Robust Procurement Design

Debasis Mishra, Sanket Patil, Alessandro Pavan

• Procurement

central economic problem

(a) public

(b) private

• Difficulty in designing contracts

Provider typically privately informed about cost

Motivation

- **•** Standard approach: Bayesian
	- Buyer has conjecture/belief over
		- (a) supplier's cost
		- (b) gross value for procuring output
	- **•** maximizes under conjecture

- CS (robust) approach
	- **•** buyer has no conjecture
	- worst-case optimality

Our Approach (alternative form of robustness)

- **•** buyer has conjecture but does not fully trust it
- prepares for the worst (in case conjecture is wrong)
- uses conjecture to select optimal mechanism among worst-case optimal ones
- **•** Lexicographic approach
	- (a) political/hierarchical constraints
	- (b) attitude towards ambiguity

This Paper: Results

- Robust design of procurement contracts
- **O** Uncertainty only over cost:
	- **Baron Myerson with quantity floor**
- **•** Uncertainty over both cost and demand
	- upward quantity adjustment for high cost
	- downward quantity adjustment for low/intermediate costs
- Robustly optimal mechanism sensitive only to
	- conjecture over demand and cost
	- **o** lowest admissible demand
- CS wrt buyer's uncertainty and policy recommendations

Literature – Incomplete

- **•** Baron-Myerson, Ecma (1982), Lewis and Sappington (1988), Armstrong, JET (1999)
	- Bayesian
- **•** Bergemann-Heumann-Morris, wp (2024)
	- different robustness criterion (competitive ratio)
- Guo-Shmaya, wp (2024)
	- different robustness criterion (min-max regret)
- Garrett, GEB (2014)
	- different robustness criterion (worst-case optimality)
- O Mishra-Patel, wp (2024)
	- **a** undominated mechanisms
- Dworczak-Pavan, Ecma (2023)
	- robust information design

Introduction

Model

- Baron-Myerson
- 4 Short List: Worst-Case Optimality
- Robustly Optimal Mechanisms
- Ongoing Work

Conclusions

o Players

- Buyer (principal/government)
- Seller (agent/monopolist)

• Choices

- output $q \geq 0$
- transfer $t \geq 0$

• Payoffs

 \bullet Social value of q:

$$
V^{\star}(q) = \int_0^q P^{\star}(s) ds
$$

 \bullet Cost: θq

 θ drawn from ab. cont. F^\star with $f^\star(\theta)>0$ over $\Theta=[\underline{\theta},\bar{\theta}]$

• Ex-post welfare
$$
(\alpha \in [0,1])
$$

$$
V^\star(q)-t+\alpha\left(t-\theta q\right)
$$

• Ex-ante welfare:

$$
\int (V^{\star}(q) - t + \alpha(t - \theta q)) dF^{\star}(\theta)
$$

• Asymmetric information

 \bullet θ : monopolist's private information

O Uncertainty/Robustness

- government not sure about conjecture (V^\star, F^\star)
- concerned demand and cost may be $(V, F) \neq (V^\star, F^\star)$

• Admissible sets

 \bullet V: set of possible consumer (gross) value fns

• each $V \in V$ strictly increasing, strictly concave, differentiable

- \bullet \mathcal{P} : set of corresponding *inverse demand functions*
- $P^{\star} \in \mathcal{P}$ and $V^{\star} \in \mathcal{V}$
- lowest (inverse) demand function: P

• any
$$
q \ge 0
$$
 and $P \in \mathcal{P}$

$$
P(q)\geq \underline{P}(q)
$$

 \bullet P: strictly decreasing and continuous and s.t.

$$
\lim_{q\to 0^+}\underline{P}(q)>\overline{\theta}
$$

- (Direct) mechanism $M = (q, t)$
	- quantity schedule $q : \Theta \to \mathbb{R}_+$
	- (total) transfer schedule $t : \Theta \to \mathbb{R}$
- $M = (q, t)$ IC and IR iff, for all $\theta, \theta',$

$$
t(\theta) - \theta q(\theta) \geq t(\theta') - \theta q(\theta')
$$

with

$$
t(\theta)-\theta q(\theta)\geq 0
$$

\bullet M : set of IC and IR mechanisms

Given IC and IR mechanism $M = (q, t)$, ex-ante welfare under (V, F)

$$
W(M;V,F):=\int w(\theta,M;V)F(\mathrm{d}\theta)
$$

where ex-post welfare:

$$
w(\theta, M; V) := V(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)
$$

total surplus:

$$
V(q(\theta)) - \theta q(\theta)
$$

"rent" to type θ :

$$
u(\theta) := t(\theta) - \theta q(\theta)
$$

Definition

Given any IC and IR $M = (q, v)$, welfare guarantee

$$
G(M):=\inf_{V\in V, F\in \mathcal{F}}W(M;V,F)
$$

O Short-list:

$$
\mathcal{M}^{\operatorname{SL}}:=\{M\in\mathcal{M}:G(M)\geq G(M')\;\forall\;M'\in\mathcal{M}\}
$$

