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A Claim 1

Claim 1. Consider economies in which (a) the sensitivity of the complete-information equilibrium
actions to the fundamentals is first-best efficient (κ1 = κ∗1), (b) there are no externalities from
dispersion (uσσ = 0), and (c) inefficiencies in the use of information originate in the discrepancy
between the equilibrium and the socially optimal degrees of coordination (α ̸= α∗). There exists
R∗ > 0 such that, when α > α∗, starting from ẑ, forcing the agents to pay more attention to a
source n that receives positive attention in equilibrium (i.e., for which ẑn > 0) increases welfare if
tn/C

′
n(ẑ) < R∗, whereas it reduces it if tn/C ′

n(ẑ) > R∗. The opposite conclusions hold for α < α∗.

Furthermore, when there exists an increasing, convex, and differentiable function c : R+ → R+

such that, for any z = (z1, ..., zN ) ∈ RN
+ , C(z) = c

(∑N
s=1zs

)
, the equilibrium total attention

is inefficiently low and too few sources receive positive attention if α > α∗, whereas the opposite
conclusions hold if α < α∗.

Proof of Claim 1. Let ẑ denote the equilibrium allocation of attention and z∗ the allocation
of attention that maximizes welfare when the planner can control the agents’ actions. Similarly,
let #N̂ denote the number of sources that receive positive attention in equilibrium, and #N∗ the
number of sources that receive positive attention when the planner can control both the agents’
allocation of attention and the agents’ use of information.

Note that, in these economies, for any z, and any n, the discrepancy between the social and the
private benefit of increasing the attention allocated to source n is proportional to the difference1

(γ∗n(z))
2

(zn)
2 tn

− (γn(z))
2

(zn)
2 tn

. (A.1)

Using the expressions for γ and γ∗, the difference in (A.1) is equal to

m∗(z)
tnη

2
n

[(1− α∗)zntn + ηn]
2 −m(z)

tnη
2
n

[(1− α)zntn + ηn]
2

where

m(z) ≡ (1− α)2[
πθ +

∑N
l=1

(1−α)zltlηl
(1−α)zltl+ηl

]2 and m∗(z) ≡ (1− α∗)2[
πθ +

∑N
l=1

(1−α∗)zltlηl
(1−α∗)zltl+ηl

]2 .
It follows that, starting from the equilibrium allocation of attention ẑ, the social benefit of increasing
the attention allocated to source n exceeds the private benefit if

(1− α)ẑntn + ηn
(1− α∗)ẑntn + ηn

>

√
m(ẑ)

m∗(ẑ)
, (A.2)

whereas if falls short of the private benefit when the inequality in (A.2) is reversed.
Now note that, when α > α∗, m(ẑ) < m∗(ẑ), whereas, when α < α∗, m(ẑ) > m∗(ẑ). This

means that, for any source that receives no attention in equilibrium (i.e., such that ẑn = 0), the

1Note that the comparison here applies also to sources that receive no attention, i.e., for which zn = 0.
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social benefit exceeds the private benefit when α > α∗, whereas the opposite conclusion holds when
α < α∗.

Next, consider sources that receive strictly positive attention in equilibrium. In the proof of
Corollary 1 in the main text, I establish that

ẑn =
ηn√

tn(1− α)

{
(1− α)

√
|ukk|κ21
2C ′

n(ẑ)

1

M1(ẑ)
− 1√

tn

}
(A.3)

where

M1(z) ≡ πθ +

N∑
l=1

(1− α)ηlzltl
(1− α)zltl + ηl

> 0. (A.4)

It follows that

ẑntn =
ηn

√
tn√

C ′
n(ẑ)

Q(ẑ)− ηn
(1− α)

(A.5)

where

Q(z) ≡
√

|ukk|κ21
2

1

M1(z)
.

Using (A.5), I can rewrite the left-hand-side of (A.2) as follows

(1− α)Q(ẑ)
√

tn
C′

n(ẑ)

(1− α∗)Q(ẑ)
√

tn
C′

n(ẑ)
+ α∗−α

1−α

which is decreasing in tn/C
′
n(ẑ) for α > α∗ and increasing in tn

C′
n(ẑ)

for α < α∗. I conclude that,
when α > α∗, there exists a critical value R∗ > 0 such that, starting from the equilibrium allocation
of attention ẑ, the planner would like the agents to locally increase the attention allocated to any
source of information that receives positive attention in equilibrium and such that tn/C

′
n(ẑ) < R∗

and decrease the attention allocated to any source that receives positive attention and for which
tn/C

′
n(ẑ) > R∗. The opposite conclusions hold for α < α∗.

