Preparing for the Worst but Hoping for the Best: Robust (Bayesian) Persuasion

Piotr Dworczak Alessandro Pavan

May 28, 2020

Quick introduction to Bayesian persuasion

Kamenica and Gentzkow (AER, 2011, > 1300 citations)

Quick introduction to Bayesian persuasion

Kamenica and Gentzkow (AER, 2011, > 1300 citations)

- A game between a Sender and a Receiver;
- State $\omega \in \Omega$ (finite), distributed according to a common prior $\mu_0 \in \Delta \Omega$;
- The Sender **commits** to a signal $q: \Omega \to \Delta(S)$;
- The Receiver observes $s \in S,$ updates beliefs to μ_0^s according to Bayes' rule, and takes an optimal action

$$a^{\star}(\mu_{0}^{s}) \in \mathrm{argmax}_{a \in A} \mathbb{E}_{\omega \sim \mu_{0}^{s}}[u(a,\,\omega)].$$

• The Sender selects q to maximize

$$\mathbb{E}_{\omega \sim \mu_0} \mathbb{E}_{s \sim q(\omega)} [v(a^{\star}(\mu_0^s), \, \omega)].$$

• Sender=Prosecutor, Receiver=Judge, (Suspect)

- Sender=Prosecutor, Receiver=Judge, (Suspect)
- $\Omega = \{G, I\}, \mu_0 = 1/2.$

- Sender=Prosecutor, Receiver=Judge, (Suspect)
- $\Omega = \{G, I\}, \mu_0 = 1/2.$
- $A = \{convict, acquit\}.$

- Sender=Prosecutor, Receiver=Judge, (Suspect)
- $\Omega = \{G, I\}, \mu_0 = 1/2.$
- $A = \{convict, acquit\}.$
- Judge's payoff: $u(acquit, \omega) = 0$, and

$$u(convict, \,\omega) = \begin{cases} -2, & \omega = I, \\ 1, & \omega = G. \end{cases}$$

- Sender=Prosecutor, Receiver=Judge, (Suspect)
- $\Omega = \{G, I\}, \mu_0 = 1/2.$
- $A = \{convict, acquit\}.$
- Judge's payoff: $u(acquit, \omega) = 0$, and

$$u(convict, \,\omega) = \begin{cases} -2, & \omega = I, \\ 1, & \omega = G. \end{cases}$$

 $\bullet\,$ Thus, Judge convicts if she believes the Suspect to be guilty with probability 2/3 or more.

- Sender=Prosecutor, Receiver=Judge, (Suspect)
- $\Omega = \{G, I\}, \mu_0 = 1/2.$
- $A = \{convict, acquit\}.$
- Judge's payoff: $u(acquit, \omega) = 0$, and

$$u(convict, \,\omega) = \begin{cases} -2, & \omega = I, \\ 1, & \omega = G. \end{cases}$$

- $\bullet\,$ Thus, Judge convicts if she believes the Suspect to be guilty with probability 2/3 or more.
- Prosecutor's payoff:

$$v(a, \omega) = \begin{cases} 1, & a = convict, \\ 0, & a = acquit. \end{cases}$$

• Bayesian persuasion/ information design

- Bayesian persuasion/ information design
 - designer knows agents' sources of information

- Bayesian persuasion/ information design
 - designer knows agents' sources of information
 - trusts her ability to coordinate Receivers on actions most favorable to her

- Bayesian persuasion/ information design
 - designer knows agents' sources of information
 - trusts her ability to coordinate Receivers on actions most favorable to her
 - optimal information structure sensitive to fine details of agents' beliefs

- Bayesian persuasion/ information design
 - designer knows agents' sources of information
 - trusts her ability to coordinate Receivers on actions most favorable to her
 - optimal information structure sensitive to fine details of agents' beliefs
- In many problems of interest,

- Bayesian persuasion/ information design
 - designer knows agents' sources of information
 - trusts her ability to coordinate Receivers on actions most favorable to her
 - optimal information structure sensitive to fine details of agents' beliefs
- In many problems of interest,
 - agents' sources of information (both before and after receiving Sender's information) unknown

- Bayesian persuasion/ information design
 - designer knows agents' sources of information
 - trusts her ability to coordinate Receivers on actions most favorable to her
 - optimal information structure sensitive to fine details of agents' beliefs
- In many problems of interest,
 - agents' sources of information (both before and after receiving Sender's information) unknown
 - Sender may not trust her ability to coordinate Receivers

- Bayesian persuasion/ information design
 - designer knows agents' sources of information
 - trusts her ability to coordinate Receivers on actions most favorable to her
 - optimal information structure sensitive to fine details of agents' beliefs
- In many problems of interest,
 - agents' sources of information (both before and after receiving Sender's information) unknown
 - Sender may not trust her ability to coordinate Receivers
- Quest for robustness

• New solution concept that accounts for such uncertainty/ambiguity

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem
 - Step 1: "Preparing for the worst"

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem
 - Step 1: "Preparing for the worst"
 - * designer seeks to protect herself against possibility that Nature provides information and coordinates agents on actions to minimize the designer's payoff

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem
 - Step 1: "Preparing for the worst"
 - designer seeks to protect herself against possibility that Nature provides information and coordinates agents on actions to minimize the designer's payoff
 - Step 2: "Hoping for the best"

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem
 - Step 1: "Preparing for the worst"
 - designer seeks to protect herself against possibility that Nature provides information and coordinates agents on actions to minimize the designer's payoff
 - Step 2: "Hoping for the best"
 - * designer maximizes over all worst-case optimal policies assuming Nature and Receivers play favorably to her

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem
 - Step 1: "Preparing for the worst"
 - designer seeks to protect herself against possibility that Nature provides information and coordinates agents on actions to minimize the designer's payoff
 - Step 2: "Hoping for the best"
 - designer maximizes over all worst-case optimal policies assuming Nature and Receivers play favorably to her
- Robust solutions

