Robust Procurement Design

Debasis Mishra, Sanket Patil, Alessandro Pavan

Procurement

central economic problem

(a) public

(b) private

• Difficulty in designing contracts

Provider typically privately informed about cost

Motivation

- Standard approach: Bayesian
 - Buyer has conjecture/belief over
 - (a) supplier's cost
 - (b) gross value for procuring output
 - maximizes under conjecture

- CS (robust) approach
 - buyer has no conjecture
 - worst-case optimality

• Our Approach (alternative form of robustness)

- buyer has conjecture but does not fully trust it
- prepares for the worst (in case conjecture is wrong)
- uses conjecture to select optimal mechanism among worst-case optimal ones
- Lexicographic approach
 - (a) political/hierarchical constraints
 - (b) attitude towards ambiguity

This Paper: Results

- Robust design of procurement contracts
- Uncertainty only over cost:
 - Baron Myerson with quantity floor
- Uncertainty over both cost and demand
 - upward quantity adjustment for high cost
 - downward quantity adjustment for low/intermediate costs
- Robustly optimal mechanism sensitive only to
 - conjecture over demand and cost
 - lowest admissible demand
- CS wrt buyer's uncertainty and policy recommendations

Literature – Incomplete

- Baron-Myerson, Ecma (1982), Lewis and Sappington (1988), Armstrong, JET (1999)
 - Bayesian
- Bergemann-Heumann-Morris, wp (2024)
 - different robustness criterion (competitive ratio)
- Guo-Shmaya, wp (2024)
 - different robustness criterion (min-max regret)
- Garrett, GEB (2014)
 - different robustness criterion (worst-case optimality)
- Mishra-Patel, wp (2024)
 - undominated mechanisms
- Dworczak-Pavan, Ecma (2023)
 - robust information design

Introduction

2 Model

- 8 Baron-Myerson
- Short List: Worst-Case Optimality
- Sobustly Optimal Mechanisms
- Ongoing Work

Conclusions

Players

- Buyer (principal/government)
- Seller (agent/monopolist)

Choices

- output $q \ge 0$
- transfer $t \ge 0$

Payoffs

• Social value of q:

$$V^{\star}(q) = \int_0^q P^{\star}(s) ds$$

• Cost: θq

 θ drawn from ab. cont. F^* with $f^*(\theta) > 0$ over $\Theta = [\underline{\theta}, \overline{\theta}]$

• Ex-post welfare (
$$lpha \in [0,1]$$
)

$$V^{\star}(q) - t + \alpha (t - \theta q)$$

• Ex-ante welfare:

$$\int \left(V^{\star}(q) - t + \alpha \left(t - \theta q \right) \right) dF^{\star}(\theta)$$

• Asymmetric information

• θ : monopolist's private information

Uncertainty/Robustness

- government not sure about conjecture (V^*, F^*)
- concerned demand and cost may be $(V, F) \neq (V^{\star}, F^{\star})$

Admissible sets

• \mathcal{V} : set of possible consumer (gross) value fns

• each $V \in \mathcal{V}$ strictly increasing, strictly concave, differentiable

- \mathcal{P} : set of corresponding *inverse demand functions*
- $P^{\star} \in \mathcal{P}$ and $V^{\star} \in \mathcal{V}$
- lowest (inverse) demand function: <u>P</u>

• any
$$q \geq 0$$
 and $P \in \mathcal{P}$

$$\mathsf{P}(q) \geq \underline{P}(q)$$

• <u>P</u>: strictly decreasing and continuous and s.t.

$$\lim_{q o 0^+} \underline{P}(q) > \overline{ heta}$$

- (Direct) mechanism M = (q, t)
 - quantity schedule $q:\Theta
 ightarrow \mathbb{R}_+$
 - (total) transfer schedule $t: \Theta \to \mathbb{R}$
- M = (q, t) IC and IR iff, for all θ, θ' ,

$$t(heta) - heta q(heta) \geq t(heta') - heta q(heta')$$

with

$$t(\theta) - \theta q(\theta) \ge 0$$

• \mathcal{M} : set of IC and IR mechanisms

• Given IC and IR mechanism M = (q, t), ex-ante welfare under (V, F)

