(In)efficiency in Information Acquisition and Aggregation through Prices

Alessandro Pavan, Savitar Sundaresan, and Xavier Vives

Venice, June 24, 2024

- Historical decline in cost of acquiring and processing information
 - improvements in information technology
 - Nordhaus (2015), Gao and Huang 2020, Goldstein, Yang, and Zuo (2020)
- Social value unclear, in particular when it comes to financial trading
- Policy debate on how to boost efficiency of financial transactions
 - "sand in the wheels"
 - Tobin taxes (*ad-valorem*)
 - subsides to information acquisition
 - disclosure regulations

This Paper

- Model of competition in schedules
 - endogenous private information
 - (partial) information aggregation
- (In)efficiency in
 - financial trading
 - information acquisition
- Policy analysis

Key Results

- Inefficiency (in trading and information acquisition) originates in
 - learning externality
 - pecuniary externality
- Efficiency in trading does not guarantee efficiency in information acquisition
- Impossibility to induce efficiency in both trading and info acquisition through policies contingent on
 - price
 - individual volume of trade
- Taxes/subsidies need to condition on
 - expenses on info acquisition (when verifiable)
 - aggregate volume of trade
- Ad-valorem taxes should not be used

Related Literature (Incomplete)

- Inefficiency in usage (exogenous info): Palfrey (1985), Vives (1988), Angeletos and Pavan (2007), Amador and Weill (2012), Myatt and Wallace (2012), Vives (2019),...
- Inefficiency in info acquisition: Hellwig and Veldkamp (2009), Colombo, Femminis and Pavan (2014, 2024), Angeletos, Iovino, and La'O (2020), Angeletos and Sastry (2023), Herbert and Lao (2023), ...
- Info acquisition in financial markets: Grossman and Stiglitz (1980), Verrecchia (1982), Peress (2010), Manzano and Vives (2011), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), Davila and Parlatore (2019), Mondria et al. (2021),...
- Impact of reduction in cost of information on financial trading: Peress (2005), Farboodi, Matray, and Veldkamp (2018), Azamsa (2019), Kacperczyk, Nosal and Stevens (2019), Malikov (2019), Mihet (2018),...
- Correlated/biases in info collection: Woodford (2012), Nimark and Sundaresan (2019), Frydman and Jin (2020)...
- Taxing financial transactions: Tobin (1978), Stiglitz (1989), Sorensen (2017), Dow and Rahi (2000), Colliard and Hoffmann (2017), Cipriani et al. (2022), Davila and Walther (2021), ...

Model

• Inefficiency in Trading

• Inefficiency in Information Acquisition

Policy

Conclusions

Model

Demand Side

• Unit continuum of traders, $i \in [0, 1]$

- Limit orders for homogeneous, perfectly divisible asset
 - more than 50% of NYSE transactions (Li, Ye, and Zheng 2023)
- Individual "demands" schedules:

$$x_i = X_i(p; s_i)$$

Demand Side

• Trader *i*'s payoff:

$$\pi_{i} = \left(\underbrace{\theta}_{\text{common value}} - \underbrace{p}_{\text{price}}\right) \cdot \underbrace{x_{i}}_{\text{demand of }i} - \underbrace{\lambda \frac{x_{i}^{2}}{2}}_{\text{trading cost}}$$

Supply Side

• Exogenous (inverse) aggregate "supply" schedule:

$$\boldsymbol{p} = \alpha - \boldsymbol{u} + \beta \tilde{\boldsymbol{x}}$$

where $\tilde{x} = \int x_i di$

• Price-elastic supply

- central banks' operations
- liquidity auctions
- noise traders

Information

- θ and u not observable by traders when submitting limit orders
- Information collected by trader *i* prior to trading:

$$s_i = \theta + \epsilon_i = \theta + f(\underbrace{y_i})(\underbrace{\eta}_{\text{effort common idiosyncratic}} + \underbrace{e_i}_{\text{idiosyncratic}})$$

- Information acquisition: $y_i \in \mathbb{R}_+$, with f' < 0
 - cost: $C(y_i)$, with C', C'' > 0

• E.g.,:
$$C(y) = By^2/2$$
, $f(y_i) = 1/\sqrt{y_i}$

• $(\theta, u, \eta, (e_i)_{i \in [0,1]})$ jointly Normal, mean 0, independent

- t = 0: traders acquire information (choose y_i)
- t = 1: traders observe private signals s_i and submit limit orders $x_i(\cdot; s_i)$
- t = 2: market clears, trades implemented, payoffs

Inefficiency in Trading

Given s_i , trader *i* submits limit orders summarized in demand schedule $X_i(\cdot, s_i)$ with

$$X_i(p; s_i) \in rg\max_{x_i} \mathbb{E}\left[\left(heta - p
ight) x_i - \lambda rac{x_i^2}{2} | s_i, p
ight]$$

Affine equilibrium:

$$X_i(p; s_i) = as_i + b - cp$$

Equilibrium Use of Information

• Fix precision of private information: $y_i = y$, all i

Proposition.

