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Abstract

I consider a class of strategic interactions under incomplete information in which, prior to

finalizing their actions (consumption, production, or investment decisions), agents choose the

attention to allocate to a large number of information sources about exogenous events that are

responsible for the incompleteness of information (the underlying fundamentals). I study what

type of payoff interdependencies contribute to inefficiency in the allocation of attention. I then

compare the results for the benchmark of perfect recall (in which the agents remember the content

of individual sources) to those for bounded recall (in which the agents are unable to keep track

of the influence of individual sources on posterior beliefs). More generally, the analysis illustrates

the implications (for attention and usage of information) of a certain form of bounded rationality

whereby the summary statistics the agents recall from the sources they pay attention to is distorted

away from the optimal action towards the Bayesian projection of the exogenous fundamentals over
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1 Introduction

Many socio-economic interactions occur under incomplete information about relevant fundamentals

affecting preferences and technology. For example, firms make real and nominal decisions under

limited information about the demand for their products and/or the cost of their inputs; consumers

choose consumption bundles under limited information about their preferences and needs; traders

choose portfolios under limited information about the profitability of relevant assets; voters choose

candidates under limited information about their valiance and policy platforms.

The incompleteness of information may either reflect limits on what is known to society as a

whole (the long-run profitability of stocks is unknown to anyone), or individual constraints on the

amount of information that each single decision maker can process. Time and cognition are limited,

implying that the information that individuals use for most of their decisions is less than what is in

the public domain.

Furthermore, in most situations of interest, individuals experience difficulty in keeping track

of the influence of individual sources of information on their posterior beliefs. For example, an

investor reading a large number of articles about a critical event responsible for the profitability of

his investment decisions (e.g., the possibility of a war, or the default of a sovereign borrower) may

have difficulty remembering how his beliefs have been influenced by the specific sources he attained

to. Such a difficulty is irrelevant when the decision maker recalls what action maximizes his payoff

given the information received. However, because the sources contain information about primitive

events and not directly about optimal actions, when attaining to a large number of sources, what the

agent recalls may be distorted away from the optimal action towards the Bayesian projection of the

primitive events of interest (the exogenous fundamentals) over the information received. Importantly,

this form of bounded rationality is relevant only in games. In single decision-maker problems, whether

the decision maker remembers the individual content of the sources or only the Bayesian projection

of the fundamentals on the information received is irrelevant. This is because optimal actions are

measurable in the Bayesian statistics. Instead, in strategic settings, optimal actions naturally differ

from the Bayesian statistics. This is because the individual sources may contain information about

the actions of others that is not summarized in the Bayesian projection of the exogenous fundamental

on the individual signals received. In other words, in general, the Bayesian projection need not be

an appropriate summary statistics of the individual signals when it comes to predicting the joint

distribution of the exogenous fundamentals and the other agents’ actions.

In this paper, I investigate the implications (for the allocation of attention and the usage of

information) of a form of bounded rationality that is meant to reflect the difficulty described above.

Specifically, I study how agents change their allocation of attention to a large number of information

sources when they expect that they will not be able to recall the information received from individuals

sources and that what they will recall may be distorted away from their optimal action towards the

Bayesian summary statistics of the sources’ information (namely, the projection of the fundamentals
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over the signals received from the individual sources). The difficulty in recalling individual signals

(or equivalently, the optimal action) is particularly relevant in environments in which the number of

information sources is large (see, e.g., Kahneman (1973, 2011), and Kahneman, Slovic and Tversky

(1982) for studies documenting such a difficulty).

The class of strategic situations I consider accommodates for various payoff interdependencies

leading to either complementarity or substitutability in actions and responsible for various inefficien-

cies in the allocation of attention and the equilibrium usage of information. I first study the case

of perfect recall and relate possible inefficiencies in the equilibrium allocation of attention and the

subsequent usage of information to primitive conditions. This part brings under the same unify-

ing umbrella results that are scattered in the literature and that have been established for specific

linear-quadratic-Gaussian applications. The contribution of this part is twofold: (a) it summarizes

and generalizes what is known in the literature, and (b) it permits me to compare the equilibrium

acquisition and usage of information under perfect recall with those under bounded recall which I

study in the second part of the paper.

Formally, bounded recall is a measurability constraint on the agents’ actions. Agents allocate

attention to a large number of information sources about exogenous fundamentals that matter for

their payoffs, but their actions are measurable in a summary statistics of the information received

from the individual sources. The statistics is distorted away from the perfect-recall equilibrium action

towards the Bayesian projection of the underlying fundamentals on the signals received. The reason

why the Bayesian projection may distort the agents’ recollection is twofold. First and foremost, the

information contained in the individual sources is about the exogenous fundamentals and not the

equilibrium actions. These fundamentals stand for primitive events such as the likelihood of a war,

the default of a financial institution, or the collapse of a political establishment, that are not directly

influenced by the agents’ actions. As a result, the agents, often involuntarily, summarize what

they learned about such primitive events before they distill implications for their optimal actions.

Second, the agents may use the information they learned about the exogenous fundamentals for

many decisions other than the one in the specific strategic situation under consideration. When this

is the case, the Bayesian statistics may naturally distort recall away from the equilibrium action for

the specific strategic situation of interest.

Agents are sophisticated in that they understand how their allocation of attention shapes the co-

movement between their actions, the fundamentals, and other agents’ actions. They also anticipate

the difficulty recalling the content of individual sources (equivalently, the optimal action). They

then adjust their allocation of attention to best account for such difficulties. A prominent case is

when the statistics the agents recall coincides with the Bayesian projection (equivalently, with the

agents’ posterior beliefs about the exogenous fundamentals). When this is the case, the measurability

constraint may also reflect the fact that, in certain environments of interest, agents do not really learn

individually from the sources of information they pay attention to. Instead, these sources jointly

contribute to a single signal, which is the agents’ posterior belief about the event they are learning
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about, as often assumed in the rational-inattention and information-design literatures.

Contrary to the recent literature on rational inattention, I model explicitly the different sources

of information. This permits me to compare the benchmark of perfect recall with the case of bounded

recall. The information sources are modeled as in Dewan and Myatt (2008) and Myatt and Wallace

(2012), with each source defined by its accuracy and transparency. The accuracy of a source is the

precision of its content, whereas its transparency is the rate of return of attention to the source,

that is, the extent to which additional attention to the source leads to a marginal reduction in the

idiosyncratic interpretation of its content.

The first part of the paper considers the benchmark of perfect recall. It shows that any source

that receives positive attention in equilibrium is characterized by a ratio between its transparency

and its marginal cost of attention exceeding a critical threshold. In the special case in which the

attention cost depends only on the total amount of attention, the result implies that only the most

transparent sources receive attention in equilibrium, thus extending a property first noticed by Myatt

and Wallace (2012) to the more general payoff structure considered in the present paper. I then

compare the equilibrium allocation of attention to the efficient allocation of attention (defined as the

one that maximizes the ex-ante utility of a representative agent) and I identify primitive conditions

(on payoffs) that are responsible for inefficiencies in the equilibrium allocation of attention and in

the usage of information. Broadly speaking, these inefficiencies originate in the interaction of two

forces: (i) the value that each agent assigns to reducing the dispersion of her actions around the mean

action, relative to the value that the planner assigns to the same reduction; and (ii) the reduction

in the dispersion of individual actions around the mean action that obtains when individual actions

are determined by the equilibrium strategies, relative to the reduction that obtains when actions are

determined by the efficient rule.1

The contribution of these preliminary results is in permitting a comparison to the case of bounded

recall, which is the subject of the second part of the paper. As mentioned above, bounded recall is

a constraint on the agents’ actions that imposes that the latter be measurable in a statistics that is

distorted away from the perfect-recall equilibrium action towards the Bayesian projection. The first

insight is that, with bounded recall, the benefit that each agent assigns to an increase in the attention

allocated to any given source combines the reduction in the dispersion of her action around the mean

action (as in the benchmark with perfect recall), with a novel effect that stems from the change

in the distribution of the agent’s own average action around its complete-information counterpart.

This second effect is absent under perfect recall, and has important implications for the equilibrium

allocation of attention. Relative to the case of perfect recall, I show that agents reallocate their

attention from sources of low and high endogenous publicity (these are sources of, respectively, low

and high transparency) to sources of intermediate publicity.

1These results generalize insights in Colombo, Femminis and Pavan (2014) to a setting with an arbitrarily large

number of information sources—Colombo, Femminis and Pavan (1014) consider a setting with a single source of private

information.
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To understand the result, it is best to consider the case where the summary statistics coincides

with the agents’ posterior beliefs about the exogenous fundamentals (formally, the Bayesian projec-

tion of the fundamentals on the individual signals). Observe that sources of low publicity are sources

whose ratio between transparency and accuracy is low. These sources serve the agents well in predict-

ing the exogenous fundamentals but are poor coordination devices, given that their interpretation

is largely idiosyncratic. In the case of perfect recall, paying attention to such sources is justified by

the possibility of letting the sensitivity of the equilibrium actions to these sources be different from

the sensitivity to other sources, thus limiting the impact of the idiosyncratic interpretation of these

sources on the dispersion of individual actions around the mean action. Such a possibility is severed

under bounded recall, thus reducing the benefit of paying attention to these sources. Sources of high

publicity, instead, are sources whose ratio between transparency and accuracy is high. These sources

may be imprecise when used to predict the exogenous fundamentals but serve the agents well when

used to predict the forecasts, and hence ultimately the actions, of other agents. With bounded recall,

however, because the agents cannot respond to these sources differently from how they respond to

other sources, paying a lot of attention to these sources may lead to a high volatility of an agent’s own

expected action around its complete-information counterpart. Because such a volatility contributes

negatively to individual payoffs, the benefit of paying attention to these sources is dampened relative

to the case of perfect recall. Sources of intermediate publicity, instead, are good compromises: they

are decent forecasters of both the underlying fundamentals and other agents’ actions. As a result,

with bounded recall, the benefit of paying attention to these sources is higher than under perfect

recall. Assessing the empirical support of this prediction is fascinating but difficult because of the

complexity of measuring (or even proxying for) how agents allocate their attention to a large num-

ber of information sources. However, that, in many situations of interest, agents favor information

sources with an intermediate transparency/accuracy ratio seems broadly consistent with heuristics

(see also the survey on the influence of economics and finance news outlets and journalists in Ragas

and Tran (2015)).2

I conclude by investigating how bounded recall affects the (in)efficiency of the equilibrium allo-

cation of attention. Inefficiencies now originate not only in the discrepancy between the private and

the social value of reducing the dispersion of individual actions around the mean action, but also

in the discrepancy between the private and the social value of reducing the dispersion of individual

average actions around their complete-information counterparts. Despite these novel effects, the key

normative insights from the benchmark with perfect recall carry over to the case of bounded recall.

In particular, economies in which agents value coordination more than the planner typically feature

2The article analyzes the results of a survey investigating the influence of various US financial and economics media

outlets and individual journalists. According to the article, The Wall Street Journal and Andrew Ross Sorkin of The

New York Times are widely perceived by peers as the most influential financial media outlet and journalist, respectively.

In many ways, these sources are neither the most specialized (and hence accurate) nor the most accessible ones. Yet,

they strike a good balance between accuracy and transparency and are perceived as highly influential.
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an excessively high allocation of attention to sources of high endogenous publicity (which in turn

are sources with a high transparency/accuracy ratio), and an excessively low allocation of attention

to sources of low publicity. The opposite property holds in economies in which the planner values

aligning individual actions more than the agents.

The rest of the paper is organized as follows. I review the pertinent literature below. Section 2

contains all results for the case of perfect recall, while Section 3 contains all the results for bounded

recall. Section 4 concludes. All proofs are in the Appendix at the end of the document.

1.1 Related literature

The paper belongs to the recent literature on attention and information acquisition in coordination

environments.3 As mentioned above, the description of the information sources is the same as in

Dewan and Myatt (2008) and Myatt and Wallace (2012). The payoff structure, instead, is the

same as in Angeletos and Pavan (2007). This more flexible payoff structure facilitates the analysis

of the normative questions of interest. In fact, the payoff structure in Myatt and Wallace (2012)

abstracts from externalities that create a wedge between the equilibrium and efficient acquisition and

usage of information. Specifically, Myatt and Wallace (2012) consider a "potential" game, where the

potential function is social welfare (see, e.g., Monderer and Shapley (1996)). This specification is

thus appropriate for positive analysis, but not for identifying sources of inefficiency in the equilibrium

acquisition and usage of information. The characterization of the equilibrium acquisition and usage

of information in Proposition 1 in the present paper is similar to the one in Myatt and Wallace

(2012). The key difference between Section 2 of this paper and Myatt and Wallace (2012) is the

welfare analysis. Related welfare results are discussed in Myatt and Wallace (2014) for Lucas-Phelps

economies, Myatt and Wallace (2015) for Cournot competition, and Myatt and Wallace (2018) for

asymmetric and differentiated Bertrand competition. The contribution of Section 2 in the present

paper vis-a-vis these previous works is in unifying the results and bringing them under the same

framework. This in turn facilitates the comparison with the case of bounded recall in the second

part of the paper, which is the paper’s core contribution.

