA

0 )).

Proof of Lemma S.3. Using Condition (S.3), we have that, given the state S0∨e(ωA
M ) of the decision

problem, and ωS ∈ ΩS ,

DS(ωS |S0 ∨ e(ωA
M )) = V(S0) +

∫ M

0

Eχ∗
[
δκ(v)|S0

]
dv + (1− δ)E

[
c|ωS

]
(S.8)

− δEχ∗

[
V(S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)) +

∫ M

0

Eχ∗
[
δκ(v)|S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
,

where the equality follows from combining (S.2) with (S.3). Similarly,

DS(ωS |e(ωS) ∨ e(ωA
M )) = V(e(ωS)) +

∫M

0
Eχ∗ [

δκ(v)|e(ωS)
]
dv + (1− δ)E

[
c|ωS

]
−δEχ∗

[
V(e(ω̃S) ∨WP (ω̃S)) +

∫M

0
Eχ∗ [

δκ(v)|e(ω̃S) ∨WP (ω̃S))
]
dv|ωS

]
.

(S.9)

Differentiating (S.8) and (S.9) with respect to M , using the independence across alternatives

and search and Lemma S.1, we have that

∂

∂M
DS(ωS |S0 ∨ e(ωA

M )) = Eχ∗
[
δκ(M)|S0\e(ωS)

] ∂

∂M
DS(ωS |e(ωS) ∨ e(ωA

M )). (S.10)

That is, the improvement in DS(ωS |S0 ∨ e(ωA
M )) that originates from a slight increase in the value

of the auxiliary option M is the same as in a setting with only search and the auxiliary option,

DS(ωS |e(ωS) ∨ e(ωA
M )), discounted by the expected time it takes (under the index rule χ∗) until

there are no indexes with value strictly higher than M , in an environment without search where

the CS is the same as the one specified in S0. Similar arguments imply that, for any ωP ∈ {ω̂P ∈
ΩP : S0(ω̂

P ) > 0},

∂

∂M
DP (ωP |S0 ∨ e(ωA

M )) = Eχ∗
[
δκ(M)|S0\e(ωP )

] ∂

∂M
DP (ωP |e(ωP ) ∨ e(ωA

M )). (S.11)

Let M∗ ≡ max{I∗(SP
0 ), IS(ωS)}. Integrating (S.10) over the interval (0,M∗) of possible values

6Recall that I∗(SP
0 ) is the largest index of the alternatives in the CS under the state S0.
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for the auxiliary option and rearranging, we have that

DS(ωS |S0 ∨ e(ωA
0 )) = DS(ωS |S0 ∨ e(ωA

M∗))−
∫ M∗

0

Eχ∗
[
δκ(v)|S0\e(ωS))

] ∂

∂v
DS(ωS |e(ωS) ∨ e(ωA

v ))dv

= DS(ωS |S0 ∨ e(ωA
M∗))−DS(ωS |e(ωS) ∨ e(ωA

M∗))

+ Eχ∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA

0 ))

+

∫ M∗

0

DS(ωS |e(ωS) ∨ e(ωA
v ))dEχ∗

[
δκ(v)|S0\e(ωS))

]
,

where the second equality follows from integration by parts and from the fact that

Eχ∗
[
δκ(M

∗)|S0\e(ωS)
]
= 1.

That the outside option has value normalized to zero also implies that DS(ωS |S0 ∨ e(ωA
0 )) =

DS(ωS |S0). It is also easily verified that DS(ωS |S0∨e(ωA
M∗)) = DS(ωS |e(ωS)∨e(ωA

M∗)).7 Therefore,

we have that

DS(ωS |S0) =

∫ M∗

0

DS(ωS |e(ωS) ∨ e(ωA
v ))dEχ∗

[
δκ(v)|S0\e(ωS)

]
(S.12)

+ Eχ∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA

0 )).

Similar arguments imply that

DP (ωP |S0) =

∫ M∗

0

DP (ωP |e(ωP ) ∨ e(ωA
v ))dEχ∗

[
δκ(v)|S0\e(ωP )

]
(S.13)

+ Eχ∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA

0 )).

To complete the proof of Lemma S.3, we consider separately two cases. Case (1): given S0,

χ∗ specifies starting by exploring a physical alternative (i.e., M∗ = I∗(SP
0 )). Then Condition

(S.6) in the lemma follows directly from (S.12). Thus consider Condition (S.7). First observe

that, for any state ωP ∈ ΩP such that M∗ > max{I∗(SP
0 \e(ωP )), IS(ωS)}, we have that M∗ =

IP (ωP ), in which case DP (ωP |S0) = DP (ωP |e(ωP )∨ e(ωA
0 )) = 0 and the integrand DP (ωP |e(ωP )∨

e(ωA
v )) in (S.13) is equal to zero over the interval [0, IP (ωP )] and hence also over the interval

[0,max{I∗(SP
0 \e(ωP )), IS(ωS)}]. We thus have that, in this case, Condition (S.7) clearly holds.

Next observe that, for any state ωP ∈ ΩP such that M∗ = max{I∗(SP
0 \e(ωP )), IS(ωS)}, Condition

(S.7) follows directly from (S.13).

Case (2): given S0, χ∗ specifies starting with search (i.e., M∗ = IS(ωS)). Then, for any

ωP ∈ ΩP , max{I∗(SP
0 \e(ωP )), IS(ωS)} = M∗, in which case Condition (S.7) in the lemma follows

directly from (S.13). That Condition (S.6) also holds follows from the fact that, in this case,

DS(ωS |S0) = DS(ωS |e(ωS)∨ e(ωA
0 )) = 0 and the integrand DS(ωS |e(ωS)∨ e(ωA

v )) in (S.12) is equal

7This follows immediately from the observation that V(S0 ∨ e(ωA
M∗)) = V(e(ωS) ∨ e(ωA

M∗)) = M∗, and similarly
Eχ∗ [

V
(
S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S) ∨ e(ωA

M∗)
)
|ωS

]
= Eχ∗ [

V
(
e(ω̃S) ∨WP (ω̃S) ∨ e(ωA

M∗)
)
|ωS

]
. Intuitively, under

the index policy, any alternative with index strictly below M∗ is never explored given the presence of an auxiliary
alternative with payoff M∗.

6



to zero over the entire interval
[
0,max{I∗(SP

0 \e(ωP )), IS(ωS)}
]
. □

Step 2. Using the characterization of the payoff differentials in Lemma S.3, we now establish that

the average per-period payoff under χ∗ solves the Bellman equation for our dynamic optimization

problem. Let V∗(S0) ≡ (1− δ)supχ∈XEχ
[∑∞

t=0 δ
tUt|S0

]
denote the value function for the dynamic

optimization problem.

Lemma S.4. For any state of the decision problem S0, with ωS denoting the state of the search

technology as specified under S0,

1. V(S0) ≥ V S(ωS |S0), and V(S0) = V S(ωS |S0) if and only if IS(ωS) ≥ I∗(SP
0 );

2. for any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂
P ) > 0}, V(S0) ≥ V P (ωP |S0), and V(S0) = V P (ωP |S0) if and only

if IP (ωP ) = I∗(SP
0 ) ≥ IS(ωS).

Hence, for any S0, V(S0) = V∗(S0), and χ∗ is optimal.

Proof of Lemma S.4. Part 1 . First, use (S.4) to note that, for all v ≥ 0, DS(ωS |e(ωS) ∨ e(ωA
v )) ≥

0, with the inequality holding as an equality if and only v ≤ IS(ωS). Therefore, from (S.6),

DS(ωS |S0) ≥ 0 – and hence V(S0) ≥ V S(ωS |S0) – with the inequality holding as an equality if and

only if I∗(SP
0 ) ≤ IS(ωS).

Part 2 . Similarly, use (S.5) to observe that for any ωP ∈ {ω̂P ∈ ΩP : SP
0 (ω̂P ) > 0} and

any v ≥ 0, DP (ωP |e(ωP ) ∨ e(ωA
v )) ≥ 0, with the inequality holding as an equality if and only if

0 ≤ v ≤ IP (ωP ). Therefore, from (S.7), DP (ωP |S0) ≥ 0 with the inequality holding as equality if

and only if IP (ωP ) ≥ max{I∗(SP
0 \e(ωP )), IS(ωS)}. The result in part 2 of the lemma then follows

from the fact that the last inequality holds if and only if IP (ωP ) = I∗(SP
0 ) ≥ IS(ωS).

Next, note that, jointly, Conditions 1 and 2 in the lemma imply that

V(S0) = max

{
V S(ωS |S0), max

ωP ∈{ω̂P ∈ΩP :SP
0 (ω̂P )>0}

V P (ωP |S0)

}
.

