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Quick introduction to Bayesian persuasion

Kamenica and Gentzkow (AER, 2011, > 1300 citations)

A game between a Sender and a Receiver;

State ω ∈ Ω (finite), distributed according to a common prior µ0 ∈ ∆Ω;

The Sender commits to a signal q : Ω→ ∆(S);

The Receiver observes s ∈ S, updates beliefs to µs0 according to Bayes’ rule,
and takes an optimal action

a?(µs0) ∈ argmaxa∈AEω∼µs
0
[u(a, ω)].

The Sender selects q to maximize

Eω∼µ0Es∼q(ω)[v(a?(µs0), ω)].
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Quick introduction to Bayesian persuasion
The judge example:

Sender=Prosecutor, Receiver=Judge, (Suspect)

Ω = {G, I}, µ0 = 1/2.

A = {convict, acquit}.

Judge’s payoff: u(acquit, ω) = 0, and

u(convict, ω) =

{
−2, ω = I,

1, ω = G.

Thus, Judge convicts if she believes the Suspect to be guilty with probability
2/3 or more.

Prosecutor’s payoff:

v(a, ω) =

{
1, a = convict,

0, a = acquit.
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Motivation

Bayesian persuasion/ information design

I designer knows agents’ sources of information

I trusts her ability to coordinate Receivers on actions most favorable to her

I optimal information structure sensitive to fine details of agents’ beliefs

In many problems of interest,

I agents’ sources of information (both before and after receiving Sender’s
information) unknown

I Sender may not trust her ability to coordinate Receivers

Quest for robustness
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This Paper

New solution concept that accounts for such uncertainty/ambiguity

Lexicographic approach to the problem

I Step 1:“Preparing for the worst”

F designer seeks to protect herself against possibility that Nature provides
information and coordinates agents on actions to minimize the designer’s payoff

I Step 2:“Hoping for the best”

F designer maximizes over all worst-case optimal policies assuming Nature and
Receivers play favorably to her

Robust solutions

I best-case optimal among worst-case optimal ones
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Results

Separation theorem – general characterization

Properties of robust solutions

Implications for various persuasion models – applications

Equivalence to the weighted objective model
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Model: Environment

Payoff-relevant state: ω ∈ Ω (finite)

(Common) Prior: µ0 ∈ ∆Ω

Sender’s “signal”

I q : Ω→ ∆S
I S: signal realizations

(Reduced-form description of) Sender’s payoff, given induced posterior
µ ∈ ∆Ω

I V (µ) : “highest” payoff; an u.s.c. function

I V (µ): “lowest” payoff; a l.s.c. function

Difference between V and V :

I equilibrium selection (multiple Receivers)

I tie-breaking (single Receiver)

I or something else entirely! (formally, we don’t even require V ≥ V )
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Model: Sender’s uncertainty

Nature designs information structure

I π : Ω× S → ∆R
I R: signal realizations

Interpretation

I The Sender does not know the distribution of Receivers’ beliefs

I Receivers could acquire additional information from other sources after seeing
the Sender’s signal

I Correlated noise (maximal concern for robustness)

Multiple Receivers

I discriminatory disclosures embedded into derivation of V (µ)

I given common posterior µ, Nature provides (possibly private) signals to the
agents and coordinates them on course of action most adversarial to Sender
(among those consistent with assumed solution concept)

I e.g., Bayes-correlated eq. given µ

Online Appendix: conditionally independent signals
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Robust Solutions

Sender’s expected payoffs when

I Sender selects signal q

I Nature selects signal π

v(q, π) ≡
∑
Ω

∫
S

∫
R
V (µs,r

0 )dπ(r|ω, s)dq(s|ω)µ0(ω)

v(q, π) ≡
∑
Ω

∫
S

∫
R
V (µs,r

0 )dπ(r|ω, s)dq(s|ω)µ0(ω)

where µs,r
0 is the common posterior obtained from the prior µ0 given

realization (s, r) of the signal (q, π)



Worst-case optimality

Definition

Signal q is worst-case optimal if, for all signals q′,

inf
π
v(q, π) ≥ inf

π
v(q′, π).



Worst-case optimality

Define the Sender’s payoff from full disclosure of the state, conditional on
some belief µ, under the adversarial selection:

V full(µ) ≡
∑
Ω

V (δω)µ(ω)

where δω is a Dirac measure assigning prob 1 to ω.

