Keeping the Agents in the Dark: Private Disclosures in Competing Mechanisms

Andrea Attar, Eloisa Campioni, Thomas Mariotti, Alessandro Pavan

Competing Mechanisms

• Competing mechanisms

- oligopoly
- insurance
- regulation
- taxation
- political economy
- auctions
- finance
- search

• Mechanism: rule

$\phi: \boldsymbol{M} \to \Delta(\mathcal{A})$

- $m \in M$: messages
- $a \in \mathcal{A}$: allocation

• MD: rule ϕ commonly announced to all agents

• Modelization: fine with single designer (Revelation Principle)

• Also assumed in entire literature on competing principals

• Inform agents asymmetrically about $\phi: M o \Delta(\mathcal{A})$

(equivalently, about consequences of their actions)

- Seller informs bidders asymmetrically about
 - reserve price
- Manufacturer informs retailers asymmetrically about
 - how output supplied to other retailers depends on mkt conditions
- Insurance company informs clients asymmetrically
 - how insurance provision depends on aggregate risk

Mathematically

- Mechanism with private disclosures
 - set of private disclosures to agent $i: S^i$

$$(S \equiv S^1 \times \cdots \times S')$$

- joint distribution: $\sigma \in \Delta(S)$
- augmented rule:

$$\phi: S \times M \to \Delta(\mathcal{A})$$

• Each
$$s\equiv(s^1,...,s')\in S$$
 indexes standard mechanism $\phi(s):M o\Delta(\mathcal{A})$

• (s^i, σ) : hierarchy of beliefs over "effective" rule $\phi(s)$

• Private disclosures raise principals' payoff guarantees

- non-robustness of eq. allocations sustained with standard mechanisms
- non-validity of "folk theorems"

- Private disclosures permit to sustain new eq. allocations
 - non-universality of standard mechanisms
- Canonical game

Literature

- Non validity of Revelation Principle
 - McAfee (1993), Peck (1997)...
- Universal mechanisms
 - Epstein-Peters (1999)...
- Folk theorems for competing-mechanism games
 - Yamashita (2010), Peters-Troncoso Valverde (2013), Xiong (2013)...
- Bilateral contracting
 - Hart-Tirole (1990), McAfee-Schwartz (1994), Segal (1999), Dequiedt-Martimort (2016), Akbarpour-Li (2022)...
- Common agency (single agent)
 - Martimort-Stole (2002), Peters (2001), Calzolari-Pavan (2009,2010)...
- Applications
 - Competing auctions: McAfee (1993), Peters (1997), Virag (2010)
 - Competitive search: Guerrieri-Shimer-Wright (2010), Wright-Kircher-Julien-Guerrieri (2021)
 - Finance + insurance: Rothschild-Stiglitz (1976), Biais-Martimort-Rochet (2000), Attar-Mariotti-Salanie' (2011, 2021)
- Information transmission between principals, MD w. aftermarkets
 - Calzolari-Pavan (2006a,b), Dworczak (2020)...

Introduction

- Paising payoff guarantees
- Sustaining new allocations
- Canonical game
- Onclusions

Raising payoff guarantees

Primitive game

- Agents: A1, A2, A3
- Principals: P1 and P2
- P1's allocations $\mathcal{A}_1 = \{x_1, x_2\}$
- P2's allocations $\mathcal{A}_2 = \{y_1, y_2\}$
- A1's exogenous type $\omega^1 \in \Omega^1 = \{\omega_L, \omega_H\}$
- A2's exogenous type $\omega^2 \in \Omega^2 = \{\omega_L, \omega_H\}$
- A3: no exogenous private info
- A1's and A2's type perfectly correlated

- P1's and A3's payoffs constant
- Payoffs (u_{P2}, u^{A1}, u^{A2})

$\omega = (\omega_L, \omega_L)$			$\omega = (\omega_H, \omega_H)$			
	<i>Y</i> 1	<i>y</i> ₂		<i>Y</i> 1	<i>y</i> ₂	
x_1	5, 8, 8	5, 1, 1	x_1	6, 4.5, 4.5	6, 4.5, 4.5	
<i>x</i> ₂	6, 4.5, 4.5	6, 4.5, 4.5	<i>x</i> ₂	5, 1, 1	5, 8, 8	

