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1 Introduction

Over the last two decades, new technologies have permitted the development of matching interme-

diaries of unprecedented scale, engaging in unparalleled level of targeting. Notable examples include

ad exchanges, matching publishers with advertisers, business-to-business platforms, matching firms

with mutually beneficial commercial interests, and dating websites, matching agents with common

passions. The same advances in technology that favored high levels of targeting also enabled greater

price customization, whereby the price of a match finely depends on characteristics of the matching

partners.

In advertising exchanges, for example, the assignment of, and payments from, advertisers depend

on scores that summarize the compatibility of the ads with each publisher’s content.1 A similar

trend can be found in other markets, not traditionally analyzed through the lens of matching. In

online shopping, for example, it is common practice among retailers to use customers’ personal data

to set personalized prices. In one of the most publicized cases, Orbitz, an online travel agency,

reportedly used information about customers’ demographics to charge targeted customers higher

hotel fees.2 Similarly, Safeway, an online grocery chain, often proposes individualized price offers

and quantity discounts to customers with certain profiles.3 The retailers’ knowledge about consumers’

characteristics typically comes from data brokers, who collect and sell personal information (in the

form of demographics, geolocation, and browsing history).4

In the markets mentioned above, price customization is easy to enforce, as the agents’ profiles

(i.e., their “horizontal” characteristics that are relevant for price customization) are observable. For

instance, in ad exchanges, the advertisers’ profile is often revealed by the ads’ content, or can be

learnt from third parties, whereas in online retailing, information about consumers can often be

obtained from data brokers or affiliated websites. In other markets, instead, the agents’ profiles have

to be indirectly elicited, and this may require bundling.5 A case in point is that of media markets (for

instance, satellite/cable TV providers) where sophisticated pricing strategies are used to condition

payments on the entire bundle of channels selected by the subscribers.6

1See, for example, https://support.google.com/adxseller/answer/2913506?hl=en&ref topic=3376095. Moreover, ad

exchanges use advertiser-specific reservation prices which are easily automated using proxy-bidding tools. Ad exchanges

also price discriminate on the publisher side, by making the payments to the publishers depend on the publishers’ profile

and on the volume of impressions.
2See the article “On Orbitz, Mac Users Steered to Pricier Hotels,” the Wall Street Journal, August 23, 2012.
3See https://www.bloomberg.com/news/articles/2013-11-14/2014-outlook-supermarkets-offer-personalized-pricing.
4According to The New York Times, the data broker industry’s revenue reached $156 billion in 2013 (see the article

“The Dark Market for Personal Data,” August 16, 2014). See Montes et al. (2018) for a discussion of the value

of privacy in online markets and Bounie et al. (2021) for an analysis of how data brokers may optimally partition

information for sale to competing firms.
5For instance, ad exchanges have recently developed new contractual arrangements that allow them to bundle

different ads as a way of screening the publishers’ unobservable preferences (see, Mirrokni and Nazerzadeh (2017)).
6Most satellite/cable TV providers price discriminate on the viewer side by offering viewers packages of channels

whereby the baseline configuration can be customized by adding channels at a cost that depends on the baseline
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Although having a long history in the policy debate, price customization has attracted renewed

attention in the last decade due to the two-sided nature of matching intermediaries and the sheer

amount of information now available for pricing.7 One concern is that, by leveraging the platforms’

market power, price customization hinders the efficiency gains permitted by better targeting tech-

nologies. Recent regulations speak directly to these issues. In the European Union, for example,

the General Data Protection Regulation (GDPR) and the ePrivacy Regulation (ePR) mandate that

businesses ask for consumers’ consent prior to collecting and transmitting personal data. Such reg-

ulations hamper price customization based on data from third parties.8,9 Another concern is that

consumers often perceive customized prices as being inherently unfair or exploitative.10 The require-

ment that prices be uniform may potentially address this issue while still permitting that consumers

benefit from a high level of targeting (as their data would determine the matching assignment but

not the price).

It is however challenging to assess the impact of customized pricing or, alternatively, of policies

constraining it. Part of the difficulty lies in having an analytically amenable model of matching design

that is rich enough to accommodate for both horizontal differentiation across consumers (capturing

disagreements over the most desirable matches) and vertical differentiation (i.e., allowing for elastic

demands). The main contribution of the present paper is to introduce a tractable model featuring

these two dimensions of differentiation. We use the model to show how price customization shapes

the matching opportunities offered by a profit-maximizing platform, and to study the impact on

targeting and consumer welfare of uniform-price obligations on one of the two sides of the market

(whereby payments to the platforms do not depend on the agents’ profiles).

Specifically, we capture vertical and horizontal differentiation by letting the agents’ types be lo-

cated on a cylinder, where the height represents the vertical dimension, whereas the radial position

determines the horizontal dimension, i.e., the agent’s profile, with the latter summarizing a com-

bination of relevant characteristics that, depending on the application, may include demographics,

education, zip-code, but also the description of a product or a publisher’s website, as in the case

configuration originally selected (see, among others, Crawford (2000), and Crawford and Yurukoglu (2012)). For

example, in the US, Direct TV offers various vertically differentiated (i.e., nested) packages (both in English and in

Spanish). It then allows viewers to add to these packages various (horizontally differentiated) premium packages, which

bundle together channels specialized in movies, sports, news, and games. In addition, viewers can further customize

the packages by adding individual sports, news, and movie channels.
7In the case of media markets, see, for example, the Federal Communications Commission 2004 and 2006 reports

on the potential harm of price customization through bundling. In the case of online retailing, see the UK Office of

Fair Trading 2010 eponymous report on online targeting in advertising and pricing.
8See Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the processing

of personal data and on the free movement of such data.
9In the US, the Federal Trade Commission (FTC) recommended in 2014 legislation increasing the transparency of

data brokers and giving consumers greater control over their personal information. See https://www.ftc.gov/news-

events/press-releases/2014/05/ftc-recommends-congress-require-data-broker-industry-be-more.
10Although certainly relevant, privacy and fairness concerns are out of the scope of this paper.
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of ad exchanges - see Figure 1.11 Each agent’s utility from interacting with any other agent from

the opposite side increases with the agent’s vertical dimension. Fixing the vertical dimension, each

agent’s utility is single-peaked with respect to the horizontal dimension. More specifically, we identify

each agent’s radial position with his “ideal match” on the opposite side. Accordingly, each agent’s

utility for interacting with any other agent from the opposite side decreases with the circular distance

between the agent’s ideal match (his radial position) and the partner’s location (the partner’s radial

position). Such preference structure, in addition to its analytical convenience, mirrors the one in

the “ideal-point” models used in the empirical literature on media and advertising markets (see, for

example, Goettler and Shachar 2001).12

A key element of our analysis is the focus on matching tariffs, which describe how the payments

asked by the platform vary with the matching sets demanded by the agents. A tariff exhibits uniform

pricing if all agents from a given side face the same price schedule for the matches with the agents

from the opposite side. Formally, uniform tariffs are tariffs that do not condition an agent’s payment

to the platform on the agent’s own radial position (i.e, the horizontal dimension of the agent’s

preferences). A particularly simple type of uniform pricing often proposed as a potential regulatory

remedy to the market power enjoyed by media platforms is stand-alone pricing for TV channels (for

a discussion, see Crawford and Yurukoglu (2012)). Stringent privacy policies that limit the use of

consumers’ browsing histories also induce uniform pricing, by limiting online retailers’ and market

places’ ability to condition their offers on the characteristics/profiles of potential buyers.

[ FIGURE 1 HERE ]

Our first main result shows that, absent any regulation, platforms offer customized tariffs on

both sides, which discriminate according to the agents’ horizontal characteristics (third-degree price

discrimination). Crucially, the marginal prices for matches with agents on the opposite side vary

both with an agent’s own location (his profile) and with his partner’s location (his partner’s profile).

As marginal prices are not constant across the volume of the matches, customized tariffs involve

profile-specific quantity premia (second-degree price discrimination). In online advertising markets,

for instance, this corresponds to advertisers being charged differential marginal prices for access to

consumers of a given profile. The complex pricing algorithms used by ad exchanges, combining

publisher- and advertiser-specific scores with nonlinear prices, are similar in spirit to the customized

tariffs predicted by our model.

11The reason for considering a cylinder model instead of a rectangular one (i.e., a Hoteling line augmented by a vertical

dimension) is that the former model favors symmetry which in turn simplifies some of the analytical expressions with

no major effect on the qualitative results.
12In the Appendix, we consider a more general payoff structure whereby match values may also depend on the

partners’ vertical dimensions, as in the case of firms with different productivities matching with workers with different

abilities.
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An alternative way of achieving this customization consists in offering agents menus of matching

plans. Each plan is defined by its baseline configuration (i.e., a baseline set of partners from the op-

posite side), a baseline price, and a collection of prices describing the nonlinear cost to the subscriber

of customizing the plan by adding extra matches. In the market for cable TV, for instance, most

providers price discriminate on the viewer side by offering viewers packages of channels whereby the

baseline configuration can be customized by adding channels at a cost that depends on the baseline

configuration originally selected (see, among others, Crawford (2000)).

On technical grounds, the tractability of the model favors a convenient representation of the profit-

maximizing tariffs linking location- and volume-specific prices to the various local elasticities of the

demands on the two sides of the market. The representation constitutes the analog in a matching

market of the familiar Lerner-Wilson formula of optimal non-linear pricing (see, for instance, Wilson

(1993)) for standard goods.

Our second set of results provides a characterization of the effects on prices, targeting, and welfare

of uniform-price obligations on one of the two sides of the market (be them explicitly mandated or

induced by privacy regulation). We consider uniform pricing on a single side, rather than on both

sides, for the following reason: When imposed on both sides, uniform tariffs are not sufficiently

flexibile to accomodate horizontal preferences while clearing the market across all pairs of locations.

Accordingly, uniform pricing on both sides is typically infeasible, in that matching demands on both

sides fail to be mutually compatible (see also the discussion in Section 4).

Analogously to the generalized Lerner-Wilson formula discussed above, we provide a novel rep-

resentation of the optimal price schedules that uses local elasticities to describe the prices agents on

each side have to pay per quantity of matches with each profile of agents from the opposite side.

Relative to the case of customized pricing, this new pricing formula identifies the relevant aggre-

gate elasticities in environments where customized (i.e., profile-specific) pricing is not possible. The

typical marginal revenue and marginal cost terms (which determine the optimal cross-subsidization

pattern) are now averages that take into account not only the uniformity of prices on the side where

customization is not feasible, but also how the procurement costs of the matches are affected by the

horizontal component of the agents’ preferences.

From a theoretical perspective, the characterization contributes to the mechanism design liter-

ature by developing a novel technique to handle constraints on the transfer rule employed by the

principal (as opposed to the familiar constraints on quantities, which are typically easier to analyze

using standard techniques).

We then use such a characterization to study how uniform pricing affects targeting and welfare.

Intuition might suggest that uniform pricing should increase targeting by preventing platforms from

charging higher prices for the matches involving the most preferred partners. This simple intuition,

however, fails to account for the fact that platforms re-optimize their entire price schedules to respond

to aggregate elasticities. Perhaps surprisingly, uniform pricing can either decrease or increase the

equilibrium level of targeting, depending on how match-demand elasticities vary with profiles. To
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give empirical content to this finding, we relate elasticities to match values and type distributions.

For an illustration, consider the case of an ad exchange. Under natural conditions on the payoffs of

the advertisers and publishers, we show that price customization leads to less targeting than uniform

pricing if the distribution of profits per sale of advertisers has thin tails (in the sense of an increasing

hazard rate). Accordingly, anonymous pricing for advertising slots (e.g., as a result of regulation

banning the use of scores) results in the advertisers being more often matched (relative to laissez-

faire) to those publishers whose profile is closer to their ideal audience. That is, uniform pricing

leads to more targeting in this case.

We conclude by looking into the welfare effects of uniform pricing. Exploiting a novel connection

between uniform pricing in matching markets and the literature on third-degree price discrimina-

tion, we show how to adapt the analysis in Aguirre et al. (2010) to the matching markets under

examination. The results identify sufficient conditions (both in terms of elasticities and in terms of

match utilities and type distributions) for uniform pricing to increase surplus. []For instance, in the

ad exchange example, advertisers’ profits are higher under uniform pricing on the advertisers’ side if

the distribution of profits per sale of advertisers satisfies a (testable) convexity property.

We believe the model could be used more broadly to study the design of regulatory interventions

in markets in which platforms enjoy significant power and price customization is a concern.

Outline of the paper. The rest of the paper is organized as follows. Section 2 presents

the model. Section 3 identifies properties of profit-maximizing tariffs and of the induced matching

demands, under customized pricing. Section 4 studies the effects of uniform-price obligations. Section

5 discusses the role of various assumptions and the robustness of the analysis to richer specifications.

Section 6 briefly reviews the pertinent literature. Section 7 concludes. All proofs are in the Appendix

at the end of the document.

2 The cylinder model

A monopolistic platform matches agents from two sides of a market. Each side k ∈ {a, b} is popu-

lated by a unit-mass continuum of agents. Each agent from each side k has a bi-dimensional type

θk = (vk, xk) ∈ Θk ≡ Vk × Xk which parametrizes both the agent’s preferences and the agent’s

attractiveness.

The parameter vk ∈ Vk ≡ [vk, vk] ⊆ R ∪ {+∞} is a shifter that captures heterogeneity in prefer-

ences along a vertical dimension. It controls for the overall utility the agent derives from interacting

with a generic agent from the opposite side, before doing any profiling. The location parameter

xk ∈ Xk ≡ [0, 1], instead, describes the agent’s profile and captures heterogeneity in preferences

along a horizontal dimension. The latter parameter captures personal traits (such as demographics,

gender, education, residence, income, etc) that jointly determine one’s relative preferences over any

two agents from the opposite side, as well as one’s attractiveness in the eyes of agents from the oppo-
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site side. Figure 1 depicts the above structure. The cylinder on each side represents the population

on that side of the market. Each individual is located on the external surface of the cylinder, with

the height of the cylinder measuring the vertical type and the position on the circle measuring the

agent’s profile (i.e., the horizontal type).

Agents derive higher utility from being matched to agents who are “closer” to them. Their utility

also increases, over all profiles, with their vertical type. We assume the utility that an agent from

side k with type θk = (vk, xk) derives from being matched to each agent from side l 6= k with type

θl = (vl, xl) is represented by the function

uk(vk, |xk − xl|),

where |xk − xl| is the circular (minimal) distance between the two agents’ profiles. The function uk

is Lipschitz continuous, bounded, strictly increasing in vk, and weakly decreasing in |xk − xl|. To

make things interesting, we assume uk is strictly decreasing in |xk − xl| on at least one side.

Each agent’s type θk = (vk, xk) is an independent draw from the absolutely continuous distri-

bution function Fk with support Θk. The total payoff that type θk = (vk, xk) obtains from being

matched, at a price p, to a measurable set of types sk ⊆ Θl from side l 6= k is given by

πk(sk, p; θk) =

∫
sk

uk (vk, |xk − xl|) dFl(θl)− p. (1)

Accordingly, matches are non-rival, in that agents always benefit from having “access” to more agents

from the other side of the market.13 The payoff that the same agent obtains outside of the platform

is equal to zero.14

We assume that the vertical dimensions vk are the agents’ private information whereas the profiles,

xk, are publicly observable.15 We also assume that the agents’ profiles are uniformly distributed

over the circle and that the vertical types are drawn independently from the profiles according to

13The utilities uk and ul should be interpreted as ex-ante expected payoffs. Ex-post, the agents may learn that the

match is unattractive (to one or both agents) and refrain from interacting.
14The representation in (1) assumes the agent is matched to all agents from side l 6= k whose type is in sk. That

matching sets are described by the agents’ types, as opposed to their identities, reflects the property that, under both

the welfare- and the profit-maximizing tariffs, each agent from each side k who decides to include in his matching set

some agent from side l 6= k whose type is θl optimally chooses to include in his matching set all agents from side l whose

type is θl. The specification in (1) also implies that the utility that agent i from side k derives from being matched to

agent j from side l 6= k is invariant to who else the agent is matched with, as well as who else from the agent’s own

side is matched to agent j. In a previous version, we considered a more general setting where such assumptions are

relaxed. We opted here for the representation in (1) because it permits us to simplify the exposition and favors sharper

conclusions. See also Section 5 for further discussion.
15See also Akbarpour et al. (2021) for an alternative model in which certain characteristics of the agents (referred to

as “labels” in that paper) are publicly observable whereas others such as the agents’ social welfare weights and their

willingness to pay for quality are the agents’ private information. In that paper, though, the designer assigns physical

goods to the agents, whereas in the present paper the designer matches the agents with other agents who are also

privately informed.
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an absolutely-continuous distribution F vk with density fvk strictly positive over Vk and hazard rate

λvk ≡ fvk /[1− F vk ].16 In Section 5, we discuss how the results extend to settings in which the vertical

and horizontal types are correlated (with the marginal distribution of the horizontal types possibly

different from the uniform one), as well as to settings with richer payoff specifications that allow

the utility that each type θk derives from being matched to each type θl to depend also on type θl’s

vertical dimension vl. Finally, we discuss how the results extend to certain settings in which the

agents’ profiles are private information. The primary reason for abstracting from these enrichments

in the baseline model is that this permits us to simplify a lot the exposition.