Remark
Since both Nature and Sender can reveal state, signal q is worst-case optimal iff

inf
π
v(q, π) = V full(µ0)

W : set of worst-case optimal signals

I non-empty (full disclosure is worst-case optimal)
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Robust Solutions

Definition

Signal qRS is a robust solution if it maximizes v(q, ∅) over W .

Lexicographic preferences:

I The Sender first guarantees herself the highest payoff guarantee in the
worst-case scenario

I If multiple policies yield the same payoff guarantee, she breaks the tie by
considering the best-case scenario

Clearly, qRS also maximizes supπ v(q, π) over W

I Conservative approach: Sender prefers to provide information herself rather
than counting on Nature to do it
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Robust Solutions

Lemma
Signal qRS is a robust solution iff the distribution of posterior beliefs ρRS ∈ ∆∆Ω
that it induces maximizes ∫

V (µ)dρ(µ)

over the set of distributions of posterior beliefs W ⊂ ∆∆Ω satisfying

Bayes plausibility ∫
µdρ(µ) = µ0

Worst-case optimality (WCO)∫
lco(V )(µ)dρ(µ) = V full(µ0)



Robust vs Bayesian Solutions

Bayesian solutions:

I qBP maximizes v(q, ∅) over Q (feasible signals)

I ρBP ∈ ∆∆Ω maximizes
∫
V (µ)dρ(µ) over all distributions ρ ∈ ∆∆Ω

satisfying Bayes plausibility,
∫
µdρ(µ) = µ0

Robust solutions:

I qRS maximizes v(q, ∅) over W ⊂ Q (worst-case optimal signals)

I ρRS ∈ ∆∆Ω maximizes
∫
V (µ)dρ(µ) over all distributions ρ ∈ ∆∆Ω

satisfying Bayes plausibility,
∫
µdρ(µ) = µ0, and the WCO constraint∫

lco(V )(µ)dρ(µ) = V full(µ0)
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Separation Theorem

Theorem
There exists

F ⊆ 2Ω

such that

W = {ρ ∈ ∆∆Ω : ρ satisfies BP and supp(µ) ∈ F , ∀µ ∈ supp(ρ)} .

Therefore, ρRS ∈ ∆∆Ω is a robust solution iff ρRS maximizes∫
V (µ)dρ(µ)

over all Bayes-plausible distributions over posterior beliefs ρ ∈ ∆∆Ω such that

supp(µ) ∈ F , ∀µ ∈ supp(ρ).
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Separation Theorem

Idea:

I Suppose Sender induces posterior µ with supp(µ) = B for which there exists
η ∈ ∆B s.t. V (η) < V full(η).

I Starting from µ, Nature can induce η with strictly positive probability.

I Starting from µ, Nature can bring Sender’s payoff strictly below V full(µ).

I This is because Nature can respond to any other posterior µ′ ∈ supp(ρ) by
fully disclosing the state,∫

lco(V )(µ̃)dρ(µ̃) < V full(µ0)

I Hence, Sender’s policy inducing such µ cannot be worst-case optimal.



Separation Theorem

1
0

1

Expected payoff 
after Nature's disclosure

Expected payoff 
before Nature's disclosure

Figure: Prosecutor example



Properties of Robust Solutions



Existence

Corollary

A robust solution always exists.

Existence follows because the WCO constraint is only a constraint on feasible
supports (compactness is preserved).

Existence guaranteed by possibility for Nature to condition on realization of
Sender’s signal.
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State separation

Corollary

Suppose there exist ω, ω′ ∈ Ω and λ ∈ (0, 1) s.t.

V (λδω + (1− λ)δω′) < λV (δω) + (1− λ)V (δω′),

Then any robust solution must separate ω and ω′.

Assumption: there exists some belief supported on {ω, ω′} under which
Sender’s payoff below full disclosure

Conclusion: ALL posterior beliefs must separate ω and ω′.
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Full disclosure vs No restriction

Corollary (Full disclosure)

Full disclosure is the unique robust solution if F = Ω, meaning that any pair of
states must be separated under any worst-case optimal distribution.

