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Abstract

We study the design of procurement contracts in environments where the buyer faces

uncertainty over the product’s demand and the seller’s cost. The buyer has a belief but

does not fully trust it. They first identify all worst-case optimal mechanisms, which

deliver the largest payoff guarantee over a set of plausible demand and cost functions.

They then select the mechanism that maximizes their expected payoff (under their

beliefs) over such a restricted set. We show that robustness calls for an increase in the

quantity procured from the least efficient sellers and a decrease in the quantity procured

from the sellers with an intermediate cost (relative to the optimal mechanisms in the

absence of any uncertainty). The analysis also identifies conditions under which price

regulation is superior to quantity regulation, and draws a few policy implications.
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1 Introduction

Hoping for the best, prepared for the worst, and unsurprised by anything in between.

– Maya Angelou, I Know Why the Caged Bird Sings

Procurement plays a central role in economics. Governments rely on sophisticated con-

tracts for the purchase of products and services for their citizens, and use regulation to

influence the terms offered by firms with market power to consumers. Likewise, in bilateral

trade, consumers and firms rely on customized contracts for the purchase of major assets,

ranging from real estate to various inputs used in the production of final goods.

A major difficulty in the design of procurement contracts is the information held privately

by the providers of the relevant goods and services. A second difficulty is that the social or

private value of procuring the good may not be known at the contracting stage. The typical

approach to the design of contracts in these situations is based on a subjective expected

utility model whereby the buyer, say the government, has a belief over the seller’s cost and

the value of the good to consumers (equivalently, the product’s aggregate inverse demand)

and designs a mechanism that maximizes its expected payoff (under such a belief) over all

mechanisms that are individually rational and incentive compatible for the seller.

In many situations of interest, though, the buyer may not trust their beliefs and seek for a

more robust approach. In this paper, we investigate properties of robustly optimal contracts.

For concreteness, we focus on the case of public procurement but the results equally apply

to private procurement. The government (i.e., the buyer) first seeks to protect itself against

the possibility that its belief is wrong. It does so by identifying all mechanisms that are

worst-case optimal, namely for which the “welfare guarantee” is maximal. A mechanism’s

guarantee is the lowest welfare (a combination of consumer and producer’s surplus) across

all combinations of consumers’ demand and seller’s cost. The government then maximizes

expected welfare under its original belief over the short list of all worst-case-optimal mech-

anisms. This lexicographic approach either originates in the government’s attitude towards

uncertainty or in hierarchical constraints that force the relevant agency in charge of designing

the mechanism to obtain approval from a supervising entity whose criteria are conservative

in that it authorizes only mechanisms for which the guarantee is the highest.
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Our first result shows that, when uncertainty is only over the seller’s cost, and the

government’s belief satisfies familiar regularity conditions, the optimal mechanism is Baron-

Myerson-with-quantity-floor. In a highly influential paper that paved the way to an entire

literature, Baron and Myerson (1982) characterize the optimal procurement mechanism when

the government fully trusts its belief (i.e., under a familiar subjective-expected-utility objec-

tive — in short SEU). In this mechanism, each type of the seller provides a quantity distorted

downward relative to the efficient level (for example, by applying a markup to the marginal

cost), with the distortion vanishing for the most efficient type (for which the cost is the

lowest). We show that a government seeking robustness should offer the same schedule of

quantity choices but putting a floor that guarantees that any type supplies at least as much

as the efficient output for the least efficient type (the one whose cost is the highest). The floor

is necessary to protect the government against the possibility that Nature selects a high-cost

firm with a higher probability than the one perceived by the government. Downward distor-

tions in output under SEU serve to reduce rents for more efficient types. The value of such

distortions is significantly reduced when the government is concerned that her belief could be

wrong. As a result, robustness calls for an upward revision of the quantity procured from the

least efficient types. Hence, contrary to what emerges under the familiar SEU benchmark,

the optimal mechanism features efficiency at both the top and the bottom of the conjectured

cost distribution. Importantly, while this mechanism, by design, is worst-case-optimal, it

differs from other worst-case optimal mechanisms that naturally arise when the government

only seeks worst-case optimality. For example, a singleton (degenerate) menu specifying a

quantity equal to the efficient level for the least efficient type and a transfer equal to the

cost for the least efficient type of supplying such a quantity is worst-case optimal but not

robustly optimal, according to our criterion. In fact, it is dominated by the Baron-Myerson-

with-quantity-floor mechanism: It delivers a lower welfare for all costs, strictly for a subset

of the relevant range.

The optimality of the Baron-Myerson-with-quantity-floor mechanism extends to certain

environments in which the government faces uncertainty also over consumers’ demand. This

is the case, for example, when the government’s conjecture is that the demand curve is the

“smallest” (in a sense made precise below) within the set of demands deemed plausible. More

generally, we characterize necessary and sufficient conditions for the Baron-Myerson-with-

quantity-floor mechanism to remain robustly optimal under demand uncertainty and then
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identify qualitative properties of robustly-optimal mechanisms when the Baron-Myerson-

with-quantity-floor is not worst-case optimal. When this is the case, we show that any

robustly optimal mechanism has a quantity floor that is binding over the same interval

of cost levels for which the floor is binding under the Baron-Myerson-with-quantity-floor

mechanism. However, robustness calls for a downward adjustment in the quantity procured

from firms with an intermediate cost (vis-a-vis the SEU optimum, i.e., the original Baron-

Myerson mechanism). In the special case of private procurement (alternatively, of public

procurement but where the government maximizes a welfare function assigning zero weight

to producer surplus), the robustly optimal mechanism procures the same output as the

Baron-Myerson-with-quantity-floor mechanism from low- and high-cost firms and a strictly

smaller amount for intermediate costs.

The intuition for these properties is the following. When the firm’s cost is the highest,

robustness calls for procuring a level of output equal to the efficient level when demand is

the lowest and cost is the highest. Monotonicity of the output schedule (which is necessary

for incentives) then requires that the government procures the same level of output also

from an entire interval of costs around the highest level. For costs for which the floor is not

binding, the reason for downward adjustments vis-a-vis the SEU-optimal benchmark is that

procuring the SEU-optimal output (as prescribed by the Baron-Myerson-with-quantity-floor

mechanism) would lead to a welfare level below the welfare guarantee if demand turns out

to be lower than the one conjectured by the government. Without any downward correction,

the Baron-Myerson-with-quantity-floor mechanism is thus not worst-case optimal. For very

low costs, however, there is no need for any output adjustment. When cost is low, welfare

when procuring the SEU-optimal level of output exceeds the guarantee irrespective of the

realized demand, making any adjustment unnecessary.

Next, we consider more general forms of cost uncertainty, captured by the set of distri-

butions from which the firm’s marginal cost is drawn. It turns out that only the “smallest”

distribution in this set (along with the distribution conjectured by the government) matter

in the design of the optimal mechanism. In the benchmark case, the smallest distribution is

a Dirac measure assigning probability one to the least efficient type (the one with the largest

cost). When, instead, the smallest distribution has full support, the unique robustly optimal

mechanism is the Baron-Myerson SEU mechanism for the lowest demand and the smallest

distribution. In other words, the government disregards its conjecture and offers the same
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mechanism it would have offered in a world without uncertainty had its conjecture been

the most pessimistic one. An immediate implication of this result is that, when uncertainty

is only over the demand, the unique robustly optimal mechanism is the same as in Baron

and Myerson, with no floor but with the government’s conjecture over consumer demand

replaced by the lowest demand in the feasible set.

More generally, when the support of the smallest distribution is a strict subset (of positive

Lebesgue measure) of the support of the distribution conjectured by the government, possibly

with an atom at the top of the distribution (i.e., at the least efficient type), the robustly

optimal quantity schedule is a bridge between two different Baron-Myerson schedules, the one

under the government’s conjecture (for low costs) and the one under the lowest distribution

(for high costs). In this case, robustness calls for efficiency at the top (the lowest cost) and

the middle (intermediate cost).

