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Motivation

Procurement

central economic problem

(a) public

(b) private

Difficulty in designing contracts

Provider typically privately informed about cost



Motivation

Standard approach: Bayesian

Buyer has conjecture/belief over

(a) supplier’s cost

(b) gross value for procuring output

maximizes under conjecture

CS (robust) approach

buyer has no conjecture

worst-case optimality



Motivation

Our Approach (alternative form of robustness)

buyer has conjecture but does not fully trust it

prepares for the worst (in case conjecture is wrong)

uses conjecture to select optimal mechanism among worst-case optimal ones

Lexicographic approach

(a) political/hierarchical constraints

(b) attitude towards ambiguity



This Paper: Results

Robust design of procurement contracts

Uncertainty only over cost:

Baron Myerson with quantity floor

Uncertainty over both cost and demand

upward quantity adjustment for high cost

downward quantity adjustment for low/intermediate costs

Robustly optimal mechanism sensitive only to

conjecture over demand and cost

lowest admissible demand

CS wrt buyer’s uncertainty and policy recommendations
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Model



Model

Players

Buyer (principal/government)

Seller (agent/monopolist)

Choices

output q ≥ 0

transfer t ≥ 0



Model

Payoffs

Social value of q:

V ⋆(q) =

∫ q

0

P⋆(s)ds

Cost: θq

θ drawn from ab. cont. F ⋆ with f ⋆(θ) > 0 over Θ = [θ, θ̄]

Ex-post welfare (α ∈ [0, 1])

V ⋆(q)− t + α (t − θq)

Ex-ante welfare: ∫
(V ⋆(q)− t + α (t − θq)) dF ⋆(θ)

Asymmetric information

θ: monopolist’s private information



Model

Uncertainty/Robustness

government not sure about conjecture (V ⋆,F ⋆)

concerned demand and cost may be (V ,F ) ̸= (V ⋆,F ⋆)

Admissible sets

V: set of possible consumer (gross) value fns

each V ∈ V strictly increasing, strictly concave, differentiable

P: set of corresponding inverse demand functions

P⋆ ∈ P and V ⋆ ∈ V
lowest (inverse) demand function: P

any q ≥ 0 and P ∈ P
P(q) ≥ P(q)

P: strictly decreasing and continuous and s.t.

lim
q→0+

P(q) > θ



Model

(Direct) mechanism M = (q, t)

quantity schedule q : Θ → R+

(total) transfer schedule t : Θ → R

M = (q, t) IC and IR iff, for all θ, θ′,

t(θ)− θq(θ) ≥ t(θ′)− θq(θ′)

with

t(θ)− θq(θ) ≥ 0

M: set of IC and IR mechanisms



Model

Given IC and IR mechanism M = (q, t), ex-ante welfare under (V ,F )

W (M;V ,F ) :=

∫
w(θ,M;V )F (dθ)

where ex-post welfare:

w(θ,M;V ) := V (q(θ))− θq(θ)− (1− α)u(θ)

total surplus:

V (q(θ))− θq(θ)

“rent” to type θ:

u(θ) := t(θ)− θq(θ)



Model

Definition
Given any IC and IR M = (q, v), welfare guarantee

G(M) := inf
V∈V,F∈F

W (M;V ,F )

Short-list:

MSL := {M ∈ M : G(M) ≥ G(M ′) ∀ M ′ ∈ M}

(set of IC and IR mechanisms for which guarantee is maximal)



Model

Government’s problem

choose mechanism from MSL maximizing welfare under conjecture (V ⋆,F ⋆)

Definition

Mechanism M ∈ MSL robustly optimal iff, for every M ′ ∈ MSL,

W (M;V ⋆,F ⋆) ≥ W (M ′;V ⋆,F ⋆)

Robustly optimal mechanisms maximize ex-ante welfare under conjecture (V ⋆,F ⋆)
over all worst-case-optimal mechanisms
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Baron Myerson



Baron Myerson

∂u(θ): set of all subgradients of u at θ

x ∈ R is subgradient iff for all θ′, u(θ′) ≥ u(θ) + x(θ′ − θ)

Lemma
Mechanism M = (q, u) IC and IR iff u is convex, non-increasing, and s.t, for all θ ∈ Θ,
−q(θ) ∈ ∂u(θ), with u(θ) ≥ 0. Equivalently,

1 q non-increasing

2 for all θ ∈ Θ,

u(θ) = u(θ̄) +

θ̄∫
θ

q(z)dz

3 u(θ) ≥ 0



Baron Myerson

θ′s virtual cost (under conjecture F ⋆):

z⋆(θ) := θ + (1− α)
F ⋆(θ)

f ⋆(θ)