• Paper considers more interesting game

• t = 0: A1 and A2 learns ω^1 and ω^2

- t = 1: principals simultaneously post mechanisms
- t = 2: agents send messages
- t = 3: decisions determined by $\phi_j(m_j)$, with $m_j \equiv (m_i^1, m_i^2, m_i^3)$

(Solution concept)

Folk theorem

• D_j : set of standard DRMs (equivalently, state-contingent actions) $d_j: \Omega^1 imes \Omega^2 o \mathcal{A}_j$

• Rich message spaces: $M_j^i \supset D_j \times \Omega^i$, all i, j

Lemma 1

Suppose $M_i^i \supset D_j \times \Omega^i$, all i, j, with M finite.

Any payoff for P2 in feasible set [5,6] can be supported in eq.

(Folk-Th)

- t = 0: A1 and A2 learns ω^1 and ω^2
- t = 1: principals post mechanisms and disclose *s* to agents
- t = 3: agents send messages
- t = 4: decisions determined by $\phi_j(s_j, m_j)$

Lemma 2

Suppose that $M_j^i \supset D_j \times \Omega^i$, all *i* and *j*, and $|S_2^1| \ge 2$, with *M* and *S* finite. In any PBE of G^{SM} , P2's payoff above 5 + K, with K = f(primitives) > 0.

- Wlog, assume $\{1,2\}\subset S_2^1$
- Let $\overline{\gamma}_2$ be mechanism that
 - w.p. $\alpha \in (\frac{1}{2}, 1)$ discloses $s_2^1 = 1$ to A1 and selects y_1
 - w.p. 1α discloses $s_2^1 = 2$ to A1 and selects y_2
 - no signal to A2 and A3
 - no dependence on messages

• No matter γ_1 and cont. eq., P2's payoff higher than 5 + K

• Decisions implemented in $\overline{\gamma}_2$ invariant to m_2

• \Rightarrow no role for P1's signals

Lemma 2: Proof

$\omega = (\omega_L, \omega_L)$			$\omega = (\omega_H, \omega_H)$			
	<i>y</i> 1	<i>Y</i> 2		<i>Y</i> 1	<i>Y</i> 2	
<i>x</i> ₁	5, 8, 8	5, 1, 1	<i>x</i> ₁	6, 4.5, 4.5	6, 4.5, 4.5	
<i>x</i> ₂	6, 4.5, 4.5	6, 4.5, 4.5	<i>x</i> ₂	5, 1, 1	5, 8, 8	

- P2's payoff = 5 \Rightarrow x₁ in (ω_L, ω_L) and x₂ in (ω_H, ω_H)
- (ω_L, ω_L) :
 - after receiving $s_2^1 = 2$, A1 wants to min $Pr(x_1)$
- (ω_H, ω_H) :
 - after receiving $s_2^1 = 1$, A1 wants to min $Pr(x_2)$

• So A1 must not affect P1's decision

- Because A3 does not know state, A2 must have full control over P1's decision
- Because $\Pr(y_1) > 1/2$, in state (ω_H, ω_H) , A2 wants to max $\Pr(x_1)$
- No eq. giving 5 to P2

- Information P2 privately discloses to A1 makes A1 "ally" of P2
- Importance of asymmetric disclosures:
 - If same information disclosed also to A2 and A3, agents can discipline each other, thus implementing IC punishments for P2

Proposition 1

Private disclosures raise payoff guarantees.

- Non-robustness of equilibria of games in which principals restricted to standard mechanisms (no matter M)
- Non validity of folk theorems

Robustness and Anti-Folk Theorem

- Result relevant for many concrete problems
 - competition in auctions
 - manufacturer-retailer competition
 - ...
- Result extends to
 - contracts-on-contracts
 - reciprocal mechanisms
 - arbitrarily rich randomizing devices
 - alternative solution concepts (provided sequential rationality retained)
 - direct communication between principals

Introduction

Paising payoff guarantees

③ Sustaining new allocations and payoffs

- Canonical game
- Onclusions

New eq. allocations and payoffs

Proposition 2

Private disclosures permit to sustain allocations and payoffs that cannot be supported in any eq. of **any** game with standard mechanisms, **no matter** richness of message spaces.