Equipped with these results, we then investigate how the robustly-optimal mechanism

changes when uncertainty changes. We capture these changes by considering alternative

sets of demand and cost functions that the government deems possible. We first consider

changes in cost uncertainty and then changes in demand uncertainty. In either case, we

hold the government’s conjecture fixed and investigate how the robustly optimal mechanism

changes when the set containing the government’s conjecture changes.

Consider first cost uncertainty. We show that the output the government procures need

not be monotone in the smallest distribution the government deems possible. We illustrate

this possibility by considering a sequence of such distributions converging to the Dirac mea-

sure at the least efficient type. Along the sequence, we hold fixed the interval of cost levels

that are feasible and characterize the robustly optimal mechanism as a function of the small-

est cost distributions. When the support of the smallest distribution is the full range of

feasible cost levels and the distribution “shifts to the right” in the hazard-rate order, i.e.,

assigns more measure to high cost levels, the government procures more output from low-cost

firms. This is because such changes make the government less concerned with rent extraction

and more concerned with efficiency. However, once the support of the smallest distribution

starts shrinking by excluding an interval of low cost levels, the government responds by

procuring less output from low-cost firms. This is because, when the support of the smallest

distribution does not contain the most efficient types, the government can afford to procure

the quantity that is optimal under its conjecture from the most efficient types levering the
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fact that welfare under such a quantity exceeds the guarantee even if Nature selects these

types (by picking a distribution above the smallest). As a result, the government “follows

its instincts” and procures the SEU-optimal level of output from low-cost firms.

Next, consider variations in demand uncertainty. We capture these variations by consider-

ing changes in the “smallest” demand within the set containing the government’s conjecture.

Again, the reason for focusing on the lowest demand is that only this demand, together with

the government’s conjecture, play a role in the design of the robustly optimal mechanism.

We show that, as the lowest demand increases, the government procures more output from

high-cost firms. This is because the quantity floor, which is the efficient output when cost is

the highest and demand is the lowest, increases as the lowest demand increases. Furthermore,

the interval of intermediate cost levels for which robustness calls for a downward adjustment

vis-a-vis the quantity that is optimal under the government’s conjecture (the one specified by

the SEU-optimal mechanism) shrinks as the smallest demand increases. We conjecture that,

as the distance between the lowest demand and the government’s conjecture diminishes, the

entire quantity schedule moves upwards (the quantity asked to each type weakly increases,

with the inequality strict for some types); however, we did not prove the result.

Finally, we consider a different class of mechanisms which we call price mechanisms.

In these mechanisms, the government sets the price for each type and instructs the firm

to supply any quantity demanded by consumers at that price. In a price mechanism, the

quantity procured is responsive to the changes in demand, and this responsiveness can help in

safeguarding the government’s welfare in case the conjecture turns out to be wrong. However,

these mechanisms have the potential downside of exposing the firm to demand uncertainty.

We follow a robust approach whereby the government restricts attention to price mechanisms

that are individually rational and incentive compatible no matter the beliefs that the firm

may have over the demand and no matter the firm’s ambiguity aversion. We do so by

considering transfers to the firm that depend on the realized demand and restricting attention

to mechanisms that are ex-post individually rational and incentive compatible. Under such

mechanisms, the firm maximizes its profits by setting the price asked by the government, no

matter its beliefs over the demand and its attitude towards uncertainty.

We then show that robustly-optimal price mechanisms have a simple structure. They

consist in fixing a markup for each type that coincides with the SEU-optimal one (under

the government’s conjecture) but with a cap equal to the largest possible cost (this cap is
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binding under the SEU-optimal mechanism). The cap is necessary to protect the government

against the possibility that Nature selects the highest-cost firm with a high probability.

We then investigate conditions under which price mechanisms do better than their quan-

tity counterparts. Under SEU, price and quantity regulation are equivalent. This is because

any incentive-compatible-and-individually-rational quantity schedule can be implemented by

offering the firm a menu of prices appropriately designed to induce each type to supply the

same output as under quantity regulation. The two classes of mechanisms are also equiv-

alent under worst-case optimality: the largest welfare guarantee is the same for price and

quantity mechanisms. However, that the guarantee is the same does not mean that the max-

imal welfare under the government’s conjecture is the same when optimizing over the short

list of worst-case-optimal mechanisms. We show that quantity regulation dominates when

the Baron-Myerson-with-quantity-floor is robustly optimal (strictly so when the demand the

government expects at a price equal to the largest cost exceeds the one under the lowest fea-

sible demand curve). This is because, in this case, the robustly optimal price and quantity

mechanisms yield the same output when cost is low but price regulation results in a larger

quantity procured from high-cost firms. The government over-procures (relative to the SEU-

optimal benchmark) from these firms but more so under price regulation. When, instead,

the demand the government expects from setting a price equal to the largest marginal cost

level is the same as under the lowest feasible demand, price regulation dominates (strictly

so when the Baron-Myerson-with-quantity-floor mechanism is not robustly optimal). This

is because, in this case, both price and quantity regulation implement the same quantity

floor but quantity regulation requires a downward quantity adjustment (relative to the SEU-

optimal benchmark) for intermediate costs that price regulation does not necessitate. Under

price regulation, the quantity supplied by intermediate-cost firms is adjusted downwards

when Nature selects the lowest possible demand, which protects the government in case its

conjecture is wrong. However, if the government’s conjecture turns out to be correct, the

quantity procured from intermediate types under price regulation is the SEU one, which is

optimal under the conjecture. This is not the case under quantity regulation; the quantity

procured from intermediate-cost firms is downward adjusted relative to the SEU bench-

mark to protect the government against the possibility that the true demand is below the

conjectured one. As a result, in this case, price regulation dominates.

Organization. The rest of the paper is organized as follows. We wrap up the intro-
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duction below with a brief discussion of the most pertinent literature. Section 2 describes

the environment and the government’s problem for quantity regulation. Section 3 character-

izes the short list of worst-case-optimal quantity mechanisms. Section 4 identifies properties

of robustly-optimal quantity mechanisms. Section 5 considers the implications of general

forms of cost uncertainty. Section 6 studies the implications of changes in cost and demand

uncertainty, under quantity regulation. Section 7 studies price mechanisms and identifies

conditions under which price regulation dominates (alternatively, is dominated by) quantity

regulation. Section 8 concludes. Proofs omitted in the main text are in the Appendix at the

end of the document.

Related literature. A vast body of work in information economics investigates prop-

erties of optimal mechanisms in settings where agents possess private information about rel-

evant aspects of the environment (preferences, costs, technology, productivity). The closest

papers in this literature to ours (given the focus on procurement and regulation) are Baron

and Myerson (1982) and Laffont and Tirole (1986). See also Armstrong (1999), Amador

and Bagwell (2022), Armstrong and Sappington (2004), Armstrong and Sappington (2006),

Biglaiser and Ma (1995), Dana (1993), Lewis and Sappington (1988a), Lewis and Sappington

(1988b), and Yang and Zentefis (2023) for various analyses of how optimal mechanisms re-

flect different knowledge by the designer of the primitives of the environment. These papers

look at different combinations of asymmetric information on demand and firms’ costs. They

assume the designer has a belief over the part of the environment it does not observe and

fully trust the belief (what we refer to as the SEU-optimal benchmark).