As mentioned above, the payoff structure in the present paper is the same as in Angeletos and

Pavan (2007) and in Colombo, Femminis, and Pavan (2014). This structure is quite flexible and has

been used both in the coordination literature (see, among others, Bergemann and Morris (2013),

Vives (2017) and the references therein) and in the rational-inattention literature (see Sims (2003,

2011) for an introduction to this literature). The information structure, however, is more flexible.

The richer information structure in the present paper is instrumental to the analysis of bounded

recall. Banerjee et al. (2020) also consider a coordination model with motivated beliefs in which the

payoff structure is the same as in the present paper but in which the agents choose how to interpret

3For an analysis of general properties of monotone equilibria in Bayesian games of strategic complementarity, see

the earlier work by Van Zandt and Vives (2007) and the more recent work by Amir and Lazzati (2016).
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the precision of their private information. The motivation is similar to the one discussed in the

aspirational utility literature: in choosing how to interpret the various sources of information, agents

trade off the ability to align their actions with the fundamentals and the actions of others with the

possibility to derive a higher aspirational utility by believing the precision of their information is

higher than the true one. Linear-quadratic-Gaussian models have also been used in the network

literature (see, among others, Calvo-Armengol, Marti’, and Prat (2015), and Galeotti, Golub and

Goyal (2020)) and in the organization-economics literature (see, among others, Alonso, Dessein, and

Matouschek (2008), and Dessein, Galeotti, and Santos (2016)). Lambert, Martini, and Ostrovsky

(2018) provide general equilibrium existence and uniqueness results for quadratic games with flexible

information structures.

Related are also Hebert and La’O (2022) and Angeletos and Sastry (2023). The first paper

considers a coordination setting in which payoffs are as in Myatt and Wallace (2012). The analysis

identifies key properties of the cost of information responsible for non-fundamental volatility and

inefficiency in the usage of information. The former property obtains when learning from public

signals (which contain noise at the source) is cheaper than learning the fundamentals directly (the

paper identifies the precise property of the cost functional that is responsible for such a cost saving

and show that it is violated e.g. under entropy reduction). The second property obtains when the

agents’ attention affects other agents’ ability to learn. In the absence of such a learning externality,

because welfare is the potential of the game, information is collected and used efficiently. Angeletos

and Sastry (2023), instead, study the validity of the welfare theorems in economies with rationally-

inattentive agents. The key finding is that these theorems hold provided that there are no learning

externalities. Because markets are complete in Angeletos and Sastry (2023), the inefficiencies in the

collection and usage of information discussed in the present paper do not arise in the economies

considered in that paper.

Pavan, Sundaresan and Vives (2023) study optimal policy interventions in economies in which

markets are incomplete and agents acquire private information and then submit price-contingent

schedules. Angeletos and La’O (2020) study monetary policy in economies with endogenous dispersed

information. Colombo, Femminis, and Pavan (2023), instead, study optimal fiscal and monetary

policy in economies with endogenous private information and investment spillovers.

Hellwig and Veldkamp (2009) are the first to study the relation between the complementar-

ity/substitutability in actions and the complementarity/substitutability in information acquisition.

The information structure in that paper is different from the one in the present paper in that it as-

sumes that the publicity of each source is exogenous and that the attention allocated to each source

is binary. This last property can favor equilibrium indeterminacy. In contrast, the (symmetric) equi-

librium is unique in the present paper, as well as in most of the papers cited above. Chahrour (2014)

studies optimal central bank disclosures in an economy in which processing information is costly and

in which agents may mis-coordinate on which sources they pay attention to. Herskovic and Ramos

(2020) study coordination and information acquisition in a model of network formation in which
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agents learn from peers. Llosa and Venkateswaran (2023) compare the equilibrium acquisition of

private information to its efficient counterpart in three different specifications of the business cycle.

The works mentioned above consider economies with continuous payoffs. Information acquisition

in games of regime change (where payoffs are discontinuous) is studied in Szkup and Trevino (2015),

Yang (2015), and Morris and Yang (2022). The first paper considers a canonical information structure

with a single perfectly private additive signal whose precision is determined in equilibrium. The

second paper considers a flexible information structure with an entropy cost and shows how the

possibility to learn asymmetrically across states (which is appealing in discontinuous games) may

lead to equilibrium indeterminacy. The third paper, instead, shows how equilibrium (in)determinacy

relates to the possibility of distinguishing nearby states at a finite cost. Contrary to the present

paper, these works assume that the signals the agents receive are independent, conditional on the

underlying fundamental. This assumption is relaxed in Denti (2023); that paper shows, among

other things, how the endogenous correlation in the noise in the agents’ signals may contribute to

equilibrium uniqueness.

As anticipated above, the present paper is also related to the literature on rational inattention, as

pioneered by Sims. See, e.g., Sims (2003, 2011) for an earlier overview of this literature, Maćkowiak

and Wiederholt (2009) for an influential business-cycle application, Matejka and McKay (2012, 2015)

for how rational inattention provides a foundation for the multinomial logit model, Hébert and

Woodford (2016), and Stewart et al (2016), for extensions to dynamic problems, and Maćkowiak

et al. (2022) for an overview of the more recent literature. Among these papers, the closest is

Maćkowiak and Wiederholt (2012). That paper compares the equilibrium allocation of attention

to its efficient counterpart, assuming that the decision makers can absorb any information as long

as the reduction in entropy is below a given threshold. In contrast, in the present paper, the cost

of attention is smooth. The information structure is also different and permits me to investigate

which dimension (transparency versus accuracy) receives more weight in equilibrium, and whether

the equilibrium weights are socially inefficient. Importantly, none of these works studies how the

allocation of attention changes if the agents do not recall the individual signals, or the equilibrium

actions.

The paper is also related to the literature that investigates the effects of bounded memory on in-

dividual decision making (see, e.g., Mullainathan (2002), Benabou and Tirole (2004), Wilson (2004),

and Kocer (2010)). This literature does not investigate how bounded memory influences the alloca-

tion of attention in a strategic setting, or the discrepancy between the equilibrium and the efficient

allocation of attention. The effects of bounded recall in settings with strategic interactions are,

instead, examined in the literature on dynamic (and repeated) games with imperfect information

(see, e.g., Mailath and Samuelson (2006) and the references therein). The formalization of bounded

recall, as well as the questions addressed in that literature, are, however, different from the ones in

the present paper.

Finally, the paper is related to the literature that investigates how boundedly rational agents
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may group together different information sets into analogy-based equivalence classes when computing

best responses, as pioneered by Jehiel (2005)—see also Jehiel and Samet (2007), Jehiel and Koessler

(2008), and Jehiel and Samuelson (2012). In the present paper, the coarsening of the information

sets is the one corresponding to the equivalence classes defined by the agents’ summary statistics of

the individual signals, with the latter coinciding with the Bayesian projection when the agents recall

only their posterior beliefs about the underlying fundamentals.

2 Perfect Recall

2.1 Environment

Agents, Information Sources, and Attention. The economy is populated by a measure-one

continuum of agents, indexed by i and uniformly distributed over [0, 1]. Each agent i has access

to N ∈ N sources of information about a primitive payoff variable θ which is responsible for the

incompleteness of information (hereafter, the exogenous fundamentals). Depending on the applica-

tion of interest, such variable parametrizes a technology shock, a demand shifter, or the profitability

of a new investment opportunity. Agents share a common prior that θ is drawn from a Normal

distribution with mean zero and precision πθ ≡ σ−2
θ (σ2

θ is thus the variance of the distribution).4

The information contained in each source n = 1, ..., N is given by

yn = θ + εn,

where εn is normally distributed noise, independent of θ and of any εs, s ̸= n, with mean zero and

precision ηn. By paying attention zi ≡ (zin)
N
n=1 ∈ RN

+ to the various sources, agent i ∈ [0, 1] then

receives xi ≡ (xin)
N
n=1 ∈ RN private signals, with each xin given by

xin = yn + ξin,

where ξin is idiosyncratic noise, normally distributed, with mean zero and precision tnz
i
n, drawn

independently of θ, ε ≡ (εn)
N
n=1, and ξjs , with s = 1, ..., N for j ̸= i, and s = 1, ..., n− 1, n+ 1, ..., N

for j = i. The parameter ηn ∈ R+ measures the source’s accuracy, whereas the parameter tn its

transparency (the extent to which a marginal increase in the attention zin allocated to the source

reduces the idiosyncratic interpretation of its content). One can think of zin as the “time” or “effort"
allocated to interpreting source n.

Actions and Payoffs. Let ki ∈ R denote agent i’s action, K ≡
∫
j k

jdj the mean action in

the population, and σ2
k ≡

∫
j

[
kj −K

]2
dj the dispersion of individual actions around the population

mean action. Each agent’s payoff is given by the (expectation of the) Bernoulli utility function

u
(
ki,K, σk, θ

)
− C(zi),

4That the prior mean is zero simplifies the formulas, without any important effect on the results.
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where C(zi) denotes the attention cost incurred by the agent. I assume that C is increasing, convex,

and continuously differentiable.5

The function u is a second-order polynomial, which can be interpreted as an approximation of

some more general function. I also assume that dispersion σk has only a second-order non-strategic

external effect, so that ukσ = uKσ = uθσ = 0 and that uσ (k,K, 0, θ) = 0, for all (k,K, θ).6,7 The

assumption that u is quadratic ensures the linearity of the agents’ best responses and simplifies the

analysis.

In addition to the above assumptions, I also assume that partial derivatives satisfy the following

conditions: (i) ukk < 0, (ii) α ≡ −ukK/ukk < 1, (iii) ukk + 2ukK + uKK < 0, (iv) ukk + uσσ < 0,

and (v) ukθ ̸= 0. As shown in Angeletos and Pavan (2007), Condition (i) imposes concavity at the

individual level, so that best responses are well defined. Condition (ii) implies that the slope of

best responses is less than one, which in turn guarantees uniqueness of the equilibrium actions, for

any given allocation of attention. Conditions (iii) and (iv) guarantee that the first-best allocation

is unique and bounded. Finally, Condition (v) ensures that the fundamental θ affects equilibrium

behavior, thus making the analysis non-trivial.

Timing. Agents simultaneously choose the attention they allocate to the various sources of

information. Each agent then receives private signals xi. Finally, agents simultaneously commit

their actions, and payoffs are realized.

2.2 The equilibrium allocation of attention

First note that, under complete information about θ, the unique equilibrium features each agent

taking the action ki = κ where κ ≡ κ0 + κ1θ, with κ0 ≡ −uk(0,0,0,0)
ukk+ukK

and κ1 ≡ −ukθ
ukk+ukK

. Now consider

the problem of an agent j ∈ [0, 1] who allocated attention zj to the various sources of information

and received the signals xj . Optimality requires that, for any xj , the agent’s action satisfies8

kj = E[(1− α)κ+ αK | zj , xj ], (1)

where α ≡ ukK/|ukk| measures the slope of individual best responses to aggregate activity.

5The assumption that C is convex need not be compatible with an entropy-based cost function (that is, a cost

function increasing in the mutual information between y ≡ (yn)
N
n=1 and xi ≡ (xi

n)
N
n=1), as in certain models of rational

inattention. With that type of cost function, equilibrium uniqueness cannot be guaranteed for sufficiently high degrees of

coordination. However, even in that case, social welfare continues to be concave in the allocation of attention, meaning

that the efficient allocation of attention remains unique. Besides, all key results pertaining to (a) the comparison

between the equilibrium allocation of attention and the efficient allocation of attention and (b) the comparison of the

equilibrium with perfect recall and the one with bounded recall are established by looking at the gross private benefit

of increasing the attention allocated to any given source. Because of this, all key results extend to a situation in which

the attention cost is concave, even if in the latter case equilibrium uniqueness cannot be guaranteed.
6The notation uk denotes the partial derivative of u with respect to k, whereas the notation ukK denotes the cross

derivative with respect to k and K. Similar notation applies to the other arguments of the utility function.
7In other words, u is additively separable in σ2

k with coefficient uσσ/2.
8This step follows from Angeletos and Pavan (2009)—Proposition 3.
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Next, consider the agent’s choice of attention. Suppose that all agents allocate attention z to the

various sources of information. The (endogenous) precision of each source s = 1, ..., N is then given

by

πs ≡
ηszsts

zsts + ηs

and is increasing in the source’s accuracy ηs, its transparency ts, and the attention zs allocated to

the source. Denote by

φj
s ≡ εs + ξis

the total noise in the signal agent j receives from source s, and by

ρs ≡ corr(φj
s, φ

i
s) =

zsts
zsts + ηs

the correlation in the noise among any two different agents i, j ∈ [0, 1], i ̸= j. Following Myatt and

Wallace (2012), I refer to ρs as the source’s endogenous publicity. Finally, let

C ′
n(z) ≡ ∂C(z)/∂zn

denote the marginal cost of increasing the attention allocated to the n-th source of information,

starting from z. The following result is then true:

Proposition 1. There exists a unique symmetric equilibrium. In this equilibrium, the attention ẑ

that each agent i ∈ [0, 1] allocates to the various sources of information is such that, for any source

n = 1, ..., N that receives strictly positive attention9

C ′
n(ẑ) =

|ukk|
2

(κ1γn(ẑ))
2

(ẑn)
2 tn

, (2)

where, for any z,

γn(z) ≡
(1−α)πn(z)
1−αρn(z)

πθ +
∑N

s=1
(1−α)πs(z)
1−αρs(z)