- New solution concept that accounts for such uncertainty/ambiguity
- Lexicographic approach to the problem
 - Step 1: "Preparing for the worst"
 - designer seeks to protect herself against possibility that Nature provides information and coordinates agents on actions to minimize the designer's payoff
 - Step 2: "Hoping for the best"
 - * designer maximizes over all worst-case optimal policies assuming Nature and Receivers play favorably to her

Robust solutions

best-case optimal among worst-case optimal ones

Results

- Separation theorem general characterization
- Properties of robust solutions
- Implications for various persuasion models applications
- Equivalence to the weighted objective model

Literature

Bayesian persuasion

- ...Calzolari and Pavan (2006), Brocas and Carillo (2007), Rayo-Segal (2010), Kamenica and Gentzkow (2011), Ely (2017),...
- Surveys
 - * Bergemann and Morris (2019)
 - * Kamenica (2019)

• Information design with adversarial coordination

- Inostroza and Pavan (2018)
- Mathevet, Perego, Taneva (2019)
- Morris et al. (2019)
- Ziegler (2019)

• Persuasion with unknown beliefs

- Kolotilin et al. (2017)
- Laclau and Renou (2017)
- Guo and Schmaya (2018)
- Hu and Weng (2019)
- Kosterina (2019)

Max-max over max-min design

Borgers (2017)

Plan

Model

- Robust Solutions
- Separation Theorem
- Properties of Robust Solutions
- Weighted Objective
- Applications
- Conditionally-independent Robust Solutions (extension)

Model

• Payoff-relevant state: $\omega \in \Omega$ (finite)

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to \Delta \mathcal{S}$

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to \Delta \mathcal{S}$
 - ► S: signal realizations

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu \in \Delta \Omega$

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu\in\Delta\Omega$
 - $\overline{V}(\mu)$: "highest" payoff; an u.s.c. function
- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu \in \Delta \Omega$
 - $\overline{V}(\mu)$: "highest" payoff; an u.s.c. function
 - $\underline{V}(\mu)$: "lowest" payoff; a l.s.c. function

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu \in \Delta \Omega$
 - $\overline{V}(\mu)$: "highest" payoff; an u.s.c. function
 - $\underline{V}(\mu)$: "lowest" payoff; a l.s.c. function
- Difference between \overline{V} and \underline{V} :

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu \in \Delta \Omega$
 - $\overline{V}(\mu)$: "highest" payoff; an u.s.c. function
 - $\underline{V}(\mu)$: "lowest" payoff; a l.s.c. function
- Difference between \overline{V} and \underline{V} :
 - equilibrium selection (multiple Receivers)

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu \in \Delta \Omega$
 - $\overline{V}(\mu)$: "highest" payoff; an u.s.c. function
 - $\underline{V}(\mu)$: "lowest" payoff; a l.s.c. function
- Difference between \overline{V} and \underline{V} :
 - equilibrium selection (multiple Receivers)
 - tie-breaking (single Receiver)

- Payoff-relevant state: $\omega \in \Omega$ (finite)
- (Common) Prior: $\mu_0 \in \Delta \Omega$
- Sender's "signal"
 - $\blacktriangleright \ q:\Omega\to\Delta\mathcal{S}$
 - S: signal realizations
- (Reduced-form description of) Sender's payoff, given induced posterior $\mu\in\Delta\Omega$
 - $\overline{V}(\mu)$: "highest" payoff; an u.s.c. function
 - $\underline{V}(\mu)$: "lowest" payoff; a l.s.c. function
- Difference between \overline{V} and \underline{V} :
 - equilibrium selection (multiple Receivers)
 - tie-breaking (single Receiver)
 - or something else entirely! (formally, we don't even require $\overline{V} \geq \underline{V}$)

• Nature designs information structure

- Nature designs information structure
 - $\blacktriangleright \ \pi:\Omega\times \mathcal{S}\to \Delta \mathcal{R}$

- Nature designs information structure
 - $\blacktriangleright \ \pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - \mathcal{R} : signal realizations

- Nature designs information structure
 - $\blacktriangleright \ \pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - \mathcal{R} : signal realizations
- Interpretation

- Nature designs information structure
 - $\blacktriangleright \ \pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - ▶ R: signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs

- Nature designs information structure
 - $\blacktriangleright \ \pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - \mathcal{R} : signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal

- Nature designs information structure
 - $\blacktriangleright \ \pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - \mathcal{R} : signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal
 - Correlated noise (maximal concern for robustness)

- Nature designs information structure
 - $\blacktriangleright \ \pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - ▶ *R*: signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal
 - Correlated noise (maximal concern for robustness)
- Multiple Receivers

- Nature designs information structure
 - $\pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - ▶ *R*: signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal
 - Correlated noise (maximal concern for robustness)
- Multiple Receivers
 - discriminatory disclosures embedded into derivation of $\underline{V}(\mu)$

- Nature designs information structure
 - $\pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - ▶ *R*: signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal
 - Correlated noise (maximal concern for robustness)
- Multiple Receivers
 - discriminatory disclosures embedded into derivation of $\underline{V}(\mu)$
 - given common posterior µ, Nature provides (possibly private) signals to the agents and coordinates them on course of action most adversarial to Sender (among those consistent with assumed solution concept)

- Nature designs information structure
 - $\pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - R: signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal
 - Correlated noise (maximal concern for robustness)
- Multiple Receivers
 - discriminatory disclosures embedded into derivation of $\underline{V}(\mu)$
 - given common posterior µ, Nature provides (possibly private) signals to the agents and coordinates them on course of action most adversarial to Sender (among those consistent with assumed solution concept)
 - e.g., Bayes-correlated eq. given μ