Corollary (No restrictions)

All feasible distributions are worst-case optimal if, and only if, Ω ∈ F , meaning
that no pair of states must be separated under any worst-case optimal distribution.
Then, the set of robust solutions coincides with the set of Bayesian solutions.
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Robustness of Bayesian Solutions

Corollary

Bayesian solution ρBP is robust iff for any µ ∈ supp(ρBP ) and any η ∈ ∆Ω s.t.
supp(η) ⊂ supp(µ),

V (η) ≥ V full(η).

Corollary for the binary-state case: Any robust solution is either

I full disclosure, or

I a Bayesian solution.



Robustness of Bayesian Solutions

Corollary

Bayesian solution ρBP is robust iff for any µ ∈ supp(ρBP ) and any η ∈ ∆Ω s.t.
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I full disclosure, or
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Worst-case optimality preserved under more disclosure

Corollary

W is closed under Blackwell dominance: If ρ′ ∈ W, and ρ Blackwell dominates ρ′,
then ρ ∈ W.



Informativeness of Robust vs Bayesian solutions

Corollary

Given any Bayesian solution ρBP , there exists robust solution ρRS s.t. either ρRS
and ρBP not comparable in Blackwell order, or ρRS Blackwell dominates ρBP .

Proof: If Bayesian solution ρBP is Blackwell more informative than robust
solution ρRS , then ρBP also robust.

Reason why robustness calls for more disclosure:

I It is not because Sender worries that Nature fully discloses the state if she
does not.

I Concealing information gives Nature more room for adversarial design.

If Bayesian solution ρBP is not robust and is strictly Blackwell dominated by
robust solution ρRS , then ρRS separates states that ρBP does not.

Conclusion not true with conditionally independent signals!
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Concavification

Let vlow := minω∈Ω V (δω)− 1

Auxiliary function

V F (µ) =

{
V (µ) if supp(µ) ∈ F and V (µ) ≥ vlow

vlow otherwise

Corollary

A feasible distribution ρ ∈ ∆∆Ω is robust iff∫
V F (µ)dρ(µ) = co(V F )(µ0).

Corollary: We need at most |Ω| signals in a robust solution.
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Weighted objective function



Weighted objective function

Suppose that instead of the lexicographic approach, the Sender maximizes

sup
q∈Q

{
λ inf
π∈Π

v(q, π) + (1− λ)v(q, ∅)
}
,

for some λ ∈ [0, 1].

Possible interpretation: The Sender is Bayesian and λ is the assessed
probability of Nature being adversarial.

Related concepts in other settings: Hurwicz (1951), Gul and Pesendorfer
(2015), and Grant et al. (2020).
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Weighted objective function

Under a regularity condition on the objective function:



Weighted objective function

Let d denote the Chebyshev metric on ∆Ω: d(µ, η) = maxω∈Ω |µ(ω)− η(ω)|.

Definition

The function V is regular if there exist positive constants K and L such that for
every non-degenerate µ ∈ ∆Ω and every ω ∈ supp(µ), there exists η ∈ ∆Ω with
supp(η) ⊆ supp(µ) \ {ω} such that d(µ, η) ≤ Kµ(ω) and

V (µ)− V (η) ≤ Ld(µ, η).

Regularity requires that, for any µ and any ω ∈ supp(µ), there exists a nearby
belief supported on supp(µ) \ {ω} that is not much worse for the designer under
the favorable selection V .
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Weighted objective function

Examples of regular functions:

Lipschitz continuous V ; but this is weaker because the Lipschitz condition is
required to hold:

I only for beliefs µ that attach vanishing probability to some state ω,

I only for some belief η in the neighborhood of a given µ,

I only in one direction (the condition rules out functions V (µ) that decrease at
an infinite rate as µ(ω) approaches 0);

V (µ) = v(Eµ[ω]), for some real-valued function v;

V (µ) =
∑k
i=1 ai1{µ∈Ai} for some partition (A1, ..., Ak) of ∆Ω
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Weighted objective function

Let S(λ) denote the set of solutions to the weighted problem with weight λ.

Theorem

Suppose that V is regular. Then, there exists λ < 1 such that for all λ ∈ (λ, 1),
S(λ) coincides with the set of robust solutions.

