Motivation

- “Technological revolutions and financial bubbles seem to go hand in hand”— The Economist, September 21, 2000

- Arrival of new, unfamiliar, investment opportunities
 - “Internet craze” late 1990s
 - “biotech revolution” early 1980s
 - “new financial instruments” mid 2000s

 ⇒ high uncertainty, abnormal real and financial activity
 (Pastor and Veronesi, 2009)

- Financial markets look at real sector for clues and vice versa
 - co-movements in real investment and financial prices

- Do such co-movements reflect efficient response to available information?
- Or could they be product of excessive waves of optimism and pessimism?
This Paper

- Positive and normative implications of information spillovers between real and financial sector?

- Information spillovers from financial mkt to real economy
 - quite well studied

- Information spillovers from real to financial sector
 - largely under-explored

- Source of non-fundamental volatility
 - dampen response to fundamental shocks
 - amplify response to noise and higher-order-uncertainty

- Symptoms of (constrained) inefficiency
 - policy interventions

- Mechanism: collective signaling (from real to financial sector)
 - source of endogenous complementarities
 - micro-foundation for "beauty-contests" and "irrational-exuberance"
Plan

1. Model
2. Equilibrium
3. Positive Analysis
4. Welfare Analysis
5. Policy
6. Robustness and Extensions
Model
Model: Actors

- Two types of agents:
 - entrepreneurs
 - financial investors

- Two project phases:
 - **start-up**: entrepreneurs decide whether to start new project of unknown profitability
 - **IPO stage**: entrepreneurs expand project using IPO proceeds
Model: Technology

- Starting a project ($t = 1$)
 - 1 unit of perishable good

- Subsequent expansion ($t = 2$)
 - $k \in \mathbb{R}_+$: period-2 expansion

- Output at $t = 3$:
 \[q = \Theta k^\alpha \]

- Θ: underlying fundamental
Model: Timing

- At $t = 1$, each entrepreneur endowed with 1 unit of perishable good
 - consume ($n_i = 0$)
 - invest to start project ($n_i = 1$)
- At $t = 2$, profile $(n_i)_{i \in [0,1]}$ of start-up activity publicly observed
- Entrepreneurs who did not initiate project at $t = 1$
 - no other source of income
 - no further action
- Entrepreneurs who initiated project
 - receive no income at $t = 2$
 - finance project expansion k_i by selling shares in IPO mkt
 - Budget constraint
 \[k_i = p_i s_i, \]
- At $t = 3$, fundamental Θ publicly revealed
 - Entrepreneurs receive $(1 - s_i)\Theta k_i^\alpha$
 - Investors receive $s_i \Theta k_i^\alpha$
Model: Information

- $\theta \equiv \log \Theta$ with $\theta \sim \mathcal{N} (0, \pi_{\theta}^{-1})$

- Entrepreneurs observe

 $x_i = \theta + \xi_i$, $\xi_i \sim \mathcal{N} (0, \pi_x^{-1})$

 $y = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N} (0, \pi_y^{-1})$

- “Representative” investor observes

 $w = \theta + \eta$, with $\eta \sim \mathcal{N} (0, \pi_{\omega}^{-1})$

- Investor’s information at beginning of $t = 2$: $\mathcal{I} = \{\omega, (n_j)_{j \in [0,1]}\}$

- Entrepreneur i’s information at beginning of $t = 2$: $\mathcal{J}_i = \{x_i, y, (n_j)_{j \in [0,1]}\}$

- Market-generated information: $\mathcal{M} \equiv (p_i, s_i, k_i)_{i \in [0,N]}$
Similar to Kyle (1985)

Each entrepreneur i submits supply correspondence

$$S_i^s((\tilde{p}_j)_{j \in [0,N]}, (\tilde{k}_j)_{j \in [0,N]} \setminus i | \mathcal{I}_i)$$

Representative investor submits demand correspondences $(S_i^d(\cdot | \mathcal{I}))_{i \in [0,N]}$, one for each active IPO $i \in [0,N]$, with each

$$S_i^d((\tilde{p}_j)_{j \in [0,N]}, (\tilde{k}_j)_{j \in [0,N]} | \mathcal{I})$$

Auctioneer selects triples $(p_i, s_i, k_i)_{i \in [0,N]}$ so that

- each mkt clears
- each expansion funded with IPO proceeds ($k_i = p_i \cdot s_i$)

Two differences wrt Kyle (1985):

- endogenous dividend (depends on k_i)
- entrepreneurs do not have mkt power
Entrepreneurs' lifetime utility: \(U_i = c_{i1} + \beta c_{i2} + \beta^2 c_{i3} \),

- \(c_{i1} = 1 - n_i \)
- \(c_{i2} = 0 \)
- \(c_{i3} = 0 \) if \(n_i = 0 \) and \(c_{i3} = (1 - s_i)\Theta k_i^\alpha \) otherwise.