The last few years, instead, have witnessed interest in relaxing the key assumptions be-

hind SEU analysis, with the intent of providing a more robust approach to contract design

(see, for example, Carroll (2017) for an analysis of robustness in the design of screening

mechanisms when the designer lacks information about the correlation in the distribution

from which consumers’ preferences for different goods are drawn; see also Carroll (2019)

for an overview of robustness in contract design). The closest papers in this literature to

ours are Garrett (2014), Bergemann et al. (2023), and Guo and Shmaya (2024). The first

paper identifies properties of optimal menus of contracts when the designer lacks informa-

tion about the firm’s disutility from reducing its production cost in the Laffont and Tirole

(1986)’s model. The second paper looks at contract design when the designer maximizes

the worst-case competitive ratio (the ratio between the designer’s payoff under the selected
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mechanism in any given environment and the designer’s payoff under the optimal mecha-

nism for the realized environment). The third paper looks at min-max regret. Under our

approach, instead, the designer maximizes her payoff under a conjecture but over a short list

of mechanisms that are worst-case-optimal. In this respect, our approach is identical to the

one in Dworczak and Pavan (2022). That paper focuses on information design in a setting

without transfers and private information. This paper, instead, focuses on procurement and

regulation in a setting where the designer possesses no private information, must screen a

privately-informed agent, and uses transfers to incentivize the agent.

The analysis is also related to the work on model-mis-specification and robust control.

See Cerreia Vioglio et al. (2022) for a discussion of the underpinnings of this approach and

some of its key contributions. What we call a conjecture in our analysis can be interpreted

as the designer’s model in the language of Cerreia Vioglio et al. (2022). The designer does

not trust this model and seeks worst-case optimality against a set of alternative models

perceived as plausible. The key difference is that in Cerreia Vioglio et al. (2022) the designer

stops after it identifies a worst-case optimal policy whereas under our approach the designer

goes back to its original model and optimizes (under this model) over the set of worst-case

optimal policies.

Importantly, none of the predictions about the structure of robustly optimal mechanisms

identified in the present paper have counterparts in the works mentioned above.

2 Model

2.1 Environment

A (local or federal) government, in the role of a buyer, procures a product, or service, for

its citizens. The good is supplied by a monopolistic seller who can provide any quantity

q ∈ [0, q̄] of the good, with q̄ ∈ R++ large but finite.1 The cost to the seller of supplying any

quantity q ≥ 0 is θq, where θ is the marginal cost.

The government faces uncertainty about the social value of procuring q units of the good

1As usual, the assumption that q is bounded is made to validate a certain envelope-theorem representation

of the equilibrium payoffs.
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for its citizens. The government has a conjecture about this value, given by the increasing,

strictly concave, and differentiable function V ⋆ : R+ → R+, with derivative at any q given

by P ⋆(q).2 In other words, the government believes that the gross consumer surplus from

procuring q units of the good is equal to

V ⋆(q) =

ˆ q

0

P ⋆(s)ds.

Importantly, the government is not sure about its conjecture and is concerned that the true

value may be determined by a different function V satisfying

V (q) =

ˆ q

0

P (s)ds (1)

for all q ≥ 0. The government believes that the set of possible functions describing gross

consumer surplus is V , with each V ∈ V strictly increasing, strictly concave, and differen-

tiable, and with P denoting the set of corresponding inverse demand functions (that is, for

each V ∈ V , P ∈ P is the inverse demand function corresponding to V , with the two linked

by the relationship in (1)). The sets P and V are such that they contain the conjectures:

P ⋆ ∈ P and V ⋆ ∈ V . We assume that there exists an (inverse) demand function P such that,

for any q ≥ 0 and any P ∈ P , P (q) ≥ P (q). The function P is thus the “smallest” inverse

demand function that the government considers possible. We then let V be the surplus

function associated with P . We assume P is strictly decreasing and continuous.

The government is also uncertain about the distribution from which the seller’s marginal

cost θ is drawn. Its conjecture is that θ is drawn from an absolutely continuous cdf F ⋆ with

density f ⋆ strictly positive over Θ = [θ, θ]. However, the government is concerned that the

true cdf may be different and given by F ∈ F , where F is a set of cdfs supported on Θ

considered possible. Till Section 4, we assume that F = CDF(Θ), where CDF(Θ) is the set

of all cdfs with support Θ; that, is, each F ∈ CDF(Θ) is a non-decreasing, right-continuous

function F : Θ → [0, 1] such that F (θ) = 0 for all θ < θ, and F (θ) = 1 for all θ ≥ θ.

Remark. As it will become clear in a moment, our analysis admits two equivalent

interpretations of the uncertainty faced by the government. In the first interpretation, the

2A function V is said to be increasing (alternatively, decreasing) if V (q) > V (q′) (alternatively, V (q) <

V (q′)) whenever q > q′. In other words, the definition assumes the inequality is strict. We refer to a function

V such that V (q) ≥ V (q′) for all q > q′ as non-decreasing. Similarly, V is non-increasing if V (q) ≤ V (q′) for

all q > q′.
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true state of the world is (θ, V ) ∈ Θ × V . The government has a conjecture ρ ∈ ∆(Θ × V)
with marginal over Θ equal to F ⋆ and marginal over V equal to σ. The government believes

θ and V (equivalently, θ and P ) to be independent. The function V ⋆ then corresponds

to the expected value of procuring output, with the expectation taken over V under the

distribution σ. That is, for any q, V ⋆(q) =
´
V (q)σ(dV ). Under such an interpretation, the

pair (V ⋆, F ⋆), along with the assumption that θ and V are independent, is then a description

of the government’s beliefs over Θ× V .

The second interpretation is that (V ⋆, F ⋆) is the government’s model of the world (in

the sense of Cerreia Vioglio et al. (2022)). The government is concerned that its model may

be mis-specified and that the true model is some alternative (V, F ) ∈ V × F . Under this

interpretation, V × F is the set of all models deemed plausible by the government when

doing robust decision making, and there is no stochastic structure over V × F . Our results

are consistent with both interpretations.

2.2 Quantity mechanisms

The seller is perfectly informed about the marginal cost of production θ. To elicit the seller’s

private information and discipline the supply, the government offers the seller (a firm) a

(direct) mechanism M = (q, t). The mechanism consists of a pair of mappings. The first

one, q : Θ → R+, specifies the amount of the good procured by the government when the

seller reports the marginal cost to be θ. The second mapping, t : Θ → R, specifies the total

transfer to the seller, for each possible report of the marginal cost.

The mechanism M = (q, t) is incentive compatible (IC) if, for all θ, θ′ ∈ Θ,

u(θ) := t(θ)− θq(θ) ≥ t(θ′)− θq(θ′).

It is individually rational (IR) if u(θ) ≥ 0 for all θ. Because, given the quantity schedule q,

there is a bijection between t and u, we will often refer to a mechanism by (q, u) instead of

(q, t).

As is well known, M = (q, u) is IC and IR if and only if q is non-increasing and, for all

θ ∈ Θ, u(θ) = u(θ) +
´ θ
θ
q(y)dy, with u(θ) ≥ 0.

Let M be the set of all IC and IR mechanisms. If the consumers’ gross surplus from
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consuming q units of the good is given by the function V ∈ V , with associated inverse

demand function P , and the distribution from which the seller’s marginal cost is drawn is

F ∈ F , then (ex-ante) welfare under the mechanism M ∈ M is given by

W (M ;V, F ) :=

ˆ
w(θ,M ;V )F (dθ),

where, for any θ, w(θ,M ;V ) := CS(θ,M ;V )+αu(θ) is total ex-post welfare at state θ under

the mechanismM when the gross consumer surplus function is V , with α ∈ [0, 1] denoting the

weight that the government assigns to producer surplus, and with CS(θ,M ;V ) := V (q(θ))−
t(θ) denoting net consumer surplus. Note that total surplus at state θ under the mechanism

M when the gross consumer surplus function is V is equal to TS(θ,M ;V ) := V (q(θ))−θq(θ).

Thus, welfare under the mechanism M = (q, u) when the monopolist has type θ and the

gross consumer surplus function is V (with associated inverse demand P ) is given by

w(θ,M ;V ) = TS(θ,M ;V )− (1− α)u(θ) (2)

= V (q(θ))− θq(θ)− (1− α)u(θ).