$$W(M; V, F) := \int w(\theta, M; V) F(\mathrm{d}\theta)$$

where ex-post welfare:

$$w(\theta, M; V) := V(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)$$

total surplus:

$$V(q(\theta)) - \theta q(\theta)$$

"**rent**" to type θ :

$$u(heta) := t(heta) - heta q(heta)$$

Definition

Given any IC and IR M = (q, v), welfare guarantee

$$G(M) := \inf_{V \in \mathcal{V}, F \in \mathcal{F}} W(M; V, F)$$

• Short-list:

$$\mathcal{M}^{\mathrm{SL}} := \{ M \in \mathcal{M} : G(M) \ge G(M') \ \forall \ M' \in \mathcal{M} \}$$

(set of IC and IR mechanisms for which guarantee is maximal)

Government's problem

• choose mechanism from $\mathcal{M}^{\mathrm{SL}}$ maximizing welfare under conjecture (V^\star, F^\star)

Definition

Mechanism $M \in \mathcal{M}^{SL}$ robustly optimal iff, for every $M' \in \mathcal{M}^{SL}$,

$$W(M; V^{\star}, F^{\star}) \geq W(M'; V^{\star}, F^{\star})$$

 Robustly optimal mechanisms maximize ex-ante welfare under conjecture (V^{*}, F^{*}) over all worst-case-optimal mechanisms

Introduction

2 Model

- 8 Baron-Myerson
- Short List: Worst-Case Optimality
- Sobustly Optimal Mechanisms
- Ongoing Work

Conclusions

Baron Myerson

• $\partial u(\theta)$: set of all subgradients of u at θ

• $x \in \mathbb{R}$ is subgradient iff for all heta', $u(heta') \geq u(heta) + x(heta' - heta)$

Lemma

Mechanism M = (q, u) IC and IR iff u is convex, non-increasing, and s.t, for all $\theta \in \Theta$, $-q(\theta) \in \partial u(\theta)$, with $u(\overline{\theta}) \ge 0$. Equivalently,

q non-increasing

2 for all $\theta \in \Theta$,

$$u(heta) = u(ar{ heta}) + \int\limits_{ heta}^{ar{ heta}} q(z)dz$$

• $\theta's$ virtual cost (under conjecture F^*):

$$z^{\star}(\theta) := \theta + (1 - \alpha) \frac{F^{\star}(\theta)}{f^{\star}(\theta)}$$

Proposition

Assume z^* non-decreasing. (Bayesian) optimal mechanism $M^{BM} = (q^{BM}, u^{BM})$ s.t., for all θ ,

$$\mathcal{B}^{BM}(heta) := rg\max_{q} \{V^{\star}(q) - z^{\star}(heta)q\}$$

$$u^{BM}(heta) = \int\limits_{ heta} q^{BM}(z) dz$$

• **Proof**: Familiar IC analysis \rightarrow ex-ante welfare under conjecture (V^*, F^*)

$$\int\limits_{\underline{ heta}}^{\overline{ heta}} \Big[V^{\star}(q(heta)) - z^{\star}(heta)q(heta) \Big] dF^{\star}(heta)$$

- $q^{BM}(\theta)$ maximizes virtual surplus $V^*(q) z^*(\theta)q$ point-wise
- z^{\star} non-decreasing $\Rightarrow q^{BM}$ non-increasing $\Rightarrow (q^{BM}, u^{BM})$ IC and IR

• FB-efficiency (under conjecture (V^{*}, F^{*})):

$$P^{\star}(q^{FB}(\theta)) = \theta$$

• BM schedule (second-best efficiency)

$$P^{\star}(q^{BM}(\theta)) = z^{\star}(\theta) := \theta + (1 - \alpha) \frac{F^{\star}(\theta)}{f^{\star}(\theta)}$$

• Hence,

- no distortion "at top", i.e., for most efficient type, $\underline{\theta}$
- downward distortions for all $\theta > \underline{\theta}$

Introduction

2 Model

- Baron-Myerson
- **9** Short List: Worst-Case Optimality
- Sobustly Optimal Mechanisms
- Ongoing Work