At \(t = 2 \), representative investor can produce consumption good out of labor, \(l \), at one-to-one rate

- perfectly elastic supply of external funds

Consumption levels of representative investor

\[
c_2 = l - \int_{i\in[0,N]} p_i s_i di \quad \text{and} \quad c_3 = \int_{i\in[0,N]} s_i \Theta k_i^\alpha di,
\]

Investor’s lifetime utility:

\[
V = \int_{i\in[0,N]} \left[\beta \Theta k_i^\alpha - p_i \right] s_i di
\]
1. Model

2. Equilibrium

3. Positive Analysis

4. Welfare Analysis

5. Policy

6. Robustness and Extensions
Equilibrium
Equilibrium

- PBE satisfying following restrictions/refinements:
 - p_i depends only on mkt information (standard)
 - representative investor’s posterior about θ is normal with mean $\hat{\theta} \equiv \mathbb{E}[\theta | I]$ normally distributed (known variances)
 - Each entrepreneur “informationally small”
 - investor’s posterior about aggregate TFP θ invariant to (n_i, p_i, s_i, k_i)
 - ...function of cross-sectional distribution $(n_j, p_j, s_j, k_j)_{j \in [0, N]}$
Equilibrium: IPO Stage

- Representative investor’s demand in IPO mkt is **perfectly elastic** at
 \[p = \beta \hat{\Theta} k^\alpha \]

 where
 \[\hat{\Theta} \equiv \mathbb{E}[\Theta | I'] \quad \text{and} \quad I' = \{\omega, (n_j)_{j \in [0,1]}\} \cup \{(p_j, s_j, k_j)_{j \in [0,N]}\} \]
“Relaxed” problem in which entrepreneur i can condition his supply on $\hat{\Theta}$

- For every $\hat{\Theta}$, entrepreneur chooses (p, s, k) that maximize his utility s.t.
 - $k = p \cdot s$
 - $p = \beta \hat{\Theta} k^\alpha$

To invest k, entrepreneur must sell

$$ s = \frac{k}{\beta \hat{\Theta} k^\alpha} $$

Entrepreneur’s payoff

$$ (1 - s) \Theta k^\alpha = \frac{\Theta}{\beta \hat{\Theta}} \left[\beta \hat{\Theta} k^\alpha - k \right] $$

thus maximized by

$$ K(\hat{\Theta}) = (\alpha \beta \hat{\Theta})^{\frac{1}{1-\alpha}}, \quad P(\hat{\Theta}) = \alpha^{\frac{\alpha}{1-\alpha}} (\beta \hat{\Theta})^{\frac{1}{1-\alpha}}, \quad S(\hat{\Theta}) = \alpha $$
Equilibrium: IPO Stage

- Because $p = P(\hat{\Theta})$ is invertible, solution to relaxed problem can be implemented by submitting supply schedule

$$S_i^s((p_j)_{j\in[0,N]},(k_j)_{j\in[0,N]\setminus i}|\mathcal{J}_i) = K(P^{-1}(p_i))/p_i.$$

- Because each (p_i, s_i, k_i) depends only on $\hat{\Theta}$, representative investor does not update his beliefs about Θ after observing mkt outcomes:

$$\hat{\Theta} \equiv \mathbb{E}[\Theta|\mathcal{I}'] = \mathbb{E}[\Theta|\mathcal{I}].$$

- Remark: same conclusions if each entrepreneur submits **mkt order** instead of limit order
Each entrepreneur i finds it optimal to start project iff

$$\beta^2 \mathbb{E}_i[(1 - s_i)\Theta k_i^\alpha] \geq 1$$

Using normality of $\hat{\theta} \equiv \mathbb{E}[\theta|\mathcal{I}']$ and of $\theta|\mathcal{I}$,

$$n_i = 1 \iff (1 - \alpha)\mathbb{E}_i[\theta] + \alpha \mathbb{E}_i[\hat{\theta}] \geq C$$