For the rest of the paper, we assume that limq↓0 P (q) > θ. This assumption, combined

with P being continuous, ensures that there is a positive total surplus even when the mo-

nopolist has the highest marginal cost and the inverse demand is the smallest. Therefore,

there are gains from procuring the good even from the least efficient type of the monopolist,

no matter what the inverse demand function is.

The reason to focus on quantity mechanisms is twofold. In some problems of interest,

the seller may not be able to wait till V is realized to finalize the quantity it supplies to

the buyer. In these situations, the choice to run a quantity mechanism is dictated by the

constraints on the timing. The second reason why quantity mechanism may be appealing

is that they guarantee that the seller has incentives to participate and report truthfully,

irrespective of their beliefs over the demand and/or their attitude towards ambiguity when

the seller faces uncertainty over V . In this sense, quantity mechanisms are robust.

2.3 Government’s problem

The government follows a two-step lexicographic procedure to select the optimal mechanism.

In the first step, the government evaluates any IC and IR mechanism by its welfare guarantee,
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defined as follows:

Definition 1 Given any mechanism M ∈ M, the welfare guarantee from M is given by

G(M) := inf
V ∈V,F∈F

W (M ;V, F ).

Definition 2 The short-list of IC and IR mechanisms for which the welfare guarantee is

maximal is given by

MSL := {M ∈ M : G(M) ≥ G(M ′) ∀ M ′ ∈ M}.

A mechanism M is worst-case optimal if M ∈ MSL.

In the second step, the government chooses a mechanism from the short list MSL that

maximizes welfare under its conjecture (V ⋆, F ⋆).

Definition 3 A mechanism M ∈ MSL is robustly optimal if, for every M ′ ∈ MSL,

W (M ;V ⋆, F ⋆) ≥ W (M ′;V ⋆, F ⋆).

As anticipated in the introduction, this two-step procedure captures the idea that the

government first seeks to protect itself against the possibility that its conjecture is wrong by

dismissing all mechanisms that are not worst-case-optimal. When there are multiple mecha-

nisms that are worst-case-optimal (as we show below, this is typically the case), the govern-

ment then uses its conjecture to select the mechanism for which welfare, under the conjecture,

is the highest among all worst-case-optimal mechanisms. A robustly optimal mechanism is

one that maximizes ex-ante welfare, under the government’s conjecture (V ⋆, F ⋆), over all

mechanisms in the short list MSL.

3 Short list characterization

In this section, we establish preliminary results characterizing the short-list MSL of quantity

mechanisms. We start by characterizing the maximal welfare guarantee of an arbitrary IC

and IR mechanism, and show that the worst-case welfare for any IC and IR mechanism need
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not occur under the distribution that puts all the mass at θ, but always occurs under the

lowest possible inverse demand in V . Let

qℓ := argmax
q

{
V (q)− θq

}
be the unique quantity that maximizes total surplus when V = V and θ = θ, i.e., qℓ is the

efficient quantity at the lowest demand and highest type and is equal to P−1(θ).

Lemma 1 The welfare guarantee of any mechanism M = (q, u) ∈ M is given by

G(M) = inf
θ∈Θ

w(θ,M ;V ). (3)

Furthermore, for any M ∈ M,

G(M) ≤ G∗ := V (qℓ)− θqℓ. (4)

The first part of Lemma 1 highlights that, in general, Nature can cause more harm to

the government by choosing a cost θ < θ. Intuitively, this is because, incentive compatibility

requires q to be non-increasing in θ. By selecting a low θ, along with an inverse demand

below V ⋆, Nature can then inflict more harm to the government than by selecting the largest

possible cost θ. The second part of the lemma says that the guarantee of any IC and IR

mechanism is no greater than the total surplus that the government can obtain by procuring

the efficient output qℓ when demand is the lowest and the cost is the highest. This follows

directly from the fact that Nature can always select (V , θ), in which case the best the

government can do is to purchase the efficient output qℓ.

The next Proposition shows that the upper bound on the maximal welfare guarantee is

tight and fully characterizes the short-list MSL.

Proposition 1 (Short-list characterization) A mechanism M ≡ (q, u) ∈ MSL if and

only if (1) q is non-increasing, (2) for all θ, u(θ) =
´ θ
θ
q(y)dy, and (3) for all θ,

V (q(θ))− θq(θ)− (1− α)

θˆ

θ

q(y)dy ≥ G∗. (5)
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Thus, worst-case optimality imposes two further constraints with respect to incentive

compatibility and individual rationality. First, the highest cost type, θ, must receive zero

rent. If this is not the case, Nature can select θ resulting in welfare strictly below G⋆, no

matter what the procured output is. Second, ex-post welfare at any given type under the

lowest possible inverse demand (and no rent for θ ) has to be weakly above the maximal

guarantee G⋆. The necessity of the latter constraint follows from Lemma 1. The sufficiency

part is established in the Appendix by showing existence of a simple (constant) mechanism

for which the maximal welfare guarantee is exactly G∗.

4 Robustly optimal mechanisms

In this section, we characterize robustly optimal mechanisms. We use Proposition 1 and the

standard representation of total welfare under the conjecture (V ⋆, F ⋆) as “virtual surplus”

as in Baron and Myerson (1982) to cast the government’s optimization problem as follows.

Let z⋆ : Θ → R be the function defined as

z⋆(θ) := θ + (1− α)
F ⋆(θ)

f ⋆(θ)
∀ θ ∈ Θ.

For any θ, z⋆(θ) is type-θ’s “virtual cost” under the conjectured distribution F ⋆. The robustly

optimal quantity schedule is then given by the solution to the following problem:

max
q

θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
F ⋆(dθ) (ROPT)

subject to

q non-increasing,

W (θ, q) := V (q(θ))− θq(θ)− (1− α)

θˆ

θ

q(y)dy ≥ G∗ ∀ θ ∈ Θ. (6)

Hence, the robustly optimal quantity schedule solves an optimization problem in which the

objective function and the monotonicity constraint are the same as in Baron and Myerson

(1982), but where, in addition, zero profits are given to the highest type, and for each θ,

total ex-post welfare under the lowest possible demand exceeds the welfare guarantee G∗.
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Note that the value of W (θ, q) depends on θ, q(θ), and q(θ′) for all θ′ ≥ θ. An implication of

this property is that if q and q′ coincide for all θ ≥ θ̂, then W (θ, q) = W (θ, q′) for all θ ≥ θ̂.

Relaxed problem: When applied to θ = θ, constraint (6) implies that q(θ) = qℓ. Since q is

non-increasing, we conclude that, in any mechanism M = (q, u) ∈ MSL, we have q(θ) ≥ qℓ

for all θ. The following is thus a relaxation of the problem (ROPT):

max
q

θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
F ⋆(dθ) (RP-1)

subject to

q non-increasing

q(θ) = qℓ.

Hereafter, we let qBM be the quantity schedule defined, for all θ, by

qBM(θ) := argmax
q

[
V ⋆(q)− z⋆(θ)q

]
.

The quantity qBM(θ) thus maximizes the virtual surplus function under the conjecture

(V ⋆, F ⋆) at cost θ. As is well known, the function qBM is the solution to the Baron and

Myerson (1982) problem when such a function is non-increasing, which is the case if, and

only if, z⋆ is non-decreasing. However, to ease the exposition, we will impose a slightly

stronger restriction on z⋆ by requiring F ⋆ to be regular, in the following sense:

Definition 4 The cdf F is regular if it is absolutely continuous over R with density f(θ) >

0 for all θ ∈ Θ and with z(θ) := θ + (1− α)F (θ)/f(θ) continuous and increasing over Θ.