Unique affine equilibrium.

Sensitivity $a^* > 0$ to private information:

$$m{a}^* = rac{1}{\lambda} rac{m{\mathcal{K}}(au_\omega(m{a}^*))}{m{\Lambda}(au_\omega(m{a}^*))}$$

where $\tau_{\omega}(a)$ is precision of **endogenous signal** contained in eq. price.

Sensitivity to price $c^* = C(a^*)$ and average volume of trade $b^* = B(a^*)$ can be positive or negative

Welfare and Planner's Problem

• Ex-post welfare:

$$W \equiv \underbrace{\int_{0}^{1} \left(\theta x_{i} - \frac{\lambda}{2} x_{i}^{2}\right) di}_{\text{Trader Welfare}} - \underbrace{\left(\alpha - u + \beta \frac{\tilde{x}}{2}\right) \tilde{x}}_{\text{Cost of Supply}}$$

• Planner maximizes W by choosing affine demand schedules $X_i(p; s_i) = a^T s_i + b^T - c^T p$

• Cannot transfer information across traders

Efficient Use of Information

• Fix precision of private information: $y_i = y$, all i

Proposition.

Efficient sensitivity to private information:

$$\mathbf{a}^{T} = rac{1}{\lambda} rac{\mathcal{K}(au_{\omega}(\mathbf{a}^{T}))}{\mathcal{N}(au_{\omega}(\mathbf{a}^{T})) + \Xi(\mathbf{a}^{T}) + \Delta(\mathbf{a}^{T})}$$

Given a^{T} , $c^{T} = C(a^{T})$ and $b^{T} = B(a^{T})$ pinned down by same conditions as in eq.

- Equilibrium differs from efficient allocation because
 - learning externality: $\Delta(a^T) < 0$
 - pecuniary externality: $\Xi(a^T) > 0$

Externalities

• Learning externality

- traders do not internalize value of price informativeness to other traders
- inefficiently low sensitivity of eq. schedules to private info

• Pecuniary externality

- traders do not internalize that their response to private information moves prices in non-fundamental manner, affecting other traders' demands through dependence of their limit orders on prices
- over-sensitivity to private info
- isolated by looking at "curse economy" in which agents do not learn from prices but endowed with exogenous public signal of same precision as eq. price
- difference from other pecuniary externalities: originates in dispersed info and endogenous beliefs

Externalities and slope of efficient schedules

- Learning externality > Pecuniary externality
 - efficient schedules: upward sloping

- Pecuniary externality > Learning externality
 - efficient schedules downward sloping

Impact of Information Quality

- As quality of information *y* increases:
 - pecuniary externality $\Xi(a^T)$ increases
 - non-monotonic effect on learning externality $\Delta(a^T)$.

Proposition

Efficiency in trading induced by (non-linear) tax

- quadratic tax on volume, $\frac{\delta}{2}x_i^2$: efficient sensitivity to private info, a^T
- ad-valorem tax, $t_p p x_i$: efficient sensitivity to price, c^T
- linear tax/subsidy on volume, $t_0 x_i$: efficient ex-ante trade volume, b^T

Inefficiency in Information Acquisition

Proposition

There exist $K \in \mathbb{R}_+$ and $J : \mathbb{R}_+ \to \mathbb{R}$ s.t. equilibrium exists (and is unique in affine strategies) if

- C'(0) < K
- $\frac{3}{2y}C'(y) + C''(y) > J(y)$
- First condition: $\exists ! y^*$ s.t. net marginal benefit of more precise information

$$\frac{\partial V^{\#}(y^*, y_i)}{\partial y_i}\Big|_{y_i=y^*} = 0$$

where $V(y, y_i) \equiv \sup_{g(\cdot)} \{\mathbb{E}[\pi_i(y, y_i; g(\cdot))] - C(y_i)\}$, with $g(\cdot)$ representing trading strategy.