The next two examples illustrate the type of markets the analysis can be applied to.

Example 1. (ad exchange) The platform is an ad exchange matching advertisers from side a to

publishers from side b. The expected profit that an advertiser of type θa = (va, xa) obtains from an

impression at the website of a publisher of type θb = (vb, xb) is given by

ua(va, |xa − xb|) = vaφ (|xa − xb|) ,

where va is the advertiser’s profit per sale and where the strictly decreasing function φ : [0, 1
2 ]→ [0, 1]

describes how the probability of a conversion (i.e., the probability the ad view turns into a sale)

varies with the distance between the publisher’s profile, xb, and the advertiser’s profile, xa. By

contrast, publishers can be viewed (to a first approximation) as indifferent with respect to the kind

of advertisement displayed at their websites. The matching (dis)utility of a publisher reflects the

opportunity cost of not using the advertisement space to sell its own products, or from not selling the

ad slot outside of the platform. Accordingly, the profit that a publisher of type θb = (vb, xb) derives

from displaying the ad of an advertiser of type θa = (va, xa) is given by ub(vb, |xa−xb|) = vb ≤ 0, all

xa, xb ∈ [0, 1]. ♦

Example 2. (media platform) The platform is a media outlet matching viewers from side a

with content providers from side b. The utility that a viewer of type θa = (va, xa) derives from

having access to the content of a provider of type θb = (vb, xb) is given by the constant-elasticity-of-

substitution (CES) function

ua(va, |xa − xb|) =
[
α · (va)δ + (1− α) · φ (|xa − xb|)δ

]
1
δ ,

where α ∈ [0, 1] captures the relative importance of the viewer’s vertical preferences va, describing

her willingness to consume media content, and her horizontal preferences xa, describing her ideal type

of content (e.g., sports, news, movies, etc). In turn, the strictly decreasing function φ : [0, 1
2 ]→ R+

describes how the viewer’s utility declines with the distance between the viewer’s profile, xa, and

the provider’s profile, xb. Finally, δ ∈ R/{0} measures the elasticity of substitution between profile

compatibility and willingness to consume. The matching (dis)utility ub(vb, |xb − xa|)) of the content

16Hence, for any θk = (vk, xk), Fk(θk) = F vk (vk)xk.
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provider may reflect the extra revenue from advertisers (which may depend on the profile of the

viewers reached, as advertisers typically pay more to content providers with a higher exposure to

viewers of certain characteristics), or the expenses from broadcasting rights paid to third parties

(which are typically invariant to the type of audience reached).17 ♦

Another example that shares the preference structure of Example 1 is that of business-to-business

platforms matching firms engaging in procurement (from side a) with firms supplying services (from

side b). Each supplier’s profile, xb, identifies the type of service offered, whereas each procurer’s

profile, xa, identifies the type of service demanded. The function φ(|xa−xb|) describes the probability

that the match results in trade, which obviously decreases with the discrepancy between xa and xb.

The vertical parameters va > 0 and vb < 0 capture the willingness to pay and marginal costs for the

procuring and supplying firms, respectively.

For future reference, we let Int[Vk] denote the interior of the set Vk and Σ(Θl) the collection of

all Fl-measurable subsets of Θl. Hereafter, we assume that the “virtual values”

ϕk (θk, θl) ≡ uk (vk, |xk − xl|)−
1− F vk (vk)

fvk (vk)
· ∂uk
∂v

(vk, |xk − xl|)

satisfy the same monotonicity properties of the true values. Namely, the functions ϕk (θk, θl) are

strictly increasing in vk and weakly decreasing in |xk−xl|, which is the analog of Myerson regularity

condition (e.g., Myerson (1981)) in a matching environment.

Tariffs and matching demands

The platform offers matching tariffs on each side of the market. A matching tariff Tk specifies the

(possibly negative) total payment Tk (sk|xk) that each agent with profile xk ∈ Xk is asked to pay to

be matched to each set of types sk from the opposite side of the market.18 To guarantee participation

by all agents, we require that, for all xk, Tk (sk|xk) = 0 if sk = ∅.
Given the tariff Tk, we say that the function sk : Θk → Σ(Θl) is a matching demand consistent

with the tariff Tk if, for any θk = (vk, xk) ∈ Θk,

sk(θk) ∈ arg max
sk∈Σ(Θl)

{∫
sk

uk (vk, |xk − xl|) dFl(θl)− Tk (sk|xk)
}
. (2)

Definition 1. The tariff profile (Tk)k=a,b is feasible if there exists a pair of matching demands

(sk)k=a,b consistent with (Tk)k=a,b satisfying the following reciprocity condition, for all (θk, θl) ∈
Θk ×Θl, k, l ∈ {a, b}, l 6= k:

θl ∈ sk(θk) ⇐⇒ θk ∈ sl(θl). (3)

17The structure of this example follows closely the one typically assumed in the empirical literature on media markets

(see, e.g., Goettler and Shachar 2001).
18In their most general form, matching tariffs might condition such payments on the agents’ own profiles (which are

observable by the platform), but not on the agents’ vertical dimensions, which are the agents’ private information.
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That is, if an agent from side k with type θk demands to be matched to all agents from side l 6= k

with type θl, then all agents from side l with type θl demand to be matched to all agents from side

k with type θk.

The platform’s problem consists of choosing a pair of feasible tariffs (Tk)k=a,b, along with a pair of

matching demands (sk)k=a,b consistent with the selected tariffs, that jointly maximize the platform’s

profits, which are given by ∑
k=a,b

∫
Θk

Tk(sk(θk)|xk)dFk(θk). (4)

A pair of tariffs (T ∗k )k=a,b is profit-maximizing if there exist matching demands (s∗k)k=a,b consistent

with (T ∗k )k=a,b such that the platform’s profits under (T ∗k , s
∗
k)k=a,b are as high as under any other

quadruple (Tk, sk)k=a,b, where (Tk)k=a,b is a pair of feasible tariffs and (sk)k=a,b are demands con-

sistent with (Tk)k=a,b. Hereafter we denote by (T ∗k )k=a,b a pair of profit-maximizing tariffs, and by

(s∗k)k=a,b the matching demands that, together with (T ∗k )k=a,b, maximize the platform’s profits.

3 Customized pricing

We now introduce a class of tariffs that plays an important role in the analysis below. Under such

tariffs, which we call customized, the platform offers to each side-k agent a baseline matching set at

a baseline price, along with a collection of personalized prices that the agent can use to customize

his matching set. The total price of the customization is separable across agents’ profiles, but may

vary non-linearly with the amount of agents from the opposite side included in the matching set (a

form of second-degree price discrimination). Importantly, the personalized prices the agents pay for

the customizations depend on the agents’ own profiles (a form of third degree price discrimination).

Customized tariffs capture important features of the matching plans offered by platforms such as

cable TV providers, ad exchanges, and online retailers. Before proceeding to the definition, we need

to introduce the following piece of notation: Given any matching set sk, and any profile xl, we let

qxl(sk) denote the “mass” of side-l agents with profile xl included in the matching set sk.
19

Definition 2. The tariff Tk is customized if there exists a collection of triples

{(sk(xk), T k(xk), ρk(·|·;xk)) : xk ∈ Xk} ,

one for each profile xk ∈ Xk, such that each side-k agent with profile xk choosing the matching set

sk ∈ Σ(Θl) is asked to make a total payment equal to

Tk(sk|xk) = T k(xk) +

∫ 1

0
ρk(qxl(sk)|xl;xk)dxl, (5)

with ρk (qxl (sk(xk)) |xl;xk) = 0 for all xl ∈ Xl.

19We abuse terminology by referring to the density of agents of a certain type as the “mass” of agents of that type.
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A customized tariff can thus be thought of as a collection of matching plans, one for each profile

xk. Each plan comes with a baseline configuration, given by the default set of types sk(xk) from

side l 6= k included in the package, and a baseline price T k(xk). Each agent selecting the plan

(sk(xk), T k(xk), ρk(·|·;xk)) can then customize his matching set by adding extra matches. The cost

of the customization is separable in the type of matches added to the baseline configuration, with

each schedule ρk(q|xl;xk) describing the non-linear fee for adjusting the amount of xl-agents from the

default level qxl (sk(xk)) to q.20 Importantly, for each quantity q of xl-agents, the price ρk(q|xl;xk)
depends on the baseline plan, which is conveniently indexed by the profile xk targeted by the plan.

The dependence of the price ρk(q|xl;xk) on the plan xk is a manifestation of a particular form

of bundling. In particular, note that a customized tariff combines elements of second-degree price

discrimination (each price function ρk (q|xl;xk) is possibly non-linear in q) with elements of third-

degree price discrimination (each non-linear price function ρk (q|xl;xk) depends on the plan, and

hence on the agent’s own profile). The baseline configurations are designed for those agents with

the lowest vertical type, vk, whereas the customizations are designed for those agents with higher

vertical types.

Clearly, not all tariffs are customized, in the sense of Definition 2. For instance, tariffs that

condition the price for the xl-matches on the demand for the x′l-matches, with x′l 6= xl, are not

customized. The following result shows that this extra degree of freedom is inconsequential for

profits, in that the platform’s optimum is achieved by offering a pair of customized tariffs.

Lemma 1. (properties of the optimum) The following are true:

1. there exists a pair of customized tariffs (T ∗k )k=a,b that are profit-maximizing;

2. the matching demands (s∗k)k=a,b consistent with the profit-maximizing customized tariffs (T ∗k )k=a,b

are described by threshold functions t∗k : Θk ×Xl → Vl such that

s∗k(θk) = {(vl, xl) ∈ Θl : vl ≥ t∗k (θk, xl)} ,

with the function t∗k non-increasing in vk and non-decreasing in |xk − xl|.

Under the profit-maximizing tariffs, for any given profile xk, the matching sets demanded by

those agents with higher vertical types are supersets of those demanded by agents with lower vertical

types. Moreover, side-l agents of profile xl with a low vertical type vl are included in the matching

sets of the side-k agents located at xk only if the latter agents’ vertical types vk are large enough.

Finally, the range of vertical types [tk(θk, xl), v̄l] of side-l agents with profile xl that each side-k agent

20The schedules ρk(qxl |xl;xk) may also specify the price for reducing the amount of xl-agents below the default

level. However, as we show in the Appendix, in equilibrium, the induced demands are such that sk(θk) ⊃ sk(xk) for

all θk = (vk, xk), k = a, b, meaning that no agent asks to reduce the number of matches below the level specified in

the baseline configuration. Accordingly, sk(xk) and T k(xk) correspond to the matching sets and payments designed

for the xk-agents with the lowest vertical type, vk.
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of type θk = (vk, xk) is matched with is smaller the larger is the discrepancy |xk − xl| between the

profiles. Figure 2 illustrates these properties.

[ FIGURE 2 HERE ]

To gain intuition, note that the marginal profits the platform obtains by matching type θl =

(vl, xl) from side l with type θk = (vk, xk) from side k are positive if, and only if,

ϕk (θk, θl) + ϕl (θl, θk) ≥ 0. (6)

Echoing Bulow and Roberts (1989), the above condition can be interpreted as stating that two

agents are matched if, and only if, their joint marginal revenue to the platform is weakly positive

(we elaborate on this point further in the next subsection). That virtual values strictly increase

with the agents’ vertical types implies existence of a threshold t∗k (θk, xl) such that Condition (6) is

satisfied if, and only if, fixing (θk, xl), vl ≥ t∗k (θk, xl), with the threshold t∗k (θk, xl) non-increasing

in vk and non-decreasing in |xk − xl|. Jointly, these properties imply that, as vk increases, the

matching set of type θk expands to include new side-l agents (of all profiles) with lower vertical

types. These properties are the analogues of those in Gomes and Pavan (2016) in a setting with

horizontally-differentiated preferences.21

Lerner-Wilson formula for matching schedules

We now derive further properties of the customized tariffs that maximize the platform’s profits.

Consider first the problem of a side-k agent of type θk = (vk, xk) under the plan xk (recall that this

is the plan designed for all side-k agents with profile xk). The mass of xl-agents demanded by type

θk is given by

q̂xl(θk) ∈ arg max
q∈[0,1]

{uk(vk, |xk − xl|) · q − ρk(q|xl;xk)} .

Assuming the price schedule ρk(·|xl;xk) is convex and differentiable in q (to be confirmed below),

with derivative ρ′k(·|xl;xk), we have that q̂xl(θk) is a solution to the following first-order condition

uk(vk, |xk − xl|) = ρ′k (q̂xl(θk)|xl;xk) (7)

whenever q̂xl(θk) is interior, i.e., whenever q̂xl(θk) ∈ (0, 1).

Next, for any pair of profiles xk, xl ∈ [0, 1], and any “interior” marginal price,22 let v̂xl (ρ′k|xk)
denote the value of vk that makes each xk-agent indifferent between adding an extra unit of xl-

matches or not, given the marginal price ρ′k. Note that v̂xl (ρ′k|xk) is implicitly defined by:23

uk(vk, |xk − xl|) = ρ′k. (8)

21In a setting with purely vertically-differentiated preferences, Gomes and Pavan (2016) identify conditions under

which the profit-maximizing tariffs induce demands with a threshold structure.
22A marginal price is interior if ρ′k ∈ [uk(vk, |xk − xl|), uk(v̄k, |xk − xl|)].
23If, instead, ρ′k /∈ [uk(vk, |xk − xl|), uk(v̄k, |xk − xl|)], let v̂xl (ρ′k|xk) = vk if ρ′k < uk(vk, |xk−xl|), and v̂xl (ρ′k|xk) =

v̄k if ρ′k > uk(v̄k, |xk − xl|).
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Because the price function ρk(·|xl;xk) is strictly convex over the range of quantities purchased in

equilibrium, the marginal price ρ′k uniquely identifies the demanded quantity q. Furthermore, because

agents with higher vertical types purchase larger matching sets, the demand for the q-th unit of xl-

agents by xk-agents, at the marginal price ρ′k, is given by:24

Dk

(
ρ′k|xl;xk

)
≡ 1− F vk

(
v̂xl
(
ρ′k|xk

))
, (9)

where, as above, we dropped the arguments (q|xl;x) of the marginal price to lighten the nota-

tion. Accordingly, Dk (ρ′k|xl;xk) coincides with the mass of xk-agents whose vertical type exceeds

v̂xl (ρ′k|xk).
Using (9), we then define the elasticity of the demand by xk-agents for the q-th unit of xl-agents

with respect to its marginal price ρ′k by

εk
(
ρ′k|xl;xk

)
≡ −

∂Dk (ρ′k|xl;xk)
∂
(
ρ′k
) ·

ρ′k
Dk

(
ρ′k|xl;xk

) , (10)

where, once again, the arguments of the marginal price ρ′k are dropped to lighten the notation. The

next proposition characterizes the price schedules associated with the profit-maximizing customized

tariffs of Lemma 1 in terms of the profile-specific elasticities of the demands on both sides of the

market. To ease the exposition, the dependence of the marginal prices, ρ∗k
′, of the demands Dk, and

of the elasticities, εk, on the profiles (xa, xb) is dropped from all the formulas in the proposition.

