Wall Street and Silicon Valley: A Delicate Interaction

George-Marios Angeletos Guido Lorenzoni Alessandro Pavan

June 2019

Motivation

- "Technological revolutions and financial bubbles seem to go hand in hand"— The Economist, September 21, 2000
- Arrival of new, unfamiliar, investment opportunities
 - "Internet craze" late 1990s
 - "biotech revolution" early 1980s
 - "new financial instruments" mid 2000s

 \Rightarrow high uncertainty, abnormal real and financial activity (Pastor and Veronesi, 2009)

- Financial markets look at real sector for clues and vice versa
 - co-movements in real investment and financial prices
- Do such co-movements reflect efficient response to available information?
- Or could they be product of excessive waves of optimism and pessimism?

This Paper

- Positive and normative implications of information spillovers between real and financial sector?
- Information spillovers from financial mkts to real economy
 - quite well studied
- Information spillovers from real to financial sector
 - largely under-explored
- Source of non-fundamental volatility
 - dampen response to fundamental shocks
 - amplify response to noise and higher-order-uncertainty
- Symptoms of (constrained) inefficiency
 - policy interventions
- Mechanism: collective signaling (from real to financial sector)
 - source of endogenous complementarities
 - micro-foundation for "beauty-contests" and "irrational-exuberance"

Model

2 Equilibrium

- Ositive Analysis
- Welfare Analysis
- Olicy
- O Robustness and Extensions

Model

- Two types of agents:
 - entrepreneurs
 - financial investors
- Two project phases:
 - **start-up**: entrepreneurs decide whether to start new project of unknown profitability
 - IPO stage: entrepreneurs expand project using IPO proceeds

Model: Technology

- Starting a project (*t* = 1)
 - 1 unit of perishable good
- Subsequent expansion (t = 2)
 - $k \in \mathbb{R}_+$: period-2 expansion
- Output at t = 3:

$$q = \Theta k^{\alpha}$$

Θ: underlying fundamental

Model: Timing

- At t = 1, each entrepreneur endowed with 1 unit of perishable good
 - consume $(n_i = 0)$
 - invest to start project $(n_i = 1)$
- At t = 2, profile $(n_i)_{i \in [0,1]}$ of start-up activity publicly observed
- Entrepreneurs who did not initiate project at t = 1
 - no other source of income
 - no further action
- Entrepreneurs who initiated project
 - receive no income at t = 2
 - finance project expansion k_i by selling shares in IPO mkt
 - Budget constraint

$$k_i = p_i s_i$$

- At t = 3, fundamental Θ publicly revealed
 - Entrepreneurs receive $(1 s_i) \Theta k_i^{\alpha}$
 - Investors receive $s_i \Theta k_i^{\alpha}$

Model: Information

•
$$\theta \equiv \log \Theta$$
 with $\theta \sim \mathcal{N}\left(0, \pi_{\theta}^{-1}\right)$

- Entrepreneurs observe $x_i = \theta + \xi_i, \quad \xi_i \sim \mathcal{N}\left(0, \pi_x^{-1}\right)$ $y = \theta + \varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \pi_y^{-1}\right)$
- "Representative" investor observes
 w = θ + η, with η ∼ N (0, π_ω⁻¹)
- Investor's information at beginning of t = 2: I = {ω, (n_j)_{j∈[0,1]}}
- Entrepreneur *i*'s information at beginning of $t = 2: \mathcal{J}_i = \{x_i, y, (n_j)_{j \in [0,1]}\}$
- Market-generated information: M ≡ (p_i, s_i, k_i)_{i∈[0,N]}

Model: Financial Market Microstructure

- Similar to Kyle (1985)
- Each entrepreneur *i* submits supply correspondence

$$S_i^s((\tilde{p}_j)_{j\in[0,N]}, (\tilde{k}_j)_{j\in[0,N]\setminus i}|\mathcal{J}_i)$$

Representative investor submits demand correspondences (S^d_i(·|𝒯))_{i∈[0,N]}, one for each active IPO i ∈ [0, N], with each

$$S^d_i((\widetilde{p}_j)_{j\in[0,N]},(\widetilde{k}_j)_{j\in[0,N]}|\mathcal{I})$$