Hence V solves the Bellman equation. That δTEχ [
∑∞

s=T δsUs|S] → 0 as T → ∞ guarantees that

V(S0) = V∗(S0), and hence the optimality of the index policyχ∗. □

This completes the proof. ■

S.2 Proof of Parts (2) and (3) of Proposition 2 in the main text

Part (2). For simplicity, suppose that the function f ξ is constant, that there are two categories of

candidates, α and β, so that Ξ = {α, β}, and that each search brings to the CS a single candidate

from category ξ ∈ Ξ with probability ρξ, where
∑

ξ∈Ξ ρξ = 1. Further assume that the committee’s

initial CS contains only two candidates, one of each category and that the evaluation of each

candidate generates a signal ϑ ∈ {G,B}, with ϑ = G denoting a “good” evaluation outcome and

ϑ = B a “bad” one. Each new evaluation of a ξ-candidate yields a good outcome ϑ = G with

probability qξ1 ∈ (0, 1] if the candidate is qualified (µ = 1) and with probability 1 − qξ0 if the
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candidate is unqualified (µ = 0), with qξ1 > 1 − qξ0. Further assume that qξ1 = qξ0 = qξ, ξ = α, β,

meaning that the probability that qualified candidates deliver good outcomes is the same as the

probability that unqualified candidates deliver bad outcomes, in which case the posterior belief

pξ(θ) that a ξ-candidate is qualified depends on the history θ of past evaluations only through the

difference between good and bad outcomes. The evaluation of a ξ-candidate with history θ costs

λξ(θ) ≥ 0 to the committee.8

Below we show that a reduction in the threshold for the α-candidates from Ψα to Ψ̂α = Ψα − ε,

ε > 0, may strictly reduce the ex-ante probability that an α-candidate is hired. Because f ξ is

constant, for any θ, ÎP (α, ∅) ≥ IP (α, ∅). The result below thus establishes that these policies can

hurt α-candidates even when they increase the indexes of the α-candidates.

Denote by D(θ) the difference between good and bad outcomes recorded in θ. We first identify

conditions under which the evaluation and CS expansion dynamics take a particularly simple form,

both under the original threshold Ψα and the new one Ψ̂α. We then compute the ex-ante probability

that an α-candidate is hired under each of the two thresholds. Finally, we identify conditions under

which the ex-ante probability the position is assigned to one of the α-candidates is strictly smaller

under the new threshold. The conditions are sufficient but not necessary for the result, thus revealing

that the result is not knife-edge.

Suppose that initially the thresholds (Ψα,Ψβ) are such that pα(θ) ≥ Ψα if and only if D(θ) ≥ 2

and pβ(θ) ≥ Ψβ if and only if D(θ) ≥ 1. Further assume that, for any ξ ∈ Ξ = {α, β}, λξ(θ) > vξ for

each θ containing more than four elements, meaning that it is not worth evaluating any candidate

more than four times. Finally, suppose that λβ(θ) = 0 for all θ of dimensionality smaller than four.

For ξ = α, instead, λα(θ) = 0 for all θ of dimensionality smaller than four such that pα(θ) ≥ pα(∅),
whereas, for any θ of dimensionality smaller than four such that pα(θ) < pα(∅), λα(θ) = λα, for

some λα ∈ R++. These assumptions are not crucial for the results, but simplify the calculations

below. Given these assumptions, hereafter we will confine attention to histories θ that contain no

more than 4 elements and no more than 1 bad outcome.

Denote by ςξB(p
ξ) ≡ pξ(1 − qξ) + (1 − pξ)qξ, ςξG(p

ξ) ≡ pξqξ + (1 − pξ)(1 − qξ), ςξGG(p
ξ) ≡

pξ(qξ)2+(1− pξ)(1− qξ)2, and ςξBB(p
ξ) ≡ pξ(1− qξ)2+(1− pξ)(qξ)2 the probabilities that (starting

with belief pξ about the candidate’s qualification) the first outcome is bad, the first outcome is

good, the first two outcomes are good, and the first two outcomes are bad, respectively.

The index of an α-candidate for which θ ∈ {∅, (B,G), (G,B)} is equal to

IP (α, ∅) = IP (α, (G,B)) = IP (α, (B,G)) =
(1− δ)δ2vαςαGG(p

α(∅))
1− [δςαB(p

α(∅)) + δ2qα(1− qα)]
. (S.14)

To see this, recall that, by Theorem 1 in the main text, the optimal stopping time in the definition

of an index is the first time at which the value of the index drops weakly below its initial value. In

particular, at each of the three histories in (S.14), the optimal stopping time τα∗ for the α-candidates

8These assumptions introduced above simplify some of the derivations below but are not essential for the results.
Also note that the assumption that

∑
ξ∈Ξ ρξ = 1 is without loss of generality. The case where search does not bring

any candidate with positive probability can always be captured by letting one of the categories replicate the arrival
of no new candidate.
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satisfies: τα∗ = 1 if the next outcome is bad; τα∗ = 2 if the next two outcomes are (G,B), that is,

first a good outcome and then a bad one; and τα∗ = ∞ if the next two outcomes are both good.

Similarly,

IP (α,G) = IP (α, (G,B,G)) = IP (α, (B,G,G)) =
(1− δ)δvαςαG (pα(G))

1− δςαB (pα(G))
, (S.15)

where pξ(G) = pα(∅)qξ/ςξG(pα(∅)) is the posterior probability that the candidate is qualified when

θ contains a single good outcome. This is because, at each of the three histories in (S.15), the

optimal stopping time τα∗ for the α-candidates is τα∗ = 1 if the next outcome is bad and τα∗ = ∞
otherwise. For an α-candidate whose first realization is bad, instead,

IP (α,B) =
−λα(1− δ) + (1− δ)δ3vα

[
pα(B)(qα)3 + (1− pα(B))(1− qα)3

]
1− δ [ςαB (pα(B)) + δqα(1− qα) (1 + δςαG (pα(B)))]

,

where pξ(B) = pξ(∅)(1 − qξ)/ςξB(p
ξ(∅)) is the posterior probability that the candidate is qualified

when θ contains a single bad outcome. This is because, when θ = B, the optimal stopping time

for the α-candidates is: τα∗ = 1 if the next outcome is bad; τα∗ = 2 if the next two outcomes are

(G,B); τα∗ = 3 if the next three outcomes are (G,G,B); and τα∗ = ∞ if the next three outcomes

are (G,G,G).

Next consider the β-candidates. First, observe that

IP (β, ∅) = IP (β, (B,G)) =
(1− δ)δvβςβG(p

β(∅))
1− ςβB(p

β(∅))δ
. (S.16)

This is because, at the histories in the arguments of IP (β, θ) in (S.16), the optimal stopping time

τβ∗ for the β-candidates is τβ∗ = 1 if the next outcome is bad and τβ∗ = ∞ otherwise. Similarly,

IP (β,B) =
(1− δ)δ2vβςβGG(p

β(B))

1− δ
[
ςβB (pβ(B)) + δ(1− qβ)qβ

] .
This is because, when θ = B, the optimal stopping time for the β-candidates satisfies: τβ∗ = 1 if

the next outcome is bad; τβ∗ = 2 if the next two outcomes are (G,B); and τβ∗ = ∞ if the next two

outcomes are (G,G).

Finally, note that the index of any ξ-candidate whose history θ includes two or more bad out-

comes is nonpositive, as is that of any candidate for which θ contains more than four elements.

Now suppose that the ordering of the indexes prior to the relaxation of the threshold for the

α-candidates satisfies

IP (α, ∅) = IP (α, (G,B)) = IP (α, (B,G)) > IP (β, ∅) = IP (β, (B,G)) > IP (α,B)

>
(1− δ)

{
−c+ δ2

[
ρα
(
vαςαGG(p

α(∅))δ
(
1 + 2δ2(1− qα)qα

)
− λαςαB(p

α(∅))
)
+ ρβvβςβG(p

β(∅))
]}

1− δ2
[
ρβςβB(p

β(∅)) + ραδ (ςαBB(p
α(∅)) + 2δqα(1− qα) (ςαB(p

α(∅)) + δqα(1− qα)))
]

> IP (β,B). (S.17)
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Then, from Part (2) of Theorem 1 and Part (6) of Proposition 1 in the main text, we have that

IS =
(1− δ)

{
−c+ δ2

[
ρα
(
vαςαGG(p

α(∅))δ
(
1 + 2δ2(1− qα)qα

)
− λαςαB(p

α(∅))
)
+ ρβvβςβG(p

β(∅))
]}

1− δ2
[
ρβςβB(p

β(∅)) + ραδ (ςαBB(p
α(∅)) + 2δqα(1− qα) (ςαB(p

α(∅)) + δqα(1− qα)))
] .

This is because, if the new candidate brought to the CS by search is an α-candidate, then the

optimal stopping time in the definition of the search index is given by: τα∗ = ∞ after the outcome

histories (G,G), (B,G,G,G), and (G,B,G,G); τα∗ = 3 after the history (B,B); τα∗ = 4 after the

histories (B,G,B) and (G,B,B); and τα∗ = 5 after the histories (B,G,G,B) and (G,B,G,B). If,

instead, the candidate identified by search is a β-candidate, then the optimal stopping time in the

definition of the search index is τβ∗ = ∞ if the first outcome is good and τβ∗ = 2 if the first outcome

is bad.

