Expectation Conformity in Strategic Cognition

Alessandro Pavan Jean Tirole

- Players' understanding of strategic situation often endogenous
- Information acquisition
 - payoffs
 - other players' view of the game
- Memory management
- Endogenous depth of reasoning

Cognition

- self-directed (affecting player's own view of the game)
- manipulative (affecting other players' view of the game)

- Manipulative cognition
 - framing and signal jamming
 - disclosure/noisy communication
 - defensive measures (counter-intelligence)

This Paper

- How cognitive choices depend on
 - type of strategic interaction (e.g., complements vs substitutes)
 - beliefs over selected cognition

• Expectation conformity

- Cognitive choice reflects beliefs over
 - opponents' expectation about own's cognition
 - opponents' actual cognition
- ... use decomposition to shed light on
 - determinacy of equilibria
 - relation between strategic interaction and cognitive posture

Literature – Incomplete

Information acquisition

- auctions:...Persico (2000)...
- mechanism design:...Bergemann and Välimäki (2002)...
- contracting:...Crémer and Khalil (1992, 1994), Crémer et al. (1998a,b), Dang (2008), Tirole (2009), Bolton and Faure-Grimaud (2010), Pavan and Tirole (2021a,b)...
- security design:...Farhi and Tirole (2015), Dang et al (2017), Yang (2020)...
- linear-quadratic + global games:...Hellwig and Veldkamp (2009), Myatt and Wallace (2012), Colombo, Femminis, Pavan (2014), Szkup and Trevino (2015), Pavan (2016), Morris and Yang (2019), Denti (2020), Liang and Mu (2020), Banerjee et al. (2021)...

• Interpreting other players' views + noisy communication

...Dewatripont and Tirole (2005), Che and Kartik (2009), Calvo-Armengol et al. (2015), Sethi and Yildiz (2016, 2018), Kozlovskaya (2018), Adriani and Sonderegger (2020)...

• Signal jamming and framing

 ...Fudenberg and Tirole (1986), Holmström (1999), Dewatripont et al. (1999), Salant and Siegel (2018), Horner and Lambert (2019)...

• Sparsity and endogenous depth of reasoning

...Gabaix (2014), Alaoui and Penta (2016, 2017, 2018)...

• Psychological games

...Geanakoplos et al., (1988), Battigalli and Dufwenberg (2009)...

Introduction

2 Model

- Expectation conformity
- Equilibrium determinacy

Sparsity

6 Espionage and counter-espionage

Model

• Primitive game

- *n* players: $i \in I$
- A_i: action set
- $u_i(\alpha_i, \alpha_{-i}, \omega)$: gross payoff
- mixed actions: α_i, α_{-i}
- payoff-relevant state: $\omega \in \Omega$ (prior *F*)

Model

Cognition

- $\rho = (\rho_i, \rho_{-i})$: cognitive profile
- $C_i(\rho_i)$: cognitive cost

Info acquisition

- $Q(s|\omega, \rho) \in \Delta(S)$: "signals/beliefs" distribution
 - $S = X_{i \in I} S_i$
 - Self-directed cognition: $Q(s|\omega, \rho) = \bigotimes_{i \in I} Q_i(s_i|\omega, \rho_i)$

- Stage-2 strategies
 - $\sigma_i: S_i \to \Delta(A_i)$
 - $\sigma^{\rho}:$ stage-2 BNE given cognition ρ

• Ex-ante gross payoff

$$U_{i}(\sigma;\rho) \equiv \int_{\omega} \left[\int_{s} u_{i}(\sigma_{i}(s_{i}), \sigma_{-i}(s_{-i}), \omega) \mathrm{d}Q(s|\omega, \rho) \right] \mathrm{d}F(\omega)$$

• Value function

$$V_i(\rho'_i;\rho) \equiv \sup_{\sigma_i \in \Delta(A_i)^{S_i}} U_i(\sigma_i,\sigma^{\rho}_{-i};\rho'_i,\rho_{-i})$$