- Auctioneer selects triples (*p_i*, *s_i*, *k_i*)_{*i*∈[0,*N*]} so that
 - each mkt clears
 - each expansion funded with IPO proceeds $(k_i = p_i \cdot s_i)$
- Two differences wrt Kyle (1985):
 - endogenous dividend (depends on k_i)
 - entrepreneurs do not have mkt power

Model: Payoffs

• Entrepreneurs' lifetime utility: $U_i = c_{i1} + \beta c_{i2} + \beta^2 c_{i3}$,

•
$$c_{i1} = 1 - n_i$$

- $c_{i2} = 0$
- $c_{i3} = 0$ if $n_i = 0$ and $c_{i3} = (1 s_i)\Theta k_i^{\alpha}$ otherwise.
- At t = 2, representative investor can produce consumption good out of labor, /, at one-to-one rate
 - perfectly elastic supply of external funds
- Consumption levels of representative investor

$$c_2 = I - \int_{i \in [0,N]} p_i s_i di$$
 and $c_3 = \int_{i \in [0,N]} s_i \Theta k_i^{\alpha} di$,

Investor's lifetime utility:

$$V = \int_{i \in [0,N]} \left[\beta \Theta k_i^{\alpha} - p_i \right] s_i di$$

Model

2 Equilibrium

- Ositive Analysis
- Welfare Analysis

Olicy

Equilibrium

• PBE satisfying following restrictions/refinements:

- *p_i* depends only on mkt information (standard)
- representative investor's posterior about θ is normal with mean $\hat{\theta} \equiv \mathbb{E}[\theta|\mathcal{I}]$ normally distributed (known variances)
- Each entrepreneur "informationally small"
 - investor's posterior about aggregate TFP θ invariant to (n_i, p_i, s_i, k_i)
 - ...function of cross-sectional distribution $(n_j, p_j, s_j, k_j)_{j \in [0, N]}$

• Representative investor's demand in IPO mkt i perfectly elastic at

$$p = \beta \hat{\Theta} k^{\alpha}$$

where

$$\hat{\Theta} \equiv \mathbb{E}[\Theta | \mathcal{I}'] \quad \textit{and} \quad \mathcal{I}' = \{\omega, (n_j)_{j \in [0,1]}\} \cup \{(p_j, s_j, k_j)_{j \in [0,N]}\}$$

Equilibrium: IPO Stage

- "Relaxed" problem in which entrepreneur i can condition his supply on $\hat{\Theta}$
- For every $\hat{\Theta}$, entrepreneur chooses (p, s, k) that maximize his utility s.t.

•
$$k = p \cdot s$$

• $p = \beta \hat{\Theta} k^{\alpha}$

• To invest k, entrepreneur must sell

$$s = \frac{k}{\beta \hat{\Theta} k^{lpha}}$$

• Entrepreneur's payoff

$$(1-s)\Theta k^{lpha}=rac{\Theta}{eta\hat{\Theta}}\left[eta\hat{\Theta}k^{lpha}-k
ight]$$

thus maximized by

$$K(\hat{\Theta}) = (\alpha \beta \hat{\Theta})^{\frac{1}{1-\alpha}}, \qquad P(\hat{\Theta}) = \alpha^{\frac{\alpha}{1-\alpha}} (\beta \hat{\Theta})^{\frac{1}{1-\alpha}}, \qquad S(\hat{\Theta}) = \alpha$$

 Because p = P(Θ̂) is invertible, solution to relaxed problem can be implemented by submitting supply schedule

$$S_i^s((p_j)_{j\in[0,N]},(k_j)_{j\in[0,N]\setminus i}|\mathcal{J}_i)=K(P^{-1}(p_i))/p_i.$$

 Because each (p_i, s_i, k_i) depends only on Ô, representative investor does not update his beliefs about Θ after observing mkt outcomes:

$$\hat{\Theta} \equiv \mathbb{E}[\Theta | \mathcal{I}'] = \mathbb{E}[\Theta | \mathcal{I}].$$

 Remark: same conclusions if each entrepreneur submits mkt order instead of limit order

Equilibrium: Start-up Stage

• Each entrepreneur *i* finds it optimal to start project iff

$$\beta^2 \mathbb{E}_i[(1-s_i)\Theta k_i^{\alpha}] \geq 1$$

• Using normality of
$$\hat{\theta} \equiv \mathbb{E}[\theta | \mathcal{I}']$$
 and of $\theta | \mathcal{I}$,
 $n_i = 1 \quad \Leftrightarrow \quad (1 - \alpha) \mathbb{E}_i[\theta] + \alpha \mathbb{E}_i[\hat{\theta}] \ge C$