Now suppose that the third party reduces the threshold for all the α-candidates from Ψα to

Ψ̂α = Ψα − ε, with ε > 0. Suppose that, as a result of the change, pα(θ) ≥ Ψ̂α if and only if

D(θ) ≥ 1. Recall that ÎP (α, θ) are the indexes of the α-candidates, after the reduction in the

acceptance threshold. Then observe that

ÎP (α, ∅) = ÎP (α, (B,G)) =
(1− δ)δvαςαG(p

α(∅))
1− ςαB(p

α(∅))δ
. (S.18)

This is because the optimal stopping time for the α-candidates at the histories in the arguments of

the indexes ÎP (α, θ) in (S.18) is now given by τα∗ = 1 if the next outcome is bad and τα∗ = ∞
otherwise. Similarly,

ÎP (α,B) =
(1− δ)

[
−λα + δ2vαςαGG(p

α(B))
]

1− δ [ςαB (pα(B)) + δ(1− qα)qα]
.

This is because the optimal stopping time for the α-candidates after one bad outcome is now given

by: τα∗ = 1 if the next outcome is also bad; τα∗ = 2 if the next two outcomes are (G,B); and

τα∗ = ∞ if the next two outcomes are (G,G).

Now suppose that Ψ̂α is such that the following order of the indexes holds:

ÎP (α, ∅) = ÎP (α, (B,G)) > IP (β, ∅) = IP (β, (B,G))

>
(1− δ)

[
−c+ δ2

∑
ξ∈{α,β} ρ

ξvξςξG(p
ξ(∅))

]
1− δ2

∑
ξ∈{α,β} ρ

ξςξB(p
ξ(∅))

> max
{
ÎP (α,B), IP (β,B)

}
. (S.19)

Given the ordering in (S.19), the search index after the reduction in the threshold for the α-

candidates is then given by

ÎS =
(1− δ)

[
−c+ δ2

∑
ξ∈{α,β} ρ

ξvξςξG(p
ξ(∅))

]
1− δ2

∑
ξ∈{α,β} ρ

ξςξB(p
ξ(∅))

.

This follows directly from Part (2) of Theorem 1 along with Part (6) of Proposition 1 in the main

text (in particular, the optimal stopping in the definition of the search index is now equal to ∞ if
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the first outcome is good and is equal to 2 if it is bad, irrespective of the type of candidate brought

to the CS).

Given the results above, we now compare the ex-ante probabilities of hiring one of the α-

candidates under the old and new thresholds.

Selection of α-candidates under old threshold. The order of evaluations is given by (S.17).

Because the search technology is stationary, by virtue of Part (5) of Proposition 1 in the main text,

when search is launched, all candidates in the CS are discarded. Denote by AS the probability with

which one of the α-candidates is hired in the continuation immediately following search. We then

have that

AS = ρα {ςαGG(p
α(∅)) (1 + 2(1− qα)qα) + [1− ςαGG(p

α(∅)) (1 + 2(1− qα)qα)]AS}+ ρβςβB(p
β(∅))AS .

This is because an α-candidate is hired after the histories (G,G), (G,B,G,G), (B,G,G,G), whereas

a β-candidate is hired if and only if its first outcome is good. Rearranging, we have that

AS =
ραςαGG(p

α(∅)) [1 + 2(1− qα)qα]

1−
{
ρα [1− ςαGG(p

α(∅)) (1 + 2(1− qα)qα)] + ρβςβB(p
β(∅))

} .
Therefore, the ex-ante probability one of the α-candidates is hired is equal to

A = ςαGG(p
α(∅))

[
1 + (1− qα)qα

(
1 + ςβB(p

β(∅))
)]

+
[
ςαBB(p

α(∅)) + 2(1− qα)2(qα)2 + 2qα(1− qα)ςαB(p
α(∅))

]
ςβB(p

β(∅))AS .

This is because the β-candidate in the initial CS is explored if either the first evaluation of the

α-candidate in the initial CS yields a bad outcome, or the history of outcomes of the α-candidate

in the initial CS contains two bad outcomes. Furthermore, the α-candidate in the initial CS is

hired in the following cases: (1) the first two evaluations yield two good outcomes; (2) the first four

evaluations yield the outcomes (G,B,G,G);9 (3) the first evaluation yields a bad outcome, at which

point the β-candidate is evaluated, yields a bad outcome and is dismissed, and the subsequent three

evaluations of the α-candidate yield three good outcomes.

Selection of α-candidates under new threshold. Denote by ÂS and Â the analogs of AS and A,

respectively, after the reduction in the threshold. Given the ordering in (S.19), we have that

ÂS = ρα
[
ςαG(p

α(∅)) + ςαB(p
α(∅))ÂS

]
+ ρβςβB(p

β(∅))ÂS ,

from which we obtain that

ÂS =
ραςαG(p

α(∅))

1−
[
ραςαB(p

α(∅)) + ρβςβB(p
β(∅))

] .
9Note that, in cases (1) and (2), the β-candidate in the initial CS is never explored.
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The ex-ante probability with which one of the α-candidates is hired is thus equal to:

Â = ςαG(p
α(∅)) + ςαB(p

α(∅))ςβB(p
β(∅))ÂS .

Note that the result follows from the fact that the α-candidate in the initial CS is evaluated first. If

the evaluation yields a good outcome, the α-candidate is hired. If, instead, it yields a bad outcome,

the β-candidate in the initial CS is evaluated next. If the evaluation of the β-candidate yields a

positive outcome, the β-candidate is hired, bringing an end to the recruiting process. If, instead, it

yields a negative outcome, search is launched, at which point the probability one of the α-candidates

is hired is ÂS .

Comparison. The result in Part (2) in the proposition follows from observing that Conditions

(S.17) and (S.19) are consistent with A > Â over an open set of parameter values.

Part (3). The result follows directly from the fact that, when the CS is exogenous, the increase

in the indexes IP (α, θ) of the α-candidates, together with the optimal policy being the index rule,

implies that the DM evaluates α-candidates at histories at which she would have evaluated one of

the β-candidates. Furthermore, at any history at which the DM evaluates, or assigns the position

to, one of the β-candidates, she would have done the same under the original thresholds. This

implies that the probability that the position is given to one of the α-candidates is higher under the

new thresholds. ■

S.3 Pandora’s boxes with an endogenous CS

In this section, we show how the results in Theorem 1 and Proposition 1 in the main body also

provide a solution to an extension of Weitzman’s (1979) “Pandora’s boxes problem” in which the

set of boxes is endogenously expanded over time based on the results of past explorations. In this

problem, each alternative is a “box” and belongs to a category ξ ∈ Ξ . To each category corresponds

a pair (F ξ, λξ), where F ξ is the distribution from which the box’s prize v is drawn and λξ is the cost

of inspecting (i.e., of opening) the box. As in Weitzman’s (1979) original setting, each box’s prize

v is drawn independently (conditional on the categories) and revealed upon the first inspection.

At each period, the DM can either (a) search for additional boxes to add to the CS, (b) open

one of the boxes in the CS to learn its prize, or (c) stop and either recall the prize of one of the

previously opened boxes, or take the outside option (with a value normalized to 0), with either

one of the last two choices ending the decision problem. For simplicity (but also motivated by the

application to online consumer search), assume that each search m ∈ N brings exactly one box,

whose category ξ is drawn from Ξ according to a distribution ρ(m) ∈ ∆(Ξ), which may depend on

the number of past searches m − 1 but is invariant to the realizations of such past searches. The

draw from each ρ(m) is independent of the draw from each ρ(l), l ̸= m.

We assume that Ξ ⊂ N, with higher ξ denoting superior boxes, in the sense that, for any

ξ′, ξ′′ ∈ Ξ with ξ′′ > ξ′, F ξ′′ ⪰FOSD F ξ′ and λξ′′ ≤ λξ′ (with one of the two relationships strict).

Let ξ ≡ inf Ξ and ξ ≡ supΞ. The cost of the m-th expansion of the CS is c(m), where c(·) is a
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positive and increasing function. In addition, we assume that, for all m, ρ(m) ⪰FOSD ρ(m + 1);

that is, the distribution ρ(m) ∈ ∆(Ξ) from which the category of the m-th box is drawn first-order-

stochastically dominates, weakly, the distribution ρ(m + 1) ∈ ∆(Ξ) from which the category of

the (m + 1)-th box is drawn. The combination of the assumption that c(m) is weakly increasing

in m and the distribution ρ(m) ∈ ∆(Ξ) from which the boxes are drawn “decreases” with m in a

FOSD sense implies that the index of search IS(m) defined below is decreasing in m and can be

characterized using the same properties as when the search technology deteriorates in the sense of

Definition 2 in the main body (as per Part (6) of Proposition 1 in the main body).

We denote by ρξ(m) the probability that the m-th search brings a ξ-box, with
∑

ξ∈Ξ ρξ(m) = 1

for all m.10 As in the baseline model, the DM discounts the future according to δ.

The setting described above is one in which the decision to walk away with the prize of an

opened box, or the outside option, brings an end to the DM’s problem. The framework described

in Section 2 in the main body, instead, has an infinite horizon, and the DM chooses indefinitely

among the alternatives. Despite this difference, the solution to this problem takes the form of an

index policy akin to the one in Definition 1 in the main body.