(set of IC and IR mechanisms for which guarantee is maximal)

Government's problem

choose mechanism from $\mathcal{M}^{\rm SL}$ maximizing welfare under conjecture $(\mathsf{V}^\star,\mathsf{F}^\star)$

Definition

Mechanism $M \in \mathcal{M}^{\text{SL}}$ robustly optimal iff, for every $M' \in \mathcal{M}^{\text{SL}}$,

$$
W(M;V^*,F^*)\geq W(M';V^*,F^*)
$$

Robustly optimal mechanisms maximize ex-ante welfare under conjecture (V^{\star},F^{\star}) over all worst-case-optimal mechanisms

Introduction

Model

- Baron-Myerson
- 4 Short List: Worst-Case Optimality
- Robustly Optimal Mechanisms
- Ongoing Work

Conclusions

Baron Myerson

 \bullet $\partial u(\theta)$: set of all subgradients of u at θ

 $x \in \mathbb{R}$ is subgradient iff for all θ' , $u(\theta') \geq u(\theta) + x(\theta' - \theta)$

Lemma

Mechanism $M = (q, u)$ IC and IR iff u is convex, non-increasing, and s.t, for all $\theta \in \Theta$, $-q(\theta) \in \partial u(\theta)$, with $u(\overline{\theta}) \geq 0$. Equivalently,

 \bullet q non-increasing

2 for all $\theta \in \Theta$.

$$
u(\theta) = u(\bar{\theta}) + \int\limits_{\theta}^{\bar{\theta}} q(z) dz
$$

$$
\bullet \ \ u(\overline{\theta}) \geq 0
$$

 θ' s **virtual cost** (under conjecture F^{\star}):

$$
\mathsf{z}^\star(\theta) := \theta + (1-\alpha)\frac{\digamma^\star(\theta)}{\digamma^\star(\theta)}
$$

Proposition

Assume z^\star non-decreasing. (Bayesian) optimal mechanism $M^{BM}=(q^{BM},u^{BM})$ s.t., for all θ ,

$$
q^{BM}(\theta) := \arg\max_q \{ V^\star(q) - z^\star(\theta)q \}
$$

$$
u^{BM}(\theta) = \int\limits_{\theta}^{\bar{\theta}} q^{BM}(z)dz
$$

Proof: Familiar IC analysis \rightarrow ex-ante welfare under conjecture (V^*, F^*)

$$
\int\limits_{\underline{\theta}}^{\bar{\theta}}\left[V^{\star}(q(\theta))-z^{\star}(\theta)q(\theta)\right]d{\textsf F}^{\star}(\theta)
$$

- $\bm{{q}}^{BM}(\theta)$ maximizes virtual surplus $\bm{{V}}^\star(\bm{{q}}) \bm{{z}}^\star(\theta)\bm{{q}}$ point-wise
- z^\star non-decreasing \Rightarrow q^{BM} non-increasing \Rightarrow $(\textit{q}^{BM}, \textit{u}^{BM})$ IC and IR

FB-efficiency (under conjecture (V^*, F^*)):

$$
P^{\star}(q^{FB}(\theta))=\theta
$$

• BM schedule (second-best efficiency)

$$
P^{\star}(q^{BM}(\theta)) = z^{\star}(\theta) := \theta + (1-\alpha) \frac{F^{\star}(\theta)}{f^{\star}(\theta)}
$$

o Hence,

- no distortion "at top", i.e., for most efficient type, θ
- downward distortions for all $\theta > \theta$

Introduction

Model

- Baron-Myerson
- **4** Short List: Worst-Case Optimality
- Robustly Optimal Mechanisms
- Ongoing Work