• Net ex-ante payoff

$$V_i(
ho_i';
ho) - C_i(
ho_i')$$

Introduction

2 Model

Expectation conformity

Equilibrium determinacy

Sparsity

Expectation Conformity

Definition 1

Expectation conformity (EC) holds for ρ and $\hat{\rho}$ if, for all *i*,

$$\Gamma_{i}^{EC}(\rho,\hat{\rho}) \equiv \left[V_{i}(\hat{\rho}_{i};\hat{\rho}_{i},\hat{\rho}_{-i}) - V_{i}(\rho_{i};\hat{\rho}_{i},\hat{\rho}_{-i})\right] - \left[V_{i}(\hat{\rho}_{i};\rho_{i},\rho_{-i}) - V_{i}(\rho_{i};\rho_{i},\rho_{-i})\right] \geq 0$$

Definition 2

Unilateral expectation conformity (UEC) holds for ρ and $\hat{\rho}$ if, for all *i*,

$$\Gamma_{i}^{UEC}(\rho,\hat{\rho}) \equiv \left[V_{i}(\hat{\rho}_{i};\hat{\rho}_{i},\rho_{-i}) - V_{i}(\rho_{i};\hat{\rho}_{i},\rho_{-i})\right] - \left[V_{i}(\hat{\rho}_{i};\rho_{i},\rho_{-i}) - V_{i}(\rho_{i};\rho_{i},\rho_{-i})\right] \geq 0$$

Definition 3

Increasing differences holds for ρ and $\hat{\rho}$ if, for all *i*,

$$\Gamma_{i}^{ID}(\rho,\hat{\rho}) \equiv \left[V_{i}(\hat{\rho}_{i};\hat{\rho}_{i},\hat{\rho}_{-i}) - V_{i}(\rho_{i};\hat{\rho}_{i},\hat{\rho}_{-i})\right] - \left[V_{i}(\hat{\rho}_{i};\hat{\rho}_{i},\rho_{-i}) - V_{i}(\rho_{i};\hat{\rho}_{i},\rho_{-i})\right] \geq 0$$

Introduction

2 Model

Expectation conformity

- Equilibrium determinacy
- Sparsity
- Spionage and counter-espionage

Equilibrium Determinacy

Proposition 1

If EC holds for ρ and $\hat{\rho}$, there exist $(C_i)_{i \in I}$ s.t. ρ and $\hat{\rho}$ are eq. profiles.

If cognition self-directed and totally ordered, $(C_i)_{i \in I}$ monotone.

If EC not satisfied for any ρ and $\hat{\rho}$, then unique eq., irrespective of $(C_i)_{i \in I}$.

(Eq-det-proof)

Definition 4

Suppose cognition self-directed and cognitive profiles totally ordered. Players exposed to cognitive trap if there exist ρ and $\hat{\rho}$ s.t.

(i) ρ and $\hat{\rho}$ are equilibria

(ii) for all *i* s.t. $\hat{\rho}_i \neq \rho_i$, $\hat{\rho}_i$ Blackwell more informative than ρ_i and

 $V_i(\hat{
ho}_i;\hat{
ho}) - C_i(\hat{
ho}_i) < V_i(
ho_i;
ho) - C_i(
ho_i)$

• For all $(\alpha_i, \alpha_j, \omega)$

$$u_i(\alpha_i, \alpha_j, \omega) + u_j(\alpha_i, \alpha_j, \omega) = k(\omega).$$

Proposition 2

For all $(\rho, \hat{\rho})$,

$$\Sigma_i \Gamma_i^{EC}(\rho, \hat{\rho}) \leq 0.$$

If there are multiple equilibria, in none can player have strict preference for her eq.

cognition over her cognition in any other eq.

Introduction

2 Model

Expectation conformity

Equilibrium determinacy

Sparsity

- Features of sparsity:
 - rich state space
 - attention to subset of dimensions
 - other dimensions "as if" did not exist
- Typically: bounded rationality
- Here: rational players

• For simplicity: 2 players

• Payoffs:
$$u_i(a_i,a_j,\omega) = -(1-eta)(a_i-g(\omega))^2 - eta(a_i-a_j)^2$$

•
$$a_i, a_j \in \mathbb{R}$$

• $\omega \equiv (\omega^k)_{k=1}^K$, ω^k drawn independently from F^k , $\mathbb{E}[\omega^k] = 0$, $Var[\omega^k] = \sigma_k^2$