Proposition S.1 below characterizes the optimal policy, prescribing when to search for an ad-

ditional box, the order in which existing boxes should be opened, and when to stop and either

recall an opened box or the outside option. The proof maps the Pandora’s boxes problem with an

endogenous set of boxes into an auxiliary problem that fits into the setting of Section 2 in the main

body, and then uses Theorem 1 and Proposition 1 in the main body to identify the properties of

the optimal policy in Proposition S.1.

Proposition S.1 (Pandora’s-boxes with an endogenous set of boxes). For any ξ-box that has not

been opened yet (i.e., for which ωP = (ξ, ∅) for some ξ ∈ Ξ) the reservation prize IP (ξ, ∅) is given

by the solution to:

IP (ξ, ∅) =
−λξ + δ

∫∞
IP (ξ,∅)

1−δ

vdF ξ(v)

1 + δ
1−δ

(
1− F ξ

(
IP (ξ,∅)
1−δ

)) . (S.20)

For any l ∈ R, let Ξ(l) ≡
{
ξ ∈ Ξ : IP (ξ, ∅) > l

}
denote the set of boxes whose reservation prize

exceeds l. For any m, the reservation prize of search IS(m) is given by the solution to:11

IS(m) =

−c(m) + δ
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(
−λξ + δ

∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)
1−δ

))] . (S.21)

The solution to Pandora’s-boxes problem with an endogenous CS takes the following form:

1. If the highest reservation prize among all unopened boxes in the CS is greater than the reser-

vation prize IS(m) of search, and is greater than the flow value (1 − δ)v of each opened box

10All the results extend to the case where Ξ is infinite.
11Because all the relevant information about the state of the search technology is summarized in the number of past

searches, we abuse notation and let IS(m) denote the index for the m-th search.
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and the outside-option, the DM opens one of the boxes with the highest reservation prize.

2. If the reservation prize of search IS(m) is higher than the reservation prize IP (ξ, ∅) of any

unopened box and of the flow value (1 − δ)v of each opened box and the outside-option, the

DM searches.

3. If neither of the above two situations applies, the DM stops. He then takes the prize of one of

the opened boxes whose flow value (1− δ)v is the highest among the opened boxes if the latter

value exceeds the outside-option, and takes the outside-option otherwise.

As in Weitzman’s problem, the reservation prizes IP (ξ, ∅) of the boxes that have not been

opened yet have the following interpretation.12 Suppose there are only two alternatives. One is an

unopened ξ-box and the other is a hypothetical box, whose prize is an annuity yielding K in each

period, where K is known. The reservation prize is the value of K for which the DM is indifferent

between taking the hypothetical box (yielding a continuation payoff of K/(1 − δ)) and inspecting

the ξ-box while maintaining the option to recall the hypothetical box once the prize v of the ξ-box

is discovered.

The reservation prize IS(m) of search extends this interpretation as follows. Suppose there

are two options: the hypothetical box with known value K described above, and the option of

expanding the CS. The reservation prize of search is the value K for which the DM is indifferent

between taking the hypothetical box right away, and expanding the CS, maintaining the option to

take the hypothetical box either (a) once the category ξ of the newly discovered box is discovered

and IP (ξ, ∅) ≤ K, or (b), in case IP (ξ, ∅) > K, after the prize v of the newly discovered ξ-box is

learned and v ≤ K/(1− δ).

Proof of Proposition S.1. Consider a relaxed problem in which the DM gets a flow payoff equal

to (1 − δ)v each time she selects an opened box with value v, and can revert her decision at any

period. The solution to such a problem is the index policy of Theorem 1 in the main text and

has the property that, once an opened box is selected, it continues to be selected in all subsequent

periods. The index policy for such a problem is thus feasible (and hence optimal) also in the

primitive problem.

To see that the index of a ξ-box that has not been opened yet is given by (S.20), note that the

index of an opened box is equal to (1− δ)v. Because the optimal stopping time τ∗ in the definition

IP (ξ, ∅) ≡ sup
τ>0

E
[∑τ−1

s=0 δ
sus|ξ, ∅

]
E
[∑τ−1

s=0 δ
s|ξ, ∅

] , (S.22)

of the index IP (ξ, ∅) is the first time at which the value of the index drops below its value IP (ξ, ∅)
12Weitzman defines the reservation prize ÎP (ωP ) for ωP = (ξ, ∅) as the solution to λξ = δ

∫∞
ÎP (ωP )

(v −
ÎP (ωP ))dF ξ(v)− (1− δ)ÎP (ωP ), which yields

ÎP (ωP ) = [−λξ + δ
∫∞
ÎP (ωP )

vdF ξ(v)]/[1− F ξ(ÎP (ωP ))]. The reservation prizes in (S.20) are thus equal to those in

Weitzman (1979) multiplied by (1− δ), that is, IP (ωP ) = (1− δ)ÎP (ωP ).

14



at the time the index is computed, we then have that τ∗ = 1 if (1 − δ)v ≤ IP (ξ, ∅) and τ∗ = ∞
otherwise.

Turning to the index for search, the combination of the assumption that c(m) is weakly increasing

in m with the assumption that the distribution ρ(m) ∈ ∆(Ξ) from which the boxes are drawn

“decreases” with m in a FOSD sense implies that the optimal stopping-time τ∗ in

IS(m) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|m

]
Eπ
[∑τ−1

s=0 δ
s|m

] , (S.23)

is equal to (a) τ∗ = ∞ if the box identified at the m-th search has a reservation prize IP (ξ, ∅) >
IS(m) and its realized flow payoff satisfies v(1− δ) > IS(m), (b) τ∗ = 1 if IP (ξ, ∅) ≤ IS(m), and

(c) τ∗ = 2 if IP (ξ, ∅) > IS(m) and v(1− δ) ≤ IS(m). ■

S.4 Online consumer search

As indicated in the main body, the results in Theorem 1 and Proposition 1 in the main text

(along with their adaptation to the Pandora’s boxes problem introduced above) can be used in

the application to online consumer search to endogenize the probability with which the consumer

reads the ads, clicks on them, and finalizes her purchases. Furthermore, one can derive a structural

relationship between the various positions and their click-through-rates (CTRs), accounting for the

uncertainty that the consumer faces about the ads displayed at the various positions – a feature

that the model with exogenous CSs does not capture.

S.4.1 Eventual purchase theorem with an endogenous CS

We start by showing that the properties of Proposition 1 in the main text permit one to express the

consumer’s eventual purchase decisions in terms of comparisons of the products’ discovery values.

In a similar setting, but with an exogenous CS, Choi, Dai and Kim (2018) – and, independently,

Armstrong (2017) – derive a static condition characterizing eventual purchasing decisions based

on a comparison of “effective values.” Such a characterization extends to search problems with an

endogenous CS. Let vm denote the value to the consumer for the product sold by the firm advertising

at the m-th position. For all m ≥ 1, let wm ≡ min{Im, vm(1 − δ)} be the “effective value” of the

product advertised at the m-th position (for brevity, product m) when the product is already in the

consumer’s CS, and dm ≡ min{wm, IS(m)} the product’s “discovery value,” when the product must

be brought to the CS before it can be explored (that is, before the consumer learns the product’s

ad type ξ(m)). Let product m = 0 correspond to the consumer’s outside option, with w0 = d0 = 0.

Note that wm and dm are learned by the consumer only after reading the m-th ad (which reveals

its type ξ(m)) and clicking on it which reveal its value vm.

Proposition S.2 (Eventual purchases). The consumer purchases product m if, for all l ∈ N ∪ {0},
l ̸= m, dl < dm (and only if dl ≤ dm, for all l ̸= m).
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As in Choi, Dai and Kim (2018), purchasing decisions are thus determined by a static comparison

of the products’ values, as in canonical discrete-choice models. Contrary to Choi, Dai and Kim

(2018), however, such values account for the uncertainty the consumer faces over the products

occupying the various positions (equivalently, over each product’s ad type ξ(m) prior to reading

the ad displayed in the m-th position). Allowing for such an uncertainty is important. When all

products are already in the consumer’s CS, positions do not play any specific role and there is no

reason why downstream positions should be expected to receive fewer clicks than upstream ones.

In contrast, when the consumer faces uncertainty about the ads occupying the various positions

and chooses how to alternate between reading new ads and clicking on the links of those ads

she read already, the model delivers useful structural relationships linking the positions’ CTRs

to the primitives of the problem. In particular, the characterization of eventual purchase with

endogenous CS implies that, when the reading cost c(·) is non-decreasing and the probability of

finding“attractive”ads declines (weakly) with the positions, all other things equal, the further down

a product is on the list, the lower the ex-ante probability the product is purchased (and hence its

ex-ante demand), a property often assumed, but not micro-founded, in the models considered in the

pertinent literature. The characterization follows from the fact that the optimal policy is an index

rule, along with the fact that the search index IS(m) declines with m. Heuristically, if a consumer

reads the m-th ad, it must be that the reservation prizes Il of all products l < m already in her CS,

as well as the discovered values vl(1− δ) of those products l < m that have been inspected already,

are no greater than IS(m). When the search index IS(·) is non-increasing, IS(m + 1) ≤ IS(m).