, with πs(z) =
ηszsts

zsts + ηs
and ρs(z) =

πs(z)

ηs
, s = 1, ..., N. (3)

Given the equilibrium allocation of attention ẑ, the equilibrium actions are given by10

ki = k(xi; ẑ) = κ0 + κ1

(∑N
n=1γn(ẑ)x

i
n

)
, all i ∈ [0, 1], all xi ∈ RN . (4)

9For any source that receives no attention

C′
n(ẑ) ≥

|ukk|
2

(κ1)
2(1− α)2tn[

πθ +
∑N

s=1
(1−α)ηsẑsts
(1−α)ẑsts+ηs

]2 = lim
zn→0+

|ukk|
2

(κ1γn(ẑ−n, zn))
2

(zn)
2 tn

,

where ẑ−n ≡ (ẑ1, ..., ẑn−1, ẑn+1, ..., ẑN ).
10Here I follow the pertinent literature and, with abuse of notation, denote by k(·; ẑ) the function mapping the

individual signals xi into the actions ki, when the agents’ attention is ẑ.
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To understand the result, note that, when, given attention z, all agents follow the strategy k(·; z)
in (4), in equilibrium, the dispersion of individual actions in the population is given by

V ar[k −K | z, k(·; z)] = κ21

N∑
s=1

γ2s (z)

zsts
,

where κ1γs(z) is the influence of each source s on the equilibrium actions. Differentiating V ar[k−K

| z, k(·; z)] with respect to zn while keeping fixed the strategy k(·; z) as defined in (4) (for all agents,

including agent i), then reveals that the private benefit of increasing the attention allocated to each

source n (the right-hand side in (2)) is equal to

|ukk|
2

(κ1γn(z))
2

(zn)
2 tn

=
|ukk|
2

∣∣∣∣ ∂

∂zn
V ar[k −K | z, k(·; z)]

∣∣∣∣ . (5)

In equilibrium, the marginal benefit that each agent assigns to paying more attention to any given

source of information thus coincides with the marginal reduction in the dispersion of the individual’s

action around the mean action, weighted by the importance |ukk|/2 that the individual assigns to

such a reduction. Importantly, the reduction in dispersion is computed by holding fixed the strategy

k(·; z) (from the usual envelope arguments, the agent expects the information to be used optimally

once collected). As I show below, this interpretation helps understanding the sources of inefficiency

in the equilibrium allocation of attention.

Also note that, fixing the equilibrium allocation of attention ẑ, the influence κ1γn(ẑ) that each

source n exerts on the equilibrium actions (as per (4)) increases with the source’s endogenous precision

πn and increases with the source’s endogenous publicity ρn when agents value positively aligning their

actions with the actions of others (i.e., when α > 0), whereas it decreases when they value such an

alignment negatively (i.e., when α < 0). In turn, both the precision πn and the publicity ρn of any

given source increase with the source’s accuracy ηn and with its transparency tn. Finally, note that,

when α → 0, the sensitivity of the equilibrium actions to each source of information converges to

κ1δn with

δn ≡ πn

πθ +
∑N

s=1 πs
.

This limit corresponds to a single decision maker’s problem, in which the relative influence of any two

sources of information is given by their relative informativeness, as captured by the ratio between

the two sources’ precisions. In contrast, when α → 1, γn → 0 for all n = 1, ..., N : as the agents’

concern for aligning their actions with the actions of others grows large, they ignore all sources of

information and base their actions on the common prior.

The following is then also true:

Corollary 1. There exists a threshold R > 0 such that, in the unique symmetric equilibrium, for

any source that receives strictly positive attention

tn
C ′
n(ẑ)

> R,

11



whereas for any source that receives no attention tn/C
′
n(ẑ) ≤ R.

When a source’s transparency is low and/or the marginal cost of expanding the attention to the

source is high, paying attention to the source is not worth the cost, given that the reduction in the

idiosyncratic interpretation of the source’s content is small. The source thus does not receive any

attention in equilibrium.11 Also note that the attention that the sources receive in equilibrium need

not be monotone in their transparency, even when the marginal cost is constant across the sources.

This is because, when transparency is high, a small amount of attention suffices to almost completely

eliminate any idiosyncratic interpretation of a source’s content; as a result, attention can be maximal

for intermediate degrees of transparency.

In general, solving for the equilibrium allocation of attention in close form can be tedious at this

level of generality. Fortunately, none of the results below requires arriving at close-form solutions.

However, a special case where close-form solutions can easily be obtained is when the cost is linear

and small enough that all sources receive positive attention in equilibrium.

Example 1. Suppose that there exists c̄ ∈ R++ such that, for any z ∈ RN
+ , C(z) = c̄ ·

∑N
s=1zs, and

assume that c̄ is sufficiently small that all sources receive strictly positive attention in equilibrium.

The attention that each source receives is then given by

ẑn =
ηn√

tn(1− α)

(1− α)κ1

√
|ukk|
2c̄ +

∑N
s=1

ηs√
ts

πθ +
∑N

s=1 ηs
− 1√

tn

 . (6)

The example illustrates the general properties discussed above that attention is increasing in ac-

curacy, but possibly non-monotone in transparency. It also shows that, under the assumed cost func-

tional, as the value of coordination α increases, the attention allocated to sources of low transparency

decreases, whereas the attention allocated to sources of high transparency increases.12 Finally, it

shows that the total amount of attention decreases with the coordination motive, α.13

2.3 The efficient allocation of attention

I now turn to the allocation of attention that maximizes the ex-ante utility of a representative

agent. The analysis permits me to identify payoff interdependencies that, under perfect recall, are

11Corollary 1 extends to the more general environment under consideration a property first noticed in Myatt and

Wallace (2012) that only those sources of sufficiently high transparency receive attention in equilibrium.
12Formally,

∂ẑn
∂α

< 0 if
√
tn ≤

(
πθ +

∑N
s=1 ηs∑N

s=1
ηs√
ts

)
and

∂ẑn
∂α

> 0 if the previous inequality is reversed.

13This is not immediate to see, but can be verified by differentiating Ẑ ≡
∑

n ẑn with respect to α and using the

property that (
N∑

s=1

ηs√
ts

)2

≤
N∑

s=1

ηs
ts

N∑
s=1

ηs.
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responsible for inefficiency in the equilibrium allocation of attention. These results, when applied

to specific applications, may guide policy interventions aimed at increasing the efficiency of market

interactions.

First, observe that, for any allocation of attention z, the efficient use of information consists in

all agents following the unique strategy k∗(·; z) that solves the functional equation14

k (x; z) = E [(1− α∗)κ∗ + α∗K | z, x ] for all x ∈ RN , (7)

where κ∗ = κ∗0 + κ∗1θ is the first-best allocation15, K = E [k (x; z) | z, θ, ε] is the average action, and

α∗ ≡ uσσ − 2ukK − uKK

ukk + uσσ
(8)

is the socially optimal degree of coordination (that is, the level of complementarity, or substitutability,

that the planner would like the agents to perceive in order for the equilibrium of the economy to

coincide with the efficient allocation.) Because (7) differs from the equilibrium optimality condition

(1) only by the fact that α is replaced by α∗ and κ by κ∗, it is then immediate that the efficient

strategy takes the linear form

k∗(x; z) = κ∗0 + κ∗1

(∑N
n=1γ

∗
n(z)xn

)
, (9)

where

γ∗n(z) ≡
(1−α∗)πn(z)
1−α∗ρn(z)

πθ +
∑N

s=1
(1−α∗)πs(z)
1−α∗ρs(z)

=

(1−α∗)ηnzntn
(1−α∗)zntn+ηn

πθ +
∑N

s=1
(1−α∗)ηszsts
(1−α∗)zsts+ηs

has the same structure as γn(z) in (3), but with α∗ replacing α.

Next note that, for any attention z, welfare under the efficient use of information k∗(·; z) can be

expressed as

w∗(z) ≡ E[u(κ∗, κ∗, 0, θ)]− L∗(z)− C(z),

where E[u(κ∗, κ∗, 0, θ)] is expected welfare under the first-best allocation, whereas

L∗(z) ≡ |ukk + 2ukK + uKK |
2

V ar[K − κ∗ | z, k∗(·; z)] + |ukk + uσσ|
2

V ar[k −K | z, k∗(·; z)]

combines the welfare losses originating in the volatility of the average action K around its first-best

counterpart with the losses originating in the dispersion of individual actions around the mean action.

I now turn to the efficient allocation of attention. Using the envelope theorem and observing

that, holding fixed the strategy k∗(·; z), the volatility of the aggregate action around its complete-

information counterpart V ar[K−κ∗ | z, k∗(·; z)] is independent of the allocation of attention, I have

14The characterization of the efficient use of information follows from steps similar to those in Angeletos and Pavan

(2009). The contribution here is in the characterization of the efficient allocation of attention.
15The scalars κ∗

0 and κ∗
1 are given by κ∗

0 = uk(0,0,0)+uK(0,0,0)
−(ukk+2ukK+uKK)

and κ∗
1 = ukθ+uKθ

−(ukk+2ukK+uKK)
, respectively.
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that the social benefit of increasing the attention allocated to any source n (gross of its cost) is given

by16

|ukk + uσσ|
2

∣∣∣∣ ∂

∂zn
V ar[k −K | z, k∗(·; z)]

∣∣∣∣ = |ukk + uσσ|
2

(κ∗1γ
∗
n(z))

2

(ẑn)
2 tn

(10)

where ∂V ar[k−K | z, k∗(·; z)]/∂zn is computed holding fixed the efficient strategy k∗(·; z) that maps

the signals x into individual actions. In other words, the social benefit of allocating more attention

to any given source is given by the reduction in the dispersion of individual actions around the

mean action that obtains when agents allocate more attention to that source, weighted by the social

aversion to dispersion |ukk + uσσ|/2. The following result then follows from the arguments above:

Proposition 2. Suppose that the planner can control the use of information (i.e., can dictate to the

agents the mapping from their signals to their actions). There exists a unique allocation of attention

z∗ that maximizes welfare. Under such an allocation, for any source n that receives strictly positive

attention,17

C ′
n(z

∗) =
|ukk + uσσ|

2

(κ∗1γ
∗
n(z

∗))2

(z∗n)
2 tn

,

where κ∗1γ
∗
n(z

∗) represents the influence of the source on the agents’ actions under the efficient strategy

k∗(·; z∗).

The following conclusion can then be established by comparing the private benefit (5) to the

social benefit (10) of increasing the attention allocated to any given source of information:

Corollary 2. Let ẑ denote the equilibrium allocation of attention. Suppose that the planner can

control the use of information. Then, starting from ẑ, forcing the agents to pay more attention to a

source that receives strictly positive attention in equilibrium (i.e., for which ẑn > 0) increases welfare

if

|ukk|(κ1γn(ẑ))2 < |ukk + uσσ|(κ∗1γ∗n(ẑ))2, (11)

and decreases it if the inequality in (11) is reversed, where κ1γn(ẑ) and κ∗1γ
∗
n(ẑ) denote, respectively,

the sensitivity of the equilibrium and of the efficient actions to the n-th source of information, when

16As in the equilibrium case, the expression in (10) applies to sources that receive strictly positive attention (that is,

for which zn > 0). The marginal benefit of increasing the attention allocated to a source that receives zero attention

is simply the limit of the right-hand side of (10) as zn → 0+ which is equal to

|ukk + uσσ|
2

(κ∗
1)

2(1− α∗)2tn[
πθ +

∑N
s=1

(1−α∗)ηszsts
(1−α∗)zsts+ηs

]2 .
17As in the equilibrium case, for any source that receives no attention, the following condition must hold:

C′
n(z

∗) ≥ |ukk + uσσ|
2

(κ∗
1)

2(1− α∗)2tn[
πθ +

∑N
s=1

(1−α∗)ηszsts
(1−α∗)zsts+ηs

]2 = lim
zn→0+

|ukk + uσσ|
2

(κ∗
1γ

∗
n(z

∗
−n, zn))

2

(zn)
2 tn

.
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the attention allocated to the various sources is ẑ. Likewise, forcing the agents to pay attention to a

source n that receives no attention in equilibrium (i.e., for which ẑn = 0) increases welfare if

|ukk + uσσ|
2

(κ∗1)
2(1− α∗)2tn[

πθ +
∑N

s=1
(1−α∗)ηsẑsts
(1−α∗)ẑsts+ηs

]2 > C ′
n(ẑ)

and decreases it if the inequality is reversed.

To understand the result, recall from the analysis above that both the private and the social

(gross) marginal benefit of allocating more attention to any given source come from the marginal

reduction in the dispersion of individual actions around the mean action.18 The magnitude of this

reduction depends on the sensitivity of individual actions to the source, which is given by κ1γn under

the equilibrium strategy, and by κ∗1γ
∗
n under the efficient strategy. The weight that the planner assigns

to reducing the dispersion of individual actions is |ukk+uσσ|, whereas the weight that each individual

agent assigns to reducing the dispersion of her action around the mean action is |ukk|. Staring from

the equilibrium allocation of attention ẑ, forcing the agents to increase the attention they allocate to

any source that receives strictly positive attention in equilibrium then increases welfare if and only if

the marginal reduction in the dispersion of actions under the equilibrium strategy, weighted by the

importance that each agent assigns to dispersion, falls short of the marginal reduction in dispersion

under the efficient strategy, weighted by the importance that the planner assigns to dispersion.