Conclusions

Short List

Definition

Mechanism $M = (q, u)$ worst-case optimal iff, for any IC and IR $M' = (q', u') \in \mathcal{M}$, $G(M') := \inf_{V \in V, F \in \mathcal{F}} W(M; V, F) \leq \inf_{V \in V, F \in \mathcal{F}} W(M; V, F) := G(M)$

o Let

$$
q_\ell := \arg\max_q \left\{ \underline{V}(q) - \bar{\theta} q \right\}
$$

denote efficient output when $V = V$ and $\theta = \overline{\theta}$

Lemma

For any IC and IR mechanism $M = (q, u) \in \mathcal{M}$

$$
G(M) = \inf_{\theta \in \Theta} \{ \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta) \}
$$

and

$$
G(M) \leq G^* := \underline{V}(q_\ell) - \bar{\theta} q_\ell.
$$

Worst-case optimality

Proof: For any IC and IR mechanism $M = (q, u) \in M$

$$
W(M; V, F) := \int \{V(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)\} F(\mathrm{d}\theta)
$$

\n
$$
\geq \int \{ \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)\} F(\mathrm{d}\theta)
$$

\n
$$
\geq \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta) \right]
$$

Hence,

$$
G(M) \geq \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1-\alpha)u(\theta) \right]
$$

Because $\underline{V} \in \mathcal{V}$ and, for each θ , Dirac distribution at θ is in \mathcal{F}

$$
G(M) \leq \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1-\alpha)u(\theta) \right]
$$

Hence,

$$
G(M) = \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta) \right]
$$

Because $u(\bar{\theta}) \geq 0$ and

$$
\underline{\mathsf{\mathcal{V}}}({\mathsf{q}}(\bar{\theta}))-\bar{\theta}{\mathsf{q}}(\bar{\theta})\leq \underline{\mathsf{\mathcal{V}}}({\mathsf{q}}_\ell)-\bar{\theta}{\mathsf{q}}_\ell:=\mathsf{G}^*
$$

 $G(M) \leq G^*$

o Let

$$
\mathcal{M}^{\mathrm{SL}} := \{ M \in \mathcal{M} : G(M) \geq G(M') \ \forall \ M' \in \mathcal{M} \}
$$

Lemma

 $M = (q, u) \in \mathcal{M}^{SL}$ iff q non-increasing and, for any θ

$$
u(\theta) = \int\limits_{\theta}^{\bar{\theta}} q(y) dy
$$

and

$$
\underline{V}(q(\theta)) - \theta q(\theta) - (1-\alpha) \int\limits_{\theta}^{\bar{\theta}} q(y) dy \geq G^*
$$

Proof:

\n- •
$$
M = (q, u)
$$
 IC and IR:
\n- • (a) q nondecreasing
\n- • (b) $u(\theta) = u(\overline{\theta}) + \int_{\theta}^{\overline{\theta}} q(y) \, dy$, with $u(\overline{\theta}) \geq 0$
\n- • ONLY IF:
\n- • $M_L = (q_L, u_L)$ w. $q_L(\theta) = q_\ell$ and $t_L(\theta) = \overline{\theta} q_\ell$ all θ
\n

$$
\begin{aligned}\n\bullet \quad & \mathcal{W}_L = (q_L, u_L) \text{ w. } q_L(v) = q_\ell \text{ and } t_L(v) = v q_\ell \text{ and } v \\
(i) \text{ IC and IR} \\
(ii) \quad & u_L(\theta) = (\bar{\theta} - \theta) q_\ell \\
(iii) \quad & w(\theta, M_L; \underline{V}) := \underline{V}(q_\ell) - \theta q_\ell - (1 - \alpha) u_L(\theta) = G^* + \alpha (\bar{\theta} - \theta) q_\ell \\
(iv) \quad & G(M_L) = G^* \\
\bullet \quad & M \in \mathcal{M}^{\text{SL}} \text{ only if } G(M) = G^* \\
\bullet \quad & \text{Because } w(\theta, M; \underline{V}) := \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha) u(\theta) \\
(1) \quad & u(\bar{\theta}) = 0 \\
(2) \quad & \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha) \int_{\theta}^{\bar{\theta}} q(y) dy \ge G^* \text{ all } \theta\n\end{aligned}
$$

IF PART: immediate

Introduction

Model

- Baron-Myerson
- 4 Short List: Worst-Case Optimality
- Robustly Optimal Mechanisms
- Ongoing Work

Conclusions

Robust Optimality

Robust Optimality: Full Program

Recall def of virtual cost under conjecture (F^*, V^*)

$$
z^\star(\theta) := \theta + (1-\alpha) \frac{F^\star(\theta)}{f^\star(\theta)}
$$