For example, F is regular when f is log-concave. Next, let q⋆ be the quantity schedule

defined by

q⋆(θ) := max{qBM(θ), qℓ} (7)

and θ⋆ be the threshold cost defined as follows. If qBM(θ) ≤ qℓ, by continuity of qBM along

with the fact that qBM(θ) > qℓ (assured by the regularity of F ⋆), let θ⋆ be the unique solution

to qBM(θ⋆) = qℓ. If, instead, q
BM(θ) > qℓ (i.e., if q

BM never crosses qℓ), then let θ⋆ := θ.

Lemma 2 Suppose F ⋆ is regular and qBM(θ) ≤ qℓ. The quantity schedule q⋆ solves the

relaxed program (RP-1).
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Under the condition in the lemma, q⋆ satisfies the constraints of the relaxed problem.

The result then follows from the fact that the quantity schedule q⋆ maximizes the virtual

surplus function V ⋆(q)− z⋆(θ)q point-wise over [qℓ,+∞).

Next observe that, because qBM(θ) is defined by the condition P ⋆(q) = θ, whereas qℓ is

defined by the condition P (q) = θ, we have that qBM(θ) > qℓ. On the other hand, because

qBM(θ) is defined by the condition P ⋆(q) = z⋆(θ), qBM(θ) can be smaller or greater than qℓ.

Hence, while it is always the case that θ⋆ > θ, whether θ⋆ < θ or θ⋆ = θ depends on the

conjecture (V ⋆, F ⋆) and α. It is easy to see that θ⋆ < θ when V ⋆ = V and α < 1. We now

define a mechanism associated with the quantity schedule q⋆ which will play an important

role in many of our results.

Definition 5 The Baron-Myerson-with-quantity-floor is the mechanism M⋆ ≡ (q⋆, u⋆),

where q⋆ is the quantity schedule in (7) and where u⋆ is the function given by u⋆(θ) =´ θ
θ
q⋆(y)dy.

We then have the following result:

Proposition 2 (Optimality of Baron-Myerson-with-quantity-floor) Suppose F ⋆ is reg-

ular and V ⋆ = V . Then, Baron-Myerson-with-quantity-floor is a robustly optimal mecha-

nism.

The following is an immediate implication of the last proposition:

Corollary 1 Suppose there is no demand uncertainty (V = {V ⋆}) and F ⋆is regular. Then

Baron-Myerson-with-quantity-floor is robustly optimal.

Hence, when the government’s conjecture is that consumer surplus is the lowest possible

one (which is the case when the government faces only upward or no uncertainty over V )

and that the distribution F ⋆ is regular, the Baron-Myerson quantity schedule with an output

floor at qℓ is a robustly optimal mechanism. Figure 1 depicts the output schedule q⋆ and

highlights an important implication of robustness: efficiency both at the bottom and at the

top of the type distribution.
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q⋆

P−1 = (P ⋆)−1

θθ⋆θ

qbm

q(θ)

qℓ = P−1(θ)

Figure 1: Illustration of Proposition 2.

A key step in the proof of Proposition 2 is to establish that the schedule q⋆ satisfies

the constraint (6). If this constraint is satisfied at all local minima of W (θ, q⋆), then it is

satisfied at all θ. This simple observation allows us to reduce the continuum of constraints

to at most countably many inequalities. The next lemma, which is proved in the Appendix,

establishes monotonicity properties of W (θ, q) that are central to the analysis of robustly

optimal mechanisms. We use this lemma to prove the last proposition and various other

results below.

Lemma 3 Suppose M ≡ (q, u) is an IC mechanism and I ⊆ Θ is any interval. Then, the

following are true.

A. Suppose 0 < q(θ) ≤ P−1(θ) for all θ ∈ I. Then W (θ, q) is non-increasing over I

(decreasing if α > 0, or, when α = 0, if q is decreasing with q(θ) < P−1(θ) for all

θ ∈ I).

B. Suppose q(θ) > P−1(θ) for all θ ∈ I and α = 0. Then, W (θ, q) is non-decreasing over

I. If, in addition, q is decreasing over I, then W (θ, q) is increasing over I.

The top panel of Figure 2 plots a non-increasing quantity schedule q (dashed line) and

P−1 (solid line). The bottom panel depicts the shape of the associated W (θ, q) function.

Part A of Lemma 3 implies that W (θ, q) decreases over [θ1, θ2] no matter the value of α.

This is because, q(θ) ≤ P−1(θ) is a sufficient condition for W (θ, q) to be non-increasing
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W (θ, q)

α > 0

α = 0

Figure 2: Illustration of Lemma 3.

for all α. On the other hand, Part B shows that this same condition is also necessary for

W (θ, q) to be non-increasing when α = 0. As the W (solid) curve for α = 0 in the bottom

panel of the figure illustrates, W (θ, q) is increasing on the intervals [θ, θ1] and [θ2, θ], where

q(θ) > P−1(θ). This property, however, does not necessarily extend to α > 0 as illustrated

in the bottom panel of Figure 2 (the dashed line depicts W (θ, q) when α > 0).

The proof of Proposition 2 in the Appendix uses Lemma 3 to establish that W (θ, q⋆) is

non-increasing over Θ, which, together with the fact that W (θ, q⋆) = G∗ guarantees that the

robustness constraint (6) is satisfied.

We now provide an example in which V ⋆ ̸= V , and for which Baron-Myerson-with-

quantity-floor is not robustly-optimal. In this example, W (θ, q⋆) is increasing in θ and its

value is below G∗ at all θ < θ.

Example 1 Suppose that α = 0 and Θ = [4, 5]. The government’s conjecture about the

inverse demand function is that, for any q ≥ 0, P ⋆(q) = max{10− q; 0}. As for the govern-

ment’s conjecture F ⋆ about the distribution from which θ is drawn, the conjecture is that F ⋆ is

the cdf of a uniform distribution over [4, 5]. Finally, in this example P (q) = max{10− 5
4
q; 0}.
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Note that, under the above conjecture, for any θ ∈ Θ, z⋆(θ) = 2θ− 4, which is increasing

in θ. In this case, for any θ ∈ Θ, qBM(θ) is given by the solution to the optimality condition

P ⋆(qBM(θ)) = 2θ−4, from which we obtain that qBM(θ) = 14−2θ. Note that qBM(θ) ≥ qℓ = 4

for all θ with equality at θ = 5. This implies that the quantity floor qℓ in the relaxed program

is not binding and that, for all θ, q⋆(θ) = qBM(θ).

Note that P−1(θ) = 8 − 4
5
θ for all θ ∈ Θ = [4, 5]. As a result, q⋆(θ) − P−1(θ) =

qBM(θ)−P−1(θ) = 6− 6
5
θ ≥ 0 for all θ ∈ [4, 5] with strict inequality holding if θ < 5. Lemma

3 then implies that W (θ, q⋆) is increasing over [4, 5). Since W (5, q⋆) = G∗, this implies that

W (θ, q⋆) < G∗ and (6) does not hold for all θ < 5. ■

LetMOPT ≡ (qOPT, uOPT) be a robustly optimal mechanism. Recall that Baron-Myerson-

with-quantity-floor is a solution to the relaxed program (RP-1).

The following type plays an important role in characterizing robustly optimal mecha-

nisms. Let

θm := max{θ : θ ∈ argmin
y∈Θ

W (y, q⋆)}.

That is, θm is the largest cost at which the function W (·, q⋆) attains a minimum. When

F ⋆ is regular, θm is well defined. This is because q⋆ is continuous over Θ, which implies

that W (θ, q⋆) is also continuous on Θ. Because Θ is compact, the set {θ : W (θ, q⋆) ≤
W (θ′, q⋆) ∀ θ′} is non-empty and compact. This ensures existence of θm. Type θm plays

an important role in the characterization of robustly optimal mechanisms. If q⋆ violates the

robustness constraint, it must violate it at θm. One can then construct modifications to

q⋆ using the violation of the robustness constraint at θm to characterize robustly optimal

mechanisms.