Proposition 1. (Lerner-Wilson price schedules) The price schedules ρ∗k associated with the

profit-maximizing customized tariffs T ∗k are differentiable and convex over the equilibrium range.25

Moreover, for all pair of profiles (xa, xb), and all interior pairs of demands (qa, qb) such that qa =

Db (ρ∗b
′(qb)) and qb = Da (ρ∗a

′ (qa)), the marginal prices ρ∗a
′(qa) and ρ∗b

′(qb) jointly satisfy:

ρ∗a
′(qa)

(
1− 1

εa (ρ∗a
′(qa))

)
︸ ︷︷ ︸

net effect on side-a profits

+ ρ∗b
′(qb)

(
1− 1

εb
(
ρ∗b
′(qb)

))︸ ︷︷ ︸ = 0.

net effect on side-b profits

(11)

The Lerner-Wilson formulas (11) jointly determine the price schedules on both sides of the mar-

ket.26 Intuitively, these formulas require that the marginal revenue from adding to the matching

sets of xk-agents the qk-th unit of xl-agents compensate for the marginal cost from adding to the

matching sets of xl-agents the ql-th unit of xk-agents, where qk and ql are jointly related by the

reciprocity condition in the proposition.

24By the demand for the q-th unit of the xl-agents by the xk-agents, we mean the mass of agents from side k located

at xk who demand at least q matches with the xl-agents.
25Namely, for any ql ∈ [qxl(sk(vk, xl + .5)), qxl(sk(vk, xl))], k, l = a, b, l 6= k.
26The reason why we refer to the formulas in the proposition as Lerner-Wilson is that, in his book “Nonlinear

Pricing,” Robert Wilson was among the first to illustrate how Lerner’s elasticity formulas for textbook monopolistic

pricing problems extend to a wide range of non-linear pricing with rich quantity discounts.
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As for the standard Lerner-Wilson formula for monopoly/monopsony pricing, on each side, the

marginal revenue/cost has two terms: the term ρ∗k
′ captures the impact on the platform’s profits of

the matches involving the marginal agents, whereas the semi-inverse-elasticity term ρ∗k
′ [εk (ρ∗k

′)]−1

captures the impact of the adjustment in the price for the infra-marginal matches.

Importantly, as anticipated above, the quantities qk and ql at which the conditional price schedules

are evaluated have to clear the market, as required by the reciprocity condition (3), which is one

of the key features or matching. This is manifested in the fact that the mass qk of xl-agents that,

at the marginal price ρ∗l
′(ql), demand ql = Dk (ρ∗k

′ (qk)) or more of the xk-agents coincides with the

mass of xl-agents with vertical type above v̂xk (ρ∗l
′|xl).

Finally, that the price schedules ρ∗k(qk) are convex in qk reflects the fact that the matching

demands of the xk-agents for the xl-agents are increasing in the vertical types vk. As a result, the

marginal price ρ∗k
′(qk) for the qk-unit of the xl-agents has to increase with qk. This property is not

specific to our matching model. Quantity premia are a common feature of all screening models with

multiplicative payoffs.

The formulas in (11) also reveal how profit-maximizing platforms optimally cross-subsidize in-

teractions among agents from multiple sides of the market while accounting for heterogeneity in

preferences along both vertical and horizontal dimensions. This is illustrated in the next example.

Example 3. (ad exchange - continued) Consider the ad exchange market of Example 1, and

assume that the cdf’s F va and F vb are uniform with support on [0, 1] and [−1, 0], respectively. Propo-

sition 1 then implies that the marginal price schedules ρ∗a
′ and ρ∗b

′ are such that

ρ∗a
′(q) = q +

φ (|xa − xb|)
2

and ρ∗b
′(q) =

(
q − 1

2

)
φ (|xa − xb|) ,

for any q ∈ [0, 1]. Accordingly, for any q, the marginal price that the advertisers pay for the q-

th impression on each publisher’s website decreases with the discrepancy between the publishers’

and the advertisers’ profiles. Likewise, the marginal subsidy to the publishers decreases with the

discrepancy between the publishers’ and the advertisers’ profiles. ♦

In Example 3, the marginal schedule ρ∗b
′ faced by the side-b publishers depends on the conversion

probabilities φ, despite the fact that the side-b publishers do not care about such conversions per

se (or about the profiles of the advertisers whose ads they display). Such dependence, however, is

a natural consequence of the need for the platform to clear the market respecting the reciprocity

conditions required by matching. Note that the use of scoring auctions by ad exchanges, which make

the procurement prices paid to the publishers explicitly depend on the discrepancy in profiles is

broadly consistent with the results in Proposition 1.

More generally, the price schedules offered to any two profiles xk and xl are a function of the

profile-specific demand elasticities εk (·|xl;xk). This reflects the fact that, at the optimum, platforms

make use of information about horizontal preferences to offer matching tariffs that extract as much
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surplus as possible from both sides. As we show below, the ability to tailor price schedules to profiles

(a form of third-degree price discrimination) has important implications for the composition of the

demands prevailing under optimal tariffs.

The formulas in (11) define a system of structural equations that relate the cut-off types on both

sides of the market.27 The spirit of these formulas is the same as in the reduced-form approach

pioneered by Saez (2001) in the context of optimal taxation. Under the assumption that a plat-

form prices matches optimally, Proposition 1 can be used by the econometrician to estimate the

distribution of the agents’ preferences from data on price schedules and match volumes.

Alternatively, Proposition 1 can be employed to assess the optimality of mechanisms currently

used. In online advertising markets, for instance, a complex system of prices is employed by ad

exchanges to match publishers with advertisers. These prices employ user- and advertiser-specific

scores, and are non-linear in the number of impressions, which is consistent with what predicted

by Proposition 1. The Lerner-Wilson formulas (11) can serve as a test for the optimality of these

“indirect” mechanisms.

4 Uniform pricing

Stringent regulations on the transfer of personal data together with restrictions on bundling imposed

on certain platforms are expected to hinder the customization of prices and favor instead uniform

pricing.28 In this section, we study platforms’ behavior when subject to uniform-price obligations on

one of the two sides of the market.

Uniform pricing and aggregate demand elasticities

Definition 3. The side-k tariff Tk is consistent with uniform pricing if there exists a collection of

(possibly non-linear) price schedules pk(q|xl), one for each side-l profile xl ∈ Xl, such that the total

payment asked by the platform to the side-k agents for each matching set sk ∈ Σ(Θl) is given by29

Tk(sk) =

∫ 1

0
pk(qxl(sk)|xl)dxl. (12)

Hence, under uniform pricing, the tariff offered by the platform to the side-k agents consists of

a collection of non-linear price schedules, (pk(·|xl))xl∈[0,1], one for each profile of the side-l agents.

27To see this, fix (xa, xb) and drop it to ease the notation. For any qa, the result in Lemma 1 implies that the most

economical way of providing the xa-agents with access to qa agents with profile xb is to match the former agents to all

xb-agents whose vertical type is above ṽb, with ṽb defined by 1− F vb (ṽb) = qa. For any qb, the marginal price ρ∗b
′(qb) is

then equal to ub(ṽb, |xa − xb|). Given qa and ρ∗b
′(qb), the marginal price ρ∗a

′(qa) is then given by equation (11). Once

ρ∗a
′(qa) is identified, the threshold va = t∗b((ṽb, xb), xa) is given by the unique solution to ua(va, |xa − xb|) = ρ∗a

′(qa).
28As indicated above, customized pricing is a special form of bundling, whereby the marginal prices ρk(q|xl;xk) for

the q-th matches with the xl-agents depends on the xk package and hence, indirectly, on the quantity of x′l-agents

included in the baseline configuration of the xk-plan.
29Recall that qxl(sk) is the quantity of xl-agents included in the set sk.
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Namely, each schedule pk(q|xl) specifies the total price each side-k agent has to pay to be matched to q

xl-agents. Importantly, contrary to the case of price customization, the price pk(q|xl) is independent

of the side-k agent’s own profile, xk.

Suppose the platform is forced to adopt a uniform-price schedule pa(·|xb) on side a (with marginal

schedule p′a(·|xb)). Recall that, for each profile xb ∈ [0, 1], and each quantity q, this schedule specifies

the price that side-a agents have to pay to be matched to q xb-agents. The side-a aggregate demand

(over xa) for the q-th unit of xb-agents at the marginal price p′a (q|xb) is then equal to

D̄a

(
p′a|xb

)
≡
∫ 1

0
Da

(
p′a|xb;xa

)
dxa =

∫ 1

0

[
1− F va

(
v̂xb
(
p′a|xa

))]
dxa,

where Da (p′a|xb;xa) is the mass of agents located at xa that demand q units or more of xb-agents,

and v̂xb (p′a|xa) is the value of va for which ua(va, |xb − xa|) = p′a. As in the previous section, the

arguments (q|xb) of the marginal prices p′a (q|xb) have been dropped to ease the exposition.

The elasticity of the side-a aggregate demand for the q-th unit of xb-agents with respect to the

marginal price p′a is then equal to

ε̄a
(
p′a|xb

)
≡ −∂D̄a (p′a|xb)

∂ (p′a)
· p′a
D̄a (p′a|xb)

= EH̄(x̃a|xb,p′a)

[
εa
(
p′a|xb; x̃a

)]
,

where εa (p′a|xb;xa) is the local elasticity defined in (10), and where the expectation is over Xa = [0, 1]

under the distribution H̄ (·|xb, p′a) whose density is equal to

h̄
(
xa|xb, p′a

)
≡ Da (p′a|xb;xa)∫ 1

0 Da (p′a|xb;x′a) dx′a
.

The elasticity ε̄a(p
′
a|xb) measures the percentage variation in the mass of agents from side a that

demand at least q matches with the xb-agents in response to a percentage change in the marginal

price for the q-th unit of such agents. It is also equal to the average elasticity (over side-a profiles) of

the xa-demands for the q-th unit of the xb-agents with respect to the marginal price p′a. This average

is taken under a distribution that assigns to each profile xa a weight proportional to the mass of

agents Da (p′a|xb, xa) with profile xa demanding q units, or more, of xb-agents.

The next proposition derives properties of the profit-maximizing tariffs T ua and T ub offered by a

platform that is constrained to price uniformly on side a. To ease the exposition, the dependence

of the marginal price pua
′ and of the aggregate elasticity ε̄a on xb, as well as the dependence of the

marginal price ρ̂ub
′ and of the local elasticity ε̂b on (xa, xb), are dropped from all the formulas in the

proposition.

Proposition 2. (uniform pricing) Suppose the platform is constrained to price uniformly on side

a, but is free to offer any tariff on side b. The profit-maximizing tariffs (T uk )k=a,b are such that T ub
is customized. The price schedules pua and ρub associated with the profit-maximizing tariffs (T uk )k=a,b

are differentiable and convex over the equilibrium ranges.30 Moreover, for all profiles xb ∈ Xb, and

30Namely, at any qa ∈ [qxb(sa(va, xb + .5)), qxb(sa(va, xb))] and qb ∈ [qxa(sb(vb, xb)), qxa(sa(vb, xb))].
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all interior quantity pairs (qa, qb(x̃a)), x̃a ∈ Xa, such that

qa = Db

(
ρub
′ (qb|xb;xa) |xb;xa

)
and qb(xa) ≡ Da

(
pua
′(qa)|xb;xa

)
,

the marginal prices schedules pua
′ and ρub

′ jointly satisfy the following optimality condition:

pua
′(qa)

(
1− 1

ε̄a (pua
′(qa))

)
︸ ︷︷ ︸

net effect on side-a profits

+ EH(x̃a|xb,pua ′(qa))

ρub ′(qb(x̃a))
(

1− 1

εb
(
ρub
′(qb(x̃a))

))︸ ︷︷ ︸
 = 0,

net effect on side-b profits

(13)

where H (xa|xb, pua ′) is the distribution over Xa whose density is given by

h
(
xa|xb, pua ′

)
≡ ∂Da (pua

′|xb;xa)
∂ (pua

′)

(
∂D̄a (pua

′|xb)
∂ (pua

′)

)−1

.

The result in the proposition provides structural equations similar to those in Proposition 1, but

adapted to account for the imposition of uniform pricing on side a. Such structural conditions jointly

determine the price schedules on both sides of the market. Under uniform pricing, the price schedule

on side a for the sale of xb-agents cannot condition on the profile of side-a agents. As a result, the

markup on the q-th unit of xb-matches is constant across all side-a profiles xa. The relevant elasticity

for determining this markup is then the aggregate elasticity ε̄a(·|xb), rather than the profile-specific

elasticities εa (·|xb;xa) in the Lerner-Wilson formula (11) of Proposition 1. Interestingly, the cost of

procuring xb-agents is also an average; namely, that of the (mark-up augmented) prices

EH(x̃a|xb,pua ′(qa))

[
ρub
′(qb(x̃a))

(
1− 1

εb
(
ρub
′(qb(x̃a))

))]

charged to the xb-agents for their interactions with the side-a agents demanding qa or more xb-

matches. The next example illustrates how the uniformity requirement affects the optimal marginal

price schedules in the advertising market.

Example 4. (ad exchange - continued) Consider the ad exchange market under the assumptions

of Example 3, and let φ(|xa − xb|) = (1 + µ|xa − xb|)−1, where µ > 0. Proposition 2 then implies

that the marginal price schedules are given by

pua
′(q) = q +

1

2 + µ
2

and ρub
′(q) =

q − 1

1 + µ|xa − xb|
+

1

2 + µ
2

,

for any q ∈ [0, 1]. As a consequence of uniformity, marginal prices on side a are invariant to the

discrepancy between the publishers and the advertisers’ profiles. ♦

The analysis above investigates the platform’s optimum when uniform pricing is imposed in only

one side of the market (side a). In this case, the ability to price discriminate on side b guarantees

that the platform has enough flexibility to procure the side-b matches demanded by the side-a agents,
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while respecting reciprocity. This property is not guaranteed to hold when uniform pricing is imposed

on both sides. Intuitively, in this case, the price schedule that clears the market for the matches

between the xa-agents and the xb-agents need not clear the market for the matches between the

xa-agents and the x′b-agents, when x′b 6= xb. This is formally discussed in the next remark.

Remark 1. (uniform pricing on both sides) Consider matching demands (sk(θk))k=a,b described

by threshold functions tk : Θk × Xl → Vl for k, l = a, b, l 6= k (in the sense of Lemma 1). Such

matching demands can be implemented by a pair of tariffs Tk and Tl, each consistent with uniform

pricing, if and only if, for each θk ∈ Θk,

ul(tk (θk, 0) , |xk|) = ul(tk (θk, xl) , |xk − xl|) (14)

for all xl ∈ Xl. The set of threshold rules (tk)k=a,b satisfying (14) for each θk ∈ Θk and xl ∈ Xl is

non-empty only in knife-edge cases. For instance, if ul is invariant in |xk−xl|, as in the ad exchange

application of Example 1, then any threshold function tk (θk, xl) satisfying (14) must be invariant in

xl. In this case, its associated matching demands can be induced by tariffs satisfying uniform pricing

on both sides only if uk is also invariant in |xk − xl|.31,32

Relatedly, requiring that the platform prices linearly on both sides of the market (that is,

imposing that the marginal prices ρ′k(q|xl;xk) be invariant in the volume q of the matches demanded)

may preclude the possibility of clearing the market when some matches are excluded. This is so even

if such prices are allowed to depend on the profiles of the involved agents, on both sides of the

market.33 Accordingly, banning second-degree price discrimination is typically feasible only if done

on one side only.