Robustly optimal schedule q^{OPT} solves

$$
\max_{q} \int_{\theta}^{\bar{\theta}} \left[V^*(q(\theta)) - z^*(\theta)q(\theta) \right] dF^*(\theta)
$$
\ns.t.
\n
$$
q \text{ non-increasing}
$$
\n
$$
\frac{\sum_{\theta} (\eta(\theta)) - \theta q(\theta) - (1 - \alpha) \int_{\theta}^{\bar{\theta}} q(y) dy \ge G^* \quad \forall \ \theta \in \Theta
$$

Robust Optimality: Relaxed Program

• Relaxation:

$$
\max_{q}\int\limits_{\underline{\theta}}^{\bar{\theta}}\left[V^{\star}(q(\theta))-z^{\star}(\theta)q(\theta)\right]dF^{\star}(\theta)
$$

s.t.

q non-increasing

$$
q(\theta) \geq q_{\ell} \qquad \forall \ \theta \in \Theta
$$

$$
q(\bar{\theta}) = q_{\ell}
$$

• Proof: $M = (q, u) \in \mathcal{M}^{\text{SL}}$ only if, for all θ ,

$$
\underline{V}(q(\theta)) - \theta q(\theta) - (1-\alpha)\int\limits_{\theta}^{\bar{\theta}}q(y)dy \geq G^*
$$

- Because $G^* = \mathsf{max}_q\{\underline{\mathsf{V}}(q) \bar{\theta}q\} = \underline{\mathsf{V}}(q_\ell) \bar{\theta}q(q_\ell)$
- $\bullet \Rightarrow q(\bar{\theta}) = q_{\ell}$ • q non-increasing \Rightarrow q(θ) \geq q_e all θ

Robust Optimality: BM with Floor

Let

$$
q^{BM}(\theta) := \arg \max_{q} \{ V^*(q) - z^*(\theta)q \}
$$

$$
q^*(\theta) := \begin{cases} \max\{q^{BM}(\theta), q_\ell\} & \text{if } \theta \neq \overline{\theta} \\ q_\ell & \text{if } \theta = \overline{\theta} \end{cases}
$$

and

$$
u^{\star}(\theta) = \int\limits_{\theta}^{\bar{\theta}} q^{\star}(y) dy
$$

Proposition

Suppose z^* non-decreasing and $V^* = \underline{V}$. Mechanism $M^* = (q^*, u^*)$ robustly optimal

Robust Optimality: BM with Floor

Proof

- $M^* = (q^*, u^*)$ solves relaxed program
	- $\bm{\mathsf{q}}^\star(\theta)$ maximizes $\bm{\mathsf{V}}^\star(\bm{\mathsf{q}}) \bm{\mathsf{z}}^\star(\theta)\bm{\mathsf{q}}$ under constraint $\bm{\mathsf{q}} \geq \bm{\mathsf{q}}_\ell$
	- z^* non-decreasing $\Rightarrow M^*$ IC and IR
- Ex-post welfare under M^* and \underline{V}

$$
w(\theta; M^*, \underline{V}) := \underline{V}(q^*(\theta)) - \theta q^*(\theta) - (1-\alpha) \int\limits_{\theta}^{\bar{\theta}} q^*(y) dy
$$

 $V^* = \underline{V} \Rightarrow w(\cdot; M^*, \underline{V})$ non-increasing, with $w(\bar{\theta}; M^*, \underline{V}) = \underline{V}(q_\ell) - \bar{\theta} q_\ell := G^*$

- Robustness constraints $w(\theta; M^*, \underline{V}) \geq G^*$ satisfied
- $\Rightarrow M^* = (q^*, u^*)$ robustly optimal
- When demand known (only uncertainty over cost)
	- robust mechanism is Baron Myerson with floor
	- **•** efficiency at both bottom and top
		- possibility that cost is less favorable than conjectured \rightarrow more output
	- **•** flat mechanisms never optimal:

$$
\theta^{\star} := \inf \{ \theta \in \Theta : \mathsf{q}^{\star}(\theta) = \mathsf{q}_{\ell} \} > \underline{\theta}
$$

• contrast w. standard "CS" approach to robustness $(q(\theta) = q_\ell$ all $\theta)$

• For any
$$
M = (q, u)
$$
 s.t. $u(\theta) = \int_{\theta}^{\bar{\theta}} q(y) dy$, ex-post welfare under lowest demand

$$
\underline{W}(\theta, q) := \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha) \int\limits_{\theta}^{\bar{\theta}} q(y) dy
$$