The following proposition (whose proof is in the Appendix) identifies general properties

of robustly optimal mechanisms:

Proposition 3 Suppose F ⋆ is regular. Then, the following are true.

1. Baron-Myerson-with-quantity-floor mechanism is robustly optimal if and only if θm = θ

and qBM(θ) ≤ qℓ.
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2. If θm < θ or θm = θ and qBM(θ) > qℓ, then θm ≤ θ⋆, and every robustly optimal

mechanism MOPT = (qOPT, uOPT) satisfies the following properties:

(a) qOPT(θ) = qℓ for all θ ∈ [θ⋆, θ], and

(b) qOPT(θ) ≤ qBM(θ) for almost all θ < θ⋆, with the inequality strict over a Lebesgue

positive measure set of types I ⊆ [θ, θ⋆).

Hence, robustness calls for an upward adjustment of the quantity procured from high

cost sellers and a downward adjustment of the quantity procured from the intermediate-cost

sellers. The upward adjustment (from qBM(θ) to qℓ) is necessary to avoid the loss in welfare

that could originate from Nature selecting a high cost.3 The downward distortion (over and

above the distortion the government would make under SEU to reduce rents) is necessary to

guarantee that, if the demand is below the conjectured one, the government does not lose

too much by procuring a quantity whose value is below the conjectured one. The benefit of

such downward adjustments, however, vanish when θ is very close to θ for, as explained in

the Introduction, welfare at such low costs exceeds G∗ even when Nature selects the lowest

demand V .

The following proposition (whose proof is also in the Appendix) further tightens the

characterization of the optimal quantity mechanism of Proposition 3 for the case α = 0.

Proposition 4 Suppose F ⋆ is regular and α = 0.

1. If θm = θ, then qBM(θ) ≤ qℓ.

2. The following conditions, when holding jointly, imply that θm = θ:

(a) W (θ, q⋆) ≥ G∗;

(b) there exists θ̂ ∈ Θ such that q⋆(θ) > P−1(θ) if θ < θ̂ and q⋆(θ) ≤ P−1(θ) if θ ≥ θ̂.

3. If θm < θ̄, then qOPT(θ) = qBM(θ) for almost all θ ∈ [θ, θm).

4. The following conditions, when holding jointly, imply that θm = θ:

3The downward distortion in qBM(θ) is meant to reduce the rent u(θ) of low types, but this consideration

is not warranted if Nature selects a high cost.
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Figure 3: Illustration of Proposition 3

(a) P ⋆(q)− P (q) > 1/f ⋆(θ) for all q;

(b) F ⋆(θ)/f ⋆(θ) non-decreasing and continuous over Θ.

Figure 3 illustrates the structure of the robustly optimal quantity schedule when it differs

from Baron-Myerson-with-quantity-floor, under the assumption that α = 0.

Together, Propositions 3 and 4 imply that, when α = 0, the Baron-Myerson-with-

quantity-floor mechanism is optimal if and only if welfare under the lowest possible demand

V and the Baron-Myerson-with-quantity-floor output schedule q⋆ attains a minimum at the

highest possible cost, θ. An intuitive sufficient condition for θm = θ is that W (θ, q⋆) is single

peaked with W (θ, q⋆) ≥ G∗. When α = 0, the monotonicity properties of Lemma 3 imply

that W (θ, q⋆) is single peaked when q⋆ single crosses P−1 from above.

Another key strengthening of the result in Proposition 3 is that, when θm < θ̄, the

downward adjustments in the quantity schedule required by robustness occur only in the

interval [θm, θ⋆]; over the interval [θ, θm], the quantity schedule coincides with the one in

Baron-Myerson. Intuitively, ensuring the robustness constraint (6) at θm requires reducing

the rent u(θm), which in turn implies reducing the rents left to all θ ≤ θm. When α = 0, this

adjustment suffices to guarantee that the robustness constraint is satisfied for all θ < θm.

As a result, no quantity adjustment (vis-a-vis the original Baron-Myerson quantity schedule

qBM) is necessary for θ ≤ θm. However, the region [θ, θm] can be empty. This happens when

welfare under the lowest possible demand V and the output schedule q⋆ attains a minimum
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at θ. In this case, the robustly optimal quantity schedule differs significantly from q⋆. A

sufficient condition for this to happen is that the difference between the conjectured inverse

demand function and the lowest possible inverse demand function is sufficiently large at all

quantities, along with F ⋆ having a non-decreasing and continuous reverse hazard rate.

5 More general forms of cost uncertainty

We now consider the possibility that the set F of distributions that the government deems

plausible is a subset of the set CDF(Θ) of all cdfs supported on Θ. This possibility is

inspired by the second interpretation of the uncertainty faced by the government mentioned

in Section 2, along the lines of Cerreia Vioglio et al. (2022). In this interpretation, (V ⋆, F ⋆) is

the government’s “model of the world” and V ×F is the set of alternative models. Contrary

to Cerreia Vioglio et al. (2022), and consistently with what assumed above, the government

first seeks to protect itself against the possibility that its model is mis-specified (namely,

that the true model is (V, F ) ̸= (V ⋆, F ⋆) and then uses its model to select a mechanism that

maximizes its payoff (under the model (V ⋆, F ⋆)) over all mechanisms that yield the largest

guarantee.

Let F be the set of cdfs the government believes to be feasible. Assume that F contains

a cdf F such that for all F ∈ F , we have F (θ) ≥ F (θ) for all θ ∈ Θ. Note that in the

analysis so far, we assumed that F = CDF(Θ) which amounts to F (θ) = I(θ ≥ θ̄).

Let MBM := (qBM, uBM) be the optimal mechanism when θ is drawn from the distribution

F and the inverse demand function is P (equivalently, the value of procuring the good is V ).

The following is then true:

Proposition 5 Suppose F is regular and MOPT = (qOPT, uOPT) is a robustly optimal mech-

anism. Then qOPT(θ) = qBM(θ) for all θ ∈ (θ, θ).

The proof in the Appendix first shows that, when F is regular, then any mechanism in

the short list is such that q(θ) = qBM(θ) for almost all θ ∈ Θ. The proposition then follows

from this property together with the monotonicity of q and the continuity of qBM.

A key implication of the above result — namely, that, when F is regular, the shortlist

contains essentially a unique mechanism — is that the conjecture (V ⋆, F ⋆) plays no role in
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determining the robustly optimal mechanism. The following result is then an immediate

implication of the previous proposition.

Corollary 2 Suppose F ⋆ is regular and the government faces no uncertainty over the cost

(that is, F = {F ⋆}). The unique robustly optimal mechanism is the Baron-Myerson one for

the lowest possible demand V .

In contrast, Propositions 2 and 3 establish that, when the government faces uncertainty

over the cost and the lowest distribution F is the cdf of a Dirac measure assigning probability

one to θ = θ, the conjecture (V ⋆, F ⋆) plays an important role in the determination of the

robustly optimal mechanism. To illustrate how the two cases are related, it is useful to

consider more general distributions F satisfying the following properties. Throughout this

section, we fix two parameters of F and define a key property of F with respect to these

parameters: (i) θs, the lowest type in the support of F ; and (ii) δs, the probability mass

point at θ in F .

Definition 6 The cdf F is partially regular with respect to (θs, δs) if the following prop-

erties are true:

(a) F is absolutely continuous over (−∞, θ̄), with density f(θ) > 0 for all θ ∈ [θs, θ],

(b) F (θ) = 0 for all θ ≤ θ, F (θ) = 1 for all θ ≥ θ,

(c) limθ↑θ F (θ) = 1− δs,

(d) the function z : [θs, θ] → R defined by

z(θ) :=


θ + (1− α)F (θ)

f(θ)
∀ θ ∈ [θs, θ)

θ + (1− α) 1
f(θ)

if θ = θ and δs = 0

θ + (1− α)1−δs
δs

if θ = θ and δs > 0

is increasing over [θs, θ] and continuous over [θs, θ).