- Agents: A1 and A2
- Principals: P1 and P2
- P1's allocations $X = \{x_1, x_2, x_3, x_4\}$
- P2's allocations $Y = \{y_1, y_2\}$
- A2's exogenous type $\omega^2 \in \Omega^2 = \{\omega_L, \omega_H\}$, $\Pr(\omega_H) = 3/4$

Payoffs

- P1's payoff: constant
- Payoffs (*u*_{P2}, *u*^{A1}, *u*^{A2})

with $\zeta < 0$

G^{SM} : game with private disclosures

- No signals for P1
- Signals for P2: $S_2^1 = S_2^2 = \{1, 2\}$
- No messages for P2
- Messages for P1:
 - $M_1^1 = S_2^1$ (for A1) • $M_1^2 = \Omega^2 \times S_2^2$ (for A2)
- Hence,
 - P2 sends signals to both agents and asks for no messages
 - P1 sends no signals but asks for P2's signals (and ω^2)

Equilibrium outcome of G^{SM}

Lemma 3

There exists PBE of GSM supporting

$$z(\omega_L) \equiv \frac{2}{3}(x_3, y_1) + \frac{1}{3}(x_4, y_2)$$
$$z(\omega_H) \equiv \frac{2}{3}(x_2, y_1) + \frac{1}{3}(x_1, y_2)$$

and giving P2 payoff of 10.

$\omega^2=\omega_L$				$\omega^2 = \omega_H$			
	<i>Y</i> 1	У2			<i>Y</i> 1	<i>y</i> ₂	
<i>x</i> ₁	$\zeta, 4, 1$	$\zeta, 8, 3.5$		<i>x</i> ₁	$\zeta, 1, 6$	10, 7.5, 5	
<i>x</i> ₂	$\zeta, 2, 5$	$\zeta, 9, 8$		<i>x</i> ₂	10 , 3 , 9	$\zeta, 5.5, 6$	
<i>x</i> 3	$\boldsymbol{10,3,3}$	$\zeta, 5.5, 3.5$		<i>x</i> 3	$\zeta, 8, 7$	$\zeta, 4.5, 7$	
<i>x</i> ₄	$\zeta, 1, 3.5$	10, 7.5, 7.5		<i>x</i> 4	$\zeta, 9, 6$	$\zeta, {f 3}, {f 9}$	

Proof of Lemma 3

• P2 posts mechanism
$$\gamma_2^* = (\sigma_2^*, \phi_2^*)$$
 s.t.

$$\sigma_2^*(1,1) = \sigma_2^*(2,2) = \frac{1}{3}$$
$$\sigma_2^*(1,2) = \sigma_2^*(2,1) = \frac{1}{6}$$

- Each agent believes
 - P2 will implement y_1 with prob $\frac{2}{3}$
 - other agent received same signal as theirs with prob $\frac{2}{3}$

Proof of Lemma 3

• P1's mechanism

• Truthful reporting sequentially rational

Indispensability of Private Disclosures

• G^M : arbitrary game with standard mechanisms $\phi_j: M_j \to \Delta(\mathcal{A}_j)$

Lemma 4

No matter richness of M, there exists no PBE of G^M supporting

$$z(\omega_L) \equiv \frac{2}{3}(x_3, y_1) + \frac{1}{3}(x_4, y_2)$$
$$z(\omega_H) \equiv \frac{2}{3}(x_2, y_1) + \frac{1}{3}(x_1, y_2)$$

(more generally, no PBE giving 10 to P2)

(Proof-Lemma4)

• Private disclosures: "encrypted keys"

 $\bullet\,$ Correlate principals' decisions with state ω while respecting incentives

• Different from action recommendations

Non-universality of standard mechanisms

- Result implies non-universality of standard mechanisms (no matter richness of *M*)
- It extends to
 - arbitrary correlation in choice of mechanisms
 - reciprocal mechanisms
 - arbitrary correlation in agents' messages
- Private disclosures substitute for private communication between principals

Introduction

- Paising payoff guarantees
- Sustaining new allocations and payoffs
- Canonical game
- Onclusions