First direction of feedback mechanism:

- higher $\hat{\theta} \Rightarrow$ higher IPO price \Rightarrow higher startup activity, N
Equilibrium: Market valuation

- **Using Normality**
 \[n_i = 1 \iff (1 - b)x_i + by \geq c \]

- **Aggregate level of startup activity:**
 \[N = \Pr\((1 - b)x_i + by \geq c | \theta, y) = \Phi\left(\sqrt{\pi} \frac{(1 - b)\theta + by - c}{1 - b}\right) \]

- **Observation of** \(N \) **conveys same information as “endogenous” signal**
 \[z \equiv (1 - b)\theta + by = \theta + b\varepsilon \]
 \[\pi_z = \pi_y / b^2 \]

- **Investors cannot tell apart whether high** \(N \) **driven by high** \(\theta \) **or correlated error,** \(\varepsilon \), **in entrepreneurs’ beliefs**

- **Hence,**
 \[\hat{\Theta} = \mathbb{E}[\Theta | I'] = \mathbb{E}[\Theta | \omega, N] = \mathbb{E}[\Theta | \omega, z] \]

- **Second direction of feedback mechanism:**
 - higher startup activity \(N \Rightarrow \) higher \(\hat{\Theta} \Rightarrow \) higher IPO prices
Equilibrium: Fixed Point

Using

$$\hat{\theta} = \mathbb{E}[\theta | \omega, z] = \frac{\pi_{\omega}}{\pi} \omega + \frac{\pi_{z}}{\pi} z,$$

$$\mathbb{E}_i[\hat{\theta}] = \frac{\pi_{\omega} + \pi_{z}(1 - b)}{\pi} \mathbb{E}_i[\theta] + \frac{\pi_{z}}{\pi} b y$$

where

$$\mathbb{E}_i[\theta] = \delta_x x_i + \delta_y y$$

with

$$\delta_x \equiv \frac{\pi_x}{\pi_{\theta} + \pi_x + \pi_y} \quad \text{and} \quad \delta_y \equiv \frac{\pi_y}{\pi_{\theta} + \pi_x + \pi_y}$$

Hence, each entrepreneur finds it optimal to start project iff

$$(1 - b')x_i + b'y \geq c'$$

There exist functions $\Gamma : \mathbb{R} \to \mathbb{R}$ and $\Lambda : \mathbb{R} \to \mathbb{R}$ s.t. if b^* is fixed point of Γ and $c^* = \Lambda(b^*)$, then there exists eq. in which each entrepreneur starts a project iff

$$(1 - b^*)x_i + b^* y \geq c^*$$

Proposition 1

(i) There always exists eq. in which $b^* \in (0, 1)$. (iii) Such eq. unique for all $\alpha \leq \bar{\alpha}$. (iv) For $\alpha > \bar{\alpha}$, multiple equilibria
Plan

1. Model
2. Equilibrium
3. Positive Analysis
4. Welfare Analysis
5. Policy
6. Robustness and Extensions
Positive Analysis
Role of information spillovers

- Suppose investors do not learn from \(N \)
- \(\hat{\theta} \) is linear function of exogenous signal \(\omega = \theta + \eta \)
- Since entrepreneurs do not possess any information about \(\eta \), \(E_i[\hat{\theta}] \) is linear transformation of \(E_i[\theta] \)
- In this case,
 \[
 n_i = 1 \quad \Leftrightarrow \quad E_i[\theta] \geq \hat{C}
 \]
- Equivalently,
 \[
 n_i = 1 \quad \Leftrightarrow \quad (1 - \delta) x_i + \delta y \geq \hat{c}
 \]
 where
 \[
 \delta_x \equiv \frac{\pi_x}{\pi_\theta + \pi_x + \pi_y} \quad \text{and} \quad \delta_y \equiv \frac{\pi_y}{\pi_\theta + \pi_x + \pi_y}
 \]
- With information spillovers: \(b^* > \delta \)

Proposition 2

Informational spillovers from real to financial sector amplify contribution of noise to aggregate volatility:

\[
\frac{\partial N/\partial \varepsilon}{\partial N/\partial \theta} = b^* > \delta
\]
Mispricing and speculation

- Entrepreneurs’ startup rule:
 \[n_i = 1 \iff \mathbb{E}_i[\theta] + \alpha \mathbb{E}_i[\hat{\theta} - \theta] \geq C \]