We then generalize the definitions of qℓ and q⋆ as follows. Let qsℓ := P−1(θs) denote the

efficient output when the inverse demand is P and the cost is θs. Then let q⋆s be the quantity
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schedule defined by

q⋆s(θ) :=

max{qBM(θ), qsℓ} θ < θs

qBM(θ) θ ≥ θs,
(8)

where qBM continues to denote the optimal quantity schedule of Baron and Myerson (1982)

when the conjecture is (V ⋆, F ⋆), with F ⋆ regular.

Proposition 6 Suppose F ⋆ is regular, F is partially regular with respect to (θs, δs), and

V ⋆ = V . The mechanism M⋆
s = (q⋆s , u

⋆
s) where q⋆s is the quantity schedule in (8) and u⋆

s is

the function given by u⋆
s(θ) =

θ́

θ

q⋆s(y)dy for all θ is robustly optimal.

The proof in the Appendix first shows that the mechanism in the proposition belongs to

the short list. It then shows that any other mechanism in the short list yields a lower welfare

under the conjecture (V ⋆, F ⋆).

Figure 4 illustrates the structure of the quantity schedule qOPT = q⋆s identified in Propo-

sition 6. It highlights that the conjecture (V ⋆, F ⋆) shapes the quantity procured under a

robustly optimal mechanism but only outside the support of F .

6 Changes in uncertainty

Equipped with the results in the previous sections, we now investigate how robustly optimal

mechanisms change when the government’s uncertainty over the seller’s cost and consumers’

demand change. In either case, we hold the government’s conjecture fixed at (V ⋆, F ⋆).

6.1 Variations in cost uncertainty

As the results above indicate the optimal mechanism depends on F only through F ⋆ and

F . To understand how changes in cost uncertainty affect the properties of robustly optimal

mechanisms, it is thus instructive to consider a sequence (F n) of cdfs defining the lowest

elements of the set F of cdfs considered plausible by the government.

Let (F n) be any sequence satisfying the following properties:

25



θ θθs

qBM

qBM

P−1

q(θ)

P−1(θs)

qopt = q⋆s

Figure 4: qOPT identified in Proposition 6

(a) for any n there exists θn ∈ Θ such that F n is partially regular with respect to θs = θn

and δs = δn,

(b) θn+1 ≥ θn, with limn→∞ θn = θ,

(c) for all θ ∈ [θn+1, θ],
F n+1(θ)

f
n+1

(θ)
≤ F n(θ)

f
n
(θ)

, (9)

and with δn+1 ≥ δn,

(d) θn = θ if, and only if, n ≤ n, and δn > 0 if, and only if, n ≥ n, for some n, n ∈
N ∪ {+∞}, with n ≥ n,

(e) for any n and any θ ∈ [θn, θ],
F n(θ)

f
n
(θ)

≤ F ⋆(θ)

f ⋆(θ)
. (10)

Figure 5 provides an illustration of the sequence (F n). Note that property (c) above means

that the distributions are ranked in the reverse-hazard-rate order. The sequence can thus
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Figure 5: Pictorial depiction of the sequence (Fn)

be interpreting as capturing an increase in the severity of the government’s uncertainty over

the seller’s cost.

Let qOPT
n be a robustly optimal quantity schedule when the lowest distribution in F

is F n. The following proposition establishes that the quantity procured under a robustly

optimal mechanism is not monotone in the government’s pessimism, that is, in F n. This

property holds despite the fact that, as is well known, the Baron-Myerson quantity schedule

qBM
n

defined, for all θ ∈ [θn, θ), by

qBM

n
(θ) := argmax

q
{V ⋆(q)− zn(θ)q}

is increasing in the inverse-hazard rare order: for any n, n′ ∈ N, with n′ > n and any θ ≥ θn′ ,

qBM
n′ (θ) ≥ qBM

n
(θ). That is, when the government’s conjecture over the seller’s cost coincides

with the distribution F n, an increase in the distribution (in the inverse-hazard-rate order)

leads to an increase in the output procured.

Proposition 7 (Non-monotonicity of output in severity of cost uncertainty) Suppose

V ⋆ = V and F ⋆ is regular. Let (F n) be any sequence of cdfs satisfying properties (a)-(e) above

and let (Mopt
n ) be any sequence of mechanisms such that, for each n, Mopt

n := (qoptn , uopt
n ) is

a robustly optimal mechanism when the lowest distribution in F is F n. Then,

1. For every θ ∈ (θ, θ), there exists n(θ) ∈ N such that qOPT
n (θ) is non-decreasing (alter-

natively, non-increasing) on n ≤ n(θ)− 1 (alternatively, n > n(θ)).
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Figure 6: Illustration of Proposition 7

2. Moreover, for every θ, there exists j, k ∈ N with j < k such that qOPT
j (θ) > qOPT

k (θ).

Figure 6 illustrates the result in Proposition 7. For any θ ∈ [θ, θ†], as the lowest distribu-

tion changes from F 1 to F 2, the quantity procured increases. In fact, the robustly optimal

quantity schedule changes from the dash-dotted line to the dash-double-dotted line. Note

that both F 1 to F 2 have support Θ; a reduction in the inverse hazard rate then implies

a reduction in the value of reducing the rents paid to the most efficient types and hence

an increase in the output procured under the optimal mechanism. When the lowest dis-

tribution changes from F 2 to F 3, the robustly optimal quantity schedule changes from the

dash-double-dotted line to the solid line and the quantity procured from types in the range

[θ, θ†] goes down. This is because the support of F 3 no longer contains low-cost types. The

government can then afford to procure a positive output from these types without jeopardiz-

ing robustness. Thus, the quantity procured from types in the range [θ, θ†] is not monotone in

n, equivalently, in the lowest possible cost distribution. The formal proof is in the Appendix.
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6.2 Variations in demand uncertainty

Recall that, fixing P ⋆, the optimal mechanism depends on the set of inverse demand functions

P defining the government’s demand uncertainty only through the smallest demand P of

the set P . Suppose the lowest demand increases from P to PN , with PN(q) ≥ P (q) for

all q and with P ⋆ ∈ PN ∩ P — the subscript “N” is meant to be mnemonic for “new”.

As before, assume PN is decreasing and continuous. The robustness constraint (6) then

becomes WN(θ, q) ≥ G∗
N , with WN defined, for all (θ, q), by

WN(θ, q) := V N(q(θ))− θq(θ)− (1− α)

θˆ

θ

q(y)dy.

Let qNℓ := PN
−1(θ), and q⋆N(θ) := max{qBM(θ), qNℓ }. Let θ⋆N be the threshold defined analo-

gously with θ⋆ but for the inverse demand PN . That is, if q
BM(θ) ≤ qNℓ , let θ

⋆
N be the unique

solution to qBM(θ⋆N) = qNℓ . If, instead, q
BM(θ) > qNℓ , let θ

⋆
N := θ. Finally, let

θmN := max{θ : θ ∈ argmin
y∈Θ

WN(y, q
⋆
N)}.

We then have the following result:

Proposition 8 Assume F ⋆ is regular. Suppose that α = 0 and the government’s demand

uncertainty changes from P (with lowest element P ) to PN (with lowest element PN), with

PN(q) ≥ P (q) for all q, and with P ⋆ ∈ PN ∩ P. The following are true:

1. qNℓ ≥ qℓ, and θ⋆N ≤ θ⋆, with the first inequality strict if, and only if, PN(qℓ) > P (qℓ),

and the second inequality strict if qNℓ > qℓ, θ
⋆ < θ.