Without regularity: Any limit of λ-solutions as λ↗ 1 is a robust solution (but not
the other way around).
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There exists a constant δ > 0 such that for any µ such that supp(µ) /∈ F ,
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Suppose that V is regular. There exists λ < 1 such that, for all λ ∈ (λ, 1], if ρ is a
λ-solution, then ρ cannot assign positive probability to µ such that supp(µ) /∈ F .
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Applications



Privately Informed Receiver

Guo and Shmaya (ECMA, 2019)

State ω is the value to a buyer

Exogenous price p ∈ (0, 1)

Seller’s payoff is 1 if trade, 0 otherwise

Buyer’s exogenous private information given by f(t|ω), ordered by MLRP

A Bayesian solution has an interval structure: each buyer’s type t is induced
to trade on an interval of states, and less optimistic types trade on smaller
intervals

Proposition

Any robust solution separates states ω ≤ p from states ω′ > p.
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Limits to Price Discrimination

Bergemann, Brooks, Morris (AER, 2015)

I The designer segments the market to maximize either producer or consumer
surplus.

Proposition

The BBM solution is robust.

The solution is robust even though it is very intricate.
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Lemons problem

Seller’s value: ω (known to seller, unknown to buyer)

Buyer’s value: ω + ∆, with ∆ > 0 (∆ is a constant)

Exogenous price p drawn from U [0, 1]

Trade if (i) p ≥ ω and (ii) Eµ[ω̃|ω̃ ≤ p] + ∆ > p

Seller designs info structure

Proposition

Under any robust solution ρRS , for any µ, µ′ ∈ supp(ρRS),
diam(supp(µ)), diam(supp(µ′)) ≤ ∆ but diam(supp(µ) ∪ supp(µ′)) > ∆.

Robust solutions are minimally informative among those that eliminate
adverse selection
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Supermodular Games

Continuum of Receivers

ai = {0, 1}; A ∈ [0, 1]: aggregate “attack”

Payoff from not attacking normalized to 0; payoff from attacking{
g > 0 if A ≥ ω
b < 0 if A < ω

Designer’s payoff: 1−A

Bayesian solution under best rationalizable profile: Upper censorship

I Reveals each ω < 0 w.p. γBP ∈ (0, 1) (w.p. 1− γBP , reveals nothing)
I Conceals all ω > 0

Proposition

Suppose that V and V capture the payoff in the best and worst rationalizable
profile for the Sender, respectively. Then, a robust solution reveals ω < 0 w.p.
γ∗ > γBP , conceals all ω ∈ [0, 1], reveals all ω > 1 with certainty.
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Conditionally Independent Signals



Conditionally-independent Robust Solutions

Nature cannot condition on the realization of Sender’s signal

I π : Ω→ ∆R

I so far: π : Ω× S → ∆R



Existence of CI-Robust Solutions

A robust solution may fail to exist

A robust solution exists if V is continuous

Definition
A feasible distribution ρ ∈ ∆∆Ω is a weak CI-robust solution if it maximizes∫

V (µ)dρ(µ)

over cl(WCI), where cl(WCI) is closure (in weak∗ topology) of set of
CI-worst-case solutions.

Theorem
A weak solution exists no matter V .
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Separation under CI-Robust Solutions

Sufficient conditions for state separation under CI-robust solutions

I weaker than those for robust solutions

I intuitively, states ω and ω′ must be separated if V (µ) lies strictly below
V full(µ) for µ in the neighborhood of δω or δω′ .

I whenever ω and ω′ must be separated under CI-robust solutions, they must be
separated under robust solutions
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CI-robust solutions: Binary state

Unlike robust solutions, CI-robust solutions for binary states need not
coincide with either

I Bayesian solutions, or

I full disclosure.



Blackwell Informativeness of CI-robust solutions

Unlike robust solutions, CI-robust solutions need not be Blackwell more
informative than Bayesian solution

Example in which unique Bayesian solution is Blackwell strictly more
informative than all CI-robust solutions

I Nature cannot engineer MPS conditional each on s separately

I Thus, any additional disclosure by Nature moves all posterior beliefs.

I It is possible that a less informative signal ρRS is worst-case optimal, but a
more informative signal ρBP is not.



Conclusions

Bayesian persuasion when Sender uncertain about

I Receivers’ information
I strategy selection

Robust solutions

I best-case optimal among worst-case optimal ones

Separation theorem

I any pair of states over which Nature can construct beliefs yielding less than
the full-information payoff are separated

Robustness =⇒ more disclosure

I but only through more separation (not a MPS over the same support)

Future work:

I Implications for applications, especially ones where tractability is an issue
I Robust discriminatory disclosure
I Other notions of robustness



Conclusions

Thank you
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