Targeting

Digital technology is often praised for its ability to increase match precision (or targeting) in a variety

of markets. Yet, technology alone is no guarantee of large targeting gains, as the matches enjoyed by

the agents obviously depend on the pricing practices followed by the platform. Price customization

31Remark 1 focuses on demands with a threshold structure for simplicity. The difficulty to satisfy reciprocity under

uniform pricing on both sides of the market extends to more general demands.
32Tariffs that require each participating agent to pay a fixed access fee for interacting with all participating agents

from the opposite side of the market (and offer no other matching alternatives) are not uniform in the sense of Definition

3, for they are not separable. Importantly, such tariffs do not allow for any form of discrimination within sides, and

abstract from matching design and targeting. These are the tariffs considered in the two-sided market literature - see,

for instance, Rochet and Tirole (2006) and Jullien et al (2021), for a recent overview.
33To see this, note that, given the marginal price ρ′k charged to xk-agents for interacting with xl-agents, each xk-

agent whose vertical type exceeds v̂xl (ρ′k|xk), where v̂xl (ρ′k|xk) is implicitly defined by uk(vk, |xk−xl|) = ρ′k, demands

to interact with all xl-agents. To procure such xl-agents, the price ρ′l the platform must charge xl-agents equals

ρ′l = ul(vl, |xk−xl|). Given such a price, however, each xl-agent demands to interact with all xk-agents, implying that

the only linear prices that clear the (xk, xl)-market must induce full participation on either side.
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enables a platform to charge agents prices that depend on their horizontal characteristics (either di-

rectly, when the latter are observable, as assumed here, or indirectly, through bundling, as discussed

in the Appendix). One might expect price-customization to hinder targeting, as it permits plat-

forms to set higher prices for those matches the agents like the most. Without further inquiry, this

observation seems to lend support to policies that impose uniform-price obligations. Indeed, recent

proposals requiring stringent protection of consumer privacy (de facto banning price customization),

stand-alone pricing for media content (thus banning bundling), or anonymous pricing for advertising

slots, appear broadly consistent with this line of reasoning. This intuition, however, is incomplete, as

it ignores the (endogenous) changes in prices that platforms undertake in response to uniform-price

obligations. The analysis below provides some guidelines as to the effects of uniform-price obligations

on one of the two sides of the market on targeting.

Broadly, targeting captures the idea that agents are induced to demand relatively more of those

matches close to their ideal profile. That is, the composition of the matching sets is geared towards

the most-preferred matches, even if the total amount of matches may differ across alternative tariffs.

Definition 4. (targeting) Consider tariffs (Tk)k=a,b and (T ′k)k=a,b inducing the matching demands

(sk)k=a,b and (s′k)k=a,b, respectively. The tariffs (Tk)k=a,b lead to more targeting than the tariffs

(T ′k)k=a,b if, for each θk = (vk, xk), there exists a critical distance δ(θk) ∈ (0, 1
2) such that

qxl(sk(θk))− qxl(s
′
k(θk))

{
> 0 if |xk − xl| < δ(θk)

< 0 if |xk − xl| > δ(θk),

where, recall, qxl(sk) is the “mass” of side-l agents with profile xl included in the matching set sk.

If matching demands exhibit a threshold structure, as it occurs at the optimum, Definition 4

boils down to

tk(θk, xl)− t′k(θk, xl)

{
< 0 if |xk − xl| < δ(θk)

> 0 if |xk − xl| > δ(θk),

where (tk)k=a,b and (t′k)k=a,b are the thresholds describing the demands induced by (Tk)k=a,b and

(T ′k)k=a,b, respectively.

Clearly, Definition 4 describes a partial order, in that one can construct tariffs that are not

comparable in terms of targeting (for instance, those whose matching demands are described by

threshold functions with multiple crossings). Yet, it is always possible to rank the optimal tariffs

under, respectively, customized pricing on both sides, and uniform pricing on side a but customized

on side b. In fact, the results in Propositions 1 and 2 imply that the threshold functions t∗a(θa, xb)

and tua(θa, xb) cross once and only once. This follows from the dependence of the thresholds on local

and average elasticities on the two sides of the market (more on this below). Figure 3 provides an

illustration.

[ FIGURE 3 HERE ]
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Note that, because matching is reciprocal, we only need to compare thresholds on one of the two

sides. Namely, when customized pricing (on both sides) leads to more targeting than uniform pricing

(on side a), then the side-b threshold function under customized pricing, t∗b(θb, xa), also crosses its

counterpart under uniform pricing, tub (θb, xa), only once, and from below, as a function of the distance

|xa − xb|.
The next example compares targeting under price customization on both sides to targeting un-

der uniform pricing on side a and customized pricing on side b in the context of the ad exchange

application:

Example 5. (ad exchange - continued) Consider the ad exchange market under the assumptions

of Example 4. The side-b marginal price schedules under customized pricing (on both sides) and

under uniform pricing (on side a and customized pricing on side b) are such that, for any pair of

profiles (xa, xb),

ρ∗b
′(q|xa;xb) > ρub

′(q|xa;xb) ∀q ∈ [0, 1] ⇐⇒ |xa − xb| <
1

4
.

Therefore, t∗b(θb, xa) > tub (θb, xa) if and only if |xa − xb| < 1
4 . Accordingly, price customization leads

to less targeting than uniform pricing. ♦

More generally, as revealed by the pricing formulas (11) and (13), the effects on targeting of

uniform pricing on side a hinge on the comparison between (i) the local elasticities on the two sides

of the market and (ii) the aggregate inverse elasticity on side a and the average inverse elasticity on

side b.

The next proposition leverages on this observation to identify conditions under which uniform

pricing on side a (for short, uniform pricing) leads to more (alternatively, less) targeting than cus-

tomized pricing on both sides (for short, customized pricing). For simplicity, the result in Proposition

3 is for a market in which preferences on side b are profile-invariant, as in the ad-exchange application

of Example 1 (we discuss more general conditions in the proof of Proposition 3 in the Appendix).

Proposition 3. (comparison: targeting) Suppose preferences on side b are profile-invariant.

Uniform pricing on side a leads to more (alternatively, less) targeting than customized pricing on

both sides when the side-a semi-elasticities are increasing (alternatively, decreasing) in both distance

and price.

Fix the side-b profile xb. Under uniform pricing, the elasticity of the aggregate demand by the

side-a agents for the q-th unit of the xb-matches is invariant to the distance |xb−xa|, as the marginal

price for the q-th unit of the xb-matches is the same for all xa-profiles. As a consequence, when the

semi-elasticities of the side-a demands increase (alternatively, decrease) with distance, the marginal

price for the q-th unit of the xb-matches charged to the xa-agents under customized pricing is lower

than the corresponding price under uniform pricing when profiles are far apart, whereas the opposite
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is true for nearby profiles. Accordingly, there is more targeting under uniform pricing than under

customized pricing.

The reader may find it surprising that targeting can be lower under customized pricing (on both

sides) than under customized pricing on side b but uniform pricing on side a. However, it is worth

recalling that the platform has two margins to raise its revenues, price and quantity. Fixing the

profile xb of the side-b agents, we have that, when the elasticity of the demands by the side-a agents

for the xb-agents increases with distance (meaning that those side-a agents who like the xb-agents the

most are also the least price-elastic ones), then, under customized pricing, the platform maximizes

its revenues by asking a high price to those side-a agents who value the xb-agents the most, optimally

sacrificing high volumes of trade for larger markups.

That targeting is higher under one pair of tariffs than another, however, does not mean that the

agents are better off under the tariffs inducing more targeting. This is because the volume of the

matches may be lower under the tariffs inducing more targeting. Furthermore, the total payments

need not be the same across the two regimes (see the discussion surrounding Proposition 4 below).

One can also use the characterization of the matching demands in the previous section to translate

the result in Proposition 3 in terms of conditions on match values and type distributions. For example,

one can show that the side-a semi-elasticities are increasing in both distance and price when the

hazard rate for F va is increasing in va, and ua is submodular and concave in va. Alternatively, they

are decreasing in both distance and price when the hazard rate for F va is decreasing in va, and ua is

supermodular and convex in va.

Accordingly, we are able to generalize the conclusion of Example 5 to a broad class of conversion

probability functions φ(·) and distributions of profits per sale.

Example 6. (ad exchange - continued) Consider the ad exchange market of Example 1. Because

the match function ua is submodular and linear in va, price customization leads to less targeting

than uniform pricing when F va has an increasing hazard rate (e.g., a uniform or exponential cdf). ♦

We next apply Proposition 3 to assess the impact of price customization (or lack thereof) in the

media market application of Example 2.

Example 7. (media platform - continued) Consider the media market of Example 2. Price cus-

tomization leads to more targeting than uniform pricing when the viewers’ elasticity of substitution

is high (namely, when δ > 1) and F va has a decreasing hazard rate (e.g., a Pareto cdf). By contrast,

price customization leads to less targeting than uniform pricing when the viewers’ elasticity of sub-

stitution is low (namely, when δ < 1) and F va has an increasing hazard rate (e.g., a uniform cdf).34

The effects on targeting of regulation requiring stand-alone pricing for media content therefore jointly

depend on the viewers’ elasticity of substitution and the distribution of their vertical preferences. ♦
34When the hazard rate is constant (that is, F va is a shifted exponential distribution), the effect of uniform (as

opposed to customized) pricing on targeting solely depends on the viewers’ elasticity of substitution.
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Accordingly, anonymous pricing for advertising slots (e.g., as a result of regulation banning the

use of scores) makes advertisers be more often matched (relative to laissez-faire) to those publishers

whose profile is closer to their ideal audience if the distribution F va has thin tails. This condition is

testable. Analogous testable conditions can be derived for other applications of our model.

Welfare

The result in Proposition 3 can also be used to study the welfare implications of uniform-price

obligations. To see this, suppose that targeting is higher under uniform pricing (on side a) than

under customized pricing (on both sides). Then, under uniform pricing, the side-a agents face lower

marginal prices p′a (q|xb) for the xb-agents they like the most and higher marginal prices for those

side-b agents whose profile is far from their ideal one.

This observation permits us to adapt results from the third-degree price discrimination literature

to the matching environment under consideration here to identify conditions under which the welfare

of the side-a agents increases with the imposition of uniform pricing on side a. Formally, recall that,

under uniform pricing, the demand by the xa-agents for the q-th unit of the xb-agents at the marginal

price p′a is given by

Da

(
p′a|xb;xa

)
= 1− F va

(
v̂xb
(
p′a|xa

))
where, to ease the notation, we dropped (q|xb) from the arguments of the marginal price p′a(q|xb).
Now let

CDa

(
p′a|xb;xa

)
≡ −∂

2Da (p′a|xb;xa)
∂ (p′a)

2

(
∂Da (p′a|xb;xa)

∂ (p′a)

)−1

p′a

denote the convexity of the demand by the xa-agents for the q-th unit of the xb-agents.35 Before

proceeding, we impose the following additional regularity condition.

Condition 1. [NDR] Nondecreasing Ratio: For any (xa, xb) ∈ Xa ×Xb, any q, the function

za
(
p′a|xb;xa

)
≡ p′a

2− CDa (p′a|xb;xa)

is nondecreasing in the marginal price p′a for the q-th unit of the xb-agents.

Condition 1 is typically satisfied in the main applications of our model.36 For instance, in the

context of Example 1, this condition holds when F va is uniform, or exponential. We then have the

following result:

Proposition 4. (comparison: welfare side a) Suppose Condition NDR holds and either one of

the following alternatives is satisfied:

35Note that CDa(p′a|xb;xa) is also the elasticity of the marginal demand ∂Da(p′a|xb;xa)/∂p′a with respect to the

marginal price p′a.
36More broadly, Condition 1 guarantees the quasi-concavity of an auxiliary problem in the proof of Proposition 4.

We see it mostly as a technical requirement.
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1. targeting is higher under uniform pricing than under customized pricing and, for any p′a and

xb, CDa (p′a|xb;xa) is decreasing in |xa − xb|;
2. targeting is higher under customized pricing than under uniform pricing and, for any p′a and

xb, CDa (p′a|xb;xa) is increasing in |xa − xb|.
Then welfare of the side-a agents is higher under uniform pricing on side a (and customized

pricing on side b) than under customized pricing on both sides.

The next example applies Proposition 4 to the ad-exchange application. We assume that Condi-

tion NDR holds.

Example 8. (ad exchange - continued) Consider the ad exchange market of Example 1. Ad-

vertisers’ profits are higher under uniform pricing, and so is the level of targeting, when F va has an

increasing hazard rate and its convexity function

CF va (va) ≡ −
d2F va (va)

dv2
a

(
dF va
dva

)−1

va = −f
v
a
′ (va)

fva (va)
va

is weakly decreasing. The latter condition is satisfied by the uniform distribution of Examples 3, 4,

and 5. More broadly, a sufficient condition for the above monotonicity property is that the density

fa(va) is log-convex and is either increasing or does not decrease “too fast”. ♦

Condition NDR, as well as the convexity properties of the demand functions in Proposition 4,

parallel those in Aguirre et al (2010). The value of the proposition is in showing how our results about

the connection between targeting and customized pricing also permit us to apply to the environment

under examination here the welfare results from the third-degree price discrimination literature. Note

that Proposition 3 is key to the result in Proposition 4. It permits us to identify “stronger markets,”

in the sense of Aguirre et al. (2010), with those for matches involving agents with closer profiles

(alternative 1) or more distant profiles (alternative 2). Once the connection between targeting and

price customization is at hand, the welfare implications of customized pricing naturally parallel those

in the third-degree price discrimination literature.

We now investigate the welfare effect on side b that results from the imposition of uniform pricing

on side a. For this purpose, we introduce the following condition, which implies Condition NDR.

Condition 2. [M] Monotonicity: For any (xa, xb) ∈ Xa × Xb, any q, the convexity function

CDa (p′a|xb;xa) is weakly positive and nondecreasing in the marginal price p′a for the q-th unit of the

xb-agents.

Similarly to Condition 1, the regularity Condition 2 is commonly satisfied. For instance, in the

context of the the ad exchange market, this condition holds when F va is uniform (as assumed in

Examples 3, 4, and 5), or exponential.

Proposition 5. (comparison: welfare side b) Suppose Condition M holds and preferences on

side b are profile-invariant. Then, under either one of the alternatives of Proposition 4, welfare of
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the side-b agents is higher under uniform pricing on side a (and customized pricing on side b) than

under customized pricing on both sides.

Proposition 5 adapts to the matching environment under consideration a result on how third-

degree price discrimination affects the quantity traded. When demand is more convex in strong than

weak markets (as implied by either alternative from Proposition 4 and Condition M), the quantity

of side-a agents consuming every q-th unit of each xb-agents is higher under uniform pricing. By

reciprocity, this implies that every side-b agent is assigned a larger quantity of matches. Incentive

compatibility then implies that the indirect utility of every side-b agent increases.

For simplicity, Proposition 5 requires that preferences on side b are profile-invariant. In the

absence of this assumption, the result of Proposition 5 remains true provided uniform pricing on

side a increases targeting (alternative 1 of Proposition 5). If, however, uniform pricing on side a

decreases targeting relative to customized pricing on both sides (alternative 2), then the effect of

uniform pricing on the welfare of the side-b agents hinges on the comparison between the loss from

less targeting and the gain in information rents from the increase in the quantity of matches each

side-b agent is granted access to.

More broadly, Propositions 4 and 5 illustrate the usefulness of Proposition 3 in connecting our

matching environment to the literature on third-degree price discrimination. We expect this paral-

lelism to be useful in studying other forms of price regulation in matching.

5 Discussion

Consistently with what assumed in most models of horizontal differentiation, the analysis above

assumes that agents’ profiles are uniformly distributed over the circle. It also assumes that vertical

dimensions are drawn independently from the horizontal ones. Both assumptions can be relaxed

(allowing for correlation between both dimensions and non-uniformity of the horizontal dimension),

while retaining all the qualitative results of our analysis. The proofs in the Appendix consider this

more general environment.

The analysis in the previous sections also assumes that the agents’ profiles are observable on both

sides of the market. All the results extend to settings in which the profiles are private information on

both sides, provided that one continues to assume that the profiles are uniformly distributed over the

circle and that the vertical dimensions are drawn independently from the horizontal ones. As we show

in the Appendix, this is because the equilibrium matching demands when profiles are observable are

“horizontal translations” across the various profiles. In this case, when the profiles are the agents’

private information, all agents prefer to select the matching plans designed for their profile (paying

the same price as when the profiles are observable) than those designed for alternative profiles. This

property, however, may require that the platform restricts the set of possible customizations that

each agent can choose from. Namely, the available customizations must coincide with the collection
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(s∗a(va, xa))va∈Va of matching sets designed for xa-agents of various vertical types va, when the profiles

are public on both sides.37 This is carefully shown in the Appendix.