Likewise, for any source that receives no attention in equilibrium, the marginal cost exceeds the

private marginal benefit of reducing dispersion. Staring from the equilibrium allocation of attention

ẑ, forcing the agents to pay attention to these sources increases welfare if and only if the marginal

cost also falls short of the social marginal benefit of reducing dispersion. Put differently, efficiency

in the allocation of attention requires both (i) efficiency in the use of information and (ii) alignment

between the private and the social value of reducing the dispersion of individual actions, which

obtains when, and only when, there are no externalities from the dispersion of individual actions

around the mean action, i.e., uσσ = 0.

To appreciate the implications of Corollary 2, it is useful to focus on a few benchmark cases.

First, consider economies in which the usage of information is efficient (i.e., κ = κ∗ and α = α∗).

When agents suffer from the dispersion of individual actions, i.e., when uσσ < 0, starting from the

equilibrium allocation of attention, the planner can increase welfare by forcing the agents to pay

more attention to any source that receives strictly positive attention in equilibrium, whereas the

opposite is true when agents benefit from such a dispersion, i.e., when uσσ > 0. Next, consider

economies in which the inefficiency in the allocation of attention is due to the sensitivity κ1 of the

complete-information equilibrium actions to the fundamentals (i.e., α = α∗, Uσσ = 0, but κ1 ̸= κ∗1).

When |κ1| < |κ∗1|, the planner can increase welfare by forcing the agents to pay more attention to

18By usual envelope arguments, both marginal reductions are computed holding constant, respectively, the equilib-

rium and the efficient strategies, that is, the mappings k(·; z) and k∗(·; z).
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all sources that receive strictly positive attention in equilibrium, whereas the opposite is true when

|κ1| > |κ∗1|, that is, when, under complete information, agents over-respond to the fundamentals.

Lastly, consider economies in which the inefficiency in the allocation of attention is due to the

discrepancy α− α∗ between the equilibrium and the efficient degrees of coordination. In the Online

Appendix, I show that there exists a threshold R∗ > 0 such that, when agents over-value aligning

their actions with the actions of others (i.e., when α > α∗), starting from the equilibrium allocation

of attention ẑ, the planner can increase welfare by forcing the agents to pay more attention to sources

of low transparency (namely, for which ẑn > 0 and tn/C
′
n(ẑ) < R∗) and less attention to sources

of high transparency (namely, for which ẑn > 0 and tn/C
′
n(ẑ) > R∗). In other words, economies in

which agents are over-concerned with aligning their actions with the actions of others are economies

in which agents pay too much attention to sources of high transparency (which are good coordination

devices) and too little attention to sources of low transparency. The opposite conclusions hold in

economies in which agents undervalue aligning their actions with the actions of others, i.e., for which

α < α ∗. I also show that, when the cost C depends only on the total attention, too few sources

receive strictly positive attention in equilibrium and the total attention Ẑ ≡
∑N

s=1ẑs allocated to the

various sources is inefficiently low when α > α∗, whereas the opposite conclusions hold when α < α∗

(See Claim 1 in the Online Appendix).

Results qualitatively similar to those discussed above obtain in economies in which the planner

can not control the agents’ actions. In these economies, the social benefit of changing the agents’

attention to the sources must also account for the effect that such a change has on the equilibrium

usage of information, i.e., the mapping from the agents’ signals xj to the agents’ actions kj (see

Claim 2 in the Online Appendix). In concrete micro-founded applications, these results have direct

implications for the design of policies that, by manipulating the equilibrium actions (for examples

through taxes and subsidies on individual activity) also manipulate the collection of information.

3 Bounded Recall

The results in the previous section are for economies in which, at the time of committing their actions,

the agents recall the information they received from each individual source. Equivalently, the agents

summarize all the information received into a statistics that permits them to play the same actions

as when they remember the content of individual sources (which is the case when the statistics is

the equilibrium action itself). I now turn to the (perhaps more plausible) case of bounded recall in

which the agents anticipate a difficulty in keeping track of the content of individual sources and do

not trust that what they will recall will permit them to play the same equilibrium actions as when

they perfectly recall.
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3.1 Environment

To facilitate the comparison with the benchmark of full recall, I assume that the statistics that

each agent recalls is linear in the signals received. Formally, let λ ≡ (λn(·))Nn=1 be a collection of

functions, one for each source, with λn : RN
+ → [0, 1], n = 1, ..., N , such that

∑N
s=1 λs(z

j) = 1. Given

the attention z = (zn)
N
n=1 allocated to the different sources, the statistics that agent j expects to

recall is given by

Xj ≡
∑N

n=1
λn(z)x

j
n, (12)

where, as in the previous section, xj ≡ (xjn)Nn=1 are the signals the agent received from the various

sources. The statistics provides the agent with a signal of θ whose precision is equal to

πX(z) ≡
[∑N

s=1
λs(z)

2 (πs(z))
−1

]−1

, (13)

where

πs(z) ≡
ηszsts

zsts + ηs

continues to denote the (endogenous) precision of the information received from source n. Fur-

thermore, when any two agents i, j ∈ [0, 1], j ̸= i, allocate the same attention z to the sources of

information, the correlation in the error in the above statistics across the two agents is given by

ρX(z) ≡ Corr

(∑N

n=1
λn(z)(εn + ξin);

∑N

n=1
λn(z)(εn + ξjn)

)
=
∑N

n=1

(
λn(z)

2 (πn(z))
−1∑N

s=1 λs(z)2 (πs(z))
−1

)
ρn(z), (14)

where

ρn(z) ≡ Corr(εn + ξjn, εn + ξin) =
zntn

zntn + ηn

continues to denote the (endogenous) correlation in the error contained in source n, across the two

individuals, as in the benchmark with perfect recall. In other words, ρX(z) is a weighted average of

the publicity ρn(z) of the individual sources n = 1, ..., N .

Next, for any n, any β ∈ [0, 1], any z, let

λβ
n(z) ≡

πn(z)
1−βαρn(z)∑N
s=1

πs(z)
1−βαρs(z)

. (15)

Note that the case where the statistics Xj the agents recall permits them to play the same actions

as in the benchmark of perfect recall corresponds to the case in which the functions λ take the form

in (15) with β = 1. On the other hand, the case in which what the agents recall is simply their

posterior belief about the fundamentals θ corresponds to the case in which the functions λ are those

in (15) with β = 0. As anticipated in the Introduction, the latter case also captures the possibility

that, in certain environments, there are no source-specific signals xj and, instead, given the attention
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zj allocated to the sources the agent receives a single signal Xj about θ with endogenous precision

πX(zj) whose error has correlation ρX(zj) with the error of any other agent allocating the same

attention to the sources. More generally, the specification in (15) captures the idea that, in many

situations of interest, the agents may expect the statistics Xj to be tilted away from the equilibrium

action of the specific strategic situation under consideration towards the Bayesian projection of the

fundamentals θ on the information received. This tilt in turn may reflect the expectation that the

information about θ received from the various sources is relevant also for decision problems other than

the one under consideration. Under the specification in (15), this possibility amounts to discounting

the strategic relevance of each source n, as captured by the term αρn, in favor the source’s accuracy

πn.

In the rest of this section, I consider the implications of bounded recall for the equilibrium and

the efficient allocation of attention. Importantly, to isolate the effects of bounded recall, I maintain

the assumption that the agents do not choose what to recall, which amounts to treating the functions

λ(·) defining the summary statistics as exogenous.19 Apart from the change described above, the

environment is the same as in the previous section.

3.2 Equilibrium allocation of attention

Bounded recall amounts to imposing that agent j’s actions be measurable in the sigma algebra gen-

erated by the statistics Xj . In this sense, the equilibrium under bounded recall amounts to a specific

form of analogy-based equilibrium (as defined in Jehiel 2005) in which the coarsening of the partitions

of the agents’ information sets is generated by grouping together information sets corresponding to

the same value of the statistics Xj . The next proposition characterizes the equilibrium allocation of

attention when each agent correctly anticipates that what he will recall at the time of committing

his action is the statistics Xj .

Proposition 3. Suppose that, given any allocation of attention z, what each agent j recalls of the

individual signals xj is summarized in a statistics Xj given by (12) with arbitrary weights λ. There

is a unique symmetric equilibrium. In this equilibrium, given the attention z# allocated to the various

sources of information, individual actions are given by

ki = k#(Xi; z#) = κ0 + κ1γ
#(z#) ·Xj (16)

all i ∈ [0, 1], where

γ#(z) ≡
(1−α)πX(z)
1−αρX(z)

πθ +
(1−α)πX(z)
1−αρX(z)

. (17)

Furthermore, for any source n = 1, ..., N that receives strictly positive attention in equilibrium,

C ′
n(z

#) = −|ukk|
2

∂

∂zn
V ar

[
k −K; z#, k#(·; z#)

]
− |ukk|

2
(1−α)

∂

∂zn
V ar

[
K − κ; z#, k#(·; z#)

]
(18)

19Clearly, if the agents could choose what to recall, in equilibrium, they would simply recall their optimal actions

making the analysis identical to the one in the previous section.
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where the derivatives are computed holding fixed the mapping k#(·; z#) given by (16).

There are important differences relative to the case of perfect recall. First, the marginal benefit

of increasing the attention allocated to each source now has two components. The first one is the

marginal reduction of the dispersion of individual actions around the mean action. This component

is similar to the one in the case of perfect recall and is computed holding fixed the mapping k#(·; z#)
governing the agents’ actions (equivalently, the subsequent usage of information) by usual envelope

arguments. Importantly, in a symmetric equilibrium, the reduction of dispersion of individual actions

around the mean action is the same irrespective of whether one changes only the individual’s attention

or all agents’ attention (this observation, which is formally proved in the proof of Proposition 3 in the

Appendix, is important when comparing the equilibrium with the efficient allocation of attention).20

The second component reflects the fact that, with bounded recall, a change in attention also

affects the dispersion of each agent’s expected action around the complete-information counterpart

(once again, with the change computed holding the mapping k#(·; z#) fixed). The reason is that

a change in attention changes the weights λn(z) in the statistics Xj and hence affects not only

the volatility of the statistics Xj but also its mean given the aggregate variables (θ, ε) The second

term in the right-hand side of (18) thus represents the marginal benefit of bringing an agent’s

own expected action, which in a symmetric equilibrium coincides with the average action in the

population, closer to the complete-information equilibrium action, κ. Importantly, while the weight

the individual assigns to reducing the dispersion of his own action around the mean action continues

to be given by the curvature of the individual payoffs, ukk, the weight the individual assigns to

reducing the volatility of his expected action around the complete-information counterpart is given

by |ukk|(1−α) = −(ukk+ukK), and accounts also for the response of the agent’s action to variations

in the average action.

To facilitate the comparison with the benchmark of perfect recall, the next proposition assumes

that the weights λn(z) in the statistics Xj are as in (15); as explained above, the special case where

what each agent recalls is simply his posterior beliefs about θ corresponds to β = 0. The following

result is then true:

Proposition 4. Suppose that, given the allocation of attention z, what each agent j recalls of the

individual signals xj is summarized in a statistics Xj given by (12) with weights given by (15),

with β < 1. Starting from any allocation of attention z that is symmetric across the agents, there

exist thresholds ρ′, ρ′′ with 0 ≤ ρ′ ≤ ρ′′ ≤ 1 such that the following is true: relative to the case of

perfect recall, the benefit of locally increasing the attention allocated to source n is (weakly) larger if

20This property is also true in the benchmark with bounded recall. There, however, the result is obvious, given that

the distribution of the average action K is independent of the allocation of attention. In contrast, with bounded recall,

the distribution of the average action depends on the allocation of attention, even when one holds fixed the mapping

k#(·; z). The reason is that the allocation of attention impacts the weights λ assigned by the summary statistics to

the various sources of information.
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ρn(z) ∈ [ρ′, ρ′′] and (weakly) smaller if ρn(z) /∈ [ρ′, ρ′′] . Furthermore, when β is small (e.g., when the

agent recalls only her posterior beliefs about θ, i.e., when β = 0) and α is large, 0 < ρ′ < ρ′′ < 1.

To fix ideas, consider the case where what the agents recall is their posterior about θ (that is,

β = 0); the discussion below, however, applies more generally to any β < 1. Observe that the

endogenous publicity of any source n is given by

ρn(z) =
πn(z)

ηn
=

zntn
zntn + ηn

;

as explained above, the latter measures how the total error φj
n = εn + ξjn in the source (combining

the error at the origin, εn, with the error ξjn in the agent’s idiosyncratic interpretation of the source’s

content) correlates across any two agents. Sources of low publicity are sources whose endogenous

precision πn(z) is small relative to the source’s exogenous accuracy, ηn. A low publicity in turn

may be due to either a low transparency tn of the source or little attention zn allocated to it. The

information received from such a source is thus subject to significant idiosyncratic noise in the agent’s

interpretation of the source’s content. Relative to the case of perfect recall, the benefit of increasing

the attention to such a source is smaller under bounded recall because of the impossibility for the

agent to respond separately to the source’s noise φj
n. Sources of high publicity, instead, are sources of

potentially low accuracy but of high transparency or that receive significant attention. These sources

serve primarily as coordination devices. With bounded recall, however, the coordination value of

these sources is dampened because of the impossibility to respond separately to the noise associated

with their interpretation. As a result, the benefit of expanding the attention to such sources is again

smaller than under perfect recall. Finally, consider sources of intermediate publicity. These are good

“compromises”, in that they permit the agent to align his action well both with the fundamentals

and with the other agents’ actions. The benefit of expanding the attention to such sources under

bounded recall is thus higher than under perfect recall.