Canonical Game

Canonical Mechanisms

Definition

Game GSM "large" if

• M_i^i and S_i^i continuous Polish spaces

Definition

Canonical game, G^{ŠM}

•
$$\mathring{S}^i_j \equiv [0, 1]$$

• $\mathring{M}^i_i \equiv \Omega^i \times [0, 1]^{J-1}$

Definition

Canonical eq. $(\mathring{\mu}^*, \mathring{\lambda}^*)$

- Principals' strategies pure
- Agents' strategies on-path truthful

Theorem 1

For any eq. (μ^*, λ^*) of G^{SM} , there exists a canonical eq. $(\mathring{\mu}^*, \mathring{\lambda}^*)$ of $G^{\mathring{S}\mathring{M}}$ supporting same outcome (universality).

Let G^{SM} be any large game with non-empty eq. set. For any eq. $(\mathring{\mu}^*, \mathring{\lambda}^*)$ of $G^{\mathring{S}M}$, there exists eq. (μ^*, λ^*) of G^{SM} supporting same outcome (robustness).

Proof idea

• Universality

- correlation in agents' behavior supported by principals mixing over mechanisms and agents using realizations of principals' mixed strategies as correlation device
- replicated by principals using signals to correlate agents' behavior
- mixing by agents over messages
- replicated by principals using signals collectively sent to agents as "jointly controlled lottery"

Robustness

- information used to correlate principals' decisions (on and off-path) encoded into $[0,1]^{J \times I}$
- deviations to arbitrary mechanisms in GSM punished by agents " translating" mechanisms into equivalent ones in GSM

- Formal proofs uses
 - sampling variables (Aumann's trick)
 - jointly controlled lotteries
 - encryption
 - rich embeddings

Comparison with Epstein and Peters (1999)

- Result in theorem allows for
 - private disclosures
 - mixing by principals
 - mixing by agents
 - common values
 - nonexclusive competition

• Private disclosures restore canonicity of truthful-pure-strategy equilibria without need for hierarchical construction.

Long Communication

• Principals and agents exchange signals/messages over $T \in \mathbb{N} \cup \{+\infty\}$ rounds

Definition

Long-communication game G^{SMT}

- M_{jt}^i and S_{jt}^i continuous Polish spaces
- $\sigma_{jt}: \prod_{s=1}^{t-1} (S_{js} \times M_{js}) \to \Delta(S_{jt})$

•
$$\phi_j : \prod_{s=1}^T (S_{js} \times M_{js}) \to \Delta(A_j)$$

Theorem 2

For any eq. (μ^*, λ^*) of long-communication game G^{SMT} , there exists a canonical eq. $(\mathring{\mu}^*, \mathring{\lambda}^*)$ of $G^{\mathring{S}\mathring{M}}$ supporting same outcome (universality)

Let G^{SMT} be any long-communication game with non-empty eq. set. For any eq. $(\mathring{\mu}^*, \mathring{\lambda}^*)$ of $G^{\mathring{S}M}$, there exists eq. (μ^*, λ^*) of G^{SMT} supporting same outcome (robustness)

(Th2-Proof)

• Equilibrium set: same structure as in single-principal games

- principals do not mix on mechanisms
- agents report truthfully on path
- communication is short
- Canonical structure helps
 - conceptualize strategic interactions
 - construct equilibria

Private disclosures

- irrelevant with
 - single principal
 - competing principals with single agent (common agency)
- fundamental role when multiple principals contract w. multiple agents

• Raise payoff guarantees

- non-robustness of equilibria with standard mechanisms
- non-validity of folk theorems

• Support new eq. allocations and payoffs

• Non-universality of standard mechanisms

Canonical game

- truthful-pure-strategy eq.
- short communication

THANKS!

$\phi: S \times M \to \Delta(\mathcal{A})$

Definition

Strategy profile (μ, λ) , where $\lambda = (\lambda^1, \dots, \lambda^l)$ are agents' strategies and $\mu = (\mu_1, \dots, \mu_j)$ principals' strategies is PBE iff

- Government for each mechanism profile γ ∈ Γ, (λ¹(γ),...,λ^l(γ)) is BNE of subgame γ played by agents
- (2) given continuation eq. strategies $\lambda,\,\mu$ is Nash eq. of game among principals