Similar conclusions extend to settings in which profiles are observable on one side but private

information on the other. Suppose, for example, that profiles are private on side a and public on

side b. By offering the same profit-maximizing tariffs as when the profiles are public on both sides,

the platform induces all agents to select the matching plans designed for them when (i) the vertical

dimensions are drawn independently from the horizontal ones on both sides, and (ii) the horizontal

dimensions are distributed uniformly on the side where they are public (side b) but are distributed

arbitrarily on the side where they are private (side a). In fact, under such distributional assumptions,

the platform’s pricing problem on side a is symmetric across any two profiles. This is because of two

reasons. First, the profile of any agent from side a provides no information about the agent’s vertical

preferences (by virtue of the vertical dimensions being drawn independently from the horizontal ones

on side a). Second, when the profiles are public on both sides, the gross utility that each type

(va, xa) obtains from the matching set s∗a(va, xa) coincides with the gross utility obtained by each

type (va, xa + δ) from the matching set s∗a(va, xa + δ), and this is true for all δ ∈ (0, 1/2]. In fact,

the matching set s∗a(va, xa + δ) is a parallel translation of the matching set s∗a(va, xa) by δ units of

distance along the horizontal dimension.38 As a result, when profiles are public only on the b-side

and the platform offers the same tariffs as when they are public on both sides, all agents find it

optimal to choose the same matching sets as when profiles are public on both sides.

In the absence of distributional restrictions, the platform need not be able to implement the

same allocations as when profiles are public on both sides. This should not surprise given the multi-

dimensionality of the agents’ private information. Identifying the profit-maximizing tariffs in the

general case is notoriously complex. The restrictions above permit one to capture many of the key

trade-offs that platforms face in the design of the matching tariffs, while retaining tractability.

Lastly, the analysis in the previous sections assumes that match values depend on profiles and

on own vertical types, but not on the partners’ vertical types. This assumption may be appropriate

for settings in which the vertical types capture the partners’ willingness to pay, their physical or

opportunity cost of trading, and, more generally, traits that are unlikely to directly determine one’s

attractiveness. For instance, in the ad-exchange application of Example 1, it seems unlikely that an

advertiser’s value of placing an ad to a publisher’s website depends on the publisher’s opportunity

cost of space. Likewise, in the media application of Example 2, it seems unlikely that viewers’ utility

from accessing a content provider’s material depends on the royalties paid by the provider to the

content suppliers (e.g., the channels, in case of cable TV).

37In the absence of such restrictions, an agent of type θa = (va, xa) may find it optimal to choose the matching plan

designed for agents with profile x′a 6= xa and then select a matching set that no x′a-agent would have selected when

profiles are public on both sides. In other words, without the aforementioned restrictions, the matching allocations

induced when profiles are public on both sides need not be implementable (at the same cost) when profiles are private.
38in turn, this follows from the assumption that vertical dimensions are drawn independently from the horizontal

ones on both sides, together with the assumption that the horizontal dimensions are uniformly distributed on the b-side.
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In certain settings, though, an agent’s vertical type may be a proxy for various vertical traits that,

together with the agent’s horizontal profile, determine the agent’s attractiveness. In employment

relationships, for example, a worker’s vertical type often coincides with the worker’s productivity, in

which case the value that firms derive from being matched with the worker clearly depends on the

latter’s vertical type. In the Appendix, we show that all the results in the previous sections extend

to such richer settings (in fact, the proofs for all the results are established under this richer payoff

specification). This extra generality makes some of the formulas a little heavier but does not change

the nature of the results, provided that both the true and the virtual payoffs are (weakly) increasing

in the partners’ vertical types. In the absence of such a monotonicity condition, the optimal tariffs

cannot be guaranteed to induce demands with a threshold structure and the characterization of the

corresponding matching sets is significantly more complex.

Finally, all the results in the article are for settings in which payoffs are (i) additively separable

in the matches, and (ii) invariant to who else from the same side is matched with those agents from

the opposite side included in one’s matching set. The first assumption (that payoffs are additively

separable) simplifies the characterization of the optimal thresholds but is not key to the results (see,

e.g., Gomes and Pavan (2016) for a setting with non-separable payoffs, but in which payoffs are

heterogenous only over a vertical dimension). Relaxing the second assumption (that payoffs are

invariant to who else from the same side is matched with the same partner) introduces additional

complexity, but is worth examining in future work. In a recent article, Valenzuela-Stookey (2021)

shows that optimal tariffs induce demands with a threshold structure in markets with congestion

effects but where the horizontal dimensions are not known to the agents at the time of matching

and are only imperfectly correlated with the vertical ones. Extending the analysis in that article to

a setting in which the horizontal dimensions are known at the time the agents choose the matching

sets is challenging but important for this literature.

In the same vein, the analysis assumes that the only relevant feasibility constraints are the

reciprocity ones. In certain settings, platforms may face additional feasibility constraints. For

instance, in the ad-exchange application of Example 1, each publisher may be able to display only a

certain number of ads within the relevant time frame. Likewise, in labor relationships, a worker who

is employed by one firm may not be able to work for others. In addition, the platform itself may

face constraints on the number of matches it can induce in each period (think of a mall with limited

space, or an hospital with limited surgery rooms). Such capacity constraints introduce additional

complexities in the design of the optimal matching plans. However, we expect the key trade-offs

identified in this article to continue to play an important role also in these richer settings.39

39See also Fershtman and Pavan (2021) for a discussion of the role of such constraints in the design of matching

auctions.
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6 Related literature

This article studies many-to-many matching (with monetary transfers) in markets in which the

agents’ preferences are both vertically and horizontally differentiated. Related are Jeon et al. (2022)

and Gomes and Pavan (2016). The first article studies the provision of quality by a platform in a

setting where quality provision enhances match values. The second article studies the inefficiencies of

the matching allocations under profit maximization. Both articles assume that preferences are only

vertically differentiated, thus ignoring the issues of targeting and price customization that emerge

when preferences are also horizontally differentiated and that are the focus of the present article.

Importantly, neither of the above works studies the implications of uniform-price obligations, which

is one of the key contributions of the present article.40

Fershtman and Pavan (2021) also studies many-to-many matching in a model in which preferences

are both vertically and horizontally differentiated. The focus of that article, however, is bidding in

dynamic matching markets in which agents arrive over time, experience shocks to their match values,

and are repeatedly re-matched. The present article, instead, abstracts from dynamics and focuses

on how uniform-price obligations impact targeting and welfare.

Related are also Jullien and Pavan (2019), and Tan and Zhou (2021). The former article studies

platform competition in markets where agents’ preferences for the products of different platforms

are heterogenous but where all agents have the same preferences for interacting with agents from the

opposite side of the market. The latter article studies price competition in a model where multiple

platforms compete by offering differentiated services to the various sides of the market, and where

agents’ preferences are heterogenous and exhibit both within-side and across-sides network effects.

These articles, however, abstract from (second and third-degree) price discrimination, which is the

focus of the present article. Price discrimination in matching markets is examined in Damiano and Li

(2007) and Johnson (2013). Contrary to this article, these works consider markets where matching

is one-to-one and where agents’ preferences are differentiated only along a vertical dimension.41

The present article considers a many-to-many matching market where agents might disagree on

the relative attractiveness of any two agents from the other side (horizontal differentiation). Similar

preference structures are examined in the matching literature surveyed in Roth (2018) (see also

Kojima (2017) and Pathak (2017) for a detailed discussion of some of the recent contributions). This

literature is methodologically distinct from the current article, in that it focuses on solution concepts

40Both the present article and Gomes and Pavan (2016) use mechanism design to characterize the properties of the

optimal matching sets and to establish that the latter have a threshold structure (with the thresholds profile-specific

in the present article). However, to derive the optimal tariffs under uniform pricing, the present article tackles a new

problem in which the designer faces a constraint directly on the shape of the implementing tariffs. Such constraint is

novel to the mechanism design literature (where transfers are typically obtained as a residual and are pinned down by

the familiar envelope formula). Tackling this additional constraint is the major technical contribution of the present

article.
41See also Belleflamme and Peitz (2020) for a recent study of price discrimination in platform market with network

effects.
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such as stability and typically does not allow for transfers.42

More broadly, markets where agents purchase access to other agents are the focus of the literature

on two-sided markets (see Belleflamme and Peitz (2017, 2021) and Jullien et al. (2021) for some recent

overviews). Most of this literature, however, restricts attention to a single network, or to mutually

exclusive networks. Ambrus et al. (2016) relax this structure by proposing a model of competing

media platforms with overlapping viewerships (i.e., multi-homing). By contrast, the present article

assumes a monopolistic market, but introduces a richer preferences structure (allowing for horizontal

tastes for matches), which enables us to study targeting and price customization in such markets.43

The study of price customization is related to the literature on price discrimination. In the case of

second-degree price discrimination, Mussa and Rosen (1978), Maskin and Riley (1983), and Wilson

(1993) study the provision of quality/quantity in markets where agents possess private information

about a vertical dimension of their preferences. Our analysis differs from this literature in two

important dimensions. First, the platform’s feasibility constraint (namely, the reciprocity of the

matches) has no equivalent in standard markets for commodities. Second, agents’ preferences are

differentiated along both a vertical and a horizontal dimension. This richer preferences structure

calls for a combination of second- and third-degree price discrimination and leads to novel cross-

subsidization patterns.44

The article also contributes to the literature on third-degree price discrimination. In addition to

the article by Aguirre et al. (2010) mentioned above, see Bergemann, Brooks, and Morris (2015)

for an overview of this literature and for recent developments. The latter article characterizes all

combinations of producer and consumer surplus that arise from different information structures about

the buyers’ willingness-to-pay (alternatively, from different market segmentations). The present

article differs from the above two articles in its preferences structure and in the two-sidedness of the

platform’s problem.

Related is also the literature on bundling (see, among others, Armstrong (2013), Hart and Reny

(2015), and the references therein). The present article differs from that literature in two impor-

tant aspects. First, in our setting, preferences can be decomposed into a vertical and a horizontal

dimension. The bundling literature, instead, assumes a more general preferences structure, which,

however, hinders the characterization of the optimal price schedules, except in certain special cases.

Second, reflecting the practices of many-to-many matching intermediaries, we assume that sales are

42See the book “Market Design” by Haeringer (2018) and the forthcoming book “Online and Matching-Based Market

Design” for a connection between the two literatures.
43Most of the literature on two-sided markets assumes that platforms price discriminate across sides but not within

side. For models of within-side price discrimination, see also Halaburda and Yehezkel (2013), Reisinger (2014), Gomes

and Pavan (2016), Belleflamme and Peitz (2020), and Jeon et al. (2022).
44Related is also Balestrieri and Izmalkov (2015). That article studies price discrimination in a market with hori-

zontally differentiated preferences by an informed seller who possesses private information about its product’s quality

(equivalently, about the “position” of its good in the horizontal spectrum of agents’ preferences). The focus of that

article is information disclosure, whereas the focus of the present article is matching, targeting, and price customization.
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monitored, so that prices can condition on the entire matching set of each agent. The bundling

literature, by contrast, typically assumes that purchases are anonymous.

Lastly, the article contributes to the literature on targeting in advertising markets (see, for

example, Bergemann and Bonatti (2011, 2015) and Kox et al. (2017) and the references therein). Our

work contributes to this literature by introducing a richer class of (non-linear) pricing strategies and

by focusing on the matching outcomes that emerge in platform markets where the matching between

the advertisers and the publishers (or content providers) is mediated. Contrary to some of the articles

in this literature, however, we abstain from platform competition. Importantly, we also assume that

agents can perfectly communicate their preferences and face no informational frictions regarding

the desirability of the matches. Eliaz and Spiegler (2016) relax these assumptions and consider the

mechanism design problem of a platform that wants to allocate firms into search pools created in

response to noisy preferences signals provided by the consumers. Relatedly, Eliaz and Spiegler (2020)

consider the problem of a profit-maximizing advertising platform eliciting the advertisers’ profiles so

as to match them to consumers with preferences for diversity. These articles do not investigate the

effects of uniform pricing, but rather focus on the incentives of firms to truthfully reveal their “ideal

audiences.”

7 Concluding remarks

The article proposes a new model of (platform-mediated) many-to-many matching for markets in

which agents’ preferences are both vertically and horizontally differentiated. The model can be used

to study the effects on prices, the composition of the matching sets, and welfare, of uniform-price

obligations that hinder platforms’ ability to condition prices on agents’ “profiles,” as in the case

of privacy regulations preventing online retailers from conditioning prices on buyers’ age, gender,

physical location, and various other demographic traits.

We believe the results have useful implications for various markets. Consider, for example, online

shopping. As mentioned in the Introduction, recent regulations requiring consumers’ consent for

the diffusion of personal information are expected to hinder price customization when third-party

data are needed. Perhaps surprisingly, our analysis shows that this may either increase or decrease

targeting, depending on testable characteristics of consumer demand. Related conditions can also

be used to evaluate whether or not the imposition of uniform-price obligations increase consumer

welfare.

Another natural application of our framework is the market for online advertising (see, among

others, Bergemann and Bonatti (2011) for an overview of such a market). Ad exchanges such as

AppNexus, AOL’s Marketplace, Microsoft Ad Exchange, OpenX, Rubicon Project Exchange, and

Smaato, use sophisticated pricing algorithms whereby prices depend not only on volumes but also on

advertisers’ and publishers’ profiles. Such algorithms thus enable price-customization practices that

appear similar, at least in spirit, to those studied in the present article. Although such algorithms
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have initially been praised for the customization possibilities they offer, more recently they have been

associated with targeting and price-discriminatory practices often seen with suspicion by consumers

and regulators. The policy debate about the desirability of regulations imposing uniform pricing

lacks a formal model shedding light on how matching demands and welfare are affected by such

changes. Our article contributes to such a debate by offering a stylized, yet quite flexible, framework

to analyze market outcomes under uniform pricing.

We conclude by discussing a few limitations of our analysis and avenues for future research. First,

our analysis abstracts from platform competition. Second, and related, it assumes platforms have the

power to set prices on both sides of the market. Although these assumptions are a plausible starting

point, there are many markets where multiple platforms compete on multiple sides and their ability

to set prices is hindered by their lack of bargaining power. For example, the market for cable TV

is populated by multiple providers. Furthermore, as indicated in Crawford and Yurukoglu (2012),

large channel conglomerates enjoy nontrivial bargaining power vis-a-vis cable TV providers, which

suggests that prices are likely to be negotiated on the channel side instead of being set directly by the

platforms. Extending the analysis to accommodate for platform competition and limited bargaining

power on one, or multiple, sides of the market is an important step for future research.

Furthermore, certain platforms, most notably B2B platforms, have recently expanded their ser-

vices to include e-billing and supply-management. These additional services open the door to more

sophisticated price-discriminatory practices that use instruments other than the composition of the

matching sets. Extending the analysis to accommodate for such richer instruments is another inter-

esting direction for future work (see Jeon et al. (2022) for related issues).
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8 Appendix

In this Appendix, we provide the proofs for all the results in the main text. The proofs are established

for more general environments in which (a) the vertical and horizontal dimensions need not be

independent, (b) the agents need not be uniformly distributed over the circle of the cylinder, (c) the

profiles xk need not be observable on either side of the market, and (d) the payoff that each side-k

agent of type θk = (vk, xk) derives from being matched to each side-l agent of type θl = (vl, xl)

may depend also on the latter agent’s vertical type vk (in the baseline model, it depends on θl only

through the horizontal type xl). To accommodate for these enrichments, continue to denote by F vk
the marginal distribution of Fk with respect to the vertical dimension vk, but now let F xk denote the

marginal distribution of Fk with respect to the horizontal dimension xk (with density fxk ) — recall

that, in the baseline model, F xk (xk) = xk and fxk (xk) = 1, for all xk ∈ Xk = [0, 1]). Then let F
v|x
k

denote the distribution of vk conditional on xk and assume that the latter is absolute continuous with

density f
v|x
k and hazard rate λ

v|x
k ≡ f

v|x
k /[1 − F v|xk ]. Next, assume that the payoff that each side-k

agent of type θk = (vk, xk) derives from being matched to each side-l agent of type θl = (vl, xl) is

given by uk(vk, vl, |xk−xl|), with uk(vk, vl, |xk−xl|) strictly increasing in vk, weakly increasing in vl

and weakly decreasing in the circular distance |xk − xl| (strictly, on one of the two sides). Continue

to denote by ϕk (θk, θl) the “virtual” value that each side-k agent of type θk = (vk, xk) derives from

being batched to each side-l agent of type θl = (vl, xl), but with the function now taking the more

general form

ϕk (θk, θl) ≡ uk (vk, vl, |xk − xl|)−
1− F v|xk (vk|xk)
f
v|x
k (vk|xk)

· ∂uk
∂vk

(vk, vl, |xk − xl|) .