Lastly, suppose there exists an increasing, convex, and differentiable function c : R+ → R+

such that, for any z = (z1, ..., zN ) ∈ RN
+ , C(z) = c

(∑N
s=1zs

)
. Note that, in these economies, the

efficient allocation (z∗, k(·; z∗)) coincides with the equilibrium allocation of another economy that
differs from the original one only in the degree of coordination. It thus suffices to show that the
equilibrium total attention Ẑ ≡

∑N
s=1ẑs as well as the number of sources #N̂ that receive strictly

positive attention in equilibrium decrease with α, where N̂ denotes the subset of sources that receive
strictly positive attention in equilibrium. The attention allocated in equilibrium to each source n is
given by

ẑn =
ηn√

tn(1− α)
max

{
T̂ − 1√

tn
; 0

}
(A.6)

where

T̂ ≡ (1− α)

√
|ukk|κ21
2c′(Ẑ)

1

M̂1

(A.7)
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with

Ẑ ≡
N∑
l=1

ẑl (A.8)

and

M̂1 ≡ M1(ẑ). (A.9)

Combining (A.6)-(A.9), I then have that, for any α, T̂ is the unique solution to the following equation

T
1−α

√√√√c′

(
N∑
l=1

ηl√
tl(1−α)

max
{
T − 1√

tl
; 0
})πθ +

N∑
l=1

ηl
√
tl max

{
T− 1√

tl
;0

}
√
tl max

{
T− 1√

tl
;0

}
+1


= κ1

√
|ukk|
2 .

(A.10)

Because the left-hand-side of (A.10) is increasing in both α and T, I then have that T̂ is decreasing
in α. This means that the critical level of transparency required for each source to receive positive
attention in equilibrium increases with α. In turn, this implies that #N̂ decreases with α, as
claimed. To see that the total attention Ẑ also decreases with α, follow steps similar to those in
the proof of Example 1 in the main text to see that, for each source that receives strictly positive
attention (i.e., such that n ∈ N̂),

ẑn =
ηn√

tn(1− α)

(1− α)

√
|ukk|κ2

1

2c′(
∑

s∈N̂ ẑs)
+
∑

s∈N̂
ηs√
ts

πθ +
∑

s∈N̂ ηs
− 1√

tn

 .

Summing over all n ∈ N̂ , I then have that

∑
n∈N̂

ẑn =
1√

2c′
(∑

s∈N̂ ẑs
)
(√

|ukk|κ21
∑

n∈N̂
ηn√
tn

πθ +
∑

s∈N̂ ηs

)

+
1

1− α


[∑

s∈N̂
ηs√
ts

]2
πθ +

∑
s∈N̂ ηs

−
∑

n∈N̂

ηn
tn

 .

Holding N̂ fixed, I then have that

∂

∂α

(∑
s∈N̂

ẑs

)
sgn
=

[∑
s∈N̂

ηs√
ts

]2
πθ +

∑
s∈N̂ ηs

−
∑

n∈N̂

ηn
tn

. (A.11)

Below I show that (∑
s∈N̂

ηs√
ts

)2

−
(∑

s∈N̂

ηs
ts

)(∑
s∈N̂

ηs

)
≤ 0,

which implies that the sign of the right-hand side of (A.11) is always negative. To see this, it suffices
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to note that∑
s∈N̂

ηs√
ts

2

−

∑
s∈N̂

ηs
ts

∑
s∈N̂

ηs

 =
∑
s∈N̂

η2s
ts

+
∑
s∈N̂

∑
k∈N̂,k ̸=s

ηsηk√
ts
√
tk

−
∑
s∈N̂

η2s
ts

−
∑
s∈N̂

∑
k∈N̂,k ̸=s

ηsηk
ts

=
∑

s,k∈N̂,k ̸=s

[
ηsηk

(
2√
tstk

− 1

ts
− 1

tk

)]
< 0.