• First direction of feedback mechanism:

• higher
$$\hat{ heta} \Rightarrow$$
 higher IPO price \Rightarrow higher startup activity, N

Equilibrium: Market valuation

Using Normality

$$n_i = 1 \quad \Leftrightarrow \quad (1-b)x_i + by \geq c$$

Aggregate level of startup activity:

$$\mathsf{N} = \mathsf{Pr}\left((1-b)x_i + by \ge c | \, heta, y
ight) = \Phi\left(\sqrt{\pi_x} rac{(1-b) heta + by - c}{1-b}
ight)$$

• Observation of N conveys same information as "endogenous" signal

$$z \equiv (1-b) heta + by = heta + barepsilon$$

 $\pi_z = \pi_y/b^2$

- Investors cannot tell apart whether high N driven by high θ or correlated error, ε , in entrepreneurs' beliefs
- Hence,

$$\hat{\boldsymbol{\Theta}} = \mathbb{E}[\boldsymbol{\Theta} | \mathcal{I}'] = \mathbb{E}[\boldsymbol{\Theta} | \boldsymbol{\omega}, \boldsymbol{N}] = \mathbb{E}[\boldsymbol{\Theta} | \boldsymbol{\omega}, \boldsymbol{z}]$$

- Second direction of feedback mechanism:
 - higher startup activity $N \Rightarrow$ higher $\hat{\Theta} \Rightarrow$ higher IPO prices

Equilibrium: Fixed Point

Using

$$\hat{\theta} = \mathbb{E}[\theta|\omega, z] = \frac{\pi_{\omega}}{\pi}\omega + \frac{\pi_{z}}{\pi}z,$$
$$\mathbb{E}_{i}[\hat{\theta}] = \frac{\pi_{\omega} + \pi_{z}(1-b)}{\pi}\mathbb{E}_{i}[\theta] + \frac{\pi_{z}}{\pi}by$$

where

$$\mathbb{E}_i[\theta] = \delta_x x_i + \delta_y y$$

with

$$\delta_x \equiv \frac{\pi_x}{\pi_{ heta} + \pi_x + \pi_y}$$
 and $\delta_y \equiv \frac{\pi_y}{\pi_{ heta} + \pi_x + \pi_y}$

• Hence, each entrepreneur finds it optimal to start project iff

$$(1-b')x_i+b'y\geq c'$$

• There exist functions $\Gamma : \mathbb{R} \to \mathbb{R}$ and $\Lambda : \mathbb{R} \to \mathbb{R}$ s.t. if b^* is fixed point of Γ and $c^* = \Lambda(b^*)$, then there exists eq. in which each entrepreneur starts a project iff

$$(1-b^*)x_i+b^*y\geq c^*$$

Proposition 1

(i) There always exists eq. in which $b^* \in (0, 1)$. (iii) Such eq. unique for all $\alpha \leq \bar{\alpha}$. (iv) For $\alpha > \bar{\alpha}$, multiple equilibria

Model

2 Equilibrium

- Ositive Analysis
- Welfare Analysis
- Olicy
- O Robustness and Extensions

Positive Analysis

Role of information spillovers

- Suppose investors do not learn from N
- $\hat{\theta}$ is linear function of exogenous signal $\omega=\theta+\eta$
- Since entrepreneurs do not possess any information about η , $\mathbb{E}_i[\hat{\theta}]$ is linear transformation of $\mathbb{E}_i[\theta]$
- In this case,

$$n_i = 1 \quad \Leftrightarrow \quad \mathbb{E}_i[heta] \geq \hat{C}$$

Equivalently,

$$n_i = 1 \quad \Leftrightarrow \quad (1 - \delta)x_i + \delta y \geq \hat{c}$$

where

$$\delta_x \equiv rac{\pi_x}{\pi_ heta + \pi_x + \pi_y}$$
 and $\delta_y \equiv rac{\pi_y}{\pi_ heta + \pi_x + \pi_y}$

• With information spillovers: $b^* > \delta$

Proposition 2

Informational spillovers from real to financial sector amplify contribution of noise to aggregate volatility:

$$\frac{\partial N/\partial \varepsilon}{\partial N/\partial \theta} = b^* > \delta$$