Conclusions

Short List

Definition

Mechanism M = (q, u) worst-case optimal iff, for any IC and IR $M' = (q', u') \in \mathcal{M}$, $G(M') := \inf_{V \in \mathcal{V}, F \in \mathcal{F}} W(M; V, F) \leq \inf_{V \in \mathcal{V}, F \in \mathcal{F}} W(M; V, F) := G(M)$ Let

$$q_\ell := rg\max_q \left\{ rac{V}{Q}(q) - ar{ heta} q
ight\}$$

denote efficient output when $V = \underline{V}$ and $\theta = \overline{\theta}$

Lemma

For any IC and IR mechanism $M = (q, u) \in \mathcal{M}$

$$G(M) = \inf_{\theta \in \Theta} \left\{ \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta) \right\}$$

and

$$G(M) \leq G^* := \underline{V}(q_\ell) - \overline{ heta} q_\ell.$$

Worst-case optimality

Proof: For any IC and IR mechanism $M = (q, u) \in \mathcal{M}$

$$W(M; V, F) := \int \{V(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)\} F(d\theta)$$

$$\geq \int \{\underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)\} F(d\theta)$$

$$\geq \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)\right]$$

Hence,

$$G(M) \geq \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha) u(\theta) \right]$$

Because $\underline{V} \in \mathcal{V}$ and, for each θ , Dirac distribution at θ is in \mathcal{F}

$$G(M) \leq \inf_{\theta \in \Theta} \left\lfloor \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta) \right\rfloor$$

-

Hence,

$$G(M) = \inf_{\theta \in \Theta} \left[\underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta) \right]$$

Because $u(ar{ heta})\geq 0$ and

$$\underline{V}(q(ar{ heta})) - ar{ heta}q(ar{ heta}) \leq \underline{V}(q_\ell) - ar{ heta}q_\ell := { extsf{G}}^*$$

 $G(M) \leq G^*$

Let

$$\mathcal{M}^{\mathrm{SL}} := \{ M \in \mathcal{M} : G(M) \ge G(M') \ \forall \ M' \in \mathcal{M} \}$$

Lemma

 $M = (q, u) \in \mathcal{M}^{\mathrm{SL}}$ iff q non-increasing and, for any heta

$$u(heta) = \int\limits_{ heta}^{ar{ heta}} q(y) dy$$

and

$$\underline{V}(q(heta)) - heta q(heta) - (1 - lpha) \int\limits_{ heta}^{ar{ heta}} q(y) dy \geq G^*$$

Proof:

•
$$M = (q, u)$$
 IC and IR:
• (a) q nondecreasing
• (b) $u(\theta) = u(\overline{\theta}) + \int_{\theta}^{\overline{\theta}} q(y) dy$, with $u(\overline{\theta}) \ge 0$
• ONLY IF:
• $M_L = (q_L, u_L)$ w. $q_L(\theta) = q_\ell$ and $t_L(\theta) = \overline{\theta}q_\ell$ all θ
(i) IC and IR
(ii) $u_L(\theta) = (\overline{\theta} - \theta)q_\ell$
(iii) $w(\theta, M_L; \underline{V}) := \underline{V}(q_\ell) - \theta q_\ell - (1 - \alpha)u_L(\theta) = G^* + \alpha(\overline{\theta} - \theta)q_\ell$
(iv) $G(M_L) = G^*$
• $M \in \mathcal{M}^{SL}$ only if $G(M) = G^*$
• Because $w(\theta, M; \underline{V}) := \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha)u(\theta)$
(1) $u(\overline{\theta}) = 0$

$$(2) \ \underline{V}(q(heta)) - heta q(heta) - (1-lpha) \int\limits_{ heta}^{ar{ heta}} q(y) dy \geq G^* ext{ all } heta$$

• IF PART: immediate

Introduction

2 Model

- 8 Baron-Myerson
- Short List: Worst-Case Optimality
- **(3)** Robustly Optimal Mechanisms
- Ongoing Work

Conclusions

Robust Optimality

Robust Optimality: Full Program

• Recall def of virtual cost under conjecture (F^*, V^*)

$$z^{\star}(\theta) := \theta + (1 - \alpha) \frac{F^{\star}(\theta)}{f^{\star}(\theta)}$$