• Robustness:

$$
\underline{W}(\theta, q) \geq G^* \qquad \forall \ \theta \in \Theta
$$

Theorem

Suppose z^* non-decreasing

(1) BM-floor mechanism $M^{\star} \equiv (q^{\star}, u^{\star})$ robustly optimal iff

$$
\theta_m := \sup \{\theta : \theta \in \arg \inf_{\theta'} \underline{W}(\theta', \textit{\textbf{q}}^\star)\} = \bar{\theta}
$$

\n- (2) If
$$
\theta_m < \bar{\theta}
$$
, then $\theta_m < \theta^* := \inf \{ \theta \in \Theta : q^*(\theta) = q_\ell \}$ and
\n- (a) $q^{\text{OPT}}(\theta) = q_\ell$ for all $\theta \in [\theta^*, \bar{\theta}]$
\n- (b) $q^{\text{OPT}}(\theta) \leq q^{\text{BM}}(\theta)$ for almost all $\theta \leq \theta^*$
\n- (inequality strict over positive-measure $I \subseteq [\theta, \theta^*]$)
\n- (3) if $\theta_m \in (\theta, \bar{\theta})$, $\alpha = 0$, and z^* increasing, $q^{\text{OPT}}(\theta) = q^{\text{BM}}(\theta)$ for $\theta \in (\theta, \theta_m)$
\n

Robust Optimality: general case

(Qualitative) properties driven by

$$
\underline{W}(\theta, q^\star) := \underline{V}(q^\star(\theta)) - \theta q^\star(\theta) - (1-\alpha) \int\limits_{\theta}^{\bar{\theta}} q^\star(y) dy
$$

Lemma (Monotonicity)

For any positive, non-decreasing q

$$
■ Write W then q(θ) ≤ P-1(θ) all θ ∈ I ⊂ [θ, θ*], W(·, q) non-increasing
$$

(decreasing if $\alpha > 0$, or q decreasing and $q(\theta) < P^{-1}(\theta)$ all $\theta \in I$)

 2 When $q(\theta) > \underline{P}^{-1}(\theta)$ all $\theta \in I \subset [\underline{\theta},\theta^\star]$, and $\alpha = 0$, $\underline{W}(\cdot,)$ non-decreasing

(increasing is q decreasing)

Robust Optimality: BM-floor optimal

- When $\alpha=0$, $M^{\star}\equiv(q^{\star},u^{\star})$ robustly optimal if $\underline{W}(\underline{\theta},q^{\star})\geq G^{\ast}$
- Equivalently, when $\underline{V}(q^{\star}(\underline{\theta})) \underline{\theta}q^{\star}(\underline{\theta})$ $\bar{\theta}$ $\int\limits_{\theta} q^\star(y) dy \geq \underline{V}(q_\ell) - \bar{\theta} q_\ell$

$$
\bullet \ \ q^{\star}(\underline{\theta}) = \argmax_q \{ V^{\star}(q) - \underline{\theta}q \}
$$

Hence inequality holds when $|| V^*, \underline{V} ||$ small

Robust Optimality: BM with floor and intermediate downward adjustments

Lemma

Suppose z* non-decreasing and $\theta_m\neq\bar\theta.$ Then ${\sf q}^{\rm OPT}(\theta)={\sf q}_\ell$ for all $\theta\in[\theta^\star,\bar\theta]$

- Minimizing quantity over $[\theta^\star,\bar{\theta}]$
	- increases $\underline{W}(\theta, q)$ for all $\theta \leq \theta^*$ (by reducing rents)
	- possibly decreases $\underline{W}(\theta, q)$ for $\theta > \theta^*$ (by reducing $\underline{V}(q) \theta q$)
	- However, $\underline{W}(\cdot,q^*)$ decreasing over $[\theta^{\star},\bar{\theta}]$ w. $\underline{W}(\bar{\theta},q^*)=G^*$

For $\theta \in [\theta^{\star}, \bar{\theta}]$

 q_{ℓ} maximizes $V^\star(q)-z^\star(\theta)$ q over $[q_{\ell},+\infty)$

Hence under any $M^{\rm OPT} = (q^{\rm OPT}, u^{\rm OPT})$

$$
q^{\mathrm{OPT}}(\theta) = q_\ell \qquad \forall \theta \in [\theta^\star, \bar{\theta}]
$$