Mispricing and speculation

• Entrepreneurs' startup rule:

$$n_i = 1 \quad \Leftrightarrow \quad \mathbb{E}_i[\theta] + \alpha \mathbb{E}_i[\hat{\theta} - \theta] \ge C$$

• Mispricing:

$$\hat{\theta} - \theta = rac{\pi_\omega}{\pi} \eta + rac{\pi_z}{\pi} b^* arepsilon$$

- Higher $p \Rightarrow$ lower cost of capital \Rightarrow higher return to startup activity
- Reminiscent of dot-com bubble: when entrepreneurs expect financial mkt to "overvalue" their businesses ⇒ higher startup activity (Pastor and Veronesi, 2009)

$$\mathbb{E}_i[\varepsilon] = y - \mathbb{E}_i[\theta] = (1 - \delta_y)y - \delta_x x$$

- Because higher y contributes to both higher E_i[θ] and higher E_i[θ̂ θ], relative sensitivity of startup activity to sources with correlated noise higher than what warranted by informativeness of such sources
- Spillover from entrepreneurs' collective optimism to exuberance in financial mkt crowds out private information and amplifies non-fundamental volatility

Proposition 3

In eq., each entrepreneur starts project iff

$$\mathbb{E}_i[(1-r)\theta + r\Phi^{-1}(N)] \ge c^{\#}$$

- binary-action coordination game among entrepreneurs
- Similar to "beauty-contest" literature but here strategic complementarity endogenous
 - each entrepreneur cares about other entrepreneurs' decisions because aggregate startup activity signals higher profitability and hence leads to higher IPO prices
 - complementarity originates in
 - collective signaling from Silicon Valley to Wall Street

Proposition 4

As long as eq. is unique ($\alpha < \bar{\alpha}$), higher α implies higher contribution of correlated noise to aggregate volatility.

- Higher α : higher sensitivity of IPO prices to mkt beliefs
- Sectors with high growth potential and high finance dependence most prone to "irrational exuberance", "manias" and "panics"
 - especially true in early stages, when significant uncertainty about eventual profitability

Model

2 Equilibrium

- Ositive Analysis
- Welfare Analysis
- Olicy

Welfare Analysis

Efficiency

- Are above properties symptom of inefficiency?
- Welfare:

$$\int_0^1 \left\{ n_i \left(\beta^2 \Theta k_i^\alpha - \beta k_i \right) + (1 - n_i) \right\} di = 1 + N \left(\beta^2 \Theta k^\alpha - \beta k - 1 \right)$$

where $N = \int n_i di$ (concavity: $k_i = k$ all i)

Restricting attention to linear rules

$$n_i = 1 \quad \Leftrightarrow \quad (1-b)x_i + by \geq c,$$

planner's problem:

$$\max_{\substack{(b,c)\in\mathbb{R}^{2},\mathcal{K}\in\mathsf{C}}} \mathbb{E}\left[N(z)\left(\beta^{2}\Theta\mathcal{K}(\omega,z)^{\alpha}-\beta\mathcal{K}(\omega,z)-1\right)\right]$$

s.t. $z=\theta+b\varepsilon$, $N(z)=\Phi\left(\frac{\sqrt{\pi_{x}}}{1-b}(z-c)\right)$

where $\boldsymbol{\mathsf{C}} \equiv \{\mathcal{K}: \mathbb{R}^2 \to \mathbb{R}\}$

• Efficiency in period-2 expansions:

$$\mathcal{K}(\omega, z) = rg\max_k \left\{eta \hat{\Theta} k^lpha - k
ight\},$$

where $\hat{\Theta} = \mathbb{E}[\Theta|\omega, z]$

- Same condition as under mkt equilibrium
- Equilibrium expansions thus efficient conditional on available information

$$\mathcal{K}(\omega, z) = \mathcal{K}(\hat{\Theta}) = (\alpha \beta \hat{\Theta})^{\frac{1}{1-\alpha}}$$

• ...yet available information need not be efficient

Efficiency

Proposition 5

Efficiency in startup decisions

$$n_i = 1 \quad \Leftrightarrow \quad (1-b^\diamond) x_i + b^\diamond y \geq c^\diamond$$

requires lower sensitivity to correlated noise:

 $b^\diamond < b^*$

- Eq. contribution of correlated noise to aggregate volatility inefficiently high
- Two reasons why $b^\diamond < b^*$:
 - speculative startup activity not warranted
 - information externality: reducing *b* increases precision of endogenous signal *z* and hence efficiency of period-2 expansions
- Both inefficiencies originate in information spillover
- Additional inefficiency in "levels": $c^{\diamond} \neq c^{*}$
 - akin to holdup problem
 - private return from starting project: $eta^2(1-lpha)\Theta K^lpha$
 - social return: $\beta^2 \Theta K^{\alpha} \beta K$

Model

2 Equilibrium

- Ositive Analysis
- Welfare Analysis

Selection 1

Policy

- Proportional tax $T(\Pi, p)$ on entrepreneurs' profits contingent on IPO price
- Planner can infer $(\Theta, \hat{\Theta})$ from P and Π
 - hence, de facto, T contingent $(\Theta, \hat{\Theta})$
- Net-of-taxes return to start-up activity:

$$(1 - T(\Theta, \hat{\Theta})) \Pi(\Theta, \hat{\Theta})$$

can be manipulated so as to implement efficient allocations

• Tax $\tau(p)$ on financial trades

- cost to investors of buying shares: (1+ au) ps
- τ increasing in p (macro-prudential)

• Because
$$p = P(\hat{\Theta})$$
, de facto, $\tau = T(\hat{\Theta})$

Equilibrium prices:

$$p = \frac{\beta \hat{\Theta} f(k)}{1 + T(\hat{\Theta})}$$

- Such policies improve efficiency of entrepreneurs' entry decisions, but distorts stage-2 investment
 - cannot implement efficient allocations but can improve over laissez-faire eq.

- Cap on shares entrepreneurs can sell
 - can increase sensitivity of start-up activity to fundamentals
 - forcing entrepreneurs to retain more "skin in the game" reduces speculative motive

Model

2 Equilibrium

- Ositive Analysis
- Welfare Analysis
- Olicy
- O Robustness and Extensions

Robustness and Extensions

Robustness

"Irrational exuberance"

- correlated bias in beliefs
- 2 correlated taste for startup activity
- Imperfectly correlated fundamentals \Operation;
- Imperfectly elastic demand schedules
 - risk averse traders
- Q Richer signals Wall Street receives from Silicon Valley sales and orders
- Sicher entrepreneurs' signals
- Endogenous collection of entrepreneurs' information

- Waves of startup activity and IPOs
 - later entrepreneurs learn from earlier ones
- Short-termism driven by managerial compensation
 - alternative mechanism for real sector to care about asset prices

- Implications of information spillovers from real to financial sector
 - amplification and non-fundamental volatility
 - bubbly co-movements in real investment and asset prices
 - inefficiency in startup activity
- Corrective policies:
 - taxes on profits contingent on IPO prices
 - taxes on financial trades
 - IPO regulations caps on shares sold

THANKS!

Definition 1

Eq. consists of startup strategies $n_i(x_i, y)$, supply correspondences $S_i^s(\cdot)$, demand correspondences $S_i^d(\cdot)$, IPO prices $(p_i)_{i \in [0,N]}$, investment expansions $(k_i)_{i \in [0,N]}$, shares issuances $(s_i)_{i \in [0,M]}$, and beliefs, μ jointly satisfying: (i) for all (x_i, y) ,

$$n_i\left(x_i,y
ight)\inrg\max_k\mathbb{E}\left[\left|1-n_i+n_ieta^2\left((1-s_i)\Theta k_i^lpha
ight)
ight| \left|x_i,y
ight|
ight];$$

(ii) for all *J_i*, all (*p̃_j*)_{*j*∈[0,*M*]}, (*k̃_j*)_{*j*∈[0,*M*]*i*}, *S^s_i*(·) maximizes Π_{*i*} = (1 − *s_i*)Θ*k_i^α*; given entrepreneurs' posterior beliefs about Θ, constraint *k_i* = *s_ip_i*, and others' limit orders;
(iii) for all *I*, (*S^d_i*(·))_{*i*∈[0,*M*]} maximizes *V* = *f* [βΘ*f*(*k_i*) − *p_i*] *s_idi* given investor's posterior beliefs, constraint *k_i* = *s_ip_i*, and others' limit orders;
(iv) each active market *i* ∈ [0, *M*] clears and *k_i* = *s_ip_i*;
(v) beliefs are consistent with Bayes' rule on path.