- Nature designs information structure
 - $\pi: \Omega \times \mathcal{S} \to \Delta \mathcal{R}$
 - ▶ *R*: signal realizations
- Interpretation
 - The Sender does not know the distribution of Receivers' beliefs
 - Receivers could acquire additional information from other sources after seeing the Sender's signal
 - Correlated noise (maximal concern for robustness)
- Multiple Receivers
 - discriminatory disclosures embedded into derivation of $\underline{V}(\mu)$
 - given common posterior µ, Nature provides (possibly private) signals to the agents and coordinates them on course of action most adversarial to Sender (among those consistent with assumed solution concept)
 - e.g., Bayes-correlated eq. given μ
- Online Appendix: conditionally independent signals

- Sender's expected payoffs when
 - Sender selects signal q
 - Nature selects signal π

$$\underline{v}(q,\,\pi) \equiv \sum_{\Omega} \int_{\mathcal{S}} \int_{\mathcal{R}} \underline{V}(\mu_0^{s,r}) d\pi(r|\omega,\,s) dq(s|\omega) \mu_0(\omega)$$

$$\overline{v}(q,\,\pi) \equiv \sum_{\Omega} \int_{\mathcal{S}} \int_{\mathcal{R}} \overline{V}(\mu_0^{s,r}) d\pi(r|\omega,\,s) dq(s|\omega) \mu_0(\omega)$$

where $\mu_0^{s,r}$ is the common posterior obtained from the prior μ_0 given realization (s,r) of the signal (q,π)

Worst-case optimality

Definition

Signal q is worst-case optimal if, for all signals q',

 $\inf_{\pi} \underline{v}(q, \pi) \ge \inf_{\pi} \underline{v}(q', \pi).$

Worst-case optimality

• Define the Sender's payoff from full disclosure of the state, conditional on some belief μ , under the adversarial selection:

$$\underline{V}_{\rm full}(\mu) \equiv \sum_{\Omega} \underline{V}(\delta_{\omega}) \mu(\omega)$$

where δ_{ω} is a Dirac measure assigning prob 1 to ω .

Worst-case optimality

 Define the Sender's payoff from full disclosure of the state, conditional on some belief μ, under the adversarial selection:

$$\underline{V}_{\rm full}(\mu) \equiv \sum_{\Omega} \underline{V}(\delta_{\omega}) \mu(\omega)$$

where δ_{ω} is a Dirac measure assigning prob 1 to ω .

Remark

Since both Nature and Sender can reveal state, signal q is worst-case optimal iff

$$\inf_{\pi} \underline{v}(q, \pi) = \underline{V}_{\mathsf{full}}(\mu_0)$$

- W: set of worst-case optimal signals
 - non-empty (full disclosure is worst-case optimal)

Definition

Definition

Signal q_{RS} is a robust solution if it maximizes $\overline{v}(q, \emptyset)$ over W.

• Lexicographic preferences:

Definition

- Lexicographic preferences:
 - The Sender first guarantees herself the highest payoff guarantee in the worst-case scenario

Definition

- Lexicographic preferences:
 - The Sender first guarantees herself the highest payoff guarantee in the worst-case scenario
 - If multiple policies yield the same payoff guarantee, she breaks the tie by considering the best-case scenario

Definition

- Lexicographic preferences:
 - The Sender first guarantees herself the highest payoff guarantee in the worst-case scenario
 - If multiple policies yield the same payoff guarantee, she breaks the tie by considering the best-case scenario
- Clearly, q_{RS} also maximizes $\sup_{\pi} \overline{v}(q, \pi)$ over W

Definition

- Lexicographic preferences:
 - The Sender first guarantees herself the highest payoff guarantee in the worst-case scenario
 - If multiple policies yield the same payoff guarantee, she breaks the tie by considering the best-case scenario
- Clearly, q_{RS} also maximizes $\sup_{\pi} \overline{v}(q, \pi)$ over W
 - Conservative approach: Sender prefers to provide information herself rather than counting on Nature to do it

Lemma

Signal q_{RS} is a robust solution iff the distribution of posterior beliefs $\rho_{RS} \in \Delta \Delta \Omega$ that it induces maximizes

 $\int \overline{V}(\mu) d\rho(\mu)$

over the set of distributions of posterior beliefs $\mathcal{W} \subset \Delta \Delta \Omega$ satisfying

• Bayes plausibility

$$\int \mu d\rho(\mu) = \mu_0$$

• Worst-case optimality (WCO)

$$\int l \operatorname{co}(\underline{V})(\mu) d\rho(\mu) = \underline{V}_{\operatorname{full}}(\mu_0)$$

• Bayesian solutions:

• Robust solutions:

• Bayesian solutions:

• q_{BP} maximizes $\overline{v}(q, \emptyset)$ over Q (feasible signals)

• Robust solutions:

• Bayesian solutions:

• q_{BP} maximizes $\overline{v}(q, \emptyset)$ over Q (feasible signals)

• Robust solutions:

▶ q_{RS} maximizes $\overline{v}(q, \emptyset)$ over $W \subset Q$ (worst-case optimal signals)

• Bayesian solutions:

- q_{BP} maximizes $\overline{v}(q, \emptyset)$ over Q (feasible signals)
- ► $\rho_{BP} \in \Delta \Delta \Omega$ maximizes $\int \overline{V}(\mu) d\rho(\mu)$ over all distributions $\rho \in \Delta \Delta \Omega$ satisfying Bayes plausibility, $\int \mu d\rho(\mu) = \mu_0$

Robust solutions:

▶ q_{RS} maximizes $\overline{v}(q, \emptyset)$ over $W \subset Q$ (worst-case optimal signals)

• Bayesian solutions:

- q_{BP} maximizes $\overline{v}(q, \emptyset)$ over Q (feasible signals)
- ► $\rho_{BP} \in \Delta \Delta \Omega$ maximizes $\int \overline{V}(\mu) d\rho(\mu)$ over all distributions $\rho \in \Delta \Delta \Omega$ satisfying Bayes plausibility, $\int \mu d\rho(\mu) = \mu_0$

Robust solutions:

- ▶ q_{RS} maximizes $\overline{v}(q, \emptyset)$ over $W \subset Q$ (worst-case optimal signals)
- ► $\rho_{RS} \in \Delta \Delta \Omega$ maximizes $\int \overline{V}(\mu) d\rho(\mu)$ over all distributions $\rho \in \Delta \Delta \Omega$ satisfying Bayes plausibility, $\int \mu d\rho(\mu) = \mu_0$, and the WCO constraint

$$\int \mathsf{lco}(\underline{V})(\mu) d\rho(\mu) = \underline{V}_{\mathsf{full}}(\mu_0)$$

Separation Theorem

Separation Theorem

Theorem

There exists

$$\mathcal{F} \subseteq 2^{\Omega}$$

such that

 $\mathcal{W} = \{ \rho \in \Delta \Delta \Omega : \rho \text{ satisfies BP and } supp(\mu) \in \mathcal{F}, \forall \mu \in supp(\rho) \}.$
Theorem

There exists

$$\mathcal{F} \subseteq 2^{\Omega}$$

such that

 $\mathcal{W} = \{ \rho \in \Delta \Delta \Omega : \rho \text{ satisfies BP and } supp(\mu) \in \mathcal{F}, \forall \mu \in supp(\rho) \}.$

Therefore, $\rho_{RS} \in \Delta \Delta \Omega$ is a robust solution iff ρ_{RS} maximizes

$$\int \overline{V}(\mu) d
ho(\mu)$$

over all Bayes-plausible distributions over posterior beliefs $\rho \in \Delta \Delta \Omega$ such that

 $supp(\mu) \in \mathcal{F}, \, \forall \mu \in supp(\rho).$

Theorem

Let

$$\mathcal{F} \equiv \{ B \subseteq \Omega : \underline{V}|_{\Delta B} \ge \underline{V}_{full}|_{\Delta B} \}.$$

Then,

 $\mathcal{W} = \left\{ \rho \in \Delta \Delta \Omega : \ \rho \ \text{ satisfies BP and } supp(\mu) \in \mathcal{F}, \ \forall \ \mu \in supp(\rho) \right\}.$

Therefore, $\rho_{RS} \in \Delta \Delta \Omega$ is a robust solution iff ρ_{RS} maximizes

$$\int \overline{V}(\mu) d
ho(\mu)$$

over all Bayes-plausible distributions over posterior beliefs $\rho \in \Delta \Delta \Omega$ such that

 $supp(\mu) \in \mathcal{F}, \forall \mu \in supp(\rho).$

Theorem

Let

$$\mathcal{F} \equiv \{ B \subseteq \Omega : \underline{V}(\mu) \ge \underline{V}_{full}(\mu), \, \forall \mu \in \Delta B \}.$$

Then,

 $\mathcal{W} = \left\{ \rho \in \Delta \Delta \Omega : \ \rho \ \text{ satisfies BP and } supp(\mu) \in \mathcal{F}, \ \forall \ \mu \in supp(\rho) \right\}.$

Therefore, $\rho_{RS} \in \Delta \Delta \Omega$ is a robust solution iff ρ_{RS} maximizes

$$\int \overline{V}(\mu) d
ho(\mu)$$

over all Bayes-plausible distributions over posterior beliefs $\rho \in \Delta \Delta \Omega$ such that

 $supp(\mu) \in \mathcal{F}, \forall \mu \in supp(\rho).$

• Idea:

- ▶ Suppose Sender induces posterior μ with $supp(\mu) = B$ for which there exists $\eta \in \Delta B$ s.t. $\underline{V}(\eta) < \underline{V}_{\mathsf{full}}(\eta)$.
- Starting from μ , Nature can induce η with strictly positive probability.
- Starting from μ , Nature can bring Sender's payoff strictly below $\underline{V}_{full}(\mu)$.
- ▶ This is because Nature can respond to any other posterior $\mu' \in supp(\rho)$ by fully disclosing the state,

$$\int \mathsf{lco}(\underline{V})(\tilde{\mu}) d\rho(\tilde{\mu}) < \underline{V}_{\mathsf{full}}(\mu_0)$$

• Hence, Sender's policy inducing such μ cannot be worst-case optimal.

Figure: Prosecutor example

Properties of Robust Solutions

Existence

Corollary

A robust solution always exists.

Existence

Corollary

A robust solution always exists.

- Existence follows because the WCO constraint is only a constraint on feasible supports (compactness is preserved).
- Existence guaranteed by possibility for Nature to condition on realization of Sender's signal.

State separation

Corollary

Suppose there exist $\omega, \omega' \in \Omega$ and $\lambda \in (0, 1)$ s.t.

$$\underline{V}(\lambda\delta_{\omega} + (1-\lambda)\delta_{\omega'}) < \lambda\underline{V}(\delta_{\omega}) + (1-\lambda)\underline{V}(\delta_{\omega'}),$$

Then any robust solution must separate ω and ω' .

State separation

Corollary

Suppose there exist $\omega, \omega' \in \Omega$ and $\lambda \in (0, 1)$ s.t.

$$\underline{V}(\lambda\delta_{\omega} + (1-\lambda)\delta_{\omega'}) < \lambda\underline{V}(\delta_{\omega}) + (1-\lambda)\underline{V}(\delta_{\omega'}),$$

Then any robust solution must separate ω and ω' .

- Assumption: there exists some belief supported on $\{\omega, \omega'\}$ under which Sender's payoff below full disclosure
- Conclusion: **ALL** posterior beliefs must separate ω and ω' .