•
$$g(\omega) = (1 + \Sigma_{k=1}^{\kappa} \omega^k)/(1-\beta)$$

- Natural progression: dimension k explored only if all k' < k also explored
 - can be microfounded
- Cognition: number of dimensions $\rho_i \in \mathbb{N}$ explored
 - self-directed
 - ordered
- Player *i*'s signal: $s_i = (\omega^1, ..., \omega^{\rho_i})$

- Player 1: follower ($\rho_1 \leq \rho_2$)
- Player 2: leader
- Eq. actions, given $\rho = (\rho_1, \rho_2)$

$$a_1^
ho(s_1)=rac{1+\Sigma_{k=1}^{
ho_1}\omega^k}{1-eta}$$

$$\begin{aligned} a_2^{\rho}(s_2) &= \frac{1 + \sum_{k=1}^{\rho_1} \omega^k}{1 - \beta} + \sum_{k=\rho_1+1}^{\rho_2} \omega^k \\ &= a_1^{\rho}(s_1) + \sum_{k=\rho_1+1}^{\rho_2} \omega^k \end{aligned}$$

- Features:
 - unexplored dimensions treated "as if" did not exist
 - leader predicts perfectly follower's beliefs (and actions)
 - follower reasons "as if" leader's knowledge same as hers

Proposition 3

- Let $\hat{\rho}$ and ρ be s.t. $\hat{\rho}_2 > \rho_2 \ge \hat{\rho}_1 > \rho_1$:
- UEC holds strictly for 1 (follower), weakly for 2 (leader)
- ID holds as equality for both players

- Follower's action invariant to number of dimensions explored solely by leader
- Follower does not benefit from surprising leader
 - $\bullet\,$ leader responds more to dimensions commonly explored when $\beta>0$
 - $\bullet\,$ leader responds less to dimensions commonly explored when $\beta<0$
- Usefulness: determinacy of asymmetric equilibria

Proposition 4

- Let $\hat{\rho}$ and ρ be s.t. $\hat{\rho}_2 = \hat{\rho}_1 > \rho_2 = \rho_1$:
- UEC holds as equality
- ID holds if $\beta > 0$ but not if $\beta < 0$

- Exploring dimensions jointly
 - more valuable when $\beta > 0$
 - less valuable when $\beta < 0$
- Result suggests (symmetric C_i)
 - unique symm eq. w. substitutes
 - multiple symm eq. with complements

•
$$C_i(\rho_i) \equiv \sum_{k=1}^{\rho_i} c_k$$

•
$$\sigma_k^2/c_k$$
 decreasing

•
$$\lim_{k\to K} \sigma_k^2/c_k = 0$$

Proposition 5

All (pure-strategy) equilibria symmetric:

• Any $k^* \in [\underline{k}, \overline{k}(\beta)]$ part of symmetric (pure-strategy) eq., with

$$\underline{k} \equiv \min\left\{k\Big|\sigma_k^2 \leq c_k
ight\} \qquad ext{and} \qquad \overline{k}(eta) \equiv \max\left\{k\Big|rac{\sigma_k^2}{(1-eta)^2} \geq c_k
ight\}.$$

- Equilibria Pareto ranked: players' net payoff increasing in $k^* \in [\underline{k}, \overline{k}(\beta)]$
- Equilibria robust to endogenous order

Sparsity: Strategic Substitutes

Proposition 6

Symmetric (pure-strategy) eq. exists iff there is $k^* \in \mathbb{N}$ s.t.

$$rac{\sigma_{k^*+1}^2}{c_{k^*+1}} \leq 1 \leq rac{\sigma_{k^*}^2}{(1-eta)^2 c_{k^*}}$$

- At most one symmetric (pure-strategy) eq.
- Asymmetric (pure-strategy) eq. may exist.
- Follower' eq. payoff
 - increasing in own cognition
 - invariant in leader's cognition
- Leader's eq. payoff
 - decreasing in follower's cognition
- Sum of eq. payoffs maximal when follower's cognition lowest

Introduction

2 Model

Expectation conformity

Equilibrium determinacy

Sparsity

Spionage and counter-espionage

Espionage and counter-espionage

Self-directed cognition: Espionage

•
$$\omega \in \mathbb{R}$$

• $g(\omega) = \omega$

Signals:

• primary (exogenous):
$$s_i^P = \omega + \varepsilon_i$$
, with $\varepsilon_i \sim N(0, 1)$

• secondary (endogenous):
$$s_i^S = s_j^P + \eta_i$$
, with $\eta_i \sim N(0, \rho_i^{-1})$

Proposition 7

UEC always holds. ID holds iff $\beta (\hat{\rho}_i - \rho_i) (\hat{\rho}_j - \rho_j) \leq 0$.