• Robustly optimal schedule $q^{\rm OPT}$ solves

$$\begin{split} \max_{q} & \int_{\underline{\theta}}^{\theta} \Big[V^{\star}(q(\theta)) - z^{\star}(\theta) q(\theta) \Big] dF^{\star}(\theta) \\ & \text{s.t.} \\ q \quad \text{non-increasing} \\ & \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha) \int_{\theta}^{\overline{\theta}} q(y) dy \geq G^{\star} \qquad \forall \ \theta \in \Theta \end{split}$$

Robust Optimality: Relaxed Program

• Relaxation:

$$\max_{q} \int_{\underline{\theta}}^{\overline{\theta}} \left[V^{\star}(q(\theta)) - z^{\star}(\theta)q(\theta) \right] dF^{\star}(\theta)$$

s.t.

q non-increasing

$$egin{aligned} q(heta) \geq q_\ell & orall \ heta \in \Theta \ q(ar heta) = q_\ell \end{aligned}$$

• **Proof**: $M = (q, u) \in \mathcal{M}^{SL}$ only if, for all θ ,

$$\underline{V}(q(heta)) - heta q(heta) - (1 - lpha) \int\limits_{ heta}^{ar{ heta}} q(y) \mathsf{d} y \geq \mathsf{G}^*$$

- Because $G^* = \max_q \{ \underline{V}(q) \overline{\theta}q \} = \underline{V}(q_\ell) \overline{\theta}q(q_\ell)$
- $\Rightarrow q(\bar{\theta}) = q_{\ell}$ • q non-increasing $\Rightarrow q(\theta) \ge q_{\ell}$ all θ

Robust Optimality: BM with Floor

Let

$$q^{\mathcal{B}\mathcal{M}}(heta) := rg\max_{q} \{V^{\star}(q) - z^{\star}(heta)q\}$$
 $q^{\star}(heta) := egin{cases} \max\{q^{\mathrm{BM}}(heta), q_{\ell}\} & ext{if } heta
eq \overline{ heta} \ q_{\ell} & ext{if } heta = \overline{ heta} \end{cases}$

and

$$u^{\star}(heta) = \int\limits_{ heta}^{ar{ heta}} q^{\star}(y) dy$$

Proposition

Suppose z^* non-decreasing and $V^* = \underline{V}$. Mechanism $M^* = (q^*, u^*)$ robustly optimal

Robust Optimality: BM with Floor

Proof

- $M^{\star} = (q^{\star}, u^{\star})$ solves relaxed program
 - $q^{\star}(heta)$ maximizes $V^{\star}(q) z^{\star}(heta)q$ under constraint $q \geq q_{\ell}$
 - z^* non-decreasing $\Rightarrow M^*$ IC and IR
- Ex-post welfare under M^* and \underline{V}

$$w(\theta; M^{\star}, \underline{V}) := \underline{V}(q^{\star}(\theta)) - \theta q^{\star}(\theta) - (1 - \alpha) \int_{\theta}^{\overline{\theta}} q^{\star}(y) dy$$

• $V^* = \underline{V} \Rightarrow w(\cdot; M^*, \underline{V})$ non-increasing, with $w(\overline{\theta}; M^*, \underline{V}) = \underline{V}(q_\ell) - \overline{\theta}q_\ell := G^*$

- Robustness constraints w(θ; M^{*}, V) ≥ G^{*} satisfied
- $\Rightarrow M^{\star} = (q^{\star}, u^{\star})$ robustly optimal

- When demand known (only uncertainty over cost)
 - robust mechanism is Baron Myerson with floor
 - efficiency at both bottom and top
 - $\bullet\,$ possibility that cost is less favorable than conjectured $\rightarrow\,$ more output
 - flat mechanisms never optimal:

$$\theta^{\star} := \inf \left\{ \theta \in \Theta : q^{\star}(\theta) = q_{\ell} \right\} > \underline{\theta}$$

• contrast w. standard "CS" approach to robustness $(q(\theta) = q_{\ell} \text{ all } \theta)$

• For any
$$M = (q, u)$$
 s.t. $u(\theta) = \int_{\theta}^{\overline{\theta}} q(y) dy$, ex-post welfare under lowest demand

$$\underline{W}(\theta, q) := \underline{V}(q(\theta)) - \theta q(\theta) - (1 - \alpha) \int_{\theta}^{\theta} q(y) dy$$