Proposition

Assume z⋆ non-decreasing. (Bayesian) optimal mechanism MBM = (qBM , uBM) s.t., for
all θ,

qBM(θ) := argmax
q

{V ⋆(q)− z⋆(θ)q}

uBM(θ) =

θ̄∫
θ

qBM(z)dz



Baron Myerson

Proof: Familiar IC analysis → ex-ante welfare under conjecture (V ⋆,F ⋆)

θ̄∫
θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
dF ⋆(θ)

qBM(θ) maximizes virtual surplus V ⋆(q)− z⋆(θ)q point-wise

z⋆ non-decreasing ⇒qBM non-increasing ⇒ (qBM , uBM) IC and IR



Baron Myerson

FB-efficiency (under conjecture (V ⋆,F ⋆)):

P⋆(qFB(θ)) = θ

BM schedule (second-best efficiency)

P⋆(qBM(θ)) = z⋆(θ) := θ + (1− α)
F ⋆(θ)

f ⋆(θ)

Hence,

no distortion “at top”, i.e., for most efficient type, θ

downward distortions for all θ > θ



Baron Myerson



Plan

1 Introduction

2 Model

3 Baron-Myerson

4 Short List: Worst-Case Optimality

5 Robustly Optimal Mechanisms

6 Ongoing Work

7 Conclusions



Short List



Worst-case optimality

Definition

Mechanism M = (q, u) worst-case optimal iff, for any IC and IR M ′ = (q′, u′) ∈ M,

G(M ′) := inf
V∈V,F∈F

W (M;V ,F ) ≤ inf
V∈V,F∈F

W (M;V ,F ) := G(M)



Worst-case optimality

Let
qℓ := argmax

q

{
V (q)− θ̄q

}
denote efficient output when V = V and θ = θ̄

Lemma
For any IC and IR mechanism M = (q, u) ∈ M

G(M) = inf
θ∈Θ

{V (q(θ))− θq(θ)− (1− α)u(θ)}

and

G(M) ≤ G∗ := V (qℓ)− θ̄qℓ.



Worst-case optimality

Proof: For any IC and IR mechanism M = (q, u) ∈ M

W (M;V ,F ) :=

∫
{V (q(θ))− θq(θ)− (1− α)u(θ)}F (dθ)

≥
∫

{V (q(θ))− θq(θ)− (1− α)u(θ)}F (dθ)

≥ inf
θ∈Θ

[
V (q(θ))− θq(θ)− (1− α)u(θ)

]
Hence,

G(M) ≥ inf
θ∈Θ

[
V (q(θ))− θq(θ)− (1− α)u(θ)

]
Because V ∈ V and, for each θ, Dirac distribution at θ is in F

G(M) ≤ inf
θ∈Θ

[
V (q(θ))− θq(θ)− (1− α)u(θ)

]
Hence,

G(M) = inf
θ∈Θ

[
V (q(θ))− θq(θ)− (1− α)u(θ)

]
Because u(θ̄) ≥ 0 and

V (q(θ̄))− θ̄q(θ̄) ≤ V (qℓ)− θ̄qℓ := G∗

G(M) ≤ G∗



Short List: Characterization

Let

MSL := {M ∈ M : G(M) ≥ G(M ′) ∀ M ′ ∈ M}

Lemma

M = (q, u) ∈ MSL iff q non-increasing and, for any θ

u(θ) =

θ̄∫
θ

q(y)dy

and

V (q(θ))− θq(θ)− (1− α)

θ̄∫
θ

q(y)dy ≥ G∗



Short List: Characterization

Proof:
M = (q, u) IC and IR:

(a) q nondecreasing

(b) u(θ) = u(θ) +
θ̄∫
θ

q(y)dy , with u(θ) ≥ 0

ONLY IF:

ML = (qL, uL) w. qL(θ) =qℓ and tL(θ) = θ̄qℓ all θ
(i) IC and IR
(ii) uL(θ) = (θ̄ − θ)qℓ
(iii) w(θ,ML;V ) := V (qℓ)− θqℓ − (1− α)uL(θ) = G∗ + α(θ̄ − θ)qℓ
(iv) G(ML) = G∗

M ∈ MSL only if G(M) = G∗

Because w(θ,M;V ) := V (q(θ))− θq(θ)− (1− α)u(θ)
(1) u(θ̄) = 0

(2) V (q(θ))− θq(θ)− (1− α)
θ̄∫
θ

q(y)dy ≥ G∗ all θ

IF PART: immediate
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Robust Optimality