- UEC: when j expects i to "spy" more, a_j more sensitive to s_j^P if β > 0 (less sensitive if β < 0) ⇒ higher value for i to spy
- ID: more spying by j ⇒ lower sensitivity of a_j to s^P_j ⇒ lower value for i to spy when β > 0 (higher value when β < 0)

Manipulative cognition: Counter-espionage

Payoffs:

$$u_i(a_i,a_j,\omega)=-(1-eta)(a_i-\omega)-eta(a_i-a_j)^2$$

Signals:

- primary (exogenous): $s_i^P = \omega + \varepsilon_i$, with $\varepsilon_i \sim N(0, 1)$
- secondary (endogenous): $s_i^S = s_j^P + \gamma_j$, with $\gamma_j \sim N(0, \rho_j^{-1})$
- counter-espionage or noisy info sharing

Proposition 8

UEC holds iff $\beta > 0$. ID holds iff $(\hat{\rho}_i - \rho_i)(\hat{\rho}_j - \rho_j) \leq 0$

- UEC: j expects more precise s_j^S ⇒ a_j more sensitive to s_j^S ⇒ more value to i to make s_j^S precise when β > 0 (lower value when β < 0)
- ID: when j sends more accurate signal, a_j more sensitive to s_j^P when β > 0 (less sensitive when β < 0) ⇒ lower value for i to reciprocate by sending more precise secondary signal

Additional Material

- Paper (+ Supplement) also cover
 - noisy information acquisition about exogenous payoff states
 - case most studied in literature
 - other modes of manipulative cognition:
 - generalized career-concerns models
 - framing and defensive memory management
 - endogenous depth of reasoning

• Expectation conformity in strategic reasoning

- UEC (beliefs over opponents' expectation about own cognition)
- ID (beliefs over opponents' actual cognition)
- EC helps predicting/interpreting
 - equilibrium determinacy
 - sensitivity of cognition to downstream strategic interaction
 - cognitive choices...without fixed points

THANKS!

Framing

- Persuasion game
 - Player 1: Sender
 - Player 2: Receiver
- Sender's payoff: $u_1(a_1, a_2, \omega) = a_2$
- Receiver's payoff: $u_2(a_2, \omega) = -(a_2 \omega)^2$
- Receiver's knowledge of ω recalled with probability

$$r(\omega; \rho) = \left\{ egin{array}{cc} r^-(
ho_2) & ext{if} & \omega < 0 \\ r^+(
ho_1,
ho_2) & ext{if} & \omega \ge 0 \end{array}
ight.$$

- With prob $1 r(\omega; \rho)$, Receiver recalls \emptyset
- $\bar{\omega}(\hat{\rho}_1, \hat{\rho}_2) = \mathbb{E}\left[\tilde{\omega}|\emptyset\right]$

•
$$\omega^{-} = \mathbb{E} \left[\tilde{\omega} | \tilde{\omega} < 0 \right]$$
 and $\omega^{+} = \mathbb{E} \left[\tilde{\omega} | \tilde{\omega} \ge 0 \right]$

• Frames: design of contextual purchasing experience

Framing

Proposition 9

UEC holds weakly for Receiver, strictly for Sender

• ID holds for Sender iff

$$egin{aligned} & \left[r^{+}(\hat{
ho}_{1},\hat{
ho}_{2})-r^{+}(
ho_{1},\hat{
ho}_{2})
ight]\left[\omega^{+}-ar{\omega}(\hat{
ho}_{1},\hat{
ho}_{2})
ight] \geq \ & \left[r^{+}(\hat{
ho}_{1},
ho_{2})-r^{+}(
ho_{1},
ho_{2})
ight]\left[\omega^{+}-ar{\omega}(\hat{
ho}_{1},
ho_{2})
ight] \end{aligned}$$

- Sender's UEC: $\mathbb{E}[\tilde{\omega}|\emptyset;\rho]$ smaller under less framing \Rightarrow stronger incentives to frame
 - signal jamming
- ID satisfied
 - when r^+ weakly supermodular
 - $\mathbb{E}\left[\tilde{\omega}|\emptyset;\rho\right]$ weakly decreasing in ρ_2