Robustness:

$$\underline{W}(heta, q) \geq G^* \qquad \forall \ heta \in \Theta$$

Theorem

Suppose z^* non-decreasing

(1) BM-floor mechanism $M^{\star} \equiv (q^{\star}, u^{\star})$ robustly optimal iff

$$heta_{ extsf{m}} := \sup \{ heta: heta \in rg \inf_{ heta'} ar{W}(heta', oldsymbol{q}^{\star}) \} = ar{ heta}$$

(2) If
$$\theta_m < \overline{\theta}$$
, then $\theta_m < \theta^* := \inf \{ \theta \in \Theta : q^*(\theta) = q_\ell \}$ and
(a) $q^{\text{OPT}}(\theta) = q_\ell$ for all $\theta \in [\theta^*, \overline{\theta}]$
(b) $q^{\text{OPT}}(\theta) \le q^{BM}(\theta)$ for almost all $\theta \le \theta^*$
(inequality strict over positive-measure $I \subseteq [\underline{\theta}, \theta^*]$)

(3) if
$$\theta_m \in (\underline{\theta}, \overline{\theta})$$
, $\alpha = 0$, and z^* increasing, $q^{\text{OPT}}(\theta) = q^{BM}(\theta)$ for $\theta \in (\underline{\theta}, \theta_m)$

Robust Optimality: general case

• (Qualitative) properties driven by

$$\underline{W}(heta, q^{\star}) := \underline{V}(q^{\star}(heta)) - heta q^{\star}(heta) - (1 - lpha) \int\limits_{ heta}^{ar{ heta}} q^{\star}(y) dy$$

Lemma (Monotonicity)

For any positive, non-decreasing q

1 When
$$q(\theta) \leq \underline{P}^{-1}(\theta)$$
 all $\theta \in I \subset [\underline{\theta}, \theta^*]$, $\underline{W}(\cdot, q)$ non-increasing

(decreasing if $\alpha > 0$, or q decreasing and $q(\theta) < P^{-1}(\theta)$ all $\theta \in I$)

When q(θ) > <u>P</u>⁻¹(θ) all θ ∈ I ⊂ [θ, θ^{*}], and α = 0, <u>W</u>(·,) non-decreasing (increasing is q decreasing)

Robust Optimality: BM-floor optimal

- When $\alpha = 0$, $M^* \equiv (q^*, u^*)$ robustly optimal if $\underline{W}(\underline{\theta}, q^*) \ge G^*$
- Equivalently, when $\underline{V}(q^{\star}(\underline{\theta})) \underline{\theta}q^{\star}(\underline{\theta}) \int_{0}^{\overline{\theta}} q^{\star}(y) dy \geq \underline{V}(q_{\ell}) \overline{\theta}q_{\ell}$

•
$$q^{\star}(\underline{ heta}) = \arg \max_{q} \{V^{\star}(q) - \underline{ heta}q\}$$

• Hence inequality holds when $|| V^*, \underline{V} ||$ small

Robust Optimality: BM with floor and intermediate downward adjustments

Lemma

Suppose z^* non-decreasing and $\theta_m \neq \overline{\theta}$. Then $q^{\text{OPT}}(\theta) = q_\ell$ for all $\theta \in [\theta^*, \overline{\theta}]$

- Minimizing quantity over $[\theta^{\star}, \bar{\theta}]$
 - increases $\underline{W}(\theta, q)$ for all $\theta \leq \theta^*$ (by reducing rents)
 - possibly decreases $\underline{W}(\theta, q)$ for $\theta > \theta^{\star}(b\underline{y} \text{ reducing } \underline{V}(q) \theta q)$
 - However, $\underline{W}(\cdot, q^*)$ decreasing over $[\theta^*, \overline{\theta}]$ w. $\underline{W}(\overline{\theta}, q^*) = G^*$