Assume that ϕk (θk, θl) satisfies the same properties as uk (vk, vl, |xk − xl|). By this we mean the

following. First, ϕk is strictly increasing in vk, and weakly increasing in vl. Second, fixing (vk, vl, xl),

ϕk is increasing (alternatively, decreasing) in xk if and only if uk is increasing (alternatively, decreas-

ing) in xk. Third, fixing (vk, xk, vl), ϕk is increasing (alternatively, decreasing) in xl if and only if uk

is increasing (alternatively, decreasing) in xl.

To discuss the possibility that agents may possess private information also about their profiles,

i.e., about their horizontal dimensions xk, consider the following four scenarios:

• Scenario (i): profiles are public on both sides;

• Scenario (ii): profiles are private on side a and public on side b;

• Scenario (iii): profiles are public on side a and private on side b;

• Scenario (iv): profiles are private on both sides.

The baseline model corresponds to Scenario (i). Under this scenario, all the results in the main body

extend to the more-general structure described above (as one can verify from the various proofs
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below). Under Scenarios (ii)-(iv), instead, all the results in the main body continue to hold provided

that a certain combination of the following two conditions holds (see the proof of Lemma 1 below):

[Ik] Independence on side k: for any θk = (vk, xk) ∈ Θk, Fk(θk) = F xk (xk)F
v
k (vk).

[Syk] Symmetry on side k: for any θk = (vk, xk) ∈ Θk, Fk(θk) = xkF
v
k (vk).

Condition Ik requires that the vertical dimensions vk be drawn independently from the profiles xk.

Condition Syk strengthens the independence condition by further requiring that profiles be uniformly

distributed over Xk = [0, 1], as assumed in the baseline model.45

To accommodate for the possibility that profiles are private information, we need to generalize

the notion of customized tariffs, as follows:

Definition 5. The tariff Tk is customized if there exists a collection of quadruples

{(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) : xk ∈ Xk} ,

one for each profile xk ∈ Xk, with Sk(xk) ⊆ Σ(Θl) denoting a set of permissible customizations,

such that each side-k agent selecting the plan indexed by xk and then choosing the customization

sk ∈ Sk(xk) from the set of permissible customizations Sk(xk), is asked to make a total payment

equal to46

Tk(sk|xk) = T k(xk) +

∫ 1

0
ρk(qxl(sk)|xl;xk)dxl, (15)

with ρk (q|xl;xk) = 0 if q = qxl (sk(xk)), i.e., if the quantity of xl-agents included in the matching

set coincides with the level specified in the baseline configuration, xl ∈ [0, 1].

Relative to Definition 2 in the main text, Definition 5 adds the requirement that a customization

must be permissible, that is, it has to belong to the collection of possible customizations Sk(xk) ⊆
Σ(Θl). As we show below, when profiles are public on side k, without loss of optimality, the platform

can set Sk(xk) ≡ Σ(Θl), in which case Definitions 2 and 5 coincide.

Proof of Lemma 1. The proof below establishes the following result, for which the claim in the

main text is a special case. Consider the more general environment described above and suppose that

the environment satisfies the properties of one of the following four cases: Scenario (i); Scenario

45Similar assumptions are typically made in the targeting literature; see, for example, Bergemann and Bonatti (2011,

2015), and Kox et al. (2017).
46The payment specified by the tariff for any non-permissible customization sk /∈ {∪Sk(xk) : xk ∈ Xk} can be taken

to be arbitrarily large to guarantee that no type finds it optimal to select any such customization. The existence of such

payments is guaranteed by the assumption that uk is bounded, k = a, b. Furthermore, in case profiles are private informa-

tion on side k, the collection of matching plans is required to have the property that for any set sk ∈ Sk(xk)∩Sk(x′k), the

total payment associated with sk is the same no matter whether the set is obtained by selecting the plan xk or the plan

x′k. When, instead, profiles are public, the collection of matching plans {(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) : xk ∈ Xk}
may entail multiple prices for the same matching set sk. However, because, in this case, each agent can be constrained

to choosing the plan designed for his profile, de facto each agent faces a tariff specifying a single price for each set.
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(ii) along with Conditions Ia and Syb; Scenario (iii) along with Conditions Sya and Ib; Scenario (iv)

along with Conditions Sya and Syb. Then, the following are true:

1. there exists a pair of customized tariffs (T ∗k )k=a,b that is profit-maximizing;

2. the matching demands (s∗k)k=a,b consistent with the profit-maximizing customized tariffs (T ∗k )k=a,b

are described by threshold functions t∗k : Θk ×Xl → Vl such that

s∗k(θk) = {(vl, xl) ∈ Θl : vl > t∗k (θk, xl)} ,

with the threshold function t∗k non-increasing in vk and non-decreasing in |xk − xl|.

3. When profiles are public on side k ∈ {a, b}, Sk(xk) = Σ(Θl), for all xk ∈ Xk.

As anticipated in Section 5, appropriate combinations of the above two conditions guarantee that

the platform can price discriminate along the agents’ profiles, without leaving the agents extra rents

for the private information they may possess regarding the horizontal dimension of their preferences.

To gain some intuition, consider Scenario (ii) and assume that Conditions Ia and Syb hold. Suppose

that the platform offers the same tariffs as under Scenario (i), i.e., those that it offers when profiles

are observable on both sides of the market. Then, note that each type θa = (va, xa) prefers the

matching set s∗a(va, xa) designed for him to the set s∗a(va, xa + δ) designed for an agent with the

same vertical type but a different profile xa + δ, and this is true for all δ ∈ [0, 1/2]. This is because,

under Conditions Ia and Syb, s∗a(va, xa + δ) is a parallel translation of the matching set s∗a(va, xa) by

δ units of distance, along the horizontal dimension. The price of s∗a(va, xa) is the same as that of

s∗a(va, xa+δ) and the two sets contain the same total measure of agents. However, s∗a(va, xa) contains

more types closer to θa’s ideal profile. Hence, θa must prefer s∗a(va, xa) to s∗a(va, xa+δ). As explained

in Section 5, the platform must however restrict the set of possible customizations Sa(xa) that each

agent selecting the xa-plan may choose from. The set Sa(xa) must coincide with the collection

(s∗a(va, xa))va∈Va of matching sets designed for the various xa-agents of different vertical types.47

When the sets Sa(xa) are so restricted, each type θa finds it optimal to select the plan designed for

the profile xa and then select the set s∗a(va, xa). By offering the same tariffs as in Scenario (i) and

restricting the customizations to satisfy the properties above, the platform thus induces all agents

to choose the same matching set as when profiles are observable on both sides.

A symmetric situation applies to Scenario (iii). Finally consider Scenario (iv). Arguments similar

to those for Scenarios (ii) and (iii) imply that, when Conditions Sya and Syb jointly hold, the platform

can implement the same allocations as in Scenario (i) by letting the agents reveal their profiles.

We establish the above results using mechanism design techniques. Let (sk(θk), pk(θk))
k=a,b
θk∈Θk

denote a direct revelation mechanism, where agents are asked to report their types and where

47In the absence of such restrictions, an agent of type θk = (vk, xk) choosing the plan x′k 6= xk may find it optimal

to select a matching set that no x′k-agent would have selected under Scenario (i).

33



(sk(θk), pk(θk)) denotes the allocation (matching set and total transfer) specified by the mechanism

for each side-k agent reporting θk.

By familiar envelope arguments, a necessary condition for each type θk = (vk, xk) ∈ Θk, k = a, b,

to prefer reporting truthfully to lying with respect to the vertical dimension vk while reporting

truthfully the horizontal dimension xk is that transfers satisfy the envelope conditions

pk(θk) =

∫
sk(θk)

uk (vk, vl, |xk − xl|) dFl(θl)−
∫ vk

vk

∫
sk(y,xk)

∂uk
∂vk

(y, vl, |xk − xl|) dFl(θl)dy, (16)

− Uk(vk, xk),

where Uk(vk, xk) is the payoff of a side-k agent with type (vk, xk).

Using (16), the platform’s profits under any incentive-compatible mechanism can then be written

as ∑
k=a,b

∫
Θk

{∫
sk(θk)

[
uk (vk, vl, |xk − xl|)−

1−F v|xk (vk|xk)

f
v|x
k (vk|xk)

· ∂uk∂vk
(vk, vl, |xk − xl|)

]
dFl(θl)

−Uk(xk, vk)} dFk(θk).

Using the definition of the virtual-value functions ϕk (θk, θl), we then have that the platform’s profits

are maximal when Uk(vk, xk) = 0 for all xk ∈ Xk, k = a, b, and when the matching sets are chosen

so as to maximize ∑
k=a,b

∫
Θk

{∫
sk(θk)

ϕk (θk, θl) dFl(θl)

}
dFk(θk) (17)

subject to the reciprocity condition

θl ∈ sk(θk)⇐⇒ θk ∈ sl(θl), l, k ∈ {a, b}, k 6= l. (18)

Hereafter, we first describe the matching sets that maximize (17) subject to the above reciprocity

condition and then show that, under the assumptions in the lemma, the platform can implement the

allocations (sk(θk), pk(θk))
k=a,b
θk∈Θk

, where the functions sk(·) are those that maximize (17) subject to

(18), and where the functions pk(·) are as in (16), with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b.

Define the indicator function mk(θk, θl) ∈ {0, 1} taking value one if and only if θl ∈ sk(θk), that

is, if and only if the two types θk and θl are matched. Then define the following measure on the

Borel sigma-algebra over Θk ×Θl:

νk(E) ≡
∫
E
mk(θk, θl)dFk(θk)dFl(θl). (19)

Reciprocity implies that mk(θk, θl) = ml(θl, θk). As a consequence, the measures νk and νl satisfy

dνk(θk, θl) = dνl(θl, θk). Equipped with this notation, the expression in (17) can be rewritten as∑
k,l=a,b, l 6=k

∫
Θk×Θl

ϕk (θk, θl) dνk(θk, θl) =

∫
Θk×Θl

4k(θk, θl)mk(θk, θl)dFk(θk)dFl(θl), (20)

34



where, for k, l = a, b, l 6= k,

4k(θk, θl) ≡ ϕk (θk, θl) + ϕl (θl, θk) .

Note that the functions 4a(θa, θb) = 4b(θb, θa) represent the marginal effects on the platform’s

profits of matching types θa and θb. It is then immediate that the rule (mk(·))k=a,b that maximizes

the expression in (20) is such that, for any (θk, θl) ∈ Θk ×Θl, k, l = a, b, l 6= k, mk(θk, θl) = 1 if and

only if 4k(θk, θl) ≥ 0.

That the virtual values ϕk (θk, θl) are strictly increasing in vk, and weakly increasing in vl,

k, l = a, b, l 6= k, then implies that the matching rule that maximizes (17) subject to the reciprocity

condition (18) can be described by means of a collection of threshold functions t∗k : Θk ×Xl → Vl,

k, l = a, b, l 6= k, such that, for any θk = (vk, xk), any θl = (vl, xl), θl ∈ sk(θk) if, and only if,

vl ≥ t∗k (θk, xl). The threshold functions t∗k (·) are such that, for any θk ∈ Θk, any xl ∈ [0, 1],

t∗k (θk, xl) = vl if 4k(θk, (vl, xl)) > 0, t∗k (θk, xl) = v̄l if 4k(θk, (v̄l, xl)) < 0, and t∗k (θk, xl) is the

unique solution to 4k (θk, (t
∗
k (θk, xl) , xl)) = 0 if 4k(θk, (vl, xl)) ≤ 0 ≤ 4k(θk, (v̄l, xl)).

That the virtual values ϕk (θk, θl) satisfy the same monotonicity properties as the true values48

also implies that, for ay xk, xl ∈ [0, 1]2, t∗k (θk, xl) is non-increasing in vk, and, for any vk, t
∗
k (θk, xl)

is non-decreasing in |xl − xk|.
Equipped with the above result, we now show that, in each of the environments stated in

the generalized version of the lemma reported above, the platform can implement the allocations

(sk(θk), pk(θk))
k=a,b
θk∈Θk

, where sk(θk) are the matching sets described by the above threshold rule, and

where the payment functions pk(θk) are the ones in (16), with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b.

First observe that the payoff that each type θk obtains in the above direct revelation mechanism

when reporting truthfully is equal to

Uk(θk) =

∫ vk

vk

∫
sk(y,xk)

∂uk
∂vk

(y, vl, |xk − xl|) dFl(θl)dy.

That Uk(θk) ≥ 0 follows directly from the fact that uk is non-decreasing in vk. This means that the

mechanism is individually rational (meaning that each type θk prefers participating in the mechanism

and receiving the allocation (sk(θk), pk(θk)) to refusing to participate and receiving the allocation

(∅, 0) yielding a payoff equal to zero).

Below we show that either the above direct mechanism is also incentive-compatible (meaning that

each type θk prefers the allocation (sk(θk), pk(θk)) designed for him to the allocation (sk(θ
′
k), pk(θ

′
k))

designed for any other type θ′k), or it can be turned, at no cost to the platform, into a mecha-

nism implementing the same allocations as the above ones which is both incentive compatible and

individually rational.

48Recall that this means that ϕk (1) is strictly increasing in vk and weakly increasing in vl, (2) is increasing (al-

ternatively, decreasing) in xk if and only if uk is increasing (alternatively, decreasing) in xk, and (3) is increasing

(alternatively, decreasing) in xl if and only if uk is increasing (alternatively, decreasing) in xl.
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Definition 6. (nested matching) A matching rule sk(θk) is nested if, for any pair θk = (vk, xk)

and θ̂k = (v̂k, x̂k) such that xk = x̂k, either sk(θk) ⊆ sk(θ̂k), or sk(θk) ⊇ sk(θ̂k). A direct revelation

mechanism is nested if its matching rule is nested.

Clearly, the direct mechanism defined above where the matching rule is described by the threshold

function t∗k (θk, xl) is nested. Now let Πk(θk; θ̂k) denote the payoff that type θk obtains in a direct

revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

by mimicking type θ̂k .

Definition 7. (ICV) A direct revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

satisfies incentive com-

patibility along the v dimension (ICV) if, for any θk = (vk, xk) and θ̂k = (v̂k, x̂k) with xk = x̂k,

Uk(θk) ≥ Πk(θk; θ̂k).

The following property is then true (the proof is standard and hence omitted):

Property 1. A nested direct revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

satisfies ICV if, and only

if, the following conditions jointly hold:

1. for any θk = (vk, xk) and θ̂k = (v̂k, x̂k) such that xk = x̂k, vk > v̂k implies that sk(θk) ⊇ sk(θ̂k);

2. the payment functions pk(θk) satisfy the envelope formula (16).

Clearly, the direct revelation mechanism where the matching rule is the one corresponding to the

threshold functions t∗k(·) described above and where the payment functions pk(θk) are the ones in

(16), with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b, is not only nested but satisfies the two conditions of

Property 1. It follows that such a mechanism satisfies ICV.

Equipped with the above results, we now show that, in each of the environments corresponding

to the combination of conditions described in the general version of the lemma, the above direct

revelation mechanism is either incentive-compatible, or it can be augmented to implement the same

allocations specified by (sk(θk), pk(θk))
k=a,b
θk∈Θk

at no extra cost to the platform.