In the case in which the attention cost depends only on total attention, the monotone relation-

ship between the publicity of the sources in the benchmark of perfect recall and their exogenous

transparency further permits me to establish the following result:

Corollary 3. Suppose that there exists an increasing, convex, and differentiable function c(·) such

that, for any z, C(z) = c
(∑N

s=1zs

)
. Let ẑ be the allocation of attention in the unique symmetric

equilibrium under perfect recall. There exist thresholds t′, t′′ ∈ R+ such that, starting from ẑ, any

agent with bounded recall can (weakly) increases his payoff by (a) locally increasing the attention to

any source for which ẑn > 0 and tn ∈ [t′, t′′] and (b) locally decreasing the attention to any source

for which ẑn > 0 and tn /∈ [t′, t′′] .

The results in Proposition 4 and Corollary 3 refer to local properties of best responses, evaluated

around the equilibrium allocation of attention ẑ in the benchmark with perfect recall. Similar

conclusions hold when one compares the allocation of attention in the unique symmetric equilibrium
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with bounded recall to its counterpart under perfect recall. For simplicity, the result below is

established for β = 0 (that is, for the case in which what the agents recall is simply their posterior

beliefs about θ). A similar result holds for β ∈ (0, 1), but with lengthier derivations in the proof.

Proposition 5. Suppose that there exists an increasing, convex, and differentiable function c(·) such
that, for any z, C(z) = c

(∑N
s=1zs

)
. Let ẑ be the allocation of attention in the unique symmetric

equilibrium with perfect recall and z# the corresponding allocation of attention when, under bounded

recall, the weights in the statistics Xj are given by (15) with β = 0. There exist thresholds t′, t′′ ∈ R++

such that z#n > ẑn only if tn ∈ [t′, t′′] . Furthermore for any n for which tn ∈ [t′, t′′], z#n < ẑn only if

z#n = 0.

The result in Proposition 5 thus establishes that it is only those sources whose transparency is

intermediate that receive more attention under bounded recall than under perfect recall. In this sense,

Proposition 5 extends the results in Proposition 4 and Corollary 3 from individual best responses to

equilibrium allocations. The key property in the Appendix that permits me to establish the result

in the proposition is that, among those sources that do receive some attention under bounded recall,

those whose transparency is the highest are also those whose publicity is the highest. Recall that this

property also holds under perfect recall. In that benchmark, the monotonicity extends to all sources,

implying that it is only those sources whose transparency is high enough that receive some attention

in equilibrium. I could not establish this stronger property under bounded recall. In other words, I

could not exclude the possibility that source n with transparency tn receives some attention whereas

source n′ with transparency tn′ > tn does not. This explains why the result in the proposition is

not an "if and only if" result. However, what I could establish is that if a source of intermediate

transparency receives less attention under bounded recall than under perfect recall, then it receives

no attention at all.

As anticipated in the introduction, assessing the empirical support of the above predictions is

quite complex because of the difficulty of measuring how agents in the field allocate their attention

to a large number of information sources. However, that, in many situations of interest, sources

of intermediate publicity (with an intermediate transparency/accuracy ratio) receive most of the

attention seems to square well with heuristics as well as with what reported by Ragas and Tran

(2015). In a survey of approximately 400 US-based journalists, it was found that the The Wall

Street Journal and Andrew Ross Sorkin of The New York Times are widely perceived as the most

influential financial media outlet and journalist, respectively. While many other sources appear either

more sophisticated or easier to read, the influence of these sources seems to reflect a good balance

between accuracy and transparency.

3.3 Efficient allocation of attention

I conclude by investigating the allocation of attention that maximizes welfare under bounded recall.

The analysis is motivated by the interest in establishing whether, at least at a qualitative level,
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the results identified above by focusing on the benchmark of perfect recall remain valid under the

(probably more plausible) case of bounded recall.

Consistently with the analysis above, I assume that the planner cannot choose the functions λn(·)
defining the weights in the statistics Xj , but can control the agents’ attention and their response

to the statistics Xj (if the planner could also choose the weights λ in the statistics Xj , the efficient

allocation of attention would be the same as in the previous section).

First note that, because the planner’s problem is concave, it is never optimal to induce different

agents to allocate different attention to the various sources of information. This in turn means that,

for any symmetric allocation of attention z, efficiency in the agents’ actions requires that, for any

agent j ∈ [0, 1], almost any value of the statistics Xj , the agent’s action be given by

kj = k∗∗(Xj ; z) = κ∗0 + κ∗1γ
∗∗(z)Xj (19)

with

γ∗∗(z) ≡
(1−α∗)πX(z)
1−α∗ρX(z)

πθ +
(1−α∗)πX(z)
1−α∗ρX(z)

, (20)

where πX and ρX are as in (13) and (14) above.21 This implies that, for any allocation of attention

z, the maximum welfare that can be achieved by having the agents follow the rule k∗∗(·; z) defined
by (19) is given by

w∗(z) ≡ E[u(κ∗, κ∗, 0, θ)]− L∗(z)− C(z), (21)

where u(κ∗, κ∗, 0, θ) continues to denote welfare under the first-best allocation and where

L∗(z) ≡ |ukk + uσσ|
2

V ar[k −K | z, k∗∗(·; z)] + |ukk + 2ukK + uKK |
2

V ar[K − κ∗ | z, k∗∗(·; z)]

continues to denote the welfare losses due to the incompleteness of information (combining the

losses from the dispersion of individual actions around the mean action with the losses stemming

from the volatility of the average action around its first-best counterpart). Using the fact that

|ukk + 2ukK + uKK | = (1− α∗) |ukk + uσσ| and denoting by z∗∗ the efficient allocation of attention

with bounded recall, I then have any source of information that receives strictly positive attention

under z∗∗ must satisfy

C ′
n(z

∗∗) = −|ukk + uσσ|
2

∂

∂zn
V ar[k −K | z∗∗, k∗∗(·; z∗∗)] (22)

− (1− α∗)
|ukk + uσσ|

2

∂

∂zn
V ar[K − κ∗ | z∗∗, k∗∗(·; z∗∗)],

where all derivatives are computed holding fixed the mapping k∗∗(·; z∗∗).
21The result follows from the observation that bounded recall is mathematically equivalent to a setting in which

agents receive a single signal Xj about θ with precision πX(z) and correlation ρX(z). The arguments that lead to the

results below are then similar to those derived in the previous section.
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Comparing the social to the private marginal benefit of increasing the attention allocated to any

given source around the equilibrium levels then permits me to establish the following result (again,

for simplicity, the result here is for β = 0, meaning that what the agents recall is their posterior

belief about θ):

Proposition 6. Suppose the weights in the statistics Xj are as in (15) with β = 0 and the planner

can control the agents’ response to the statistics Xj but cannot choose the weights in the statistics

Xj. Let z# denote the allocation of attention in the unique symmetric equilibrium with bounded

recall.

(a) Consider economies that are efficient in their use of information (κ = κ∗ and α = α∗).

Starting from the equilibrium allocation of attention z#, forcing the agents to pay more attention

to a source that receives strictly positive attention in equilibrium (i.e., for which z#n > 0) increases

welfare if uσσ < 0 and decreases if uσσ > 0.

(b) Consider economies in which there are no externalities from dispersion (uσσ = 0), and the

equilibrium and the socially optimal degrees of coordination coincide (α = α∗). Starting from the

equilibrium allocation of attention z#, forcing the agents to pay more attention to a source that

receives strictly positive attention in equilibrium (i.e., for which z#n > 0) increases welfare if κ1 < κ∗1

and decreases it if κ1 > κ∗1.

(c) Consider economies in which the sensitivity of the complete-information equilibrium actions

to the fundamentals is first-best efficient (i.e., κ1 = κ∗1) and in which there are no externalities

from the dispersion of individual actions (i.e., uσσ = 0). When α(γ#(z#))2 > α∗(γ∗∗(z#))2, there

exists a critical threshold ρ̄(z#) ∈ [0, 1] such that, starting from the equilibrium allocation of atten-

tion z#, the planner would like the agents to reduce the attention they allocate to sources of high

endogenous publicity (namely, for which ρn(z
#) > ρ̄(z#)) and increase the attention to sources of

low endogenous publicity (for which ρn(z
#) < ρ̄(z#) and z#n > 0). The opposite conclusions hold

for economies in which α(γ#(z#))2 < α∗(γ∗∗(z#))2. In the limit in which πθ → 0, ρ̄(z#) → ρX(z#)

and γ#(z#), γ∗∗(z#) → 1, implying that the planner would like the agents to allocate less attention

to sources for which (α − α∗)
[
ρn(z

#)− ρX(z#)
]
> 0 and more attention to sources for which the

inequality is reversed and z#n > 0.

The results in parts (a) and (b) parallel those in the benchmark with perfect recall. Those in

part (c) are formally different but qualitatively similar to those for perfect recall: When agents over-

value aligning their actions with the actions of others, the planner would like the agents to reduce

the attention they allocate to sources of high endogenous publicity and increase the attention they

allocate to sources of low endogenous publicity; the opposite conclusions hold when agents under-

value aligning their actions with the actions of others. The inefficiency in the allocation of attention

under bounded recall is thus qualitatively similar to the one under perfect recall.
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4 Conclusions

In this paper, I compare the equilibrium to the efficient allocation of attention in a framework

featuring a rich set of payoff interdependencies and a large number of information sources differing

in their accuracy and transparency. I then examine how the allocation of attention is affected by

bounded recall, namely by the difficulty of keeping track of the content of individual sources and by

the expectation that what will be recalled is tilted away from the optimal action towards a Bayesian

summary statistics of the information received.

In future work, it would be interesting to extend the analysis to dynamic settings in which agents

solve a stopping problem by choosing, in each period, whether to collect further information from

additional sources or irreversibly commit to an action. It would also be interesting to examine how

the allocation of attention interacts with the market provision of information by endogenizing the

supply of information. Such an extension would also permit one to investigate policy interventions

aimed at correcting the interaction between the inefficiencies in the usage and in the provision of

information.
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Appendix

Proof of Proposition 1. When all agents allocate attention ẑ to the various sources of information,

the continuation game in which the agents receive information xi and choose their actions has a

unique continuation equilibrium where all agents i ∈ [0, 1] follow the linear strategy in (4). This

result follows from arguments similar to those that lead to Proposition 3 in Angeletos and Pavan

(2009) — the proof is thus omitted.

Next, let

U j(zj ; ẑ) = E[u(kj ,K, σk, θ)|zj ]− C(zj)

denote agent j’s expected payoff when all agents i ̸= j pay attention ẑ to the different sources of

information and then choose their actions according to (4), whereas agent j allocates attention zj

to the various sources and then chooses his actions optimally. It is easy to show that U j(zj ; ẑ) is

continuously right-differentiable in zjn, any n, any (zj ; ẑ), and that, for any zjn > 0 the derivative

∂U j(zj ; ẑ)/∂zjn coincides with the partial derivative of the agent’s expected payoff holding fixed the

agent’s optimal strategy ki(·; zj ; ẑ) by usual envelope arguments.

Next, note that when zj = ẑ, by symmetry, the agent’s optimal strategy coincides with the one of

any other agent, that is, ki(·; zj ; ẑ) = k(·; ẑ) with k(·; ẑ) given by (4). Furthermore, when all agents

(including agent j) follow the linear strategy in (4), for any choice of zj , agent j’s expected payoff is

given by

E[u(K,K, σk, θ) | zj , k(·; ẑ)] +
ukk
2

V ar[kj −K | zj , k(·; ẑ)]− C(zj) (23)

where the first term in the right-hand side of (23) is the payoff the agent would obtain if his action

coincided with the average action in the population in every state, while the second term is the

ex-ante dispersion of the agent’s own action around the mean action. Note that, when all agents

follow the linear strategy in (4) — more generally, when their actions are determined by any linear

mapping of their signals — the distribution of K is independent of the allocation of attention. It

follows that, in any symmetric equilibrium, for any source n that receives positive attention

∂U j(ẑ; ẑ)

∂zjn
=

ukk
2

∂

∂zjn
V ar[kj −K | ẑ, k(·; ẑ)]− C ′

n(ẑ) (24)

where the derivative in the right hand side of (24) is computed holding fixed the mapping k(·; ẑ) and
letting such mapping be the one given by (4).

Next observe that, when all agents follow the mapping in (4),22

V ar[kj −K | zj , k(·; ẑ)] = κ21
∑N

n=1

(γn(ẑ))
2

zjntn
.

22Note that, when zjn = ẑn = 0, (γn(ẑ))
2/zjntn = 0. The contribution of source n to the dispersion of the agent’s

own action around the mean action can thus be written as (γn(ẑ))
2/zjntn for any source, irrespective of whether or not

such a source receives attention in equilibrium.
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I conclude that, in any symmetric equilibrium, for any source of information that receives strictly

positive attention, the following optimality condition must hold:

C ′
n(ẑ) =

|ukk|
2

(κ1γn(ẑ))
2(

ẑjn
)2

tn

.