Full disclosure vs No restriction

Corollary (Full disclosure)

Full disclosure is the unique robust solution if $\mathcal{F} = \Omega$, meaning that any pair of states must be separated under any worst-case optimal distribution.

Full disclosure vs No restriction

Corollary (Full disclosure)

Full disclosure is the unique robust solution if $\mathcal{F} = \Omega$, meaning that any pair of states must be separated under any worst-case optimal distribution.

Corollary (No restrictions)

All feasible distributions are worst-case optimal if, and only if, $\Omega \in \mathcal{F}$, meaning that no pair of states must be separated under any worst-case optimal distribution. Then, the set of robust solutions coincides with the set of Bayesian solutions.

Robustness of Bayesian Solutions

Corollary

Bayesian solution ρ_{BP} is robust iff for any $\mu \in supp(\rho_{BP})$ and any $\eta \in \Delta\Omega$ s.t. $supp(\eta) \subset supp(\mu)$,

 $\underline{V}(\eta) \geq \underline{V}_{\textit{full}}(\eta).$

Robustness of Bayesian Solutions

Corollary

Bayesian solution ρ_{BP} is robust iff for any $\mu \in supp(\rho_{BP})$ and any $\eta \in \Delta\Omega$ s.t. $supp(\eta) \subset supp(\mu)$,

 $\underline{V}(\eta) \geq \underline{V}_{\textit{full}}(\eta).$

• Corollary for the binary-state case: Any robust solution is either

full disclosure, or

a Bayesian solution.

Worst-case optimality preserved under more disclosure

Corollary

 \mathcal{W} is closed under Blackwell dominance: If $\rho' \in \mathcal{W}$, and ρ Blackwell dominates ρ' , then $\rho \in \mathcal{W}$.

Corollary

Corollary

Given any Bayesian solution ρ_{BP} , there exists robust solution ρ_{RS} s.t. either ρ_{RS} and ρ_{BP} not comparable in Blackwell order, or ρ_{RS} Blackwell dominates ρ_{BP} .

• Proof: If Bayesian solution ρ_{BP} is Blackwell more informative than robust solution ρ_{RS} , then ρ_{BP} also robust.

Corollary

- Proof: If Bayesian solution ρ_{BP} is Blackwell more informative than robust solution ρ_{RS} , then ρ_{BP} also robust.
- Reason why robustness calls for more disclosure:

Corollary

- Proof: If Bayesian solution ρ_{BP} is Blackwell more informative than robust solution ρ_{RS} , then ρ_{BP} also robust.
- Reason why robustness calls for more disclosure:
 - It is not because Sender worries that Nature fully discloses the state if she does not.

Corollary

- Proof: If Bayesian solution ρ_{BP} is Blackwell more informative than robust solution ρ_{RS} , then ρ_{BP} also robust.
- Reason why robustness calls for more disclosure:
 - It is not because Sender worries that Nature fully discloses the state if she does not.
 - Concealing information gives Nature more room for adversarial design.

Corollary

- Proof: If Bayesian solution ρ_{BP} is Blackwell more informative than robust solution ρ_{RS} , then ρ_{BP} also robust.
- Reason why robustness calls for more disclosure:
 - It is not because Sender worries that Nature fully discloses the state if she does not.
 - Concealing information gives Nature more room for adversarial design.
- If Bayesian solution ρ_{BP} is not robust and is strictly Blackwell dominated by robust solution ρ_{RS} , then ρ_{RS} separates states that ρ_{BP} does not.

Corollary

- Proof: If Bayesian solution ρ_{BP} is Blackwell more informative than robust solution ρ_{RS} , then ρ_{BP} also robust.
- Reason why robustness calls for more disclosure:
 - It is not because Sender worries that Nature fully discloses the state if she does not.
 - Concealing information gives Nature more room for adversarial design.
- If Bayesian solution ρ_{BP} is not robust and is strictly Blackwell dominated by robust solution ρ_{RS} , then ρ_{RS} separates states that ρ_{BP} does not.
- Conclusion not true with conditionally independent signals!

Concavification

• Let
$$v_{\mathsf{low}} := \min_{\omega \in \Omega} \overline{V}(\delta_{\omega}) - 1$$

• Auxiliary function

$$\overline{V}_{\mathcal{F}}(\mu) = \begin{cases} \overline{V}(\mu) & \text{if } supp(\mu) \in \mathcal{F} \text{ and } \overline{V}(\mu) \geq v_{\mathsf{low}} \\ v_{\mathsf{low}} & \text{otherwise} \end{cases}$$

Corollary

A feasible distribution $\rho \in \Delta \Delta \Omega$ is robust iff

$$\int \overline{V}_{\mathcal{F}}(\mu) d\rho(\mu) = \boldsymbol{co}(\overline{V}_{\mathcal{F}})(\mu_0).$$

Concavification

• Let
$$v_{\mathsf{low}} := \min_{\omega \in \Omega} \overline{V}(\delta_{\omega}) - 1$$

• Auxiliary function

$$\overline{V}_{\mathcal{F}}(\mu) = \begin{cases} \overline{V}(\mu) & \text{if } supp(\mu) \in \mathcal{F} \text{ and } \overline{V}(\mu) \geq v_{\mathsf{low}} \\ v_{\mathsf{low}} & \text{otherwise} \end{cases}$$

Corollary

A feasible distribution $\rho \in \Delta \Delta \Omega$ is robust iff

$$\int \overline{V}_{\mathcal{F}}(\mu) d\rho(\mu) = \operatorname{co}(\overline{V}_{\mathcal{F}})(\mu_0).$$

• Corollary: We need at most $|\Omega|$ signals in a robust solution.