Lemma

Suppose z* non-decreasing and $\theta_m\neq \bar \theta.$ Then $q^{\rm OPT}(\theta)\leq q^{BM}(\theta)$ for almost all $\theta \in [\underline{\theta},\theta^{\star})$, with inequality strict over positive-measure $I \subseteq [\underline{\theta},\theta^{\star})$

Sub-optimality of upward adjustments for low costs

\n- Take any
$$
M = (q, u) \in \mathcal{M}^{\text{SL}}
$$
 s.t.
\n- $q(\theta) > q^*(\theta) = q^{BM}(\theta)$ over positive-measure $I \subseteq [\theta, \theta^*)$
\n- $q(\theta) = q_\ell$ for all $\theta \geq \theta^*$
\n

 \bullet Take $M = (\ddot{q}, \ddot{u})$ s.t.

$$
\tilde{q}(\theta) := \min\{q^\star(\theta), q(\theta)\}
$$

$$
\text{and }\tilde u(\theta)=\smallint_{\theta}^{\bar\theta}\tilde q(y)dy
$$

• Clearly,

 \bullet \tilde{M} is IC and IR

Higher payoff under \tilde{M} than M : \tilde{q} closer to q^{BM} which maximizes virtual surplus

 $\bullet \ \tilde{M} \in \mathcal{M}^{\text{SL}}$?

 $\bullet \ \tilde{M} \in \mathcal{M}^{\text{SL}} \Leftrightarrow$

$$
\underline{W}(\theta, \tilde{q}) := \underline{V}(\tilde{q}(\theta)) - \underline{\theta}\tilde{q}(\theta) - \int\limits_{\theta}^{\bar{\theta}} \tilde{q}(y)dy \geq G^* \qquad \forall \theta
$$

- **•** Clearly so when
	- $\tilde{q}(\theta) = q(\theta)$ smaller rents, same TS
	- $\underline{P}^{-1}(\theta)\leq \tilde{q}(\theta)< q(\theta)$ —smaller rents, higher <code>TS</code>

[recall $\underline{P}^{-1}(\theta)$ maximizes $\underline{V}(q) - \underline{\theta}q)$]

 $\widetilde{q}(\theta)<\min\{q(\theta),\underline{P}^{-1}(\theta)\}$: not clear

Sub-optimality of upward adjustments for low costs

\n- Because
$$
q^*(\bar{\theta}) = q_\ell = \underline{P}^{-1}(\bar{\theta})
$$
, there exists $\theta' > \theta$ s.t.
\n- $\tilde{q}(y) := \min\{q(y), q^*(\theta)\} \leq \underline{P}^{-1}(y) \quad \forall y \in [\theta, \theta']$
\n- $\tilde{q}(\theta') = \min\{\underline{P}^{-1}(\theta'), q(\theta')\}$
\n

- Monotonicity lemma $\Rightarrow \underline{W}(\cdot, \tilde{q})$ non-increasing over $[\theta, \theta']$
- Previous lemma \Rightarrow $\underline{W}(\theta', \tilde{q}) \geq G^*$
- Hence $W(\theta, \tilde{q}) \geq G^*$ Q.E.D.

Introduction

Model

- Baron-Myerson
- 4 Short List: Worst-Case Optimality
- Robustly Optimal Mechanisms
- Ongoing Work
- Conclusions

Ongoing Work

Q Local robustness

- arbitrary set of distributions $\mathcal F$
- **•** Effects of changes in optimist/pessimism
	- variations in conjecture (F^*,V^*)
	- variation in demand lower bound V (equivalently, P)
- Characterization of optimal schedule when $q^{\mathrm{OPT}}(\theta) < q^{\mathrm{BM}}(\theta)$
	- novel constraint

$$
\underline{V}(q(\theta)) - \theta q(\theta) - (1-\alpha) \int\limits_{\theta}^{\bar{\theta}} q(y) dy \geq G^*
$$

• Comparison with other robustness criteria

Introduction

Model

- Baron-Myerson
- 4 Short List: Worst-Case Optimality
- Robustly Optimal Mechanisms
- Ongoing Work

Conclusions

Conclusions

Conclusions

• Novel approach to robustness

- government has conjecture but does not trust it
- **•** first protects itself against worst-case
- then uses conjecture to optimize over worst-case optimal set
- When only uncertainty is over cost
	- robustly optimal mechanism is Baron Myerson with floor
	- **e** efficiency at top and bottom
- **O** Robustness
	- upward quantity adjustment for high cost
	- downward output adjustment for low/intermediate costs
- **....** more to be done!

THANK YOU