By continuity of the right-hand derivative ∂U j
+(z

j ; ẑ)/∂zjn, I also have that, for any source that

receives no attention, the following corner condition must hold

C ′
n(ẑ) ≥

|ukk|
2

(κ1γn(ẑ))
2(

ẑjn
)2

tn

=
|ukk|κ21(1− α)2tn

2
[
πθ +

∑N
s=1

(1−α)πs(ẑ)
1−αρs(ẑ)

]2 =
|ukk|
2

(κ1)
2(1− α)2tn[

πθ +
∑N

s=1
(1−α)ηsẑsts
(1−α)ẑsts+ηs

]2 ,
which is equivalent to the condition that ∂U j

+(ẑ; ẑ)/∂z
j
n ≤ 0 at ẑn = 0.

Lastly, to see that the symmetric equilibrium is unique, let U denote the family of quadratic

payoff functions satisfying all the conditions in the model setup. From arguments similar to those

that lead to Proposition 2 in Angeletos and Pavan (2009), one can show that, given any u ∈ U ,
there exists a unique u′ ∈ U such that any symmetric equilibrium of the game where payoffs are

given by u coincides with one of the efficient allocations for the economy with payoffs given by u′.

Next observe that the efficient allocation for the economy with payoffs given by u
′
is unique – this

follows from the fact that the planner’s problem consisting in choosing a vector z ∈ RN
+ along with

a function k : RN → R so as to maximize the ex-ante expectation of u′ is strictly concave. This in

turn implies that the symmetric equilibrium for the economy with payoffs given by u is also unique,

which establishes the result. Q.E.D.

Proof of Corollary 1. From Proposition 1, any source that receives strictly positive attention

in equilibrium must satisfy (2). Substituting for

γn(ẑ) =

(1−α)ẑntnηn
(1−α)ẑntn+ηn

πθ +
∑N

l=1
(1−α)ẑltlηl
(1−α)ẑltl+ηl

into Condition (2), I then have that

ẑn =
ηn√

tn(1− α)

{
(1− α)

√
|ukk|κ21
2C ′

n(ẑ)

1

M1(ẑ)
− 1√

tn

}
, (25)

where

M1(z) ≡ πθ +

N∑
l=1

(1− α)ηlzltl
(1− α)zltl + ηl

> 0. (26)

For the right-hand-side in (25) to be positive, it must be that

tn
C ′
n(ẑ)

> R ≡ 2 (M1(ẑ))
2

(1− α)2κ21|ukk|
, (27)
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which establishes the first claim in the corollary.

Next, I prove that, for any source that receives no attention in equilibrium, condition (27) must

be violated. To see this, suppose that, by contradiction, there exists a source n for which (27) holds

and such that ẑn = 0. Suppose that the individual were to increase locally the attention allocated to

this source. The continuity of the right-hand derivative of the agent’s expected payoff ∂U j
+(ẑ; ẑ)/∂z

j
n

implies that the net effect on the agent’s expected payoff is

|ukk|
2

(κ1γn(ẑ))
2

(ẑn)
2 tn

− C ′
n(ẑ) =

|ukk|κ21
2

(1− α)2tn

(M1(ẑ))
2 − C ′

n(ẑ) > 0,

contradicting the optimality of the equilibrium allocation of attention. Q.E.D.

Proof of Example 1. Suppose that all sources receive strictly positive attention in equilibrium.

The amount of attention allocated to each source n is then equal to

ẑn =

√
|ukk|κ21

2c̄

γn(ẑ)√
tn

. (28)

It follows that the influence of each source n is given by

γn(ẑ) =

√
2c̄

|ukk|κ21

√
tnẑn. (29)

Combining the above with the fact that

γn(ẑ) =

(1−α)πn(ẑ)
1−αρn(ẑ)

πθ +
∑N

s=1
(1−α)πs(ẑ)
1−αρs(ẑ)

(30)

I then have that
N∑

n=1

γn(ẑ) =

∑N
s=1

(1−α)πs(ẑ)
1−αρs(ẑ)

πθ +
∑N

s=1
(1−α)πs(ẑ)
1−αρs(ẑ)

=

√
2c̄

|ukk|κ21

N∑
n=1

√
tnẑn.

This implies that

πθ +
N∑
s=1

(1− α)πs(ẑ)

1− αρs(ẑ)
=

πθ

1−
√

2c̄
|ukk|κ2

1

∑N
s=1

√
tsẑs

.

Replacing the latter expression into the definition of γn(ẑ) in (30) and using the fact that

(1− α)πn(ẑ)

1− αρn(ẑ)
=

(1− α)ηnẑntn
ẑntn(1− α) + ηn

I then have that

γn(ẑ) =

(1−α)ηnẑntn
ẑntn(1−α)+ηn

πθ

1−
√

2c̄

|ukk|κ21

∑N
s=1

√
tsẑs

.
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Combining this expression with (28) I then have that

ẑn =

 1

πθ
√

2c̄
|ukk|κ2

1

− 1

πθ

N∑
s=1

√
tsẑs

 1√
tn
ηn − ηn

(1− α)tn
. (31)

Multiplying both sides of (31) by
√
tn, summing over n, and rearranging, I then obtain that

1

πθ

N∑
s=1

√
tsẑs =

∑N
s=1 ηs

πθ

√
2c̄

|ukk|κ21

− 1
(1−α)

∑N
s=1

ηs√
ts

πθ +
∑N

s=1 ηs
. (32)

Replacing (32) into (31), I conclude that

ẑn =
ηn√

tn(1− α)

(1− α)

√
|ukk|κ2

1
2c̄ +

∑N
s=1

ηs√
ts

πθ +
∑N

s=1 ηs
− 1√

tn


as claimed. Q.E.D.

Proof of Proposition 3. First I prove that, when all agents allocate attention z to the various

sources of information, the continuation game that starts when the agents, after observing their

summary statistics, must choose their actions, has a unique continuation equilibrium where all agents

follow the affine strategy

ki = k#(Xi; z) ≡ κ0 + κ1γ
#(z)Xi. (33)

To see this, observe that, given the attention z, observing the statistics Xi =
∑N

n=1 λn(z)x
i
n is

informationally equivalent to observing an additive signal

θ +
∑N

n=1
λn(z)(εn + ξin)

about the exogenous fundamentals θ, with precision πX(z) given by the formula in (13) and with an

error whose correlation ρX(z) across any pair of agents i, j ∈ [0, 1], j ̸= i, is given by the formula

in (14). This game is isomorphic to the one in Section 2, with the only difference that each agent

receives a single signal. From Proposition 1 I then have that, in the unique continuation equilibrium,

individual actions are given by (33).

Next, I characterize the allocation of attention in any symmetric equilibrium. To this purpose,

suppose that all agents i ̸= j allocate attention zi = z to the different sources of information and

then use (33) to determine their actions. Let U j(zj ; z) denote the payoff of agent j when he allocates

attention zj to the different sources and then chooses optimally the mapping from the statistics

Xj into his actions. Using the envelope theorem, in any symmetric equilibrium with attention z#,

for any source n for which z#n > 0, ∂U j(z#; z#)/∂zjn must coincide with the partial derivative of

the agent’s expected payoff with respect to zjn, evaluated at zjn = z#n , holding fixed the mapping
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k#(·; z#) from the agent’s statistics Xj to his actions and letting this mapping be the one in (33)

with z = z#.23

Observe that, when, given (zj , z), all agents (including agent j) follow (33), then

U j(zj ; z) = E[u(K,K, σk, θ) | zj , z] + E[uk(K,K, σk, θ)(k
j −K) | zj , z]

+
ukk
2

E[
(
kj −K

)2 | zj , z]− C(zj),

where the first term in the right-hand side of (23) is the expected payoff of an agent whose action

coincides with the average action in the population in every state. Importantly, note that (i) be-

cause the mapping k#(·; z) is kept fixed, E[u(K,K, σk, θ) | zj , z] is independent of the agent’s own

information and (ii) all expectations are computed assuming that all agents’ actions are determined

by the linear strategy in (33).

Next observe that

E[
(
kj −K

)2 | zj , z] = E[
(
kj −Kj

)2
+ (Kj −K)2 + 2

(
kj −Kj

)
(Kj −K) | zj , z]

where Kj ≡ E[kj | (θ, ε), zj ] denotes the agent’s own average action given (θ, ε), when his attention is

zj . Using the fact that, for any (zj , z), kj −Kj = κ1γ
#(z)

[∑
nλn(z

j)ξjn
]
is orthogonal to Kj −K =

κ1γ
#(z)

{∑
n

[
λn(z

j)− λn(z)
]
(θ + εn)

}
, I then have that

∂

∂zjn
E[
(
kj −K

)2 | z, z] = ∂

∂zjn
E[
(
kj −Kj

)2 | z, z] + ∂

∂zjn
E[
(
Kj −K

)2 | z, z]

=
∂

∂zjn
E[
(
kj −Kj

)2 | z, z] = ∂

∂zn
V ar

[
k −K | z, k#(·; z)

]
,

where all derivatives are computed holding fixed the agents’ strategies, as given by (33). Note that

the second equality follows from the fact that, when zj = z,

∂

∂zjn
E[
(
Kj −K

)2 | z, z] = 0,

whereas the third equality uses the fact that, when zj = z, the dispersion of each agent’s action

around his own average action coincides with the dispersion of each agent’s action around the mean

action in the cross-section of the population (in the notation for such a dispersion, I explicitly

write the strategy k#(·; z) to make clear that the distribution of individual and aggregate actions is

obtained by assuming the agents follow the mapping in (33)). Importantly, note that the derivative

∂

∂zn
V ar

[
k −K | z, k#(·; z)

]
is computed holding fixed the agents’ strategies, but accounting for the fact that a variation in zn

affects the dispersion of individual actions around the mean action both directly by changing the

23Furthermore, for any source for which z#n = 0, the right-hand derivative ∂U j
+(z

#; z#)/∂zjn must coincide with the

limit for zn → 0+ of the derivative ∂U j((zn, z
#
−n); (zn, z

#
−n))/∂z

j
n by continuity of the right-hand derivative, where

z#−n ≡ (z#1 , ..., z#n−1, z
#
n+1, ..., z

#
N ).
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distribution of the signal xj and indirectly by changing the weights λs(z) in the agents’ statistics.

The derivations above also establish that, in a symmetric equilibrium, the reduction of the dispersion

of individual actions around the mean action is the same irrespective of whether one changes only

the individual’s own allocation of attention or all agents’ allocation of attention, as claimed in the

main text.

Finally, consider the term E[uk(K,K, σk, θ)(k
j −K) | zj , z]. Using the fact that

uk(K,K, σk, θ) = uk(κ, κ, 0, θ) + (ukk + ukK) (K − κ),

along with the fact that uk(κ, κ, 0, θ) = 0 by definition of the complete-information equilibrium, I

have that

E[uk(K,K, σk, θ)(k
j −K) | zj , z] = (ukk + ukK) · E[(K − κ)(kj −K) | zj , z]

= (ukk + ukK) · E[(K − κ)(Kj −K) | zj , z]

where the second equality uses the fact that kj −Kj is orthogonal to K − κ. Observe that

∂

∂zjn
E[(K − κ)(Kj −K) | z, z] = E

[
(K − κ)

∂(Kj −K)

∂zjn
| z, z

]
= κ1γ

#(z)E

[
(K − κ)

(
N∑
s=1

∂λs(z)

∂zn
(θ + εs)

)
| z, z

]

= κ21γ
#(z) · Cov

[(
γ#(z)

N∑
s=1

λs(z) (θ + εs)− θ

)
;

(
N∑
s=1

∂λs(z)

∂zn
(θ + εs)

)
| z, z

]

=
(
κ1γ

#(z)
)2 N∑

s=1

(
λs(z)

∂λs(z)

∂zn

)
1

ηs
,

where, in the last equality, I used the fact that, for any z,
∑N

s=1 λs(z) = 1 and, hence,
∑N

s=1
∂λs(z)
∂zn

= 0,

along with the fact that each εs is orthogonal to θ and to any εl, l ̸= s.

Let ∂
∂zn

V ar
[
K − κ | z, k#(·; z)

]
denote the marginal change in the dispersion of K around κ that

obtains when one changes the attention allocated to the n-th source, holding fixed the strategy in
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(33). Then observe that

1

2

∂

∂zn
V ar

[
K − κ | z, k#(·; z)

]
(34)

=
1

2

∂

∂zn
V ar

[
κ1

(
γ#(z)

N∑
s=1

λs(z) (θ + εs)− θ

) ∣∣∣ z, k#(·; z)]

=
κ21
2

∂

∂zn
V ar

[(
γ#(z)− 1

)
θ + γ#(z)

N∑
s=1

λs(z)εs

∣∣∣ z, k#(·; z)]

=

(
κ1γ

#(z)
)2

2

∂

∂zn
V ar

[
N∑
s=1

λs(z)εs

∣∣∣ z, k#(·; z)]

=

(
κ1γ

#(z)
)2

2

∂

∂zn

[
N∑
s=1

λs(z)
2 1

ηs

]

=
(
κ1γ

#(z)
)2{ N∑

s=1

(
λs(z)

∂λs(z)

∂zn

)
1

ηs

}

=
∂

∂zjn
E[(K − κ)(Kj −K) | z, z].