Consider first Scenario (i). Recall that, in this case, profiles are public on both sides. That

the mechanism is ICV implies that any deviation along the vertical dimension is unprofitable. Fur-

thermore, because profiles are public on both sides, any deviation along the horizontal dimension is

detectable. It is then immediate that the platform can augment the above direct revelation mech-

anism by adding to it punishments (in the form of large fines) for those agents lying along the

horizontal dimension. The augmented mechanism is both individually rational and incentive com-

patible and implements the same allocations as the original mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

, at no

extra cost to the platform.

Next suppose the environment satisfies the properties of Scenario (ii) and, in addition, Conditions

Ia and Syb hold. Again, because profiles are public on side b, incentive compatibility on side b can

be guaranteed by augmenting the mechanism as described above for Scenario (i). Thus consider

incentive compatibility on side a. The latter requires that Ua(va, xa) ≥ Πa((va, xa); (v̂a, x̂a)) for all
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(xa, x̂a, va, va) ∈ X2
a × V 2

a . The above inequality is equivalent to∫ va

va

∫
sa(y,xa)

∂ua
∂va

(y, vb, |xa − xb|) dFb(θb)dy ≥
∫ v̂a

va

∫
sa(y,x̂a)

∂ua
∂va

(y, vb, |x̂a − xb|) dFb(θb)dy (21)

+

∫
sa(v̂a,x̂a)

[ua (va, vb, |xa − xb|)− uk (v̂a, vb, |x̂a − xb|)]dFb(θb).

It is easy to see that, for any θa = (va, xa) ∈ Θa,∫
sa(va,xa)

∂ua
∂va

(va, vb, |xa − xb|) dFb(θb) =

∫
vb∈Vb

∫
δ∈[0,1/2]

∂ua (va, vb, δ)

∂va
W (d(vb, δ); θa), (22)

where W (·; θa) is the measure over Vb × [0, 1/2] defined by the types included in the matching set

sa(va, xa), under the proposed mechanism.49 It is also easy to see that, when Conditions Ia and

Syb hold, under the proposed mechanism, the expression in (22) is invariant in xa. That is, for any

(vb, δ), W ((vb, δ); θa) = W ((vb, δ); θ
′
a) for any θa, θ

′
a ∈ Θa with va = v′a.

50 This means that∫ v̂a

va

∫
sa(y,x̂a)

∂ua
∂va

(y, vb, |x̂a − xb|) dFb(θb)dy =

∫ v̂a

va

∫
sa(y,xa)

∂ua
∂va

(y, vb, |xa − xb|) dFb(θb)dy.

By the same arguments,∫
sa(v̂a,x̂a)

ua (v̂a, vb, |x̂a − xb|) dFb(θb) =

∫
sa(v̂a,xa)

ua (v̂a, vb, |xa − xb|) dFb(θb).

Furthermore, because the threshold functions t∗k (θk, xl) are non-decreasing in the distance |xl − xk|,
we have that∫

sa(v̂a,x̂a)
ua (va, vb, |xa − xb|) dFb(θb) ≤

∫
sa(v̂a,xa)

ua (va, vb, |xb − xa|) dFb(θb).

It follows that the right hand side of (21) is smaller than∫ v̂a
va

∫
sa(y,xa)

∂ua
∂va

(y, vb, |xa − xb|) dFb(θb)dy

+
∫
sa(v̂a,xa) [ua (va, vb, |xa − xb|)− ua (v̂a, vb, |xa − xb|)] dFb(θb),

which is the payoff that type θa = (va, xa) obtains by announcing (v̂a, xa) (that is, by lying about

the vertical dimension but reporting truthfully the horizontal one). That the inequality in (21) holds

then follows from the fact that the direct revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

satisfies ICV.

49That is, for any (vb, δ) ∈ Vb × [0, 1/2], W ((vb, δ); θa} is the measure of agents from side b whose vertical type is

less than vb and whose distance from xa is less than δ included in the matching set sa(va, xa) of type θa under the

proposed mechanism.
50Conditions Ik, k = a, b, suffice to guarantee that the function ∆k(θk, θl) depends only on vk, vl, and |xl− xk|. The

strengthening of Condition Ib to Syb is, however, necessary to guarantee, for any (vb, δ) ∈ Vb × [0, 1/2], any va ∈ Va,

and any xa, x
′
a ∈ Xa, the mass of side-b agents with vertical type no greater than vb and with a profile xb whose

distance from xa is no greater than δ included in the matching set sa(va, xa) is the same as the mass of side-b agents

with vertical type no greater than vb and with a profile xb whose distance from x′a is no greater than δ included in the

matching set sa(va, x
′
a).
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The arguments for an environment satisfying the properties of Scenario (iii) along with Conditions

Ib and Sya are symmetric to those for an environment satisfying the properties of Scenario (ii) along

with Conditions Ia and Syb, and hence the proof is omitted.

Finally, consider an environment satisfying the properties of Scenario (iv) along with Conditions

Sya and Syb. That the proposed mechanism is incentive compatible follows from the same arguments

as for Scenario (ii) above, now applied to both sides of the market.

We conclude that, in each of the environments considered in the general version of the lemma

reported above, the allocations (sk(θk), pk(θk))
k=a,b
θk∈Θk

, where the matching sets sk(θk) are the ones

specified by the threshold functions t∗k(·) described above, and where the payments are the ones

in (16) with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b can be sustained in a mechanism that is both

individually rational and incentive compatible. The result we wanted to establish then follows from

the fact that (a) such allocations are profit-maximizing among those consistent with the rationality of

the agents (i.e., satisfying the IC and IR constraints), and (b) can be induced by offering customized

tariffs

{(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) : xk ∈ [0, 1]}

satisfying the properties described below. For each plan xk ∈ [0, 1], the baseline configuration is

given by sk(xk) = sk(vk, xk), the baseline price is given by

T k(xk) = pk(vk, xk) =

∫
sk(vk,xk)

uk (vk, vl, |xk − xl|) dFl(θl),

the set of possible customizations is given by Sk(xk) = {sk(vk, xk) : vk ∈ Vk}, and the price schedules

ρk(q|xl;xk) are such that, for q = qxl (sk(vk, xk)),

ρk(q|xl;xk) = 0,

while for q ∈ (qxl (sk(vk, xk)) , qxl (sk(v̄k, xk))],

ρk(q|xl;xk) =
∫ v̄l
v′l(q;xl)

uk (vk(q;xk, xl), vl, |xk − xl|) dF
v|x
l (vl|xl)fxl (xl)

−
∫ vk(q;xk,xl)
vk

∫ v̄l
v′l(qxl (sk(y,xk));xl)

∂uk
∂vk

(y, vl, |xk − xl|) dF
v|x
l (vl|xl)fxl (xl)dy − T k(xk)

(23)

where

vk(q;xk, xl) ≡ inf {vk ∈ Vk : qxl(sk(vk, xk)) = q}

and51

v′l(q;xl) ≡
(
F
v|x
l

)
−1

(
1− q

fxl (xl)
|xl
)
.

Note that in (23) we used the fact that, under the proposed mechanism, the xl-agents included in

the matching set of any xk-agent interacting with q xl-agents are those whose vertical type exceeds

v′l(q;xl).

51In other words, v′l(q;xl) is given by the unique solution to
[
1− F v|xl (v′l(q;xl)|xl)

]
fxl (xl) = q.
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Any agent selecting the plan (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) and then choosing a matching

set sk /∈ Sk(xk) is charged a fine large enough to make the utility of such a set, net of the payment,

negative for all types. Likewise, when profiles are public on side k, any side-k agent selecting a

plan other than (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) is charged a large enough fine to make the choice

unprofitable for any type. Note that the existence of such fines is guaranteed by the assumption that

uk is bounded, k = a, b.

That the above customized tariff implements the same allocations as the direct mechanism

(sk(θk), pk(θk))
k=a,b
θk∈Θk

then follows from the following considerations. Each type θk = (vk, xk), by

selecting the plan (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) designed for agents with the same profile as

type θk and then choosing the customization sk(vk, xk) specified by the direct mechanism for type

θk is charged a total payment equal to

T k(xk) +
∫ 1

0

[∫ v̄l
v′l(qxl (sk(vk,xk));xl)

uk (vk, vl, |xk − xl|) dF
v|x
l (vl|xl)fxl (xl)

−
∫ vk
vk

∫ v̄l
v′l(qxl (sk(y,xk));xl)

∂uk
∂v (y, vl, |xk − xl|) dF

v|x
l (vl|xl)fxl (xl)dy

]
dxl − T k(xk)

=
∫
sk(θk) uk (vk, vl, |xk − xl|) dFl(θl)−

∫ vk
vk

∫
sk(y,xk)

∂uk
∂v (y, vl, |xk − xl|) dFl(θl)dy = pk(θk),

exactly as in the direct mechanism. That each type θk maximizes his payoff by selecting the plan

(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) and then choosing the customization sk(vk, xk) specified for him by

the direct mechanism then follows from the fact that (a) the direct mechanism is incentive compatible,

(b) the payment associated with any other plan (sk(x̂k), T k(x̂k), ρk(·|·; x̂k),Sk(x̂k)) followed by the

selection of a set sk is either equal to the payment specified by the direct mechanism for some report

(v̂k, x̂k), or is so large to make the net payoff of such a selection negative.

Finally, to see that, when profiles are public on side k, without loss of optimality, the side-k

customized tariff does not need to restrict the agents’ ability to customize their matching sets (that

is, Sk(xk) = Σ(Θl), all xk) recall that, in this case, each side-k agent with profile xk can be induced

to select the matching plan (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) designed for agents with profile xk by

setting the fee associated with the selection of any other plan sufficiently high. The separability of

the agents’ payoffs in the matches then implies that, once the plan sk(xk), T k(xk), ρk(·|·;xk),Sk(xk))
is selected, even if Sk(xk) = Σ(Θl), because the price schedules ρk(·|·;xk) satisfy (23), type θk prefers

to interact with qxl(sk(vk, xk)) agents with profile xl to any other mass of agents with the same

profile xl, irrespective of the masses of agents with profiles other than xl that type θk includes in his

matching set. Q.E.D.

Proof of Proposition 1. Fix a pair of profiles xa, xb ∈ [0, 1]. From Lemma 1, the profit-maximizing

tariffs are customized and induce agents to select matching sets satisfying the threshold property

of Lemma 1. Furthermore, from the proof of Lemma 1, for any θk = (vk, xk), any xl ∈ [0, 1], the
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threshold t∗k is such that t∗k (θk, xl) = vl if 4k(θk, (vl, xl)) > 0, t∗k (θk, xl) = v̄l if 4k(θk, (v̄l, xl)) < 0,

and t∗k (θk, xl) is the unique solution to 4k (θk, (t
∗
k (θk, xl) , xl)) = 0 if

4k(θk, (vl, xl)) ≤ 0 ≤ 4k(θk, (v̄l, xl)).

This means that, for any qk ∈ (0, fxl (xl)), either there exists no vk ∈ Vk such that qxl(sk(vk, xk)) = qk,

or there exists a unique vk ∈ Vk such that qxl(sk(vk, xk)) = qk. Now take any qk ∈ (0, fxl (xl)) for

which there exists vk ∈ Vk such that qxl(sk(vk, xk)) = qk. As explained in the main text, for any

such a quantity, the unique value of vk such that qxl(sk(vk, xk)) = qk is also the unique value of vk

that solves

uk
(
vk, v

′
l(qk;xl), |xk − xl|

)
= ρ′k (qk|xl;xk) , (24)

where recall that v′l(qk;xl) ≡
(
F
v|x
l

)
−1
(

1− qk
fxl (xl)

|xl
)
. This is because the marginal xl-agent that

is brought to the matching set when expanding the demand for the xl-agents starting from qk has a

vertical type vl = v′l(qk;xl).

Now let ρ′k be a shortcut for ρ′k (qk|xl;xk) — because qk and the profiles xl and xk are held fixed,

there is no risk of confusion. Then, let v̂xl (ρ′k|xk) be the unique solution to (24). That the demands

under the profit-maximizing tariffs satisfy the threshold structure of Lemma 1 implies that

t∗k
((
v̂xl
(
ρ′k|xk

)
, xk
)
, xl
)

= v′l(qk;xl)

and that

ϕk
((
v̂xl
(
ρ′k|xk

)
, xk
)
, (v′l(qk;xl), xl)

)
+ ϕl

(
v′l(qk;xl), xl),

(
v̂xl
(
ρ′k|xk

)
, xk
))

= 0. (25)

Lastly, observe that, for any such qk,

ρ′k
εk
(
ρ′k|xl;xk

) =
1− F v|xk (v̂xl (ρ′k|xk) |xk)
f
v|x
k (v̂xl

(
ρ′k|xk

)
|xk)

∂uk
∂vk

(
v̂xl
(
ρ′k|xk

)
, v′l(qk;xl), |xk − xl|

)
. (26)

Using the definition of ϕk from the main text together with (24) and (26), we then have that, for

any such a qk,

ϕk
((
v̂xl
(
ρ′k|xk

)
, xk
)
, (v′l(qk;xl), xl)

)
= ρ′k(qk|xl;xk)

[
1− 1

εk
(
ρ′k|xl;xk

)] . (27)

Likewise, when ql =
[
1− F v|xk (v̂xl (ρ′k|xk) |xk)

]
fxk (xk),

ϕl
((
v′l(qk;xl), xl

)
,
(
v̂xl
(
ρ′k|xk

)
, xk
))

= ρ′l (ql|xk;xl)

[
1− 1

εl
(
ρ′l|xk;xl

)] . (28)

Combining (27) and (28) with (25), we obtain the result in the proposition. Q.E.D.

Proof of Proposition 2. The platform’s problem consists in choosing a collection of side-a uniform

price schedules pa(·|xb), one for each side-b profile xb ∈ [0, 1], along with a collection of side-b price
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schedules ρb(·|xa;xb), one for each pair (xa, xb) ∈ [0, 1]2, that jointly maximize its profits, which can

be conveniently expressed as ∫ 1
0

∫ fxb (xb)
0 D̄a (p′a(q|xb)|xb) p′a(q|xb)dqdxb

+
∫ 1

0

∫ 1
0

∫ fxa (xa)
0 Db (ρ′b(q|xa;xb)|xa;xb) ρ′b(q|xa;xb)dqdxadxb,

subject to the feasibility constraint (3), where Db (ρ′b(q|xa;xb)|xa;xb) is the total measure of xb-agents

that demand q or more matches with the xa-agent at marginal price ρ′b(q|xa;xb), and where

D̄a

(
p′a(q|xb)|xb

)
≡
∫ 1

0
Da

(
p′a(q|xb)|xb;xa

)
dxa

is the total measure of side-a agents that demand q or more interactions with the xb-agents at

marginal price p′a(q|xb).
Now fix xb and, for any q ≤ fxb (xb), recall that v′b(q;xb) ≡

(
F

(v|x)
b

)−1 (
1− q

fxb (xb)
|xb
)

. Reciprocity,

along with optimality, implies that the most profitable way to deliver q units of xb-agents to each

xa-agent demanding to be matched to q units of xb-agents is to match the xa-agent to every xb-agent

whose vertical type exceeds v′b(q;xb). In other words, the optimal tariffs induce matching demands

with a threshold structure, as in the case where tariffs are customized on both sides of the market

(cfr Lemma 1).

Now for any xb and q ≤ fxb (xb), let p′a be a short cut for p′a(q|xb). For any p′a, then let

v̂xb
(
p′a|xa

)
=


va s.t. ua(va, v

′
b(q;xb), |xa − xb|) = p′a if p′a ∈

 ua(va, v
′
b(q;xb), |xa − xb|),

ua(v̄a, v
′
b(q;xb), |xa − xb|)


va if p′a < ua(va, v

′
b(q;xb), |xa − xb|)

v̄a if p′a > ua(v̄a, v
′
b(q;xb), |xa − xb|),

(29)

Given the above definitions, we have that the demand by the xa-agents for the q-th unit of the

xb-agents at the marginal price p′a = p′a(q|xb) is equal to

Da

(
p′a|xb;xa

)
=
[
1− F v|xa

(
v̂xb
(
p′a|xa

)
|xa
)]
fxa (xa).