Hence, if after reading the m-th ad, Im ≥ IS(m), the consumer necessarily clicks on the m-th ad,

thus learning product m’s value vm. Once vm is learned, if (1 − δ)vm ≥ Im, the consumer stops

the search and purchases product m. The above properties imply that the purchasing decisions

are indeed determined by the comparisons of the discovery values defined above. The formal proof

follows.

Proof of Proposition S.2. Since product 0 corresponds to the outside option, a product is always

purchased. Let l ̸= m be such that dl < dm. We show that product l will not be purchased.

Case 1: l > m (i.e., l is read after m is read). First, suppose that dl = IS(l). Because

IS(l) ≤ IS(m) and because min{Im, (1− δ)vm} ≥ dm > IS(l), under the index policy of Theorem

1 in the main text, product l is read only after product m is clicked upon. Once m is clicked,

however, because (1− δ)vm > IS(l), l is never read. Hence, l will not be purchased. Next suppose

that dl = Il. Then, min{Im, (1 − δ)vm} ≥ dm > Il. Thus, product l is clicked only after m is

clicked. But again, once m is clicked, because (1 − δ)vm > Il, l is never clicked, implying that l is

not purchased. Finally, suppose dl = (1−δ)vl. Then, because min{Im, (1−δ)vm} ≥ dm > (1−δ)vl,

m must be clicked before l is purchased. Because vm > vl, l is not purchased after m’s value is

learned.

Case 2: l < m (i.e., l is read before m is read). Because

IS(m) ≥ dm > dl ≡ min{Il, (1− δ)vl, IS(l)},
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and because IS(m) ≤ IS(l), it must be that dl = min{Il, (1− δ)vl} and hence

min{Il, (1− δ)vl} < dm ≤ min{Im, (1− δ)vm}. (S.24)

Furthermore, because the search technology is non-improving, IS(l+1) ≥ ... ≥ IS(m−1) ≥ IS(m).

Along with the fact that dl = min{Il, (1−δ)vl} < dm ≤ IS(m), this implies that min{Il, (1−δ)vl} <

IS(k) for all (l + 1) ≤ k ≤ m. This last property in turn implies that either clicking on l, or

purchasing l, is dominated by reading any product k, with (l + 1) ≤ k ≤ m. If m is read, then

(S.24) implies that l will not be purchased (the arguments are similar to those for case 1). If, instead,

m is not read, it must be that another product k ̸= l,m is purchased. In either case, product l is

not purchased. ■

S.4.2 Click-Through-Rates (CTRs)

The results in Theorem 1 and Proposition 1 in the main body can also be used to characterize the

positions’ click-through rates (hereafter, CTRs), i.e., the fraction of ads at each position that, once

read, are clicked upon. Formally, for each position m, the corresponding CTR is equal to

CTR(m) ≡ Pr (m’s ad is clicked) .

Depending on the problem of interest, the information used to compute the above probability

may contain the type of the firms advertising at the different positions (as when firms know the

attractiveness of each others’ ads at the bidding stage and the above probability is computed by

the firms given the induced allocation) or only the knowledge of the rules used by the search engine

to assign the ads to the various positions (as when the probability is computed by a platform that

does not know the attractiveness of the firms’ ads, or by a firm that also lacks such information).

The next proposition relates the CTRs to the effective and discovery values introduced above.

Proposition S.3 (Click-through rates). For each position m ≥ 1, the click-through-rate is given by13

CTR(m) = Pr
(
IS(m) ≥ maxl<m{wl} ∩ Im ≥ {maxl<m{wl},maxl>m{dl}}

)
.

To understand the formula, note that, in order for the ad in position m to be read, it must be

that IS(m) ≥ maxl<m{wl}, for otherwise the consumer selects one of the products advertised in one

of the preceding positions before reading the ad displayed in the m-th position. Once product m is

read, in order for it to be clicked upon, it must be that its index Im exceeds the effective value of

each product brought to the consumer’s CS prior to m, but also the discovery value of all products

13For simplicity, the formula in the proposition assumes that, in case of indifference, the consumer favors position m
(both when it comes to reading and clicking it). This is what justifies the weak inequalities in the formula. The proof
discusses how alternative ways of breaking the indifferences must be accounted for if one were to compute bounds for
such probabilities.
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advertised further down the list, for otherwise the consumer selects one of the other products before

clicking on m. Note that the property that IS(l) is weakly decreasing in l is important here. It

implies that, if for some position l > m, dl > Im, then for all j = m + 1, ..., l, IS(j) > Im,

meaning that the consumer will necessarily read the ad of any product displayed between position

m and position l before clicking on m. If for any of such product the discovery value exceeds Im,

the consumer purchases one of these products before clicking on m, and never clicks on the m-th

product.

Take the perspective of an observer (e.g., a platform, a firm, or a savvy consumer) knowing

the rules used to assign the ads to the positions but not the attractiveness of the ads. While the

probability each ad is read is decreasing in m, Pr (Im ≥ maxl>m{dl}) need not be decreasing in m.

Hence, from the observer’s perspective, CTRs need not be monotone in positions, consistently with

what has been noticed in the empirical literature.

Proof of Proposition S.3. The proof is in two steps. Step 1 shows that IS(m) ≥ maxl<m{wl}
is necessary for product m to be read and that IS(m) > maxl<m{wl} implies that product m is

necessarily read. Step 2 shows that product m is clicked only if

IS(m) ≥ maxl<m{wl} and Im ≥ max {maxl>m{dl},maxl<m{wl}} (S.25)

and that, when both of the above inequalities are strict, product m is necessarily clicked. The result

in the proposition then follows directly from the above properties.

Step 1. To see that IS(m) ≥ maxl<m{wl} is necessary for product m to be read, suppose that,

for some l < m, wl > IS(m). That is, both the index corresponding to clicking on product l, Il, and
the one corresponding to purchasing product l, (1− δ)vl, are strictly greater than IS(m). Because

product l is read before product m is read, by Theorem 1 in the main text, m is never read.

Next, we show that, when IS(m) > maxl<m{wl}, product m is always read. To see this,

note that since the search cost c(·) is increasing, IS(1) ≥ ... ≥ IS(m − 1) ≥ IS(m). Therefore,

IS(m) > maxl<m{wl} implies that, for any 1 ≤ l ≤ m, IS(l) > wl−1 = min{Il−1, (1 − δ)vl−1}.
Hence, by Theorem 1 in the main text, for any 1 ≤ l ≤ m, it cannot be that product l − 1 is

purchased before product l is read. Repeatedly applying this argument for all 1 ≤ l ≤ m implies

product m must be read before any product l < m is purchased.

Step 2. To see that both inequalities in (S.25) must hold for product m to be clicked, first

observe that we already established in Step 1 that the first inequality in (S.25) is necessary for

product m to be read. Thus assume that such inequality holds. To see that the second inequality

in (S.25) must also hold, suppose that Im < max {maxl>m{dl},maxl<m{wl}}. Then either there

exists a product l < m such that wl > Im, or a product l > m such that dl > Im, or both.

Suppose there is a product l < m such that wl > Im. Then product m cannot be clicked, because

product l is necessarily read before m and, because both Il and (1 − δ)vl are strictly greater

than Im, product l is purchased before m is clicked. Next, suppose that there exists a product

l > m such that dl = min{IS(l), Il, (1 − δ)vl} > Im. By the monotonicity of the search indexes,

IS(m) ≥ IS(m + 1) ≥ ... ≥ IS(l). That IS(l) > Im, then implies that IS(k) > Im for any
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k = m,m + 1, ..., l. In turn, this last property implies that clicking on m is dominated by reading

product k, for any k = m + 1, ..., l. If product l is read, because both Il and (1 − δ)vl are strictly

greater than Im, product m is not clicked. If, instead, product l is not read, it must be that another

product k ̸= l,m, with k ∈ {m+ 1, ..., l− 1}, is purchased. In either case, product m is not clicked.

Hence, the two inequalities in (S.25) are necessary for product m to be clicked.

Next, we show that when the two inequalities in (S.25) are strict, product m is necessarily

clicked. We already established in Step 1 that, when the first inequality in (S.25) is strict, product

m is read. Now suppose that the second inequality is also strict. That Im > maxl<m{wl} implies

that, for each product l < m, either Il or (1 − δ)vl are strictly smaller than Im. Because product

m is read, by Theorem 1 in the main text, it cannot be that any product l < m is purchased before

product m is clicked. Similarly, that Im > maxl>m{dl} implies that, for each l > m, either IS(l), or

Il, or (1− δ)vl are strictly smaller than Im, which again guarantees that no product l > m can be

purchased before product m is clicked. Since one of the products is necessarily purchased (product

0 representing the outside option), it must be that product m is clicked. Hence, we conclude that

when the two inequalities in (S.25) are both strict, product m is necessarily clicked. ■

S.4.3 Parametric example

Consider a market with two firms, each of which advertises a single product. Let z denote the profit a

firm derives from selling its product and assume that the two firms’ profits are drawn independently

from a distribution Z. Suppose that the product of each firm can either be highly attractive to the

consumer (ξ = H) or less attractive (ξ = L), with the types drawn independently from Ξ = {H,L},
with Pr(ξ = H) = qH . A highly-attractive product yields an utility to the consumer, net of the

purchasing price, drawn uniformly from [0, 1 + α], where α > 0. A less-attractive product, instead,

yields a net utility drawn uniformly from [0, 1]. The consumer learns the attractiveness of a firm’s

product by reading the firm’s ad but discovers her net value for the product only by clicking on the

ad and being directed to the firm’s webpage. For simplicity, assume that λ ≡ c ≡ 0, so that the

only cost is discounting.