• Suppose that instead of the lexicographic approach, the Sender maximizes

$$\sup_{q \in Q} \left\{ \lambda \inf_{\pi \in \Pi} \underline{v}(q, \pi) + (1 - \lambda) \overline{v}(q, \emptyset) \right\},\,$$

for some $\lambda \in [0, 1]$.

• Suppose that instead of the lexicographic approach, the Sender maximizes

$$\sup_{q \in Q} \left\{ \lambda \inf_{\pi \in \Pi} \underline{v}(q, \pi) + (1 - \lambda) \overline{v}(q, \emptyset) \right\},\,$$

for some $\lambda \in [0, 1]$.

• Possible interpretation: The Sender is Bayesian and λ is the assessed probability of Nature being adversarial.

• Suppose that instead of the lexicographic approach, the Sender maximizes

$$\sup_{q \in Q} \left\{ \lambda \inf_{\pi \in \Pi} \underline{v}(q, \pi) + (1 - \lambda) \overline{v}(q, \emptyset) \right\},\,$$

for some $\lambda \in [0, 1]$.

- Possible interpretation: The Sender is Bayesian and λ is the assessed probability of Nature being adversarial.
- Related concepts in other settings: Hurwicz (1951), Gul and Pesendorfer (2015), and Grant et al. (2020).

Under a regularity condition on the objective function:

Let d denote the Chebyshev metric on $\Delta\Omega$: $d(\mu, \eta) = \max_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|$.

Let d denote the Chebyshev metric on $\Delta\Omega$: $d(\mu, \eta) = \max_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|$.

Definition

The function \overline{V} is regular if there exist positive constants K and L such that for every non-degenerate $\mu \in \Delta\Omega$ and every $\omega \in \text{supp}(\mu)$, there exists $\eta \in \Delta\Omega$ with $\text{supp}(\eta) \subseteq \text{supp}(\mu) \setminus \{\omega\}$ such that $d(\mu, \eta) \leq K\mu(\omega)$ and

 $\overline{V}(\mu) - \overline{V}(\eta) \le Ld(\mu, \eta).$

Let d denote the Chebyshev metric on $\Delta\Omega$: $d(\mu, \eta) = \max_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|$.

Definition

The function \overline{V} is regular if there exist positive constants K and L such that for every non-degenerate $\mu \in \Delta\Omega$ and every $\omega \in \text{supp}(\mu)$, there exists $\eta \in \Delta\Omega$ with $\text{supp}(\eta) \subseteq \text{supp}(\mu) \setminus \{\omega\}$ such that $d(\mu, \eta) \leq K\mu(\omega)$ and

 $\overline{V}(\mu) - \overline{V}(\eta) \le Ld(\mu, \eta).$

Regularity requires that, for any μ and any $\omega \in \text{supp}(\mu)$, there exists a nearby belief supported on $\text{supp}(\mu) \setminus \{\omega\}$ that is not much worse for the designer under the favorable selection \overline{V} .

Examples of regular functions:

• Lipschitz continuous $\overline{V};$ but this is weaker because the Lipschitz condition is required to hold:

Examples of regular functions:

- Lipschitz continuous $\overline{V};$ but this is weaker because the Lipschitz condition is required to hold:
 - \blacktriangleright only for beliefs μ that attach vanishing probability to some state $\omega,$

Examples of regular functions:

- Lipschitz continuous $\overline{V};$ but this is weaker because the Lipschitz condition is required to hold:
 - \blacktriangleright only for beliefs μ that attach vanishing probability to some state $\omega,$
 - only for some belief η in the neighborhood of a given μ ,

Examples of regular functions:

- Lipschitz continuous $\overline{V};$ but this is weaker because the Lipschitz condition is required to hold:
 - \blacktriangleright only for beliefs μ that attach vanishing probability to some state $\omega,$
 - only for some belief η in the neighborhood of a given μ ,
 - only in one direction (the condition rules out functions $\overline{V}(\mu)$ that *decrease* at an infinite rate as $\mu(\omega)$ approaches 0);
Examples of regular functions:

- Lipschitz continuous $\overline{V};$ but this is weaker because the Lipschitz condition is required to hold:
 - \blacktriangleright only for beliefs μ that attach vanishing probability to some state $\omega,$
 - only for some belief η in the neighborhood of a given μ ,
 - only in one direction (the condition rules out functions $\overline{V}(\mu)$ that *decrease* at an infinite rate as $\mu(\omega)$ approaches 0);
- $\overline{V}(\mu) = v(\mathbb{E}_{\mu}[\omega])$, for some real-valued function v;

Examples of regular functions:

- Lipschitz continuous $\overline{V};$ but this is weaker because the Lipschitz condition is required to hold:
 - \blacktriangleright only for beliefs μ that attach vanishing probability to some state $\omega,$
 - only for some belief η in the neighborhood of a given μ ,
 - only in one direction (the condition rules out functions $\overline{V}(\mu)$ that *decrease* at an infinite rate as $\mu(\omega)$ approaches 0);
- $\overline{V}(\mu) = v(\mathbb{E}_{\mu}[\omega])$, for some real-valued function v;
- $\overline{V}(\mu) = \sum_{i=1}^{k} a_i \mathbf{1}_{\{\mu \in A_i\}}$ for some partition $(A_1, ..., A_k)$ of $\Delta \Omega$

Let $S(\lambda)$ denote the set of solutions to the weighted problem with weight λ .

Let $S(\lambda)$ denote the set of solutions to the weighted problem with weight λ .

Theorem

Suppose that \overline{V} is regular. Then, there exists $\overline{\lambda} < 1$ such that for all $\lambda \in (\overline{\lambda}, 1)$, $S(\lambda)$ coincides with the set of robust solutions.

Let $S(\lambda)$ denote the set of solutions to the weighted problem with weight λ .

Theorem

Suppose that \overline{V} is regular. Then, there exists $\overline{\lambda} < 1$ such that for all $\lambda \in (\overline{\lambda}, 1)$, $S(\lambda)$ coincides with the set of robust solutions.