• Second condition: $V(y, y_i)$ strictly quasi-concave in y_i

Inefficiency of Information Acquisition under Efficient Trading

• y^T : efficient quality of private information

Proposition

Suppose traders forced to trade efficiently (given y^{T})

- downward-sloping efficient schedules $(\equiv (a^T) > \Delta(a^T))$: traders **over-invest** in information
- upward-sloping efficient schedules $(\equiv (a^T) < \Delta(a^T))$: traders **under-invest** in information
- Efficiency in trading does not guarantee efficiency in acquisition

Inefficiency of Information Acquisition under Efficient Trading

- Downward-sloping efficient schedules
 - pecuniary externality > learning externality
 - planner forces agents to respond less to private info $(a^{\mathcal{T}} < a^{*})$
 - agents over-invest in information $(y^* > y^T)$

- Upward-sloping efficient schedules
 - learning externality > pecuniary externality
 - planner forces agents to respond more to private info $(a^T > a^*)$
 - agents under-invest in information $(y^* < y^T)$

Role of Correlated Noise

- Uncorrelated noise $(au_\eta o \infty)$
 - efficiency in trade implies efficiency in information acquisition
 - aggregate volume of trade \tilde{x} invariant in y under efficient orders
 - higher $y \rightarrow$ lower dispersion
 - dispersion already optimal under efficient trading
- Correlated noise $au_{\eta} \in (0, +\infty)$
 - agents don't internalize effect of y on cov. of aggregate trade \tilde{x} with shocks (θ, u, η)
 - cov. matters for non-fundamental volatility

Historical Reduction in Cost of Information

- Reduction in cost of information \rightarrow higher y
- Pecuniary externality $\Xi(a^T)$ increasing in y
- Learning externality $\Delta(a^T)$ non-monotone in y
- Low cost of information:
 - excessive acquisition of information
 - inefficiently high sensitivity of trades to private information

Historical Reduction in Cost of Information

Other Market Variables

- PI (price informativeness)
- MD (market depth): inverse sensitivity of price to noise shocks
- PV (price volatility): standard deviation of price

Optimal Policy Mix

Proposition

Generically, there exists no policy $T(x_i, p)$ measurable in

(a) price, p

(b) individual volume of trade, x_i

inducing efficiency in ${\color{blue} both}$ information acquisition and trading

- Unique policy inducing efficient trading
 - creates wedge between private and social (marginal) value of information

Possibility Result 1

Proposition

If acquisition verifiable, efficiency in both acquisition and trading through tax policy

$$T(x_i, \boldsymbol{p}, \boldsymbol{y}_i) = rac{\delta}{2} x_i^2 + (\boldsymbol{p} t_{\boldsymbol{p}} - t_0) x_i - \boldsymbol{A} \boldsymbol{y}_i$$

- (non-linear) tax $\frac{\delta}{2}x_i^2 + (pt_p t_0)x_i \rightarrow \text{efficient trading}$
- subsidy/tax Ay_i on info purchases \rightarrow efficient **acquisition**
 - A > 0 (subsidy) when pecuniary externality < learning externality
 - A < 0 (tax) when pecuniary externality > learning externality

Proposition

Suppose info acquisition not verifiable. Efficiency in both acquisition and trading through tax policy

$$T(x_i, p, \tilde{\mathbf{x}}) = \frac{\delta^*}{2} x_i^2 + (\mathbf{t}_{\tilde{\mathbf{x}}}^* \tilde{\mathbf{x}} - \mathbf{t}_0^*) x_i + \mathbf{t}_p^* p x_i$$

where marginal rate contingent on aggregate volume of trade, \tilde{x}

- Dependence of marginal rate on aggregate volume of trade
 - uncertainty about marginal tax rate $t^*_{\tilde{x}}$
 - permits planner to manipulate incentives for acquisition while retaining efficiency in trading

Ad-Valorem Taxes

Proposition

Suppose planner restricted to ad-valorem taxes

$$T(x_i,p)=t_p p x_i$$

Then, no matter whether info is exogenous or endogenous, optimal $t_p = 0$.

- Ad-valorem taxes have no effect on
 - acquisition of private information
 - sensitivity of eq. limit orders to private info
- They manipulate
 - sensitivity of eq. limit orders to price, c
 - ex-ante volume of trade, b
 - however, b and c are efficient under laissez-fare (given y and a^*)

• Suppose traders restricted to mkt orders:

$$X_i(s) = as_i + b$$

- No externalities
- Efficient trading and information acquisition
- However, welfare can be lower than under limit orders

Conclusions

Conclusions

- Historical decline in cost of information:
 - over-investment in information
 - over-sensitivity of financial trades to private information
- Efficiency in trading does not guarantee efficiency in info acquisition
- Efficiency in both acquisition and trading
 - taxes/subsidies on info purchases (when info acquisition verifiable)
 - conditioning tax rates on aggregate volume of trade

• Other market-design interventions may help

- regulation of trade frequency
- public info disclosures
- orders conditional on aggregate volume of trade

THANK YOU!