Along with the property that the set N̂ of sources that receive strictly positive attention in equilib-
rium decreases with α (in the set inclusion order), the fact that, for given N̂ ,

∑
s∈N̂ ẑs is decreasing

in α implies that Ẑ decreases with α. Q.E.D.

B Claim 2

Claim 2. Suppose the planner can not dictate to the agents how to respond to the signals they
receive from the various sources of information. (a) Consider economies that are either efficient in
their use of information (κ = κ∗ and α = α∗) or in which the inefficiency in the use of information
originates in the sensitivity of the complete-information equilibrium actions to the fundamentals
(uσσ = 0, α = α∗, but κ1 ̸= κ∗1). Starting from the equilibrium allocation of attention ẑ, the
social benefit of expanding the agents’ attention to any source n exceeds the private benefit when
(κ∗1 − κ1)/κ1 > 0, whereas the opposite is true when (κ∗1 − κ1)/κ1 < 0. (b) Consider economies in
which the sensitivity of the complete-information equilibrium actions to the fundamentals is first-
best efficient and there are no externalities from dispersion (κ1 = κ∗1 and uσσ = 0). There exists a
threshold M > 0 such that, starting from the equilibrium allocation of attention ẑ, forcing the agents
to increase their attention to any source for which ẑn > 0 increases welfare if

α− α∗ sgn
=

{
C ′
n(ẑ)

tn
−M

}
and decreases it otherwise.

Proof of Claim 2. The proof is in two steps. Step 1 characterizes the gross marginal benefit
of inducing the agents to increase the attention to any given source of information, accounting for
the effects of such an increase on the subsequent usage of information. Step 2 uses the result in step
1 to establish the claim.

Step 1. First observe that, for any given z, welfare under the equilibrium strategy k(·; z) is
given by2

w(z) ≡ E[u(k,K, σk, θ) | z, k(·; z)]− C(z) = E[W (κ, 0, θ)]− L(z)− C(z), (B.1)
2The representation of equilibrium welfare in (B.1) follows from the same steps as in Angeletos and Pavan (2007);

the proof is thus omitted.
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where W (K, 0, θ) ≡ u(K,K, 0, θ) is the payoff that each agent obtains when all agents take the
same action (W (κ, 0, θ) is thus welfare under the complete-information equilibrium allocation κ =

κ0 + κ1θ), whereas

L(z) ≡ |ukk + uσσ|
2

· V ar[k −K | z, k(·; z)] + |ukk + 2ukK + uKK |
2

· V ar[K − κ | z, k(·; z)]

− Cov [K − κ,WK(κ, 0, θ) | z, k(·; z)]

are the welfare losses due to incomplete information. The first two terms in L measure the welfare
losses due to, respectively, the dispersion of individual actions around the aggregate action and
the volatility of the aggregate action around its complete-information counterpart. The last term
captures losses (or gains) due to the correlation between the ‘aggregate error’ due to incomplete
information, K − κ, and WK , the social return to aggregate activity. Following steps similar to
those in Angeletos and Pavan (2007) one can show that

Cov [K − κ,WK(κ, 0, θ) | z, k(·; z)] = |ukk + 2ukK + uKK |κ21
(
κ∗1 − κ1

κ1

) ∑
nγn(z)− 1

πθ
,

V ar[K − κ | z, k(·; z)] = κ21

(∑N
s=1γs(z)− 1

)2
πθ

+ κ21
∑N

s=1

(γs(z))
2

ηs
,

and

V ar[k −K | z, k(·; z)] = κ21

N∑
s=1

(γs(z))
2

zsts
.

Welfare under the equilibrium strategy k(·; z) can thus be expressed as

w(z) = E[W (κ, 0, θ)]− |ukk + uσσ|κ21
2

N∑
s=1

(γs(z))
2

zsts

− |ukk + 2ukK + uKK |κ21
2


(∑N

s=1γs(z)− 1
)2

πθ
+
∑N

s=1

(γs(z))
2

ηs


+ |ukk + 2ukK + uKK |κ21 ·

(
κ∗1 − κ1

κ1

)
·
∑N

s=1γs(z)− 1

πθ
− C(z).