Without regularity: Any limit of λ -solutions as $\lambda \nearrow 1$ is a robust solution (but not the other way around).

Lemma

There exists a constant $\delta > 0$ such that for any μ such that $supp(\mu) \notin \mathcal{F}$,

$$\underline{V}_{\textit{full}}(\mu) - \textit{lco}(\underline{V})(\mu) \geq \delta \cdot \max_{B \subseteq \textit{supp}(\mu), \ B \notin \mathcal{F}} \ \min_{\omega \in B} \{\mu(\omega)\}.$$

Lemma

There exists a constant $\delta > 0$ such that for any μ such that $supp(\mu) \notin \mathcal{F}$,

$$\underline{V}_{\mathit{full}}(\mu) - \mathit{lco}(\underline{V})(\mu) \geq \delta \cdot \max_{B \subseteq \mathit{supp}(\mu), \ B \notin \mathcal{F}} \ \min_{\omega \in B} \{\mu(\omega)\}.$$

Lemma

For a regular function \overline{V} , there exists a constant $\Delta > 0$ such that for any μ such that supp $(\mu) \notin \mathcal{F}$,

$$\overline{V}(\mu) - \operatorname{co}(\overline{V}_{\mathcal{F}})(\mu) \leq \Delta \max_{B \subseteq \operatorname{supp}(\mu), \ B \notin \mathcal{F}} \quad \min_{\omega \in B} \{\mu(\omega)\}.$$

Lemma

There exists a constant $\delta > 0$ such that for any μ such that $supp(\mu) \notin \mathcal{F}$,

$$\underline{V}_{\mathit{full}}(\mu) - \mathit{lco}(\underline{V})(\mu) \geq \delta \cdot \max_{B \subseteq \mathit{supp}(\mu), \ B \notin \mathcal{F}} \ \min_{\omega \in B} \{\mu(\omega)\}.$$

Lemma

For a regular function \overline{V} , there exists a constant $\Delta > 0$ such that for any μ such that $supp(\mu) \notin \mathcal{F}$,

$$\overline{V}(\mu) - \operatorname{co}(\overline{V}_{\mathcal{F}})(\mu) \leq \Delta \max_{B \subseteq \operatorname{supp}(\mu), B \notin \mathcal{F}} \min_{\omega \in B} \{\mu(\omega)\}.$$

Lemma

Suppose that \overline{V} is regular. There exists $\overline{\lambda} < 1$ such that, for all $\lambda \in (\overline{\lambda}, 1]$, if ρ is a λ -solution, then ρ cannot assign positive probability to μ such that $supp(\mu) \notin \mathcal{F}$.

Applications

Privately Informed Receiver

- Guo and Shmaya (ECMA, 2019)
- State ω is the value to a buyer
- Exogenous price $p \in (0,1)$
- Seller's payoff is 1 if trade, 0 otherwise
- $\bullet\,$ Buyer's exogenous private information given by $f(t|\omega),$ ordered by MLRP
- A Bayesian solution has an *interval structure*: each buyer's type t is induced to trade on an interval of states, and less optimistic types trade on smaller intervals

Privately Informed Receiver

- Guo and Shmaya (ECMA, 2019)
- State ω is the value to a buyer
- Exogenous price $p \in (0,1)$
- Seller's payoff is 1 if trade, 0 otherwise
- $\bullet\,$ Buyer's exogenous private information given by $f(t|\omega),$ ordered by MLRP
- A Bayesian solution has an *interval structure*: each buyer's type t is induced to trade on an interval of states, and less optimistic types trade on smaller intervals

Proposition

Any robust solution separates states $\omega \leq p$ from states $\omega' > p$.

Limits to Price Discrimination

• Bergemann, Brooks, Morris (AER, 2015)

 The designer segments the market to maximize either producer or consumer surplus.

Limits to Price Discrimination

• Bergemann, Brooks, Morris (AER, 2015)

 The designer segments the market to maximize either producer or consumer surplus.

Proposition

The BBM solution is robust.

Limits to Price Discrimination

• Bergemann, Brooks, Morris (AER, 2015)

 The designer segments the market to maximize either producer or consumer surplus.

Proposition

The BBM solution is robust.

• The solution is robust even though it is very intricate.

Lemons problem

- Seller's value: ω (known to seller, unknown to buyer)
- Buyer's value: $\omega + \Delta$, with $\Delta > 0$ (Δ is a constant)
- Exogenous price p drawn from U[0,1]
- Trade if (i) $p \ge \omega$ and (ii) $\mathbb{E}_{\mu}[\tilde{\omega}|\tilde{\omega} \le p] + \Delta > p$
- Seller designs info structure

Lemons problem

- Seller's value: ω (known to seller, unknown to buyer)
- Buyer's value: $\omega + \Delta$, with $\Delta > 0$ (Δ is a constant)
- Exogenous price $p \mbox{ drawn from } U[0,1]$
- Trade if (i) $p \ge \omega$ and (ii) $\mathbb{E}_{\mu}[\tilde{\omega}|\tilde{\omega} \le p] + \Delta > p$
- Seller designs info structure

Proposition

Under any robust solution ρ_{RS} , for any $\mu, \mu' \in \text{supp}(\rho_{RS})$, $diam(\text{supp}(\mu)), diam(\text{supp}(\mu')) \leq \Delta$ but $diam(\text{supp}(\mu) \cup \text{supp}(\mu')) > \Delta$.