The two firms advertise their products on a platform using the ascending-clock version of the

generalized second-price auction to allocate the two ad positions. The firm dropping out first is

allocated the second position and pays nothing, whereas the other firm is allocated the first position

and pays to the platform the price at which the other firm dropped out per click.

Using the formula for the reservation prize in Proposition S.1 characterizing the optimal policy

in Pandora’s-boxes problem with an endogenous CS, the “clicking index” of an L-type firm is given

by

IP
L ≡ IP (L, ∅) =

δ
2(1−δ)2

(
(1− δ)2 − (IP (L, ∅))2

)
1 + δ

(1−δ)2 ((1− δ)− IP (L, ∅))
,
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which, solving for IP (L, ∅), yields

IP
L =

1− δ

δ

(
1−

√
1− δ2

)
.

Similarly, the clicking index of an H-type firm is

IP
H ≡ IP (H, ∅) = (1 + α)

(
1− δ

δ

)(
1−

√
1− δ2

)
.

Because the consumer always reads the first ad (as there are no direct cost of reading and the

outside option is equal to 0), the initial search index (corresponding to the decision to read the first

ad) plays no role in the analysis and hence we do not provide its characterization. The following

lemma characterizes in closed form the index for reading the second ad which, which is a function

of ρL and ρH . The probabilities ρL and ρH , may of course depend on the type of ad encountered

in the first position.

Lemma S.5. Let ρL and ρH represent the probabilities that the consumer assigns to finding an L or

H firm in the second position. The index IS for the decision to read the second ad is equal to

IS(ρL, ρH) =

(1− δ)(1 + α)

[
1−

√
1− δ4

1+α (1 + αρL) (1 + αρH)

]
δ2(1 + αρL)

if

δ
(
1−

√
1− δ2

) (
1 + αρL

)
1 + α

> 1−
√
1− δ4

1 + α
(1 + αρL) (1 + αρH)

and otherwise,

IS(ρL, ρH) =

(1− δ)(1 + α)

[
1− δ + δρH −

√
(1− δ + δρH)2 − δ4 (ρH)2

]
δ2ρH

.

Proof of Lemma S.5. Recall that the index of search in the Pandora’s boxes problem with

endogenous CS is given by

IS(ρL, ρH) =

δ2
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)
1−δ

))] ,
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where Ξ(l) ≡
{
ξ ∈ Ξ : IP (ξ, ∅) > l

}
. Since there are no direct costs,

IS(ρL, ρH) =

−δ2
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)
1−δ

))] .
Note that since IP (∅, H) > IP (∅, L), it cannot be that Ξ(IS(ρL, ρH)) = {L}. Furthermore, it

cannot be that Ξ(IS(ρL, ρH)) = ∅, as in this case no category has an index greater than search,

which means stopping (in the definition of search index) occurs immediately after search is carried

out, yielding IS(2) = 0, a contradicting. Hence, there are two feasible cases to consider: (i)

Ξ(IS(ρL, ρH)) = {H,L} and (ii) Ξ(IS(ρL, ρH)) = {H}. We derive the index of search for each of

these cases.

Denote ξ ≡ ρL + ρH(1 + α), ξ̂ ≡ ρL + ρH

1+α .

Case (i) - Ξ(IS(ρL, ρH)) = {H,L}. In this case, the index of search is

IS(ρL, ρH) =

−δ

[
ρL
(
δ
∫∞

IS(m)
1−δ

vdFL(u)

)
+ ρH

(
δ
∫∞

IS(m)
1−δ

vdFH(u)

)]
1 +

(
ρL
[
δ + δ2

1−δ

(
1− FL

(
IS(m)
1−δ

))]
+ ρH

[
δ + δ2

1−δ

(
1− FH

(
IS(m)
1−δ

))]) ,
which in the current example, after some algebra, can be rewritten as

IS(ρL, ρH) =
−(1− δ)2

(
− δ2

2 ξ
)
− δ2

2

(
IS(m)

)2
ξ̂

1− δ − δ2ξ̂IS(m)
.

Solving for IS(ρL, ρH), we have that in case (i),

IS(ρL, ρH) =
1− δ

δ2ξ̂

(
1−

√
1− δ4ξ̂ξ

)

=
(1− δ)(1 + α)

δ2 (1 + αρL)

1−

√
1− δ4

(1 + αρL) (1 + ρHα)

1 + α


Case (ii) - Ξ(IS(ρL, ρH)) = {H}. In this case,

IS(ρL, ρH) =

δ2ρH
(∫∞

IS(m)
1−δ

vdFH(u)

)
1 + ρH

[
δ + δ2

1−δ

(
1− FH

(
IS(m)
1−δ

))] ,
which, after some algebra, can be written as

IS(m) =

1
2δ

2(1− δ)2ρH(1 + α)− δ2ρH

2(1+α)

(
IS(m)

)2
(1− δ)2 + ρH

(
δ(1− δ)− δ2

(
IS(m)
1+α

)) .
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Solving for IS(ρL, ρH), we have that in case (ii),

IS(m) =
(1− δ)(1 + α)

δ2ρH

(
1− δ + δρH −

√
(1− δ + δρH)2 − δ2(ρH)2

)
.

Now, case (i), Ξ(IS(ρL, ρH)) = {H,L}, is the relevant case if and only if

IP (∅, L) = 1− δ

δ

(
1−

√
1− δ2

)
>

1− δ

δ2ξ̂

(
1−

√
1− δ4ξ̂ξ

)
,

where recall that the RHS of the latter inequality is the index of search in case (i). The latter

inequality can equivalently be written as

δ

(
1 + αρL

1 + α

)(
1−

√
1− δ2

)
> 1−

√
1− δ4

1 + α
(1 + αρL) (1 + αρH). (S.26)

We have therefore shown that the search index is equal to

(1− δ)(1 + α)

δ2(1 + αρL)

(
1−

√
1− δ4

1 + α
(1 + αρL) (1 + αρH)

)

if (S.26) holds, and otherwise it is equal to

(1− δ)(1 + α)

δ2ρH

(
1− δ + δρH −

√
(1− δ + δρH)2 − δ4(ρH)2

)
.

■

Given the lemma above, the CTRs, VPCs, and eventual purchase decisions, are pinned down

by the results in the subsections above.

S.4.4 Detrimental effect of additional ad space - comparative statics

Consider the setting described in Section 4.2 in the main body. The following result illustrates how

the increase in the probability that search brings an additional product by firm ξ may reduce the

index of search, inducing the consumer to visit the website of one of firm ξ’s competitors before

searching for new products. When strong enough, such an effect may reduce the probability that

one of firm ξ’s product is selected, and hence firm ξ’s profits.

Proposition S.4. Consider the environment described at the end of Section 4.2 in the main body. An

increase in the probability ρξ that search brings an additional product from firm ξ may reduce firm

ξ’s ex-ante expected profits.

Proof of Proposition S.4. Suppose that each F ξ is a Bernoulli distribution assigning probability pξ
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to v = v̂ξ and (1 − pξ) to v = 0, with v̂ξ ∈ R++.
14 Each firm makes equal profits on each of its

two products. Hence, each firm’s ex-ante total profits are equal to the total probability with which

one of its two products is selected. To keep things simple, suppose the consumer incurs no cost for

inspecting any product other than the time cost of postponing the final purchase: that is, λξ = 0

for ξ = A,B,C. The consumer’s discount factor is δ.

Exogenous CS. Suppose the identity of the firm receiving the additional slot is determined ex-

ante, i.e., before the consumer starts the exploration process. Given the composition of the CS, the

consumer then sequentially decides which product to inspect and when to stop, at which point she

either chooses one of the inspected products or her outside option (whose value is normalized to

zero). As shown in the main text, the reservation prize for each ξ’s product, before the latter is

inspected, is equal to

I(ξ, ∅) = (1− δ)δpξ v̂ξ

1− δ + δpξ
,

whereas the reservation prize of each ξ’s product after it is inspected is equal to I(ξ, v) = (1− δ)v,

with v ∈ {v̂ξ, 0}. The optimal policy is to inspect products in descending order of their reservation

prizes, stopping when the remaining reservation prizes are all smaller than the maximal realized

value among the inspected products. Clearly, in this environment, each firm benefits from an

increase in the probability it is given a second slot.