Combining the different pieces and using the fact that |ukk|(1 − α) = −(ukk + ukK), I conclude

that

∂U j(z; z)

∂zjn
= −|ukk|

2

∂

∂zn
V ar

[
k −K | z, k#(·; z)

]
(35)

− |ukk|
2

(1− α)
∂

∂zn
V ar

[
K − κ | z, k#(·; z)

]
− C ′

n(z).

In any symmetric equilibrium, for any source of information n = 1, ..., N that receives strictly positive

attention, it must be that the above derivative vanishes, which yields (18) in the main text. Clearly,

the second term in (18) disappears if the agent can choose his summary statistics X, for, in this

case, by usual envelope arguments, the marginal benefit of increasing the attention to any source

should be computed holding fixed both the selection of the summary statistics and the strategy that

maps the latter into the selected action. When both the weights λ defining the statistics X and the

mapping k#(·; z) are held fixed, the average action is thus invariant in zn.

Finally, note that the uniqueness of the symmetric equilibrium follows from arguments similar to

those that establish uniqueness in the model with perfect recall; the proof is thus omitted for brevity.

Q.E.D.

Proof of Proposition 4. The proof is in four steps. Step 1 shows how, starting from a

situation where all agents assign attention z to the various sources, the net benefit of increasing

the attention allocated to any source n depends on the primitive parameters of the model. The

characterization applies to any statistics Xj summarizing the agents’ information. Step 2 then

uses the characterization in Step 1 to compare the benefit in the benchmark with perfect recall
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(equivalently, when the agents can choose their summary statistics) and in the case of bounded

recall when the statistics is exogenous. Step 3 shows how the comparison in Step 2 specializes

in the case where the exogenous statistics Xj takes the form in (15). Finally, step 4 shows that

0 < ρ′ < ρ′′ < 1 for α large enough and β small enough.

Step 1. Under bounded recall, the marginal benefit of increasing the attention to any source n

is given by (35). Below, I express the various terms in (35) as a function of the key parameters. To

simplify the exposition, I drop z from the arguments of the various functions, when there is no risk

of confusion.

First observe that

∂

∂zn
V ar

[
k −K | z, k#(·)

]
=
(
κ1γ

#
)2 ∂

∂zn
V ar

(
N∑
s=1

λsξs

)
.

Using the fact that

∂

∂zn
V ar

(
N∑
s=1

λsξs

)
=

∂

∂zn

[
N∑
s=1

λ2
s

tszs

]
=

N∑
s=1

2λs

tszs

∂λs

∂zn
− λ2

n

tn (zn)
2 ,

I have that

∂

∂zn
V ar

[
k −K | z, k#(·)

]
=
(
κ1γ

#
)2{ N∑

s=1

2λs

tszs

∂λs

∂zn
− λ2

n

tn (zn)
2

}
. (36)

Next, use (34) to observe that

∂

∂zn
var

[
K − κ | z, k#(·)

]
=
(
κ1γ

#
)2{ N∑

s=1

2λs

ηs

∂λs

∂zn

}
. (37)

Substituting (36) and (37) into (35), I conclude that, for any source n and any allocation of

attention z,

∂U j(z; z)

∂zn
= −|ukk|

(
κ1γ

#
)2{ N∑

s=1

λs

tszs

∂λs

∂zn
− 1

2

λ2
n

tn (zn)
2

}
(38)

− |ukk|(1− α)
(
κ1γ

#
)2{ N∑

s=1

λs

ηs

∂λs

∂zn

}
− C ′

n(z).

Next, observe that

tszs =
πs

1− ρs
and ηs =

πs
ρs

.

The benefit of increasing (locally) the attention to source n is thus equal to

∂U j(z; z)

∂zn
= |ukk|

(
κ1γ

#
)2{ λ2

n

2tn (zn)
2 −

N∑
s=1

(1− αρs)λs

πs

∂λs

∂zn

}
− C ′

n(z). (39)

Step 2. I now turn to the comparison between the benefit of increasing the attention to source n

in the benchmark of perfect recall and in the case of bounded recall.

32



In the case of perfect recall (equivalently, when the sufficient statistics is chosen optimally by the

agents), the value of increasing the attention to any source n is equal to (see the end of the proof of

Proposition 1)

∂U j(z; z)

∂zn
= |ukk| (κ1)2

 (1−α)πn

1−αρn

πθ +
∑N

s=1
(1−α)πs

1−αρs

2

1

2tn (zn)
2 − C ′

n(z). (40)

Comparing (39) with (40), it is then easy to see that the benefit is larger under bounded recall if

(λn)
2 (γ#)2

2tn (zn)
2 −

(
γ#
)2 N∑

s=1

(1− αρs)λs

πs

∂λs

∂zn
>

 (1−α)πn

1−αρn

πθ +
∑N

s=1
(1−α)πs

1−αρs

2

1

2tn (zn)
2

and lower if the inequality is reversed. The above inequality can be rearranged as

(λn)
2(1−αρn)2

(πn)
2 − 2tn(zn)

2(1−αρn)2

(πn)
2

∑N
s=1

(1−αρs)λs

πs

∂λs
∂zn

> (1−α)2(
πθ+

∑N
s=1

(1−α)πs
1−αρs

)2
(γ#)

2
.

(41)

Step 3. When the weights are as in (15), the inequality in (41) reduces to(
1−αρn
1−βαρn

)2
− 2tn(zn)

2(1−αρn)
2

(πn)
2

(∑N
l=1

πl
1−βαρl

)∑N
s=1

1−αρs
1−βαρs

∂λs
∂zn

>
(1−α)2

(∑N
l=1

πl
1−βαρl

)2

(
πθ+

∑N
s=1

(1−α)πs
1−αρs

)2
(γ#)

2
.

(42)

Furthermore,
∂λs

∂zn
=

[
∂λs

∂πn
+

∂λs

∂ρn

1

ηn

]
∂πn
∂zn

,

with
∂πn
∂zn

=
π2
n

tn (zn)
2 ,

∂λs

∂πn
=



−
πs

1−βαρs
1

1−βαρn[∑N
l=1

πl
1−βαρl

]2 if s ̸= n,

1
1−βαρn∑N
l=1

πl
1−βαρl

−
πn

(1−βαρn)2[∑N
l=1

πl
1−βαρl

]2 if s = n,

and

∂λs

∂ρn
=



−
πs

1−βαρs

πnαβ

(1−βαρn)2[∑N
l=1

πl
1−βαρl

]2 if s ̸= n,

πnβα

(1−βαρn)2∑N
l=1

πl
1−βαρl

−
πs

1−βαρs

πnαβ

(1−βαρn)2[∑N
l=1

πl
1−βαρl

]2 if s = n.
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Using the above expressions along with 1
ηn

= ρn
πn

, I can rewrite the inequality in (42) as(
1−αρn
1−βαρn

)2
− 2 (1− αρn)

2
(∑N

l=1
πl

1−βαρl

)∑N
s=1

{
1−αρs
1−βαρs

[
∂λs
∂πn

+ ∂λs
∂ρn

ρn
πn

]}

>
(1−α)2

(∑N
l=1

πl
1−βαρl

)2

(
πθ+

∑N
s=1

(1−α)πs
1−αρs

)2
(γ#)

2
,

(43)

with

N∑
s=1

{
1− αρs
1− βαρs

[
∂λs

∂πn
+

∂λs

∂ρn

ρn
πn

]}
=

1−αρn
(1−βαρn)

3∑N
l=1

πl
1−βαρl

− 1

(1− βαρn)2

∑N
s=1

πs(1−αρs)

(1−βαρs)
2(∑N

l=1
πl

1−βαρl

)2 .
After some simplifications, the inequality in (43) thus reduces to

2
(

1−αρn
1−βαρn

)
+

(1−α)2
(∑N

l=1
πl

1−βαρl

)2

(
πθ+

∑N
s=1

(1−α)πs
1−αρs

)2
(γ#)

2

1(
1−αρn
1−βαρn

)2 < 1 + 2

∑N
s=1

πs(1−αρs)

(1−βαρs)
2∑N

l=1
πl

1−βαρl

. (44)

Now observe that the left-hand side of (44) is strictly convex in
(

1−αρn
1−βαρn

)
. Furthermore,

(
1−αρn
1−βαρn

)
is decreasing in ρn. This means that there exist ρ′, ρ′′ ∈ [0, 1] with 0 ≤ ρ′ ≤ ρ′′ ≤ 1 such that the

inequality in (44) holds if and only if ρn ∈ [ρ′, ρ′′] whereas the opposite inequality holds if and only

if ρn /∈ [ρ′, ρ′′].

Step 4. Observe that, when β = 0, i.e., when the statistics X coincide with the projection of θ

on x, the inequality in (44) reduces to

2α(ρn − ρ0X) >

 πθ +
(1−α)π0

X

1−αρ0X

πθ +
∑N

s=1
(1−α)πs

1−αρs

2 (
1− αρ0X

)2
(1− αρn)

2 − 1, (45)

with π0
X ≡

∑N
s=1 πs and ρ0X ≡

∑N
s=1

πs

π0
X
ρs. Then note that the function defined by

f(ρ) ≡ 1

1− αρ

is convex. Hence, by Jensen inequality,

N∑
s=1

πs
π0
X

1

1− αρs
>

1

1− αρ0X
,

which implies that  πθ +
(1−α)π0

X

1−αρ0X

πθ +
∑N

s=1
(1−α)πs

1−αρs

2

< 1.

If follows that the inequality in (45) always holds for sources for which |ρn − ρ0X | is small, implying

that ρ′ < ρ0X < ρ′′. Also note that, when α = 1, the inequality in (45) is reversed for ρn close to 1. By
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continuity, ρ′′ < 1 for α large enough. Likewise, one can verify that, for α large enough, the inequality

in (45) can be reversed when evaluated at ρn close to zero. This means that 0 < ρ′ < ρ′′ < 1 for α

large enough and β small enough. Q.E.D.

Proof of Corollary 3. The result follows from Proposition 4 along with the fact that, when

the attention cost depends only on total attention, then, under perfect recall, there is an increasing

relationship between the exogenous transparency of the sources and their endogenous publicity.

Namely, if tn > tn′ , then ρn(ẑ) ≥ ρn′(ẑ). To see this, use the results in the proof of Corollary 1 to

see that

ẑn =
ηn√

tn(1− α)
max

{
T̂ − 1√

tn
; 0

}
(46)

where

T̂ ≡ (1− α)

√
|ukk|κ21
2c′(Ẑ)

1

M̂1

, (47)

with

Ẑ ≡
N∑
l=1

ẑl, (48)

and

M̂1 ≡ πθ +

N∑
l=1

(1− α)ηlẑltl
(1− α)ẑltl + ηl

. (49)

Clearly, for all sources for which tn ≤ 1/T̂ 2, ẑn = 0 and hence ρn(ẑ) = 0. On the other hand, for all

sources for which tn > 1/T̂ 2,

ρn(ẑ) =
ẑnts

ẑntn + ηn
=

√
tnT̂ − 1

√
tnT̂ − α

which is increasing in tn. Q.E.D.

Proof of Proposition 5. Use (39) to observe that, in any equilibrium with bounded recall, for

any source n for which z#n > 0, the following condition must hold

|ukk|
(
κ1γ

#
)2

(
λ#
n

)2
2tn

(
z#n
)2 −

N∑
s=1

(1− αρ#s )λ
#
s

π#
s

∂λ#
s

∂zn

 = C ′
n(z

#), (50)

where γ#, π#
s , ρ#s , λ

#
s are shortcuts for γ#(z#), πs(z

#), ρs(z
#), and λs(z

#), respectively.

When the weights in the statistics Xj are those in (15) and the cost of attention is given by

C(z) = c(
∑N

l=1 zl), the above condition reduces to

|ukk|
(
κ1γ

#
)2


(
π#
n

1−αβρ#n

)2
(∑N

l=1
π#
l

1−αβρ#l

)2

2tn

(
z#n
)2 − 1(∑N

l=1
π#
l

1−αβρ#l

) [ N∑
s=1

1− αρ#s

1− αβρ#s

∂λ#
s

∂zn

] = c′(Z#),

(51)
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where Z# ≡
∑N

l=1 z
#
l . Furthermore, as shown in the proof of Proposition 4, when the weights in Xj

are those in (15),

∂λs

∂zn
=

[
∂λs

∂πn
+

∂λs

∂ρn

1

ηn

]
∂πn
∂zn

=

[
∂λs

∂πn
+

∂λs

∂ρn

ρn
πn

]
π2
n

tn (zn)
2

and
N∑
s=1

{
1− αρs
1− βαρs

[
∂λs

∂πn
+

∂λs

∂ρn

ρn
πn

]}
=

1−αρn
(1−βαρn)

3∑N
l=1

πl
1−βαρl

− 1

(1− βαρn)2

∑N
s=1

πs(1−αρs)

(1−βαρs)
2(∑N

l=1
πl

1−βαρl

)2 .
It follows that Condition (51) can be rewritten as

1

2
− 1− αρ#n

1− βαρ#n
+

∑N
s=1

π#
s (1−αρ#s )(
1−βαρ#s

)2

∑N
l=1

π#
l

1−βαρ#l

=

c′(Z#)

(∑N
l=1

π#
l

1−αβρ#l

)2

tn

(
z#n
)2

(1− βαρ#n )2

|ukk| (κ1γ#)2
(
π#
n

)2 .