• For $\theta \in [\theta^{\star}, \overline{\theta}]$

- q_ℓ maximizes $V^\star(q) z^\star(heta) q$ over $[q_\ell, +\infty)$
- Hence under any $M^{\mathrm{OPT}} = (q^{\mathrm{OPT}}, u^{\mathrm{OPT}})$

$$q^{ ext{OPT}}(heta) = q_\ell \qquad orall heta \in [heta^\star, ar{ heta}]$$

Lemma

Suppose z^* non-decreasing and $\theta_m \neq \overline{\theta}$. Then $q^{\text{OPT}}(\theta) \leq q^{BM}(\theta)$ for almost all $\theta \in [\underline{\theta}, \theta^*)$, with inequality strict over positive-measure $I \subseteq [\underline{\theta}, \theta^*)$

Sub-optimality of upward adjustments for low costs

 $\tilde{q}(\theta) := \min\{q^{\star}(\theta), q(\theta)\}$

and
$$ilde{u}(heta) = \int\limits_{ heta}^{ar{ heta}} ilde{q}(y) dy$$

Clearly,

• \tilde{M} is IC and IR

• Higher payoff under \tilde{M} than M: \tilde{q} closer to q^{BM} which maximizes virtual surplus

• $\tilde{M} \in \mathcal{M}^{\mathrm{SL}}$?

• $\tilde{M} \in \mathcal{M}^{\mathrm{SL}} \Leftrightarrow$

$$\underline{W}(heta, ilde{q}):=\underline{V}(ilde{q}(heta))-\underline{ heta} ilde{q}(heta)-\int\limits_{ heta}^{ar{ heta}} ilde{q}(y)dy\geq G^* \qquad orall heta$$

Clearly so when

•
$$\tilde{q}(\theta) = q(\theta)$$
 — smaller rents, same TS

• $\underline{P}^{-1}(\theta) \leq \tilde{q}(\theta) < q(\theta)$ —smaller rents, higher TS [recall $\underline{P}^{-1}(\theta)$ maximizes $\underline{V}(q) - \underline{\theta}q$)]

• $\tilde{q}(\theta) < \min\{q(\theta), \underline{P}^{-1}(\theta)\}$: not clear

Sub-optimality of upward adjustments for low costs

• Because
$$q^*(\bar{\theta}) = q_\ell = \underline{P}^{-1}(\bar{\theta})$$
, there exists $\theta' > \theta$ s.t.
 $\tilde{q}(y) := \min\{q(y), q^*(\theta)\} \le \underline{P}^{-1}(y) \quad \forall y \in [\theta, \theta']$
 $\tilde{q}(\theta') = \min\{\underline{P}^{-1}(\theta'), q(\theta')\}$

- Monotonicity lemma $\Rightarrow \underline{W}(\cdot, \tilde{q})$ non-increasing over $[\theta, \theta']$
- Previous lemma $\Rightarrow \underline{W}(\theta', \tilde{q}) \geq G^*$
- Hence $\underline{W}(\theta, \tilde{q}) \ge G^*$ Q.E.D.

Introduction

2 Model

- 8 Baron-Myerson
- Short List: Worst-Case Optimality
- Sobustly Optimal Mechanisms
- Ongoing Work

Conclusions

Ongoing Work

Local robustness

- $\bullet\,$ arbitrary set of distributions ${\cal F}\,$
- Effects of changes in optimist/pessimism
 - variations in conjecture (F^*, V^*)
 - variation in demand lower bound \underline{V} (equivalently, \underline{P})
- Characterization of optimal schedule when $q^{\text{OPT}}(\theta) < q^{BM}(\theta)$
 - novel constraint

$$\underline{V}(q(heta)) - heta q(heta) - (1 - lpha) \int\limits_{ heta}^{ar{ heta}} q(y) dy \geq G^*$$

• Comparison with other robustness criteria

Introduction

2 Model

- 8 Baron-Myerson
- Short List: Worst-Case Optimality
- Sobustly Optimal Mechanisms
- Ongoing Work

Conclusions

Conclusions

Conclusions

Novel approach to robustness

- government has conjecture but does not trust it
- first protects itself against worst-case
- then uses conjecture to optimize over worst-case optimal set
- When only uncertainty is over cost
 - robustly optimal mechanism is Baron Myerson with floor
 - efficiency at top and bottom
- Robustness
 - upward quantity adjustment for high cost
 - downward output adjustment for low/intermediate costs
- ...more to be done!

THANK YOU