Robust Optimality: Full Program

Recall def of virtual cost under conjecture (F ⋆,V ⋆)

z⋆(θ) := θ + (1− α)
F ⋆(θ)

f ⋆(θ)

Robustly optimal schedule qOPT solves

max
q

θ̄∫
θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
dF ⋆(θ)

s.t.

q non-increasing

V (q(θ))− θq(θ)− (1− α)

θ̄∫
θ

q(y)dy ≥ G∗ ∀ θ ∈ Θ



Robust Optimality: Relaxed Program

Relaxation:

max
q

θ̄∫
θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
dF ⋆(θ)

s.t.

q non-increasing

q(θ) ≥ qℓ ∀ θ ∈ Θ

q(θ̄) = qℓ



Robust Optimality: Relaxed Program

Proof: M = (q, u) ∈ MSL only if, for all θ,

V (q(θ))− θq(θ)− (1− α)

θ̄∫
θ

q(y)dy ≥ G∗

Because G∗ = maxq{V (q)− θ̄q} = V (qℓ)− θ̄q(qℓ)
⇒ q(θ̄) = qℓ
q non-increasing ⇒ q(θ) ≥ qℓ all θ



Robust Optimality: BM with Floor

Let
qBM(θ) := argmax

q
{V ⋆(q)− z⋆(θ)q}

q⋆(θ) :=

{
max{qBM(θ), qℓ} if θ ̸= θ

qℓ if θ = θ

and

u⋆(θ) =

θ̄∫
θ

q⋆(y)dy

Proposition

Suppose z⋆ non-decreasing and V ⋆ = V . Mechanism M⋆ = (q⋆, u⋆) robustly optimal



Robust Optimality: BM with Floor



Robust Optimality: BM with Floor

Proof

M⋆ = (q⋆, u⋆) solves relaxed program

q⋆(θ) maximizes V ⋆(q)− z⋆(θ)q under constraint q ≥ qℓ
z⋆ non-decreasing ⇒ M⋆ IC and IR

Ex-post welfare under M⋆ and V

w(θ;M⋆,V ) := V (q⋆(θ))− θq⋆(θ)− (1− α)

θ̄∫
θ

q⋆(y)dy

V ⋆ = V ⇒ w(·;M⋆,V ) non-increasing, with w(θ̄;M⋆,V ) = V (qℓ)− θ̄qℓ := G∗

Robustness constraints w(θ;M⋆,V ) ≥ G∗ satisfied

⇒ M⋆ = (q⋆, u⋆) robustly optimal



Robust Optimality: BM with Floor

When demand known (only uncertainty over cost)

robust mechanism is Baron Myerson with floor
efficiency at both bottom and top

possibility that cost is less favorable than conjectured → more output

flat mechanisms never optimal:

θ⋆ := inf {θ ∈ Θ : q⋆(θ) = qℓ} > θ

contrast w. standard“CS”approach to robustness (q(θ) = qℓ all θ)



Robust Optimality: general case

For any M = (q, u) s.t. u(θ) =
θ̄∫
θ

q(y)dy , ex-post welfare under lowest demand

W (θ, q) := V (q(θ))− θq(θ)− (1− α)

θ̄∫
θ

q(y)dy

Robustness:

W (θ, q) ≥ G∗ ∀ θ ∈ Θ



Robust Optimality: general case

Theorem
Suppose z⋆ non-decreasing

(1) BM-floor mechanism M⋆ ≡ (q⋆, u⋆) robustly optimal iff

θm := sup{θ : θ ∈ arg inf
θ′

W (θ′, q⋆)} = θ̄

(2) If θm < θ̄, then θm < θ⋆ := inf {θ ∈ Θ : q⋆(θ) = qℓ} and

(a) qOPT(θ) = qℓ for all θ ∈ [θ⋆, θ̄]

(b) qOPT(θ) ≤ qBM(θ) for almost all θ ≤ θ⋆

(inequality strict over positive-measure I ⊆ [θ, θ⋆])

(3) if θm ∈ (θ, θ̄), α = 0, and z⋆ increasing, qOPT(θ) = qBM(θ) for θ ∈ (θ, θm)



Robust Optimality: general case

(Qualitative) properties driven by

W (θ, q⋆) := V (q⋆(θ))− θq⋆(θ)− (1− α)

θ̄∫
θ

q⋆(y)dy

Lemma (Monotonicity)

For any positive, non-decreasing q

1 When q(θ) ≤ P−1(θ) all θ ∈ I ⊂ [θ, θ⋆], W (·, q) non-increasing

(decreasing if α > 0, or q decreasing and q(θ) < P−1(θ) all θ ∈ I )

