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@ Procurement
central economic problem
(a) public

(b) private

@ Difficulty in designing contracts

Provider typically privately informed about cost



@ Standard approach: Bayesian
@ Buyer has conjecture/belief over
(a) supplier’s cost
(b) gross value for procuring output

@ maximizes under conjecture

@ CS (robust) approach

@ buyer has no conjecture

@ worst-case optimality



Motivation

@ Our Approach (alternative form of robustness)

@ buyer has conjecture but does not fully trust it

prepares for the worst (in case conjecture is wrong)

@ uses conjecture to select optimal mechanism among worst-case optimal ones
o Lexicographic approach

(a) political/hierarchical constraints

(b) attitude towards ambiguity



This Paper: Results

@ Robust design of procurement contracts

@ Uncertainty only over cost:

o Baron Myerson with quantity floor

@ Uncertainty over both cost and demand

o upward quantity adjustment for high cost

o downward quantity adjustment for low/intermediate costs

Robustly optimal mechanism sensitive only to

@ conjecture over demand and cost

o lowest admissible demand

CS wrt buyer's uncertainty and policy recommendations
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Model



@ Players

@ Buyer (principal/government)

o Seller (agent/monopolist)

@ Choices

@ output g >0
e transfer t > 0



@ Payoffs

@ Social value of ¢:
V*(q) = /q P*(s)ds
o Cost: Og ’
6 drawn from ab. cont. F* with f*(#) > 0 over © = [4, 0]
o Ex-post welfare (a € [0, 1])
Vi(q) —t+a(t—0qg)

o Ex-ante welfare:
/(V*(q) “t4a(t— 0q)) dF*(0)

@ Asymmetric information

@ 0: monopolist’s private information



@ Uncertainty/Robustness

@ government not sure about conjecture (V*, F*)
e concerned demand and cost may be (V, F) # (V*, F*)

@ Admissible sets
@ V: set of possible consumer (gross) value fns
@ each V €V strictly increasing, strictly concave, differentiable

@ P: set of corresponding inverse demand functions
e PPePand V eV

o lowest (inverse) demand function: P

@ anyg>0and PP
P(q) > P(q)

@ P: strictly decreasing and continuous and s.t.

lim P [
q%f(q) >0



@ (Direct) mechanism M = (g, t)

@ quantity schedule g : © — R,

o (total) transfer schedule t : © — R
@ M= (q,t)IC and IR iff, for all 0,¢’,

t(6) — 0q(0) > t(6") — 6q(6")
with
(0) — 69(0) > 0

@ M: set of IC and IR mechanisms



@ Given IC and IR mechanism M = (q, t), ex-ante welfare under (V, F)

W(M; V, F) := /W(e, M; V)F(d0)
where ex-post welfare:

w(0, M; V) := V(q(0)) — 0q(0) — (1 — a)u(0)

total surplus:
V(a(0)) — 04(0)
“rent” to type 0:
u(0) := t(0) — 0q(0)



Definition

Given any IC and IR M = (g, v), welfare guarantee

G(M) = Ve‘l}rjief W(M; V,F)

@ Short-list:

M= {Me M:GM)>GM)Y M € M}

(set of IC and IR mechanisms for which guarantee is maximal)




@ Government’s problem

o choose mechanism from MY maximizing welfare under conjecture (V*, F*)

Definition

Mechanism M € M5 robustly optimal iff, for every M’ € MSL,

W(M; V*, F*) > W(M'; V*, F*)

@ Robustly optimal mechanisms maximize ex-ante welfare under conjecture (V*, F*)
over all worst-case-optimal mechanisms
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Baron Myerson



Baron Myerson

@ Ju(0): set of all subgradients of u at 0
e x € R is subgradient iff for all 6, u(6’) > u(8) + x(6' — 0)

Mechanism M = (q, u) 1C and IR iff u is convex, non-increasing, and s.t, for all 6 € ©,
—q(0) € du(0), with u(d) > 0. Equivalently,

© g non-increasing
Q forall§co,

Dy

u(9) = u(®) + [ a(z)dz

m\tb.




Baron Myerson

@ ¢’s virtual cost (under conjecture F*):

F*(0)
F=(0)

Assume z* non-decreasing. (Bayesian) optimal mechanism M8 = (g8, 4,BM) st for
all 6,

z°(0) =0+ (1 - «)

q™"(0) = argmax{V*(q) — 2*(6)q}

u®(0) = /éqBM(z)dz




Baron Myerson

@ Proof: Familiar IC analysis — ex-ante welfare under conjecture (V*, F*)

[V*(a(0)) - 2 (6)a(9)| dF*(6)

m\m.