Endogenous CS. Now suppose that the consumer’s initial CS consists of three products, one from

each firm ξ = A,B,C, and that the CS can be expanded only once, with the expansion bringing

an additional product drawn from Ξ according to ρ, with ρξ ≥ 0, ξ = A,B,C, and with
∑

ξ ρ
ξ = 1.

The result in the corollary then follows from Claim S.1 below.

Claim S.1. Suppose that I(A, ∅) > I(B, ∅) > I(C, ∅). There exist parameter values consistent with

the above inequalities such that an increase in ρB, together with a reduction by the same amount

in ρA, leads to a decrease in the overall probability that one of firm B’s products is sold (and hence

in its ex-ante expected profits).

Proof. We establish the claim above by showing that an increase in the probability that search

brings an extra B-product (along with a reduction by the same amount in the probability that it

brings an A-product) may reduce the attractiveness of search thus inducing the consumer to inspect

firm C’s product before expanding the CS. We show that this effect may imply a drop in firm B’s

ex-ante profits.

It is easy to verify that the index for search is equal to

IS =δ2maxk∈{A,B,C}


∑

ξ∈{ξ′∈Ξ:I(ξ′,∅)≥I(k,∅)} ρ
ξpξ v̂ξ

1 +
∑

ξ∈{ξ′∈Ξ:I(ξ′,∅)≥I(k,∅)} ρ
ξδ
(
1 + pξδ

1−δ

)
 . (S.27)

14One can think of v̂ξ as the value (net of price) to the consumer in case the product is a good match, and pξ as
the probability of such an event.
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Figure 1: The change ϕ(ζ)−ϕ(0) in the probability with which a product of firm B is selected, as a function

of ζ (in blue).

For concreteness, let δ = 0.9 and suppose that (v̂A, pA) = (10, 1
10), (v̂

B, pB) = (3, 13), and (v̂C , pC) =

(2, 12). Note that the distributions F ξ from which the consumer’s values for the firms’ products

are drawn have the same mean, but are mean preserving spreads of one another; hence I(A, ∅) >
I(B, ∅) > I(C, ∅). Suppose that, initially, ρA = ρB = 1

4 , and ρC = 1
2 . It is easily verified that

I(A, ∅) = 0.473, I(B, ∅) = 0.225, I(C, ∅) = 0.163, and IS = 0.174. Also note that I(C, ∅) < IS <

I(B, ∅), so that IS does not take into account the benefits from inspecting firm C’s additional

product, in case search brings a second product by firm C.

Now suppose ρB is increased by ζ ∈ [0, 0.25] while ρA is reduced by the same amount. Let ϕ(ζ)

denote the probability that one of firm B’s products is ultimately chosen when the probability that

search brings a B-product is ρB + ζ. Figure 1 depicts the change ϕ(ζ) − ϕ(0) in the probability

that one of firm B’s products is selected as a function of ζ, where ϕ(0) = (1 − pA)(pB + (1 −
pB)ρBpB) = 0.35. The horizontal gray lines correspond to the indices I(A, ∅), I(B, ∅), and I(C, ∅),
whereas the dark gray curve depicts IS , as a function of ζ. Note that IS is decreasing in ζ, since

I(A, ∅) > I(B, ∅). Hence, an increase in ζ implies a lower index for search. IS starts out above

I(C, ∅), and intersects I(C, ∅) at an interior ζ (smaller than 0.25), denoted by ζ∗ (the vertical

dashed line). For ζ < ζ∗, I(C, ∅) < IS < I(B, ∅), whereas for ζ > ζ∗, IS < I(C, ∅). The function

IS(ζ) has a kink at ζ = ζ∗. For ζ ∈ [0, ζ∗), the CS is expanded before firm C’s product is inspected,

whereas for ζ ∈ (ζ∗, 0.25] the opposite is true. Therefore, the probability that one of firm B’s

products is chosen is equal to ϕ(ζ) = (1 − pA)(pB + (1 − pB)(ρB + ζ)pB) for ζ ∈ [0, ζ∗) and is

equal to ϕ(ζ) = (1 − pA)
(
pB + (1− pB)(1− pC)(ρB + ζ)pB

)
for ζ ∈ (ζ∗, 0.25], with a downward

discontinuity at ζ = ζ∗ equal to (1− pA)(1− pB)pBpC(ρ2 + ζ∗). Furthermore, the downward drop

in ϕ(ζ) at ζ = ζ∗ makes ϕ(ζ)− ϕ(0) negative over (ζ∗, 0.25], thus establishing the claim above.
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S.5 Irreversible choice

Consider the following amendment to the general model of Section 2 in the main text. At any

period t, in addition to exploring an alternative in the CS or expanding the latter, the DM can

irreversibly commit to any alternative in the CS, provided that the alternative has been explored at

least Mξ times (with ξ denoting the alternative’s category).15 Once the DM irreversibly commits to

an alternative, there are no further decisions to be made. Irreversibly committing to an alternative

yields a flow payoff to the DM from that moment onward, the value of which may be only imperfectly

known to the DM at the time the irreversible decision is made. In particular, denote by R(ωP ) the

expected flow value from irreversibly committing to an alternative whose current state is ωP = (ξ, θ).

Note that R(ωP ) admits two equivalent interpretations: (i) the DM obtains an immediate expected

payoff equal to R(ωP )/(1−δ) after which there are no further payoffs; (ii) payoffs continue to accrue

at all subsequent periods after the irreversible choice is made, with each expected flow payoff equal

to R(ωP ).

For any ωP = (ξ, θ) and ω̂P = (ξ̂, θ̂), say that ω̂P “follows” ωP if and only if ξ̂ = ξ, θ =

(ϑ1, ..., ϑm), for some m, and θ̂ = (ϑ1, ..., ϑm, ..., ϑm̂) for some m̂ ≥ m. Denote this relation by

ω̂P ⪰ ωP .

Condition 1. A category-ξ alternative has the better-later-than-sooner property if, for any ωP =

(ξ, θ) such that θ = (ϑ1, ..., ϑm), with m ≥ Mξ, and any ω̂P ⪰ ωP , either R(ω̂P ) ≥ R(ωP ), or

R(ω̂P ), R(ωP ) ≤ 0.

The following environments are examples of settings satisfying Condition 1.

Example S.1 (Weitzman’s generalized problem). Consider the following extension of Weitzman’s

original problem: (i) The set of boxes is endogenous; (ii) each category-ξ box requires Mξ explo-

rations before the box’s value is revealed; (iii) the DM can irreversibly commit (i.e., select) a box

only if its value has been revealed, i.e., only after Mξ explorations, where Mξ can be stochastic; (iv)

the flow payoff from exploring a box without committing to it is equal to the cost of exploring the

box (with the latter evolving stochastically based on the number of past explorations) and is equal

to zero for any exploration t > Mξ; (v) the payoff R(ωP ) from irreversibly committing to a box

whose value has been revealed (i.e., after the Mξ-th exploration) remains constant after the Mξ-th

exploration and is equal to the box’s prize.

Example S.2 (Purchase/Lease problem). In each period, an apartment owner either chooses one

of the real-estate agents she knows to lease her apartment, or searches for new agents. In addition,

the owner can use one of the agents to sell the apartment. The decision to sell the apartment is

irreversible. Once the apartment is sold, the owner’s problem is over. The (expected) flow value

ujt the owner assigns to leasing the apartment through agent j of category ξ in state ωP = (ξ, θ) is

a function of the information θ = (ϑ1, ..., ϑm) the owner has accumulated over time about agent j’s

ability to deal with all sorts of problems related to tenants. The (expected) value R(ωP ) the owner

15If Mξ = 0, the DM can irreversibly commit to any ξ-alternative without first exploring it.
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assigns to selling the apartment through the same agent may also depend on the agent’s expertise

with tenant-related problems but is primarily a function of the familiarity the agent has with the

apartment, which is determined by the number of times m the agent has been hired by the owner

in the past. If the agent has no or little past experience selling apartments, R(ωP ) ≤ 0. Else, for

any θ = (ϑ1, ..., ϑm) and θ̂ = (ϑ1, ..., ϑm, ..., ϑm̂) such that m̂ ≥ m, R(ξ, θ̂) ≥ R(ξ, θ). Contrary to

Weitzman’s generalized problem above, the DM may derive a higher (expected) value from using an

alternative without irreversibly committing to it (i.e, from leasing instead of selling) for an arbitrary

long, possibly infinite, number of periods.

To accommodate for irreversible choice, we need to modify the definition of the index of each

alternative in state ωP ∈ ΩP as follows:

IP (ωP ) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωP

]
Eπ
[∑τ−1

s=0 δ
s|ωP

] , (S.28)

where τ is a stopping time, and where π is a rule specifying whether the DM explores the alternative,

or irreversibly commits to it. Similarly, modify the index of search IS(ωS) by letting the rule π now

specify not only whether the DM keeps searching or explores one of the alternatives brought to the

CS through search, but also whether or not she irreversibly commits to one of the alternatives that

the new search brought to the CS.