In the special case in which β = 0, the above condition reduces to

1

2
+ α

(
ρ#n − ρ#X

)
=

c′(Z#)
(
π#
X

)2
tn

(
z#n
)2

|ukk| (κ1γ#)2
(
π#
n

)2 , (52)

from which I obtain that

z#n =

√√√√√ |ukk| (κ1γ#)2

c′(Z#)
(
π#
X

)2
(
π#
n

)
√
tn

√
1

2
+ α

(
ρ#n − ρ#X

)
.

Using

ρ#n =
z#n tn

z#n tn + ηn
and π#

n ≡ ηnz
#
n tn

z#n tn + ηn
,

I conclude that, for any source n that receives strictly positive attention in the equilibrium with

bounded recall,

z#n =
ηn√
tn

{
A#

√
B# + αρ#n − 1√

tn

}
,

where

A# ≡

√√√√√ |ukk| (κ1γ#)2

c′(Z#)
(
π#
X

)2 and B# ≡ 1

2
− αρ#X .

Furthermore, for any source that receives no attention in the equilibrium with bounded recall, the

following condition must hold

ukk|
(
κ1γ

#
)2

(
λ#
n

)2
2tn

(
z#n
)2 −

N∑
s=1

(1− αρ#s )λ
#
s

π#
s

∂λ#
s

∂zn

 ≤ C ′
n(z

#),
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which, using the derivations above, reduces to

c′(Z#) ≥
|ukk|

(
κ1γ

#
)2(

π#
X

)2 tnB
#.

Next, use (46) to observe that, when C(z) = c(
∑N

l=1 zl), in the equilibrium with perfect recall,

for any source n,

ẑn =
ηn√

tn(1− α)
max

{
T̂ − 1√

tn
; 0

}
where

T̂ ≡ (1− α)

√
|ukk| (κ1)2

2c′(Ẑ)

1

M1(ẑ)

with Ẑ ≡
∑N

l=1 ẑl and

M1(ẑ) ≡ πθ +
N∑
l=1

(1− α)ηlẑltl
(1− α)ẑltl + ηl

.

From the above observations, I conclude that

z#n > ẑn ⇒ A#

√
B# + αρ#n +

α

1− α

1√
tn

>
T̂

1− α
and (53)

0 < z#n < ẑn ⇒ A#

√
B# + αρ#n +

α

1− α

1√
tn

<
T̂

1− α
.

Finally, use the definition of the publicity of a source to observe that, for any source n for which

z#n > 0,

ρ#n = 1− 1

A#
√
tn

√
B# + αρ#n

. (54)

That is, the publicity ρ#n of any source that receives some attention in the equilibrium with bounded

recall must solve the following equation:[
1− ρ#n

]√
B# + αρ#n =

1

A#
√
tn
. (55)

Next observe that the left-hand-side of Condition (55) is decreasing in ρ when α ≤ 0. In this case,

Condition (55) implicitly defines an increasing function ρ#(t) between the transparency t and the

publicity ρ# of those sources that receive strictly positive attention in the equilibrium with bounded

recall. The same is true when α > 0. To see this, fix B#, let

ρ# ≡

{
0 if B# ≥ 0

−B#

α if B# < 0

and note that the function h(ρ) ≡ (1− ρ)
√
B# + αρ defined by the left-hand-side of Condition (55)

(a) is defined over [ρ#, 1], (b) is non-negative, (c) satisfies h(1) = 0 and h(ρ#) = 0 when ρ# > 0
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and h(ρ#) > 0 when ρ# = 0, and (d) is concave. The above properties imply that h(·) is either

decreasing over [ρ#, 1], or it inverted U-shaped with a stationary point ρs ∈ (ρ#, 1). In this case,

Condition (55) may admit two solutions. However, when this is the case, it is always the largest one

that identifies the equilibrium publicity of the source. To see this, observe that, when h is decreasing

over [ρ#, 1], the unique solution to the equation defined by Condition (55) is such that h(ρ) > 1
A#

√
tn

for ρ < ρ#n and h(ρ) < 1
A#

√
tn

for ρ > ρ#n . This means that, for the agent’s payoff to reach at a global

maximum at zn = z#n or, equivalently, for ρ#n to be the equilibrium publicity of the source, it must

be that h is locally decreasing at the equilibrium level ρ#n .

I conclude that, irrespective of the sign of α, Condition (55) identifies an increasing relationship

ρ#(·) between the endogenous publicity ρ#n and the transparency tn of the sources that receive strictly

positive attention in the equilibrium with bounded recall, with the relationship ρ#(·) given by the

highest solution to the equation in Condition (55).

Now let [t,+∞) denote the set of transparency levels for which the equation in Condition (55)

admits a solution. Then observe that, over [t,+∞), the highest solution to the equation in Condition

(55) identifies a differentiable function with

∂ρ#(t)

∂t
=

[
B# + αρ#(t)

] [
1− ρ#(t)

]
t {2 [B# + αρ#(t)]− [1− ρ#(t)]α}

.

Then, for ant t ∈ [t,+∞), let Λ(t) be the function defined by

Λ(t) = A#
√

B# + αρ#(t) +
α

1− α

1√
t
=

1

[1− ρ#(t)]
√
t
+

α

1− α

1√
t

(56)

with ρ#(t) denoting the increasing function implicitly defined by the highest solution to the equation

in Condition (55). The function Λ(·) is differentiable over [t,+∞) with

Λ′(t) =
1

[1− ρ#(t)]
2
t

{
∂ρ#(t)

∂t

√
t− 1− ρ#(t)

2
√
t

}
− α

(1− α)2t
√
t

=
α

2t
√
t

{
1

2B# − α+ 3αρ#(t)
− 1

1− α

}
.

Note that, irrespective of the sign of α, because ρ#(t) is non-decreasing, Λ(t) is quasi-concave,

meaning that either Λ′(t) is of constant sign, or there exists t# such that Λ′(t) > 0 for t < t#

and Λ′(t) < 0 if t > t#. The quasi-concavity of Λ(t) is clearly preserved when the function Λ(t) is

restricted to the set
{
tn : n = 1, ..., N and z#n > 0

}
. Because Λ(t) coincides with the left-hand side

of the inequalities in (53) that are responsible for whether z#n > ẑn or 0 < z#n < ẑn, I then conclude

that, among those sources that receive attention under bounded recall, one of the following must be

true: (a) z#n > ẑn for all n; (b) z#n < ẑn for all n; (c) there exists t1 such that z#n > ẑn for those n

for which tn < t1 and z#n < ẑn for those n for which tn > t1; (d) there exists t2 such that z#n > ẑn for

those n for which tn > t2 and z#n < ẑn for those n for which tn < t2; (e) there exist thresholds t1 and

t2 such that z#n > ẑn for those n for which tn ∈ (t1, t2) and z#n < ẑn for those n for which tn /∈ (t1, t2).
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All these various cases can be summarized concisely by saying that there exist thresholds t′ and t′′

such that the properties in the proposition hold. Q.E.D.

Proof of Proposition 6. Fix the equilibrium allocation of attention z#. Using (18) and (22), I

have that, starting from z#, the private and the social marginal benefits of increasing the attention

to source n are given by, respectively,

PBn(z
#) = −|ukk|

2

∂

∂zn
V ar

[
k −K | z#, k#(·; z#)

]
− |ukk|

2
(1− α)

∂

∂zn
V ar

[
K − κ | z#, k#(·; z#)

]
and

SBn(z
#) = −|ukk + uσσ|

2

∂

∂zn
V ar

[
k −K | z#, k∗∗(·; z#)

]
− |ukk + uσσ|

2
(1− α∗)

∂

∂zn
V ar

[
K − κ | z#, k∗∗(·; z#)

]
where k#(·; z#) and k∗∗(·; z#) are, respectively, the equilibrium and the efficient strategy, with

bounded recall.

Next, use the results in the Proof of Proposition 4, along with the fact that tszs = πs/(1 − ρs)

and ηs = πs/ρs, to observe that

∂

∂zn
V ar

[
k −K | z#, k#(·; z#)

]
=
(
κ1γ

#(z#)
)2  N∑

s=1

2
(
1− ρs(z

#)
)
λs(z

#)

πs(z#)

∂λs(z
#)

∂zn
−
(
λn(z

#)
)2

tn

(
z#n
)2


and

∂

∂zn
var

[
K − κ | z#, k#(·; z#)

]
=
(
κ1γ

#(z#)
)2 N∑

s=1

2ρs(z
#)λs(z

#)

πs(z#)

∂λs(z
#)

∂zn
.

Similarly,

∂

∂zn
V ar

[
k −K | z#, k∗∗(·; z#)

]
=
(
κ∗1γ

∗∗(z#)
)2  N∑

s=1

2
(
1− ρs(z

#)
)
λs(z

#)

πs(z#)

∂λs(z
#)

∂zn
−
(
λn(z

#)
)2

tn

(
z#n
)2


and

∂

∂zn
var

[
K − κ | z#, k∗∗(·; z#)

]
=
(
κ∗1γ

∗∗(z#)
)2 N∑

s=1

2ρs(z
#)λs(z

#)

πs(z#)

∂λs(z
#)

∂zn
.

Note that the last two expressions are obtained by recognizing that the efficient strategy k∗∗(·; z#)
has the same structure as the equilibrium strategy k#(·; z#), with (κ∗0, κ

∗
1) replacing (κ0, κ1), and

γ∗∗ replacing γ#. Hence,

PBn(z
#) = |ukk|

(
κ1γ

#(z#)
)2{(λn(z#))

2

2tn
(
z#n

)2 −
∑N

s=1
(1−αρs(z#))λs(z#)

πs(z#)
∂λs(z#)

∂zn

}
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and

SBn(z
#) = |ukk + uσσ|

(
κ∗1γ

∗∗(z#)
)2{(λn(z#))

2

2tn
(
z#n

)2 −
∑N

s=1
(1−α∗ρs(z#))λs(z#)

πs(z#)
∂λs(z#)

∂zn

}
.

In the proof of Proposition 5, I also established that, when the weights in the statistics Xj are those

in (15),

(λn(z#))
2

2tn
(
z#n

)2 −
∑N

s=1
(1−αρs(z#))λs(z#)

πs(z#)
∂λs(z#)

∂zn
=

(πn(z#))
2


1
2
− 1−αρn(z#)

1−βαρn(z#)
+

∑N
s=1

πs(z
#)(1−αρs(z

#))
(1−βαρs(z#))

2

∑N
l=1

πl(z
#)

1−βαρl(z
#)

(∑N
l=1

πl(z
#)

1−βαρl(z
#)

)2

tn
(
z#n

)2
(1−βαρn(z#))

2
.

When β = 0, the above expression reduces to(
πn(z

#)
)2 [1

2 + α
(
ρn(z

#)− ρX(z#)
)]

(πX(z#))
2
tn

(
z#n
)2 .

I thus have that

PBn(z
#) = |ukk|

(
κ1γ

#(z#)
)2{(πn(z#))

2
[ 12+α(ρn(z#)−ρX(z#))]

(πX(z#))
2
tn

(
z#n

)2

}
.

Similarly,

SBn(z
#) = |ukk + uσσ|

(
κ∗1γ

∗∗(z#)
)2{(πn(z#))

2
[ 12+α∗(ρn(z#)−ρX(z#))]

(πX(z#))
2
tn

(
z#n

)2

}
.

Note that 1
2 + α

(
ρn(z

#)− ρX(z#)
)
is positive as shown in (52).

Part (a). Consider economies in which κ1 = κ∗1 and α = α∗. Because the term in curly bracket

is positive and γ#(z#) = γ∗∗(z#), I conclude that, starting from z#, forcing the agents to pay more

attention to a source n that receives strictly positive attention in equilibrium (i.e., for which z#n > 0)

increases welfare if uσσ < 0 and decreases if if uσσ > 0.

Part (b). Next, consider economies in which uσσ = 0, and α = α∗. Again, because γ#(z#) =

γ∗∗(z#), I conclude that, starting from z#, forcing the agents to pay more attention to a source n

that receives strictly positive attention in equilibrium (i.e., for which z#n > 0) increases welfare if

|κ∗1| > |κ1| and decreases it if |κ∗1| < |κ1|.
Part (c). Finally, consider economies in which κ1 = κ∗1 and uσσ = 0. In this case,

SBn(z
#)− PBn(z

#)
sgn
= Q(z#, α, α∗) +

[
α∗
(
γ∗∗(z#)

)2
− α

(
γ#(z#)

)2]
ρn(z

#),

where

Q(z#, α, α∗) ≡
(
γ∗∗(z#)

)2 [1
2
− α∗ρX(z#)

]
−
(
γ#(z#)

)2 [1
2
− αρX(z#)

]
.
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The result in part (c) in the proposition then follows by observing that (i) Q is the same across all

sources of information, (ii) when α
(
γ#(z#)

)2
> α∗ (γ∗∗(z#))2, SBn(z

#)−PBn(z
#) is decreasing in

ρn, whereas the opposite is true when α
(
γ#(z#)

)2
< α∗ (γ∗∗(z#))2. Finally note that, when πθ → 0,

γ#(z#), γ∗∗(z#) → 1, in which case Q → (α− α∗) ρX(z#), implying that ρ̄ → ρX(z#). Q.E.D.
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