- Mispricing:
 \[\hat{\theta} - \theta = \frac{\pi \omega}{\pi} \eta + \frac{\pi z}{\pi} b^* \varepsilon \]

- Higher \(p \) \(\Rightarrow \) lower cost of capital \(\Rightarrow \) higher return to startup activity

- Reminiscent of dot-com bubble: when entrepreneurs expect financial mkt to “overvalue” their businesses \(\Rightarrow \) higher startup activity (Pastor and Veronesi, 2009)

- \(\mathbb{E}_i[\eta] = 0 \) whereas
 \[\mathbb{E}_i[\varepsilon] = y - \mathbb{E}_i[\theta] = (1 - \delta_y)y - \delta_x x \]

- Because higher \(y \) contributes to both higher \(\mathbb{E}_i[\theta] \) and higher \(\mathbb{E}_i[\hat{\theta} - \theta] \), relative sensitivity of startup activity to sources with correlated noise higher than what warranted by informativeness of such sources

- Spillover from entrepreneurs’ collective optimism to exuberance in financial mkt crowds out private information and amplifies non-fundamental volatility
Beauty contest interpretation

Proposition 3

In eq., each entrepreneur starts project iff

$$E_i[(1 - r)\theta + r\Phi^{-1}(N)] \geq c^\#$$

- binary-action coordination game among entrepreneurs
- Similar to “beauty-contest” literature but here strategic complementarity endogenous
 - each entrepreneur cares about other entrepreneurs’ decisions because aggregate startup activity signals higher profitability and hence leads to higher IPO prices
 - complementarity originates in
 - collective signaling from Silicon Valley to Wall Street
Proposition 4

As long as eq. is unique ($\alpha < \bar{\alpha}$), higher α implies higher contribution of correlated noise to aggregate volatility.

- Higher α: higher sensitivity of IPO prices to mkt beliefs
- Sectors with high growth potential and high finance dependence most prone to “irrational exuberance”, “manias” and “panics”
 - especially true in early stages, when significant uncertainty about eventual profitability
Plan

1. Model
2. Equilibrium
3. Positive Analysis
4. Welfare Analysis
5. Policy
6. Robustness and Extensions
Welfare Analysis
Are above properties symptom of inefficiency?

Welfare:
\[
\int_0^1 \left\{ n_i \left(\beta^2 \Theta k_i^\alpha - \beta k_i \right) + (1 - n_i) \right\} \, di = 1 + N \left(\beta^2 \Theta k^\alpha - \beta k - 1 \right)
\]
where \(N = \int n_i \, di \) (concavity: \(k_i = k \) all \(i \))

Restricting attention to linear rules
\[
n_i = 1 \iff (1 - b)x_i + by \geq c,
\]
planner's problem:
\[
\max_{(b,c) \in \mathbb{R}^2, K \in \mathcal{C}} \mathbb{E} \left[N(z) \left(\beta^2 \Theta K(\omega, z)^\alpha - \beta K(\omega, z) - 1 \right) \right]
\]
\[
s.t. \quad z = \theta + b\varepsilon, \quad N(z) = \Phi \left(\frac{\sqrt{\pi \lambda}}{1 - b} (z - c) \right)
\]
where \(\mathcal{C} \equiv \{ K : \mathbb{R}^2 \to \mathbb{R} \} \)
Efficiency in period-2 expansions:

\[\mathcal{K}(\omega, z) = \arg \max_k \left\{ \beta \hat{\Theta} k^\alpha - k \right\}, \]

where \(\hat{\Theta} = \mathbb{E}[\Theta | \omega, z] \)

- Same condition as under mkt equilibrium

- Equilibrium expansions thus efficient conditional on available information

\[\mathcal{K}(\omega, z) = K(\hat{\Theta}) = (\alpha \beta \hat{\Theta})^{\frac{1}{1-\alpha}} \]

- ...yet available information need not be efficient
Proposition 5
Efficiency in startup decisions

\[n_i = 1 \iff (1 - b^\diamond)x_i + b^\diamond y \geq c^\diamond \]

requires lower sensitivity to correlated noise:

\[b^\diamond < b^* \]