The (gross) marginal effect on welfare of an increase in the attention allocated to the n-th source is
thus equal to

|ukk + uσσ|
2

(κ1γn(z))
2

(zn)
2 tn

− |ukk + uσσ|κ21

(
N∑
s=1

γs(z)

zsts

∂γs(z)

∂zn

)
(B.2)

− |ukk + 2ukK + uKK |κ21


(∑N

s=1γs(z)− 1
)(∑N

s=1
∂γs(z)
∂zn

)
πθ

+
∑N

s=1

γs(z)

ηs

∂γs(z)

∂zn


+

|ukk + 2ukK + uKK |κ21
πθ

(
κ∗1 − κ1

κ1

)(∑N
s=1

∂γs(z)

∂zn

)
.
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Substituting |ukk + 2ukK + uKK | = (1 − α∗)|ukk + uσσ|, I can rewrite the sum of the second and
third addendum in (B.2) as

− |ukk + uσσ|κ21

(1− α∗)
(∑N

s=1γs(z)− 1
)(∑N

s=1
∂γs(z)
∂zn

)
πθ

+
∑N

s=1

(
1− α∗

ηs
+

1

zsts

)
γs

∂γs(z)

∂zn


= −|ukk + uσσ|κ21

∑N
s=1


(
1−α∗

ηs
+ 1

zsts

)
(1−α)πs(z)
1−αρs(z)

− (1− α∗)

πθ +
∑N

n=1
(1−α)πn(z)
1−αρn(z)

 ∂γs(z)

∂zn

 .

Using

πs(z) ≡
ηszsts

zsts + ηs
and ρs(z) =

zsts
zsts + ηs

,

I then have that (
1− α∗

ηs
+

1

zsts

)
(1− α)πs(z)

1− αρs(z)
− (1− α∗) = − ηs(α− α∗)

[(1− α)zsts + ηs]
.

The sum of the second and third addendum in (B.2) can thus be rewritten as

|ukk + uσσ|κ21(α− α∗)

∑N
s=1

 ηs

[(1− α)zsts + ηs]
[
πθ +

∑N
n=1

(1−α)πn(z)
1−αρn(z)

]
 ∂γs(z)

∂zn

 .

Next, note that
ηs

[(1− α)zsts + ηs]
[
πθ +

∑N
n=1

(1−α)πn(z)
1−αρn(z)

] =
γs(z)

(1− α)zsts
.

I conclude that, given any z, the net social marginal benefit of forcing the agent to pay more
attention to any source n is equal to

∂w(z)

∂zn
=
|ukk + uσσ|

2

(κ1γn(z))
2

(zn)
2 tn

+ |ukk + uσσ|κ21(α− α∗)

[∑N

s=1

(
γs(z)

(1− α)zsts

)
∂γs(z)

∂zn

]
(B.3)

+
|ukk + 2ukK + uKK |κ21

πθ

(
κ∗1 − κ1

κ1

)(∑N
s=1

∂γs(z)

∂zn

)
− C ′

n(z).

The first term in (B.3) is the direct marginal effect of a reduction in the cross-sectional dispersion
of individual actions that obtains as a result of an increase in the attention zn, holding fixed the
equilibrium use of information k(·; ẑ). The second term combines the marginal effects of changing
the equilibrium rule k(·; ẑ) on (a) the volatility of the aggregate action K around its complete-
information counterpart κ and (b) the dispersion of individual actions around the mean action.
The third term, which is relevant only in economies that are inefficient under complete information,
captures the effect of changing the rule k(·; ẑ) on the way the "error" due to incomplete information
K − κ covaries with the inefficiency of the complete-information allocation. Clearly, by usual
envelope arguments, these last two terms are equal to zero in economies in which the equilibrium
use of information is efficient (that is, in which k(·; z) = k∗(·; z), which happens if, and only if,
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α = α∗ and κ = κ∗) or, alternatively, when the planner can dictate to the agents how to use their
information.

Step 2. First consider part (a) in the claim. Clearly, in economies that are efficient in their
usage of information, the impossibility to dictate to the agents how to map the signals they receive
from the sources of information into their actions is inconsequential. The welfare effects of changing
the agents’ attention are thus the same as in economies in which the planner controls the agents’
usage of information. Next consider economies in which the inefficiency in the allocation of attention
originates in the discrepancy between the complete-information actions and the first-best actions
(α = α∗, Uσσ = 0, but κ ̸= κ∗). Using (B.3), I have that, in these economies, the social net
marginal effect of inducing the agents to increase their attention to any source n, starting from the
equilibrium level ẑ, is equal to3

∂w(ẑ)

∂zn
=

|ukk|
2

(κ1γn(ẑ))
2

(ẑn)
2 tn

+
|ukk + 2ukK + uKK |κ21

πθ

(
κ∗1 − κ1

κ1

){∑N
s=1

∂γs(ẑ)

∂zn

}
(B.4)

− C ′
n(ẑ).