@ ¢®V(0) maximizes virtual surplus V*(q) — z*(6)q point-wise

@ z* non-decreasing =g®" non-increasing = (g%, u®") IC and IR



Baron Myerson

@ FB-efficiency (under conjecture (V*, F*)):

P*(a™(6)) = 0

@ BM schedule (second-best efficiency)

F*(0)

P*(¢®M(0)) = z*(0) =0+ (1 — ) (0)

@ Hence,

o no distortion “at top”, i.e., for most efficient type, 0

e downward distortions for all 6 > ¢
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Short List



Worst-case optimality

Definition

Mechanism M = (q, u) worst-case optimal iff, for any IC and IR M’ = (¢’,u’) € M,
GM'):= inf W(M;V,F)< inf W(M;V,F):=G(M)
VeVv,FEF VeV,FEF




Worst-case optimality

@ Let _
qe = argmax {V(q) — 6q}

denote efficient output when V =V and 0 = @

For any IC and IR mechanism M = (q,u) € M

G(M) = jnf {V(a(6)) — 0a(0) — (1 — a)u(6)}

and

G(M) < G* = V(qr) — Bqe.




Worst-case optimality

Proof: For any IC and IR mechanism M = (q,u) € M
W(M; V., F) = / {V(q(0)) - 04(6) — (1 — a)u(6)} F(dO)
> [ {VAa(6)) - 0a(6) - (1~ )u(®)} F(d0)
> inf [V(q(6)) ~ 09(0) ~ (1~ a)u(6)]
Hence,
G(M) > inf [V(q(8)) — 09(6) — (1 — a)u(0)]
Because V € V and, for each 6, Dirac distribution at 6 is in F
G(M) < inf [V(q(6)) — 69(6) — (1 — a)u(0)]
Hence,
G(M) = inf [V(q(6)) — 69(6) — (1 — a)u(0)]
Because u(#) > 0 and
V(q()) — 0q(6) < V(qe) —bqe := G~
G(M)< G



Short List: Characterization

@ Let

M ={MeM:GM)>GM)VY M e M}

M = (q,u) € MBY iff g non-increasing and, for any 0
0
u6) = [ aly)ay
0

and

V(q(6)) — 6q(6) — (1 - a) / a(y)dy > G*




Short List: Characterization

Proof:
@ M= (q,u) ICand IR:

o (a) g nondecreasing

o (b) u(f) = u(9) —l—efgq(y)dy, with u(f) >0

@ ONLY IF:
o My = (qu,u) w. qu(6) =q¢ and t,(0) = Oq, all @
(i) IC and IR

(i) we(6) = (- O)ar )
(iii) w(f, ML; V) := V(qe) — 0qe — (1 — «)ur(0) = G* + (0 — 0)qe
(iv) G(My) = G
o Mc M5 only if G(M) = G*
o Because w(0, M; V) := V(q(0)) — 0q(0) — (1 — a)u(0)
(1) u(@)=0

(2) V(a() - 04(0) ~ (1~ ) [ aty)y > 6" al 0

@ IF PART: immediate
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Robust Optimality



Robust Optimality: Full Program

@ Recall def of virtual cost under conjecture (F*, V*)

2(0) =0+ (1-a) f((g))

@ Robustly optimal schedule g°FT solves
0
max [ [V (a(0)) - 2" (0)a(0)| " (0)
9

s.t.

g non-increasing

)
V(a(6)) - 0a(0) - (1~ ) [ ay)y = 6" voce
0



Robust Optimality: Relaxed Program

@ Relaxation:

max [ [V*(a(0)) - 2" (0)a(0)] aF" (0)

s.t.
g non-increasing

q(0) > qe Voeco
q(0) = ac



Robust Optimality: Relaxed Program

@ Proof: M = (g,u) € M5" only if, for all 6,
0
V(a(0) ~ 04(6) ~ (1 - o) [ aly)dy > 6°
b

o Because G* = max,{V(q) — fq} = V(qr) — Oq(q)
° = q(0) =q
@ g non-increasing = q(0) > q¢ all 0



Robust Optimality: BM with Floor

@ Let
q°(6) := argmax{ V" (q) — 2" (9)a}
*(0) := max{q"™(0), g} if 60 #6
LR P ito=19

and

0
u(H:/q
0

Proposition

Suppose z* non-decreasing and V* = V. Mechanism M* = (g*, u*) robustly optimal




Robust Optimality: BM with Floor
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Robust Optimality: BM with Floor

Proof
@ M* = (q*, u*) solves relaxed program

e g*(0) maximizes V*(q) — z*(6)q under constraint ¢ > q¢
@ z* non-decreasing = M* IC and IR

@ Ex-post welfare under M* and V
0
WO M V) = V(" (6)) = 03" (6) ~ (1~ ) [ a"(y)oy
0

V* =V = w(-; M*, V) non-increasing, with w(8; M*, V) = V(q/) — 0q, := G*
Robustness constraints w(0; M*, V) > G* satisfied

= M* = (g”, u™) robustly optimal



Robust Optimality: BM with Floor

@ When demand known (only uncertainty over cost)

@ robust mechanism is Baron Myerson with floor
o efficiency at both bottom and top

@ possibility that cost is less favorable than conjectured — more output

o flat mechanisms never optimal:
0 :=inf{0€©:q"(0)=qe} >0

o contrast w. standard “CS” approach to robustness (g(6) = q¢ all 6)



Robust Optimality: general case

D=

@ For any M = (q, u) s.t. u(0) = [ q(y)dy, ex-post welfare under lowest demand

W(b,q) := V(q(0)) —0q(0) — (1 — ) [ qly)dy

m\mu

@ Robustness:

W(0,q)> G V60e®©



Robust Optimality: general case

Suppose z* non-decreasing
(1) BM-floor mechanism M* = (¢*, u*) robustly optimal iff

Om :=sup{f:0 € arg ig/fﬂ(el, g) =40

(2) If 0 < 8, then 6, < 6* :=inf {0 € ©: g*(h) = q¢} and
(a) ¢°FT(0) = q¢ for all 6 € [67,0]
(b) g°FT(6) < ¢BM(8) for almost all § < 6*

(inequality strict over positive-measure | C [0, 0%])

(3) if Om € (0,0), @ = 0, and z* increasing, g°FT(0) = ¢®M(6) for 6 € (0, 0m)




Robust Optimality: general case

@ (Qualitative) properties driven by

W(0,9%) == V(q"(6)) — 60" (0) — (1— ) / g

Lemma (Monotonicity)

For any positive, non-decreasing q
© When q(0) < P7Y(0) all 6 € I C [0,60%], W(, q) non-increasing
(decreasing if o > 0, or q decreasing and q(f) < P~*(0) all 6 € 1)
© When q(0) > P*(0) all0 € | C [9,60*], and a = 0, W(-,) non-decreasing

(increasing is q decreasing)




Robust Optimality: BM-floor optimal

BM

) E( q*}

Q@

¢ g* 0

3
(5=



Robust Optimality: BM-floor optimal

@ When a =0, M* = (g%, u™) robustly optimal if W(0,q%) > G~
@ Equivalently, when V(g*(0)) — 89 (0) — fq (y)dy > V(qe) — Oqu

@ g*(0) = argmaxqe{V*(q) — fq}
@ Hence inequality holds when || V*, V || small



Robust Optimality: BM with floor and intermediate

downward adjustments

W(,q%T)




Optimality of “plateau” for high costs

Suppose z* non-decreasing and 6, # 0. Then q°F*(0) = q, for all 6 € [6*, 0] \

@ Minimizing quantity over [9*, 8]

o increases W(0, q) for all 0 < 0* (by reducing rents)

o possibly decreases W(0, q) for 6 > 0*(by reducing V(q) — 0q)

o However, W(-, q") decreasing over [0*,0] w. W(0,q") = G*
@ For 6 € [6*,0]

e g, maximizes V*(q) — z*(0)q over [q¢, +00)

@ Hence under any MOFT = (gOFT (,OPT)

") =q VO €[0*,0]



Suboptimality of upward adjustments for low costs

Suppose z* non-decreasing and 0m # 0. Then q°F"(0) < ¢®M(6) for almost all
0 € [0,0%), with inequality strict over positive-measure | C [0, 0)




Sub-optimality of upward adjustments for low costs

@ Take any M = (q,u) € M5" sit.
o q(6) > g*(8) = q®"(6) over positive-measure | C [0, 6*)
e q(0) = g for all 9 > 6*

@ Take M = (g, @) s.t.

4(0) := min{q"(0), q(0)}

and @(0) = [ a(y)dy

D=

@ Clearly,
o MisICand IR )
o Higher payoff under M than M: § closer to g®™which maximizes virtual
surplus

o Me M52



Sub-optimality of upward adjustments for low costs

o Me M &

W(6.5) = V(5(6)) — 63(0) - / ay)dy > G* Vo

@ Clearly so when

e §(0) = q(0) — smaller rents, same TS
o P71(0) < §(0) < q(0) —smaller rents, higher TS
G

[recall P7(6) maximizes V(q) — 0q)]

@ §(0) < min{q(), P7*(0)}: not clear



Sub-optimality of upward adjustments for low costs

@ Because g*(0) = g, = P7*(9), there exists ' > 0 s.t.
g(y) :=min{q(y), q"(0)} <P '(y)  Vy€l[6,6]
§(0") = min{P~1(6"), q(¢')}
@ Monotonicity lemma = W(-, §) non-increasing over [0, 6]

@ Previous lemma = W(¢',§) > G*
@ Hence W(0,§) > G* Q.E.D.
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Ongoing work

@ Local robustness
@ arbitrary set of distributions F

Effects of changes in optimist/pessimism
@ variations in conjecture (F*, V*)
@ variation in demand lower bound V (equivalently, P)
@ Characterization of optimal schedule when ¢°F*(9) < ¢®¥(9)

@ novel constraint

V(q(0)) —0q(0) —(1—a) [ q(y)dy > G~

m\%l

@ Comparison with other robustness criteria
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Conclusions



Conclusions

@ Novel approach to robustness
@ government has conjecture but does not trust it

o first protects itself against worst-case

@ then uses conjecture to optimize over worst-case optimal set

@ When only uncertainty is over cost
@ robustly optimal mechanism is Baron Myerson with floor

o efficiency at top and bottom

@ Robustness

o upward quantity adjustment for high cost

e downward output adjustment for low/intermediate costs

@ ...more to be done!



Most Important Slide

THANK YOU



	Introduction
	Model
	Baron-Myerson
	Short List
	Robust Optimality
	Ongoing Work
	Conclusions