- Eq. contribution of correlated noise to aggregate volatility inefficiently high
- Two reasons why \(b^\diamond < b^* \):
 - speculative startup activity not warranted
 - information externality: reducing \(b \) increases precision of endogenous signal \(z \) and hence efficiency of period-2 expansions
- Both inefficiencies originate in information spillover
- Additional inefficiency in “levels”: \(c^\diamond \neq c^* \)
 - akin to holdup problem
 - private return from starting project: \(\beta^2(1 - \alpha)\Theta K^\alpha \)
 - social return: \(\beta^2\Theta K^\alpha - \beta K \)
Plan

1. Model
2. Equilibrium
3. Positive Analysis
4. Welfare Analysis
5. Policy
6. Robustness and Extensions
Policy
Proportional tax $T(\Pi, p)$ on entrepreneurs’ profits contingent on IPO price

Planner can infer $(\Theta, \hat{\Theta})$ from P and Π
 - hence, de facto, T contingent $(\Theta, \hat{\Theta})$

Net-of-taxes return to start-up activity:

$$(1 - T(\Theta, \hat{\Theta}))\Pi(\Theta, \hat{\Theta})$$

can be manipulated so as to implement efficient allocations
Policy: Tax on financial trades

- **Tax** $\tau(p)$ **on financial trades**
 - cost to investors of buying shares: $(1 + \tau)ps$
 - τ increasing in p (macro-prudential)

- Because $p = P(\hat{\Theta})$, de facto, $\tau = T(\hat{\Theta})$

- Equilibrium prices:
 $$p = \frac{\beta\hat{\Theta}f(k)}{1 + T(\hat{\Theta})}$$

- Such policies improve efficiency of entrepreneurs' entry decisions, but distorts stage-2 investment
 - cannot implement efficient allocations but can improve over laissez-faire eq.
Policy: Cap on shares sold

- **Cap on shares entrepreneurs can sell**
 - can increase sensitivity of start-up activity to fundamentals
 - forcing entrepreneurs to retain more “skin in the game” reduces speculative motive
Plan

1. Model
2. Equilibrium
3. Positive Analysis
4. Welfare Analysis
5. Policy
6. Robustness and Extensions
Robustness and Extensions
Robustness

1. “Irrational exuberance”
 1. correlated bias in beliefs
 2. correlated taste for startup activity

2. Imperfectly correlated fundamentals Θ_i

3. Imperfectly elastic demand schedules
 1. risk averse traders

4. Richer signals Wall Street receives from Silicon Valley - sales and orders

5. Richer entrepreneurs’ signals

6. Endogenous collection of entrepreneurs’ information
Extensions

- Waves of startup activity and IPOs
 - later entrepreneurs learn from earlier ones
- Short-termism driven by managerial compensation
 - alternative mechanism for real sector to care about asset prices
Conclusions

- Implications of information spillovers from real to financial sector
 - amplification and non-fundamental volatility
 - bubbly co-movements in real investment and asset prices
 - inefficiency in startup activity

- Corrective policies:
 - taxes on profits contingent on IPO prices
 - taxes on financial trades
 - IPO regulations – caps on shares sold
THANKS!
Equilibrium: formal definition

Definition 1

Eq. consists of startup strategies $n_i(x_i, y)$, supply correspondences $S^s_i(\cdot)$, demand correspondences $S^d_i(\cdot)$, IPO prices $(p_i)_{i \in [0, N]}$, investment expansions $(k_i)_{i \in [0, N]}$, shares issuances $(s_i)_{i \in [0, N]}$, and beliefs, μ jointly satisfying:

(i) for all (x_i, y),

$$n_i(x_i, y) \in \arg \max_k \mathbb{E} \left[1 - n_i + n_i \beta^2 ((1 - s_i) \Theta k^\alpha_i) \bigg| x_i, y \right];$$

(ii) for all J_i, all $(\tilde{p}_j)_{j \in [0, N]}, (\tilde{k}_j)_{j \in [0, N] \backslash i}$, $S^s_i(\cdot)$ maximizes $\Pi_i = (1 - s_i) \Theta k^\alpha_i$; given entrepreneurs’ posterior beliefs about Θ, constraint $k_i = s_i p_i$, and others’ limit orders;

(iii) for all I, $(S^d_i(\cdot))_{i \in [0, N]}$ maximizes $V = \int [\beta \Theta f(k_i) - p_i] s_i \, di$ given investor’s posterior beliefs, constraint $k_i = s_i p_i$, and others’ limit orders;

(iv) each active market $i \in [0, N]$ clears and $k_i = s_i p_i$;

(v) beliefs are consistent with Bayes’ rule on path.