- Here: show how to support 5
- Equilibrium outcome

$$z(\omega_L,\omega_L) = (x_1,y_1), \quad z(\omega_H,\omega_H) = (x_2,y_2)$$

• On path, both P1 and P2 post recommendation mechanisms (ϕ_1^r,ϕ_2^r)

Given messages $m_j = (d_j, \omega^i)_{j=1}^J$,

$$\phi_j^r(m_j^1, \dots, m_j^l) \equiv \begin{cases} \hat{d}_j(\omega^1, \dots, \omega^l) & \text{if } \left| \{i : m_j^i = (\hat{d}_j, \omega^i) \} \right| \ge l-1 \\ \bar{a}_j & \text{otherwise} \end{cases}$$

• In subgame (ϕ_1^r, ϕ_2^r) , all agents recommend DRMs

$$d_1^*(\omega) \equiv \left\{ egin{array}{cc} x_1 & ext{if } \omega = (\omega_L, \omega_L) \ x_2 & ext{otherwise} \end{array}
ight. egin{array}{cc} d_2^*(\omega) \equiv \left\{ egin{array}{cc} y_1 & ext{if } \omega = (\omega_L, \omega_L) \ y_2 & ext{otherwise} \end{array}
ight.$$

and A1 and A2 report truthfully to both principals

				$_ = (\omega_H, \omega_H)$			
	<i>y</i> ₁ <i>y</i> ₂				<i>y</i> 1	<i>y</i> 2	
x_1	5 , 8 , 8	5, 1, 1		x_1	6, 4.5, 4.5	6, 4.5, 4.5	
<i>x</i> ₂	6, 4.5, 4.5	6, 4.5, 4.5		<i>x</i> ₂	5, 1, 1	5 , 8 , 8	

• Suppose P2 deviates to $\phi_2: M_2 \to \Delta(Y)$

• Let
$$p(m_2) = \Pr(y_1|m_2)$$

$$\overline{p} \equiv p(\overline{m}_2^1, \overline{m}_2^2, \overline{m}_2^3) \geq p(m_2) \qquad orall m_2$$

$$\underline{p} \equiv p(\underline{m}_2^1, \underline{m}_2^2, \overline{m}_2^3) \leq p(m_2^1, m_2^2, \overline{m}_2^3) \qquad orall (m_2^1, m_2^2)$$

Equilibrium supporting min-max-min payoff

	$\omega = (\omega_L, \omega_L)$			$\omega = (\omega_H, \omega_H)$			
	<i>y</i> 1	<i>y</i> 2			<i>Y</i> 1	<i>y</i> 2	
<i>x</i> ₁	5 , 8 , 8	5, 1, 1		x_1	6, 4.5, 4.5	6, 4.5, 4.5	
<i>x</i> ₂	6, 4.5, 4.5	6, 4.5, 4.5		<i>x</i> ₂	5, 1, 1	5 , 8 , 8	

• Case 1: $\overline{p} \ge 1/2$

- all agents recommend $d_1^*(\omega) \equiv \begin{cases} x_1 & \text{if } \omega = (\omega_L, \omega_L) \\ x_2 & \text{otherwise} \end{cases}$
- Each agent sends mⁱ₂
 - (ω_L, ω_L) : $8\overline{p} + (1 \overline{p}) \ge 4.5 \Rightarrow$ truthful reporting $+ \overline{m}_2^i$ is BR

• (ω_H, ω_H) : no agent can unilaterally change P1's decision

• P2's payoff: 5

Equilibrium supporting min-max-min payoff

	$\omega = (\omega_L, \omega_L)$			$\omega = (\omega_H, \omega_H)$			
	<i>y</i> ₁	<i>y</i> ₂			<i>y</i> ₁	<i>y</i> ₂	
x_1	5 , 8 , 8	5, 1, 1		x_1	6, 4.5, 4.5	6, 4.5, 4.5	
<i>x</i> ₂	6, 4.5, 4.5	6, 4.5, 4.5		<i>x</i> ₂	5, 1, 1	5, 8, 8	

• Case 2: $\overline{p} < 1/2$

• all agents recommend
$$d_1(\omega) \equiv \begin{cases} x_2 & \text{if } \omega = (\omega_H, \omega_H) \\ x_1 & \text{otherwise} \end{cases}$$