Lemons problem

- Seller's value: ω (known to seller, unknown to buyer)
- Buyer's value: $\omega + \Delta$, with $\Delta > 0$ (Δ is a constant)
- Exogenous price $p \mbox{ drawn from } U[0,1]$
- Trade if (i) $p \ge \omega$ and (ii) $\mathbb{E}_{\mu}[\tilde{\omega}|\tilde{\omega} \le p] + \Delta > p$
- Seller designs info structure

Proposition

Under any robust solution ρ_{RS} , for any $\mu, \mu' \in \text{supp}(\rho_{RS})$, $diam(\text{supp}(\mu)), diam(\text{supp}(\mu')) \leq \Delta$ but $diam(\text{supp}(\mu) \cup \text{supp}(\mu')) > \Delta$.

• Robust solutions are minimally informative among those that eliminate adverse selection

Supermodular Games

- Continuum of Receivers
- $a_i = \{0,1\}; A \in [0,1]$: aggregate "attack"
- Payoff from not attacking normalized to 0; payoff from attacking

$$\left\{ \begin{array}{ll} g>0 & \quad \text{if} \quad \quad A\geq \omega \\ b<0 & \quad \text{if} \quad \quad A<\omega \end{array} \right.$$

- Designer's payoff: 1 A
- Bayesian solution under best rationalizable profile: Upper censorship
 - ▶ Reveals each $\omega < 0$ w.p. $\gamma_{BP} \in (0, 1)$ (w.p. $1 \gamma_{BP}$, reveals nothing)
 - Conceals all ω > 0

Supermodular Games

- Continuum of Receivers
- $a_i = \{0,1\}; A \in [0,1]$: aggregate "attack"
- Payoff from not attacking normalized to 0; payoff from attacking

$$\left\{ \begin{array}{ll} g>0 & \quad \text{if} \quad \quad A\geq \omega \\ b<0 & \quad \text{if} \quad \quad A<\omega \end{array} \right.$$

- Designer's payoff: 1 A
- Bayesian solution under best rationalizable profile: Upper censorship
 - ▶ Reveals each $\omega < 0$ w.p. $\gamma_{BP} \in (0, 1)$ (w.p. $1 \gamma_{BP}$, reveals nothing)
 - Conceals all ω > 0

Proposition

Suppose that \overline{V} and \underline{V} capture the payoff in the best and worst rationalizable profile for the Sender, respectively. Then, a robust solution reveals $\omega < 0$ w.p. $\gamma^* > \gamma_{BP}$, conceals all $\omega \in [0, 1]$, reveals all $\omega > 1$ with certainty.

Conditionally Independent Signals

Conditionally-independent Robust Solutions

• Nature cannot condition on the realization of Sender's signal

 $\blacktriangleright \ \pi:\Omega\to \Delta \mathcal{R}$

▶ so far: $\pi : \Omega \times S \to \Delta R$

• A robust solution may fail to exist

- A robust solution may fail to exist
- A robust solution exists if \underline{V} is continuous

- A robust solution may fail to exist
- A robust solution exists if \underline{V} is continuous

- A robust solution may fail to exist
- A robust solution exists if \underline{V} is continuous

Definition

A feasible distribution $\rho \in \Delta \Delta \Omega$ is a weak CI-robust solution if it maximizes

 $\int \overline{V}(\mu) d\rho(\mu)$

over $cl(W_{CI})$, where $cl(W_{CI})$ is closure (in weak^{*} topology) of set of CI-worst-case solutions.

- A robust solution may fail to exist
- A robust solution exists if \underline{V} is continuous

Definition

A feasible distribution $\rho \in \Delta \Delta \Omega$ is a weak CI-robust solution if it maximizes

 $\int \overline{V}(\mu) d\rho(\mu)$

over $cl(W_{CI})$, where $cl(W_{CI})$ is closure (in weak^{*} topology) of set of CI-worst-case solutions.

Theorem

A weak solution exists no matter \underline{V} .

Separation under CI-Robust Solutions

• Sufficient conditions for state separation under CI-robust solutions

weaker than those for robust solutions

Separation under CI-Robust Solutions

• Sufficient conditions for state separation under CI-robust solutions

- weaker than those for robust solutions
- intuitively, states ω and ω' must be separated if $\underline{V}(\mu)$ lies strictly below $\underline{V}_{\text{full}}(\mu)$ for μ in the neighborhood of δ_{ω} or $\delta_{\omega'}$.

Separation under CI-Robust Solutions

• Sufficient conditions for state separation under CI-robust solutions

- weaker than those for robust solutions
- intuitively, states ω and ω' must be separated if $\underline{V}(\mu)$ lies strictly below $\underline{V}_{\text{full}}(\mu)$ for μ in the neighborhood of δ_{ω} or $\delta_{\omega'}$.
- \blacktriangleright whenever ω and ω' must be separated under CI-robust solutions, they must be separated under robust solutions

Cl-robust solutions: Binary state

• Unlike robust solutions, CI-robust solutions for binary states need not coincide with either

Bayesian solutions, or

full disclosure.

Blackwell Informativeness of CI-robust solutions

• Unlike robust solutions, CI-robust solutions need not be Blackwell more informative than Bayesian solution

• Example in which unique Bayesian solution is Blackwell strictly more informative than all CI-robust solutions

- ► Nature cannot engineer MPS **conditional** each on *s* separately
- > Thus, any additional disclosure by Nature moves all posterior beliefs.
- ▶ It is possible that a less informative signal ρ_{RS} is worst-case optimal, but a more informative signal ρ_{BP} is not.

Conclusions

- Bayesian persuasion when Sender uncertain about
 - Receivers' information
 - strategy selection
- Robust solutions
 - best-case optimal among worst-case optimal ones
- Separation theorem
 - any pair of states over which Nature can construct beliefs yielding less than the full-information payoff are separated
- Robustness \implies more disclosure
 - but only through more separation (not a MPS over the same support)
- Future work:
 - Implications for applications, especially ones where tractability is an issue
 - Robust discriminatory disclosure
 - Other notions of robustness

Conclusions

Thank you