• Complete-information

- Cognition ρ_i : steps of iterated best responses
- Sequence of (mixed) actions (α^k_i)_k
 - α_i^0 : "anchor"
 - $\alpha_i^k = BR_i(\alpha_j^{k-1})$

Endogenous Depth of Reasoning

• Stage-2 game: Alaoui and Penta (2016, 2017,2018)

$$\sigma_i^{\rho_i';\rho} = \begin{cases} \alpha_i^{\rho_i'} & \text{if } \rho_i' \le \min\{\rho_i + 1, \rho_j\} + 1\\ \\ \alpha_i^{\min\{\rho_i + 1, \rho_j\} + 1} & \text{if } \rho_i' > \min\{\rho_i + 1, \rho_j\} + 1 \end{cases}$$

- Action identified by depth of reasoning, unless capacity exceeds what necessary to predict α_j
- Players understand impact of cognition on payoffs
- ...even if unable to predict BR
- Feature: $V_i(\rho'_i; \rho)$ not monotone in ρ'_i (bounded rationality)

•
$$A_i = \{11, 12, ..., 20\}$$

Payoffs

$$u_i(a_i, a_j) = \begin{cases} a_i + x & \text{if} & a_i = a_j - 1 \\ a_i + 10 & \text{if} & a_i = a_j \\ a_i & \text{otherwise} \end{cases}$$

Arad and Rubinstein 11-20 undercutting game

• Let $\hat{\rho}$ and ρ s.t.

•
$$\hat{\rho}_1 > \rho_1$$

•
$$\rho_2 = \rho_1 + 1$$

•
$$\hat{\rho}_2 = \hat{\rho}_1 + 1.$$

Proposition 10

 $\Gamma_1^{\textit{UEC}}=\Gamma_2^{\textit{UEC}}=0$ and $\Gamma_1^{\textit{ID}}<0<\Gamma_2^{\textit{ID}}$

- Reason for Γ^{UEC}_i = 0: players either at capacity or think their cognition suffices to predict opponent's action
- Reason for $\Gamma_2^{ID} > 0$: leader over-cuts when going deeper smaller damage when follower also goes deeper

Arad and Rubinstein 11-20 undercutting game

• Let
$$\hat{\rho}$$
 and ρ s.t. $\hat{\rho}_2 = \hat{\rho}_1 > \rho_2 = \rho_1$

Proposition 11

 $\Gamma_i^{UEC} = 0$ whereas $\Gamma_i^{ID} < 0$, i = 1, 2

• Reason for $\Gamma_2^{ID} < 0$: ability to perfectly over-cut rival diminished by rival's cognition

Equilibrium determinacy: Proof Sketch

EC satisfied for ρ = (ρ_i, ρ_{-i}) and ρ̂ = (ρ̂_i, ρ̂_{-i}) ⇒ there exist (C_i) s.t.

$$V_i(\hat{\rho}_i;\hat{\rho}) - V_i(\rho_i;\hat{\rho}) \ge C_i(\hat{\rho}_i) - C_i(\rho_i) \ge V_i(\hat{\rho}_i;\rho) - V_i(\rho_i;\rho) \qquad EC_{\{\rho,\hat{\rho}\}}$$

• Cognition self-directed and totally ordered $(\hat{\rho}_i > \rho_i)$

$$\mathcal{C}_iig(ilde
ho_iig) = \left\{egin{array}{cc} \mathcal{C}_iig(
ho_iig) & ext{for} & ilde
ho_i \leq
ho_i \ \mathcal{C}_iig(\hat
ho_iig) & ext{for} &
ho_i < ilde
ho_i \leq \hat
ho_i \ +\infty & ext{for} & ilde
ho_i > \hat
ho_i. \end{array}
ight.$$

- Self-directed cognition
 - covert
 - more information always beneficial: $V_i(\hat{\rho}_i; \rho) V_i(\rho_i; \rho) \ge 0$
 - $C_i(\hat{\rho}_i) \geq C_i(\rho_i)$
- ρ and ρ̂ are eq. profiles ⇒ EC_{ρ,ρ̂}. Hence if EC holds for no pair of profiles, unique eq., no matter (C_i)