• A3 sends \overline{m}_2^3 , A1 and A2 send \underline{m}_2^1 and \underline{m}_2^2

• (ω_L, ω_L) : no agent can unilaterally change P1's decision

• (ω_H, ω_H) : $\underline{p} + 8(1 - \underline{p}) \ge 4.5 \Rightarrow \text{truthful reporting} + \underline{m}_2^i$ is BR

• P2's payoff: 5

Proof-Lemma4

- Let $\mu \in \Delta \left(\Phi_1 imes \Phi_2 \right)$ and $\lambda = (\lambda^1, \lambda^2)$ continuation eq. for \mathcal{G}^M
- Step 1: For μ -almost all $\phi \in supp[\mu]$, $\lambda(\phi)$ -almost all (m_1, m_2) ,

 $(\phi_1(m_1), \phi_2(m_2)) \in \overline{\mathrm{Int}\Delta(X)} \times \overline{\mathrm{Int}\Delta(Y)}$

• deterministic response to messages

Proof of Lemma 4

• Step 2: For μ -almost all $\phi = (\phi_1, \phi_2)$, IC for A2 requires that

$$\Pr(x_3, y_1|\omega_L; \phi, \lambda) = 1 - \Pr(x_4, y_2|\omega_L; \phi, \lambda) = 2/3$$

$$\Pr(x_2, y_1|\omega_H; \phi, \lambda) = 1 - \Pr(x_1, y_2|\omega_H; \phi, \lambda) = 2/3$$

• Else ω_H can draw m_1^2 from $\lambda^2(\omega_H | \phi)$ and m_2^2 from $\lambda^2(\omega_L | \phi)$ to "de-correlate" the two principals' decisions and do strictly better

Proof of Lemma 4

 Step 3: For μ-almost all φ, there exists no pair of behavioral strategies inducing

$$\Pr(x_3, y_1|\omega_L; \phi, \lambda) = 1 - \Pr(x_4, y_2|\omega_L; \phi, \lambda) = 2/3$$
$$\Pr(x_2, y_1|\omega_H; \phi, \lambda) = 1 - \Pr(x_1, y_2|\omega_H; \phi, \lambda) = 2/3$$

- messages A2 sends in state ω_H must have no bite
 - else ω_L can draw twice from $\lambda^2(\omega_H | \phi)$, send m_1^2 from first draw and m_2^2 from second draw, invert correlation between principals' decisions while preserving marginals and do strictly better
- ...but then A1 has profitable deviation

Definition

Auxiliary long-communication game, $G^{\hat{S}\hat{M}T}$

•
$$\mathring{S}_{jt}^{i} \equiv [0, 1]$$

•
$$\mathring{M}^i_{j1} \equiv \Omega^i imes [0,1]^{J-1}$$

•
$$\mathring{M}^{i}_{jt} \equiv [0,1]^{J-1}$$
, $t>1$

- WLOG, restrict to eq. of auxiliary long-communication game in which
 - principals' strategies: pure
 - agents' strategies: (on path) truthfully at all rounds
 - signals: drawn from [0,1], independently across agents and rounds

• Reduction of dimensionality

vector

$$\xi \equiv \left(\xi_{jt}^{i}\right)_{j=1,\dots,J,i=1,\dots,I,t=1,\dots,T}$$

generated by uni-dimensional $\xi_0 \sim U[0,1]$ via interlacing

- Jointly controlled lottery
 - variable ξ^0 generated by each principal drawing signal $\xi^i_j \sim U[0,1]$ for each agent s.t.

(a) in isolation, ξ_i^i carries no information about ξ_0

(b) given
$$\xi \equiv \left(\xi_{jt}^i\right)_{j=1,\ldots,J,i=1,\ldots,I}$$
, $\xi_0 = g(\xi)$

(c) no principal can manipulate distribution of ξ_0

• From long communication to short-communication

- only relevant signals: drawn at t = 1
- agents' long communication strategies: embedded into

$$\mathring{M}^{i}_{j1} \equiv \Omega^{i} \times [0,1]^{J-1}$$

• interim vs ex-ante BNE

- From non-canonical eq. of $G^{\mathring{S}\mathring{M}}$ to canonical eq. of $G^{\mathring{S}\mathring{M}}$
 - Theorem 1

Go back