Now for each xa, xb ∈ [0, 1], each q ≤ fxb (xb), let

q̂b(q;xa;xb) ≡ Da

(
p′a(q|xb)|xb;xa

)
,

where we reintroduced the arguments of the p′a function for clarity. Given p′a(q|xb), the platform thus

optimally selects customized prices for the xb-agents for each quantity q̂b(q;xa;xb) of the xa-agents

equal to

ρ′b(q̂b(q;xa;xb)|xa;xb) = ub(v
′
b(q;xb), v̂xb

(
p′a|xa

)
, |xb − xa|). (30)

Such prices guarantee that, for each xa ∈ [0, 1], Db (ρ′b(q̂b(q;xa;xb)|xa;xb)|xa;xb) = q, thus clearing

the market.
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The function p′a(q|xb) : R× [0, 1]→ R thus uniquely pins down the matching sets on both sides of

the market. Now, from the arguments in the proof of Lemma 1, we know that the maximal revenue

the platform receives from the side-b agents when each type θb = (vb, xb) is assigned a matching set

equal to sb(vb, xb) is given by

∫
Θb

{∫ 1
0

[∫ v̄a
v′a(qxa (sb(vb,xb));xa)

(
ub (vb, va, |xb − xa|)−

1−F v|xb (vb|xb)
f
v|x
b (vb|xb)

∂ub
∂vb

(vb, va, |xb − xa|)
)
×

× dF v|xa (va|xa)
]
fxa (xa)dxa

}
dFb(θb),

where, for any q ≤ fxa (xa), v
′
a(q;xa) = F

(v|x)
a

−1
(

1− q
fxa (xa) |xa

)
. In turn, this means that the

platform’s problem can be re-casted as choosing a function p′a(q|xb) that maximizes∫ 1

0

∫ fxb (xb)

0

{
D̄a

(
p′a(q|xb)|xb

)
p′a(q|xb)− C

[
p′a(q|xb)

]}
dqdxb

where, for any xb ∈ [0, 1], any q ≤ fxb (xb), the function

C [p′a(q|xb)] ≡ −
∫ 1

0

{∫ v̄a
v′a(Da(p′a(q|xb)|xb;xa);xa)

[
ub (v′b(q;xb), va, |xb − xa|)−

1−Fv|x
b

(v′b(q;xb)|xb)

f
v|x
b

(v′
b
(q;xb)|xb)

∂ub
∂vb

(v′b(q;xb), va, |xb − xa|)
]
×

×dF v|xa (va|xa)
}
fxa (xa)dxa

captures the “procurement costs” of clearing the matching demands of all side-a agents that demand

at least q matches with the xb-agents. This problem can be solved by point-wise maximization of

the above objective function, i.e., by selecting for each xb ∈ [0, 1], q ≤ fxb (xb) (equivalently, for each

(xb, vb) ∈ [0, 1]× Vb), p′a(q|xb) so as to maximize

D̄a

(
p′a(q|xb)|xb

)
p′a(q|xl)− C

[
p′a(q|xb)

]
.

The first-order conditions for such a problem are given by

p′a(q|xb)
∂D̄a (p′a(q|xb)|xb)

∂ (p′a)

[
1− 1

ε̄a (p′a(q|xb)|xb)

]
− C′

[
p′a(qa|xb)

]
= 0,

where

ε̄a
(
p′a|xb

)
≡ −∂D̄a (p′a|xb)

∂ (p′a)

p′a
D̄a (p′a|xb)

and

C′ [p′a(q|xb)] = −
∫ 1

0 {ub (v′b(q;xb), v
′
a(Da (p′a(q|xb)|xb;xa) ;xa), |xb − xa|)

−1−F v|xb (v′b(q;xb)|xb)
f
v|x
b (v′b(q;xb)|xb)

· ∂ub∂vb
(v′b(q;xb), v

′
a(Da (p′a(q|xb)|xb;xa) ;xa), |xb − xa|)

}
×

×fv|xa (v′a(Da (p′a(q|xb)|xb;xa) ;xa)|xa)fxa (xa)
∂v′a(Da(p′a(q|xb)|xb;xa);xa)

∂q
∂Da(p′a(q|xb)|xb;xa)

∂(p′a) dxa.
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Now observe that

∂v′a(Da (p′a(q|xb)|xb;xa) ;xa)

∂q
= − 1

f
(v|x)
a (v′a(Da (p′a(q|xb)|xb;xa) ;xa)|xa) fxa (xa)

,

implying that

C′ [p′a(q|xb)] = −
∫ 1

0 {ub (v′b(q;xb), v
′
a(Da (p′a(q|xb)|xb;xa) ;xa), |xb − xa|)

−1−F v|xb (v′b(q;xb)|xb)
f
v|x
b (v′b(q;xb)|xb)

· ∂ub∂vb
(v′b(q;xb), v

′
a(Da (p′a(q|xb)|xb;xa) ;xa), |xb − xa|)

}
×

×∂Da(p′a(q|xb)|xb;xa)
∂(p′a) dxa.

Also note that(30) implies that

ub (v′b(q;xb), v
′
a(Da (p′a(q|xb)|xb;xa) ;xa), |xb − xa|)

−1−F v|xb (v′b(q;xb)|xb)
f
v|x
b (v′b(q;xb)|xb)

∂ub
∂vb

(v′b(q;xb), v
′
a(Da (p′a(q|xb)|xb;xa) ;xa), |xb − xa|)

= ρ′b(q̂b(q;xa;xb)|xa;xb)
(

1− 1
εb(ρ′b(q̂b(q;xa;xb)|xa;xb)|xa;xb)

)
.

This means that the above first-order conditions can be rewritten as

p′a(q|xb)
[
1− 1

ε̄a(p′a(q|xb)|xb)

]

+EH(x̃a|xb,p′a(q|xb))

[
ρ′b(q̂b(q; x̃a;xb)|x̃a;xb)

(
1− 1

εb(ρ′b(q̂b(q;x̃a;xb)|x̃a;xb)|x̃a;xb)

)]
= 0,

where H(xa|xb, q) is the distribution over Xa = [0, 1] whose density is given by

ha
(
xa|xb, p′a(q|xb)

)
≡

∂Da(p′a(q|xb)|xb;xa)
∂(p′a)

∂D̄a(p′a(q|xb)|xb)
∂(p′a)

.

The above properties imply the result in the proposition. Q.E.D.

Proof of Proposition 3. The proof below is for the more general case in which the side-b preferences

may depend on the profiles.

Fix θb = (vb, xb) and let q = fxb (xb)
[
1− F v|xb (vb|xb)

]
. The result in Proposition 2 implies that,

under uniform pricing on side a and customized pricing on side b, for any xa ∈ Xa such that

tub (θb, xa) ∈ Int[Va], t
u
b (θb, xa) is such that52

ua(t
u
b (θb, xa), vb, |xb − xa|)− EH(x̃a|xb,pua ′)

[
1−F v|xa (v̂xb (pua

′|x̃a)|x̃a)
f
v|x
a (v̂xb (pua

′|x̃a)|x̃a)
· ∂ua∂va

(v̂xb (pua
′|x̃a) , vb, |xb − x̃a|)

]

+EH(x̃a|xb,pua ′) [ϕb (θb, (v̂xb (pua
′|x̃a) , x̃a))] = 0,

(31)

52Note that, for any x̃a, ua(v̂xb (pua
′|x̃a) , vb, |xb − x̃a|) = ua(tub (θb, xa), vb, |xb − xa|) = pua

′, where, as usual, pua
′ is a

shortcut for pua
′(q|xb).
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where H (xa|xb, pua ′) is the distribution over Xa = [0, 1] whose density is given by

h
(
xa|xb, pua ′

)
≡

∂Da(pua
′|xb;xa)

∂(pua
′)

∂D̄a(pua
′|xb)

∂(pua
′)

,

and where pua
′ is a shortcut for pua

′(q|xb) with the latter equal to pua
′(q|xb) = ua(t

u
b (θb, xa), vb, |xa−xb|).

Note that, to arrive at (31), we used the result in Proposition 2 and the fact that, for any xa such

that v̂xb (pua
′|xa) /∈ Int[Va], h (xa|xb, pua ′) = 0, whereas for any xa such that v̂xb (pua

′|xa) ∈ Int[Va],

pua
′

εa (pua
′|xb;xa)

=
1− F v|xa (v̂xb (pua

′|xa) |xa)
f
v|x
a (v̂xb (pua

′|xa) |xa)
· ∂ua
∂va

(
v̂xb
(
pua
′|xa
)
, vb, |xa − xb|

)
.

We also used the fact that, for any xa such that h (xa|xb, pua ′) > 0 (equivalently, v̂xb (pua
′|xa) ∈ Int[Va]),

ρ′b(q̂b(q;xa;xb)|xa;xb)
(

1− 1
εb(ρ′b(q̂b(q;xa;xb)|xa;xb)|xa;xb)

)

= ϕb (θb, (v̂xb (pua
′|xa) , xa)) ,

as shown in the proof of Proposition 2.

On the other hand, under customized pricing on both sides, for any such θb = (vb, xb), any

xa ∈ Xa such that t∗b(θb, xa) ∈ Int[Va], the threshold t∗b(θb, xa) is such that

ua(t
∗
b(θb, xa), vb, |xb − xa|)−

1−F v|xa (t∗b (θb,xa)|xa)
f
v|x
a (t∗b (θb,xa)|xa)

· ∂ua∂va
(t∗b(θb, xa), vb, |xa − xb|) + ϕb (θb, (t

∗
b(θb, xa), xa)) = 0.

It is then easy to see that, for any xa such that

−EH(x̃a|xb,pua ′)

[
1−F v|xa (v̂xb (pua

′|x̃a)|x̃a)
f
v|x
a (v̂xb (pua

′|x̃a)|x̃a)
· ∂ua∂va

(v̂xb (pua
′|x̃a) , vb, |xb − x̃a|)

]

+EH(x̃a|xb,pua ′) [ϕb (θb, (v̂xb (pua
′|x̃a) , x̃a))]

≤ −1−F v|xa (t∗b (θb,xa)|xa)
f
v|x
a (t∗b (θb,xa)|xa)

· ∂ua∂va
(t∗b(θb, xa), vb, |xb − xa|) + ϕb (θb, (t

∗
b(θb, xa), xa))

we have that tub (θb, xa) ≥ t∗b(θb, xa), whereas, for any xa such that

−EH(x̃a|xb,pua ′)

[
1−F v|xa (v̂xb (pua

′|x̃a)|x̃a)
f
v|x
a (v̂xb (pua

′|x̃a)|x̃a)
· ∂ua∂va

(v̂xb (pua
′|x̃a) , vb, |xb − x̃a|)

]

+EH(x̃a|xb,pua ′) [ϕb (θb, (v̂xb (pua
′|x̃a) , x̃a))]

≥ −1−F v|xa (t∗b (θb,xa)|xa)
f
v|x
a (t∗b (θb,xa)|xa)

· ∂ua∂va
(t∗b(θb, xa), vb, |xb − xa|) + ϕb (θb, (t

∗
b(θb, xa), xa))

we have that tub (θb, xa) ≤ t∗b(θb, xa).
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Also note that, by virtue of reciprocity, tub (θb, xa) ≤ t∗b(θb, xa) if and only if

tua((t∗b(θb, xa), xa), xb) ≤ t∗a((t∗b(θb, xa), xa), xb)

and, likewise, tub (θb, xa) ≥ t∗b(θb, xa) if and only if

tua((t∗b(θb, xa), xa), xb) ≥ t∗a((t∗b(θb, xa), xa), xb).

The above properties imply that uniform pricing (on side a) leads to more (alternatively, less)

targeting than customized pricing (on both sides), if, for any θb = (vb, xb), the function

L(xa|θb) ≡ ϕb (θb, (t
∗
b(θb, xa), xa))−

1−F v|xa (t∗b (θb,xa)|xa)
f
v|x
a (t∗b (θb,xa)|xa)

· ∂ua∂va
(t∗b(θb, xa), vb, |xa − xb|)

= ρ′b

(
1− 1

εb(ρ′b|xa;xb)

)∣∣∣∣
ρ′b=ub(vb,t

∗
b (θb,xa),|xa−xb|)

− ρ′a
εa(ρ′a|xb;xa)

∣∣∣
ρ′a=ua(t∗b (θb,xa),vb,|xa−xb|)

is non-decreasing (alternatively, non-increasing) in the distance |xa − xb|.
Fixing θb = (vb, xb), the function L(xa|θb) is non-decreasing in |xa − xb| when the side-a inverse-

semi-elasticities are decreasing in distance and in price and the side-b preferences are invariant to

distance. It is non-increasing in |xa − xb| when the side-a inverse-semi-elasticities are increasing in

distance and in price and the side-b preferences are invariant to distance. Q.E.D.

Proof of Proposition 4. The proof follows from the combination of the results in Proposition

3 with the results in Proposition 1 in Aguirre et al (2010). When the environment satisfies the

conditions in Part 1 of Proposition 3, starting from uniform pricing on side a, the introduction of

customized pricing on side a leads to an increase in prices for nearby profiles and a reduction in prices

for distant profiles. Proposition 1 in Aguirre et al (2010), along with the fact that the environment

satisfies Condition NDR and that, for any xb and p′a, the convexity CDa (p′a|xb;xa) of the demands

by the xa-agents for the q-th unit of the xb-agents declines with the distance |xa − xb|, then implies

that welfare of the side-a agents is higher under uniform pricing. Likewise, under the conditions in

Part 2 of Proposition 3, that welfare of the side-a agents is higher under uniform pricing follows from

the fact that, starting from uniform pricing on side a, the introduction of customized pricing on side

a leads to an increase in prices for distant profiles and a reduction in prices for nearby profiles. The

welfare implications of such price adjustments then follow again from Proposition 1 in Aguirre et al

(2010), along with the fact that Condition NDR holds and that, for any xb and p′a, the convexity

CDa (p′a|xb;xa) of the demands by the xa-agents for the q-th unit of the xb-agents increases with the

distance |xb − xa|. Q.E.D.

Proof of Proposition 5. The proof follows from the combination of the results in Proposition

3 with the results in Proposition 4 in Aguirre et al (2010). When the environment satisfies the

conditions in Part 1 of Proposition 3, starting from uniform pricing on side a, the introduction of
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customized pricing on side a leads to an increase in prices for nearby profiles and a reduction in prices

for distant profiles. Proposition 4(ii) in Aguirre et al (2010), along with the fact that the environment

satisfies Condition M and that, for any xb and p′a, the convexity CDa (p′a|xb;xa) of the demands by

the xa-agents for the q-th unit of the xb-agents declines with the distance |xa−xb|, then implies that

the quantity of the side-a agents obtaining the q-th unit of the xb-agents increases under uniform

pricing. By reciprocity, this implies that every side-b agent is assigned a larger quantity of matches.

Incentive compatibility then implies that the indirect utility of every type vb increases. Likewise,

when the environment satisfies the conditions in Part 2 of Proposition 3, the quantity of the side-a

agents obtaining the q-th unit of the xb-agents increases under uniform pricing. This follows from the

fact that, starting from uniform pricing on side a, the introduction of customized pricing on side a

leads to an increase in prices for distant profiles and a reduction in prices for nearby profiles. Again,

the result follows from Proposition 4(ii) in Aguirre et al (2010), along with the fact that Condition

M holds and that, for any xb and p′a, the convexity CDa (p′a|xb;xa) of the demands by the xa-agents

for the q-th unit of the xb-agents increases with the distance |xb − xa|. By reciprocity, every side-b

agent is assigned a larger quantity of matches. Incentive compatibility then implies that the indirect

utility of every type vb increases. Q.E.D.
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Figure 1: The cylinder model

Figure 2: Matching sets under profit-maximizing tariffs. The shaded area in the figure describes the

matching set of a representative agent from side a with profile xa = 1/2 (the agent’s vertical type is

omitted for simplicity).

Figure 3: The threshold function t∗a(θa, xb) under customized pricing (solid black curve) and uniform

pricing tua(θa, xb) (dashed blue curve) when customized pricing (on both sides) leads to more targeting

than uniform pricing (on side a).
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