2 When q(θ) > P−1(θ) all θ ∈ I ⊂ [θ, θ⋆], and α = 0, W (·, ) non-decreasing

(increasing is q decreasing)



Robust Optimality: BM-floor optimal



Robust Optimality: BM-floor optimal

When α = 0, M⋆ ≡ (q⋆, u⋆) robustly optimal if W (θ, q⋆) ≥ G∗

Equivalently, when V (q⋆(θ))− θq⋆(θ)−
θ̄∫
θ

q⋆(y)dy ≥ V (qℓ)− θ̄qℓ

q⋆(θ) = argmaxq{V ⋆(q)− θq}
Hence inequality holds when || V ⋆,V || small



Robust Optimality: BM with floor and intermediate
downward adjustments



Optimality of“plateau” for high costs

Lemma

Suppose z⋆ non-decreasing and θm ̸= θ̄. Then qOPT(θ) = qℓ for all θ ∈ [θ⋆, θ̄]

Minimizing quantity over [θ⋆, θ̄]

increases W (θ, q) for all θ ≤ θ⋆ (by reducing rents)
possibly decreases W (θ, q) for θ > θ⋆(by reducing V (q)− θq)
However, W (·, q∗) decreasing over [θ⋆, θ̄] w. W (θ̄, q∗) = G∗

For θ ∈ [θ⋆, θ̄]

qℓ maximizes V ⋆(q)− z⋆(θ)q over [qℓ,+∞)

Hence under any MOPT = (qOPT, uOPT)

qOPT(θ) = qℓ ∀θ ∈ [θ⋆, θ̄]



Suboptimality of upward adjustments for low costs

Lemma

Suppose z⋆ non-decreasing and θm ̸= θ̄. Then qOPT(θ) ≤ qBM(θ) for almost all
θ ∈ [θ, θ⋆), with inequality strict over positive-measure I ⊆ [θ, θ⋆)



Sub-optimality of upward adjustments for low costs

Take any M = (q, u) ∈ MSL s.t.

q(θ) > q⋆(θ) = qBM(θ) over positive-measure I ⊆ [θ, θ⋆)
q(θ) = qℓ for all θ ≥ θ⋆

Take M̃ = (q̃, ũ) s.t.

q̃(θ) := min{q⋆(θ), q(θ)}

and ũ(θ) =
θ̄∫
θ

q̃(y)dy

Clearly,

M̃ is IC and IR
Higher payoff under M̃ than M: q̃ closer to qBMwhich maximizes virtual
surplus

M̃ ∈ MSL?



Sub-optimality of upward adjustments for low costs

M̃ ∈ MSL ⇔

W (θ, q̃) := V (q̃(θ))− θq̃(θ)−
θ̄∫

θ

q̃(y)dy ≥ G∗ ∀θ

Clearly so when

q̃(θ) = q(θ) — smaller rents, same TS

P−1(θ) ≤ q̃(θ) < q(θ) —smaller rents, higher TS

[recall P−1(θ) maximizes V (q)− θq)]

q̃(θ) < min{q(θ),P−1(θ)}: not clear



Sub-optimality of upward adjustments for low costs

Because q⋆(θ̄) = qℓ = P−1(θ̄), there exists θ′ > θ s.t.

q̃(y) := min{q(y), q⋆(θ)} ≤ P−1(y) ∀y ∈ [θ, θ′]

q̃(θ′) = min{P−1(θ′), q(θ′)}

Monotonicity lemma ⇒ W (·, q̃) non-increasing over [θ, θ′]

Previous lemma ⇒ W (θ′, q̃) ≥ G∗

Hence W (θ, q̃) ≥ G∗ Q.E.D.
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Ongoing Work



Ongoing work

Local robustness

arbitrary set of distributions F
Effects of changes in optimist/pessimism

variations in conjecture (F ⋆,V ⋆)
variation in demand lower bound V (equivalently, P)

Characterization of optimal schedule when qOPT(θ) < qBM(θ)

novel constraint

V (q(θ))− θq(θ)− (1− α)

θ̄∫
θ

q(y)dy ≥ G∗

Comparison with other robustness criteria
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Conclusions



Conclusions

Novel approach to robustness

government has conjecture but does not trust it

first protects itself against worst-case

then uses conjecture to optimize over worst-case optimal set

When only uncertainty is over cost

robustly optimal mechanism is Baron Myerson with floor

efficiency at top and bottom

Robustness

upward quantity adjustment for high cost

downward output adjustment for low/intermediate costs

...more to be done!



Most Important Slide
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