Next, amend the definition of the index policy χ∗ as follows. At each period t ≥ 0, given the

state St of the decision problem, the policy specifies to (a) search if IS is greater than the index IP

of any alternative in the CS and the expected “retirement” value R of each alternative in the CS; (b)

experiment with an alternative in state ωP if its index IP is greater than its expected retirement

value R, as well as the index of search, and both the index and the expected retirement value of

any other alternative in the CS; (c) choose (i.e., irreversibly commit to) an alternative in state ωP

if its retirement value R is greater than its index IP , as well as the index of search and both the

index and the expected retirement value of any other alternative in the CS.

We then have the following result:

Theorem S.1 (Indexability with irreversible choice). Suppose Condition 1 is satisfied for all ξ ∈ Ξ.

The conclusions in Theorem 1 in the main text apply to the problem with irreversible choice under

consideration. However, the stopping time τ∗ in the characterization of the index of search is now

the first time (strictly above the one at which the index is computed) at which IS, all the indexes

of the alternatives brought to the CS by search, and all retirement values of such alternatives fall

below the value IS(ωS) of the search index when the latter is computed.

The result is established by considering a fictitious problem without irreversible choice in which,

each time the DM experiments with an alternative and changes its state to ωP , an “auxiliary

alternative” with constant flow payoff equal to R(ωP ) is added to the CS and remains available

in all subsequent periods, irrespectively of possible changes in the state of the alternative that

generated it. The better-later-than-sooner property of Condition 1 guarantees that, if the DM ever
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selects one of these auxiliary alternatives, she necessarily picks the one corresponding to the latest

exploration of the alternative that generated it. This last property in turn implies that both (a)

the non-perishability of the auxiliary alternatives and (b) the reversibility of choice in the fictitious

problem play no role, which in turn implies that the optimal policy in the fictitious problem coincides

with the one in the primitive problem.

Proof of Theorem S.1. To ease the notation, assume the initial CS is empty. It will be evident from

the arguments below that the optimality of χ∗ does not hinge on this assumption. Consider first

an environment where Mξ = 0 for all ξ. It will also become evident from the arguments below that

the result easily extends to environments where Mξ > 0, as well as to environments where Mξ is

stochastic and learned over time.

Consider the following fictitious environment , where all choices are reversible. Whenever an

alternative of category ξ is brought to the CS, an additional auxiliary alternative is also introduced

into the CS, yielding a fixed flow payoff of R(ξ, ∅).16 Furthermore, whenever a non-auxiliary alter-

native in state ωP is explored, a new auxiliary alternative yielding a fixed payoff of R(ω̃P ) is also

added to the CS, where ω̃P denotes the new state of the explored alternative drawn from HωP ,

as in the baseline model.17 We say that an auxiliary alternative corresponds to a (non-auxiliary)

alternative in state ωP if it has been introduced to the CS as the result of either search (in which

case θ = ∅) or the exploration of an alternative in state ωP . In this auxiliary environment, define the

index of search as in the main text, with the rule π specifying whether to keep searching or exploring

one of the alternatives introduced through search, including the auxiliary alternatives brought to

the CS by search or by the explorations of the alternatives brought to the CS through search. For

each alternative in state ωP , define its new index as in (S.28), with the rule π in the definition

of the index specifying for each period prior to stopping whether to explore the alternative itself

or one of the auxiliary alternatives introduced as the result of the alternative’s current and future

explorations (i.e., following the period at which the index is computed; importantly, π excludes

any auxiliary alternative introduced in periods prior to the one in which the index is computed).

Finally, let the index of any auxiliary alternative coincide with the alternative’s retirement value,

as specified by the function R.

It is easy to see that the same steps as in the proof of Theorem 1 in the main text imply

that, in this auxiliary environment, the index policy based on the above new indices is optimal.18

It is also easy to see that the DM’s problem in the auxiliary environment is a relaxation of the

problem in the primitive environment in which (a) all decisions are reversible, and (b) alternatives

can be retired also in states that are not feasible any more due to the subsequent explorations of

the same alternative. Hereafter, we argue that the DM’s payoff in the primitive environment under

the proposed index policy is the same as under the corresponding index policy in the fictitious

16Recall that R(ξ, ∅) is the retirement value of a physical alternative of category ξ that has never been explored.
17If Mξ > 0, the introduction of the auxiliary alternative as the result of the exploration of an alternative in state

ωP = (ξ, θ) occurs only if θ = (ϑ1, ..., ϑs) with s ≥ Mξ, that is, only if the alternative has been explored at least Mξ

times.
18The proof must be adjusted to accommodate for the auxiliary alternatives introduced as the result of the DM

exploring the physical alternatives. Since all the steps are virtually the same, the proof is omitted.
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environment. To see this, first observe that, in the fictitious environment, once the DM explores

an auxiliary alternative, she continues to do so in all subsequent periods, since the indexes R(ωP )

of the auxiliary alternatives do not change. This implies that the reversibility of choice in the

fictitious environment plays no role. Next, observe that Condition 1 implies that, in the fictitious

environment, if the DM selects an auxiliary alternative, she always picks the one corresponding to

the “newest” state of the corresponding non-auxiliary alternative that created it; this is because

the latest has the highest expected value R among all the auxiliary alternatives corresponding to

the same non-auxiliary alternative. This implies that the non-perishability of the older versions of

the auxiliary alternatives in the fictitious environment also plays no role. The same condition also

guarantees that the policy π in the definition of the index of the non-auxiliary alternatives in the

fictitious problem coincides with the one in (S.28) where the selection π is restricted to be over the

exploration of the non-auxiliary alternative under consideration and the retirement of the latter in

its most recent state.

Finally, note that the proof immediately extends to settings in which Mξ > 0 by assuming

that, in the fictitious environment, an auxiliary alternative is introduced into the CS only when its

corresponding non-auxiliary alternative has been explored more than Mξ times, with Mξ possibly

stochastic and learned over time (in this latter case, the time-varying component of an alternative’s

state, θ, may also contain information about Mξ). ■

S.6 Sub-optimality of index policies with “meta arms”

In this section, we briefly illustrate, by means of an example, why multi-armed bandit problems

in which alternatives take the form of “meta arms”, i.e., sub-decision problems with their own

sub-decisions, typically do not admit an index solution. This is so even if each sub-problem is

independent from the others, and even if one knows the solution to each independent sub-problem.

In the same vein, dependence or correlation between alternatives typically precludes an index solu-

tion. This is the case even if a subset of dependent alternatives evolves independently of all other

alternatives, and even if one knows how to optimally choose among the dependent alternatives in

each given subset in isolation.

Consider the following extension of the environment described in the main text. There are k ∈ N
sets of arms, K1, ...,Kk. Arms from different sets evolve independently of one another, but the state

of each arm within a set may depend on the state of other arms from the same set. More generally,

suppose that each arm corresponds to a “meta arm”, the activation of which involves decisions other

than when to stop using it. Each meta arm has its own decision process which is independent of

the other meta arms.

Clearly, the model in the main body of the paper is a special case of this richer setting. Suppose

that, for each set of arms Ki, one can compute the optimal sequence of pulls, independently of the

other sets of arms. Equivalently, suppose that for each “meta arm” one can compute the optimal

sequence of decisions that define the usage of that arm, independently of the solution to the other

meta arms’ problems. It is tempting to conjecture that one may then assign an independent index
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to each set of arms Ki (alternatively, to each“meta arm”) and that the optimal policy for the overall

problem reduces to an index policy, whereby the meta arm with the highest index is selected in

each period.

Perhaps surprisingly, the optimal policy for this enriched problem does not admit an index

representation. When arms are not defined as in the canonical multi-armed bandit problem, but

rather feature a more complicated internal decision problem (preserving the independence across

arms), the optimal policy need not be an index policy. The following example illustrates.

Example S.3. There are two arms. Arm 1 yields a reward of 1,000 when it is first pulled. In all

subsequent pulls, it yields a reward λ, where λ is initially unknown and may be either 1 or 10, with

equal probability. After the first pull of arm 1, λ is perfectly revealed and is fully persistent. Arm

2 is a “meta arm” corresponding to the following decision problem. When the decision maker pulls

arm 2 for the first time, she must also choose how to pull it. There are two ways to pull this arm,

2(A) and 2(B). If the decision maker selects 2(A), the arm yields a reward of 100 for a single period,

followed by no rewards thereafter. If, instead, the decision maker selects 2(B), the arm yields a

reward equal to 11 in each of its subsequent pulls. The choice of which version of arm 2 to use must

be made the first time that arm 2 is pulled and can not be reversed.

Assume δ = 0.9. The optimal policy for this problem is the following. In period 1, arm 1 is

pulled. If λ = 10, then arm 2 in version 2(A) is then pulled for a single period, followed by arm

1 again in all subsequent periods. If, instead, λ = 1, arm 2 is then pulled in version 2(B) in all

subsequent periods. Note that, under the optimal policy, the decision of how to use arm 2 depends

on the realization of arm 1’s first pull. It is then evident that the optimal policy is not an index

policy, no matter how one defines the indices. This is because an index policy requires that both

the index of each arm and its utilization (when an arm can be used in different versions, as in the

case of “meta arm” 2 in this example) be invariant in the results of the activation of all other arms.
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