The result in part (a) then follows from the fact that, for any z,

∑N

s=1
γs(z) =

1
πθ∑N

s=1
(1−α)ηszsts
(1−α)zsts+ηs

+ 1

is increasing in zn.

Next, consider part (b) in the claim. Using (B.3), I have that, in economies in which κ1 = κ∗1
and uσσ = 0, the net benefit of inducing the agents to increase their attention to any source n is
equal to

∂w(ẑ)

∂zn
=

|ukk|
2

(κ1γn(ẑ))
2

(ẑn)
2 tn

+ |ukk|κ21(α− α∗)

[∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

]
− C ′

n(ẑ).

Using the fact that, for any source n, irrespective of whether ẑn > 0 or ẑn = 0, the private net
marginal benefit of increasing the attention to source n is equal to

|ukk|
2

(κ1γn(ẑ))
2

(ẑn)
2 tn

− C ′
n(ẑ),

I then have that the social benefit exceeds the private benefit if and only if

α− α∗ sgn
=
∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn
.

3If ẑn = 0, then interpret the derivative as the right-hand derivative.

8



Next, observe that∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

= −
∑N

s=1

 γs(ẑ)

(1− α)ẑsts

(1−α)ηsẑsts
(1−α)ẑsts+ηs(

πθ +
∑N

l=1
(1−α)ηlẑltl
(1−α)ẑltl+ηl

)2 ∂

∂ẑn

(
(1− α)ηnẑntn

(1− α)ẑntn + ηn

)
+

γn(ẑ)

(1− α)ẑntn

∂
∂ẑn

(
(1−α)ηnẑntn
(1−α)ẑntn+ηn

)
πθ +

∑N
l=1

(1−α)ηlẑltl
(1−α)ẑltl+ηl

=

∂
∂ẑn

(
(1−α)ηnẑntn
(1−α)ẑntn+ηn

)
πθ +

∑N
l=1

(1−α)ηlẑltl
(1−α)ẑltl+ηl

[
γn(ẑ)

(1− α)ẑntn
−
∑N

s=1

(
(γs(ẑ))

2

(1− α)ẑsts

)]
.

Clearly,
∂

∂ẑn

πθ +
∑N

l=1
(1−α)ηlẑltl
(1−α)ẑltl+ηl

> 0.

Hence, ∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

sgn
=

γn(ẑ)

(1− α)ẑntn
−
∑N

s=1

(
(γs(ẑ))

2

(1− α)ẑsts

)
.

This means that the social benefit exceeds the private benefit if and only if

α− α∗ sgn
=

γn(ẑ)

(1− α)ẑntn
−M0(ẑ),

where, for any z, M0(z) ≡
∑N

s=1

(
(γs(z))2

(1−α)zsts

)
> 0 does not depend on the specific source of informa-

tion under consideration. Now observe that
γn(ẑ)

(1− α)ẑntn
=

ηn
(1− α)ẑntn + ηn

1

M1(ẑ)

where M1(·) is the function defined in (A.4). Lastly, use the fact that, for any n such that ẑn > 0,

C ′
n(ẑ) =

|ukk|
2

(κ1γn(ẑ))
2

(ẑn)
2 tn

to note that, for any source that receives strictly positive attention in equilibrium,

(1− α)ẑntn + ηn = M2(ẑ)

√
tnη2n
C ′
n(ẑ)

where, for any z, M2(z) ≡
√

|ukk|κ2
1(M1(z))

2(1−α)2

2 . I conclude that there exists a constant

M(ẑ) ≡ [M0(ẑ)M1(ẑ)M2(ẑ)]
2 > 0

such that
γn(ẑ)

(1− α)ẑntn
−M0(ẑ)

sgn
=

C ′
n(ẑ)

tn
−M(ẑ).

Part (b) of the claim then follows from the above results. Q.E.D.
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