2. Furthermore, if θ⋆N ≥ θm, then θmN ≥ θm.

The result in the proposition says that, as the downside uncertainty shrinks, the govern-

ment responds by procuring more output when the monopolist’s cost is high. Furthermore, if

the optimal mechanism before the reduction in uncertainty is different from a Baron-Myerson

mechanism with a floor (that is, if θm < θ⋆), and the reduction in uncertainty is small (in

which case |qNℓ − qℓ| and |θ⋆N − θ⋆| are small), the cost region over which the government

procures less output relative to the SEU optimum shrinks as uncertainty is reduced.
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7 Price vs quantity regulation

7.1 Price mechanisms

In this section, we consider an alternative class of procurement mechanisms in which the

government responds to the seller’s cost report by fixing the price for the seller’s output

instead of committing to procuring a given quantity. The seller is then asked to supply any

output demanded by the consumers at the specified price. The final transfer to the seller is

determined ex-post, once the realized demand curve becomes common knowledge between

the seller and the government. By conditioning the transfer on the realized demand, the

government guarantees that the seller has incentives to participate and report truthfully, ir-

respective of the sellers’ beliefs over the realized demand and its attitude towards uncertainty

and ambiguity, as we show below.

Such price mechanisms have a potential advantage over the quantity mechanisms consid-

ered in the previous sections; the quantity procured under a price mechanism is responsive

to the realized demand, in case the conjecture turns out to be wrong. The feasibility of

these mechanisms also hinges on the government being able to ask the monopolist to wait

till the uncertainty over the demand is resolved before the final transfer is determined. This

possibility may be appropriate in certain environment in which the role of the government

is to regulate the interaction between the monopolist and the consumers. It may not be

appropriate in settings in which the uncertainty over V reflects the government’s inability

to determine the social value of procuring the output, with this value possibly unverifiable

to third parties. As we show in a moment, price mechanisms, even when feasible, also come

with certain disadvantages that make their attractiveness vis-a-vis to quantity mechanisms

unclear (we provide conditions for each class to dominate below).

Let D be the set of possible demand functions that the government considers possible.

We assume that there exists a lowest demand function D ∈ D such that D(p) ≥ D(p) for

all p. To each D ∈ D corresponds a unique inverse demand function P ∈ P , and hence

a unique value function V ∈ V . Let D⋆ denote the demand function corresponding to the

government’s conjecture V ⋆.

A price mechanism consists of a price function p along with a transfer function t. The

price function p : Θ → R specifies a price for each possible cost report. The seller is required
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to supply any quantity demanded by consumers at that price. Because there is uncertainty

over the demand, when the government sets the price instead of the quantity it exposes the

seller to uncertainty over its profits. To guarantee that the seller has incentives to participate

and report truthfully no matter its beliefs and attitude towards uncertainty, the government

must condition the transfer to the seller on the demand D ∈ D, which is learned ex-post.

This ex-post approach seems the closest to the objective of guaranteeing robustness of

the selected mechanism.

Definition 7 A price mechanism M̃ = (p, t) is a pair of mapping

p : Θ → R+

t : Θ×D → R+

where p(θ) is the price charged to the consumers and t(θ,D) is the transfer to the seller when

the cost report is θ and the realized demand is D.

The timing of events is the following:

• The seller learns its type θ;

• The government commits to a price mechanism M̃ = (p, t);

• After observing M̃ , the seller reports θ′ ∈ Θ to the government and is required to

supply any output demanded at price p(θ′);4

• After learning the entire demand curve D, the government transfers t(θ′, D) to the

seller.5

Consistent with what was assumed in the previous section, we maintain that, at the time

the government and the seller learn the quantity D(p(θ′)) (which can occur concurrently or

before they learn the entire demand curve D), it is not worth adjusting the quantity supplied.

4This interpretation is close to regulation where the government asks the seller to sell the good directly

but regulates the price.
5For simplicity, we assume that the seller transfers the revenues p(θ′)D(p(θ′)) to the government. Al-

ternatively, one can assume the seller keeps the revenues for itself and the government transfers t̃(θ′, D) :=

t(θ′, D)− p(θ′)D(p(θ′)) to the seller. In this case a price mechanism is given by the pair (p, t̃).
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For example, the cost of any ex-post adjustment could be prohibitively high or the value

consumers assign to extra output at the stage at which the demand becomes known to the

government and the seller could be too low to justify the production cost. In the absence of

these frictions, uncertainty over the demand is inconsequential.

The price mechanism M̃ = (p, t) is ex-post incentive compatible (EPIC) if, for all θ, θ′ ∈ Θ

and D ∈ D,

t(θ,D)− θD(p(θ)) ≥ t(θ′, D)− θD(p(θ′)).

It is ex-post individually rational (EPIR) if, for all θ ∈ Θ and D ∈ D,

ũ(θ,D) := t(θ,D)− θD(p(θ)) ≥ 0.

The following lemma characterizes EPIC and EPIR price mechanisms. We omit the proof

since it follows from standard arguments.

Lemma 4 M̃ = (p, t) is EPIC and EPIR if and only if p is non-decreasing, and for every

θ ∈ Θ and D ∈ D,

ũ(θ,D) = ũ(θ,D) +

θˆ

θ

D(p(y))dy, (11)

with ũ(θ,D) ≥ 0.

Let M̃ be the set of all EPIC and EPIR price mechanisms. For any M̃ ∈ M̃, any F ∈ F ,

and any demand D ∈ D, welfare is given by

W̃ (M̃ ;D,F ) :=

ˆ [
Ṽ (p(θ);D)− θD(p(θ))− (1− α)ũ(θ,D)

]
F (dθ),

where ũ(θ,D) is as in (11) and where, for any p, and any D,

Ṽ (p;D) :=

D(p)ˆ

0

D−1(y)dy. (12)

The welfare guarantee of any price mechanism M̃ ∈ M̃ is given by

G(M̃) := inf
D∈D,F∈F

W̃ (M̃ ;D,F ).
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The shortlist of price mechanisms is given by

M̃SL := {M̃ ∈ M̃ : G(M̃) ≥ G(M̃ ′) ∀ M̃ ′ ∈ M̃}.

Recall that the maximal welfare guarantee for quantity mechanisms is G∗ := V (qℓ) − θqℓ,

as shown in Lemma 1, where qℓ := P−1(θ) = D(θ) is the efficient quantity when θ = θ

and P = P (equivalently, when D = D and V = V ). This guarantee also applies to price

mechanisms.

Lemma 5 (Welfare Guarantee) For any price mechanism M̃ ∈ M̃, G(M̃) ≤ G∗. There

exists a price mechanism M̃ ∈ M̃ such that G(M̃) = G∗. Any M̃ ∈ M̃ for which G(M̃) = G∗

is such that p(θ) = θ and ũ(θ,D) = 0.

Lemma 5 establishes that the maximal guarantee over all price and quantity mechanisms

is the same. This follows from the fact that, no matter whether the government offers a

price or quantity mechanism, Nature can always select the lowest possible demand D and

the highest possible cost θ. The maximal welfare when θ = θ and D = D is attained by

procuring the efficient output qℓ. Whether the government induces this outcome by fixing

the price or by dictating that the seller produces qℓ is inconsequential. The lemma also

shows that the government can guarantee G∗ through a price mechanism that fixes the price

at θ for all cost reports.

The following is an immediate implication of the above observations:

Remark 1 Price and quantity regulation are equivalent under worst-case optimality: The

maximal welfare guarantee over all price mechanisms is the same as over all quantity mech-

anisms.

As we show in Subsection 7.2, things are different when, instead, the government uses its

conjecture to select a mechanism among those for which the guarantee is the highest.

Lemma 5 also establishes that any price mechanism yielding the maximal guarantee G∗

must require that the seller sets a price equal to θ when θ = θ and must provide no rent to

the seller when θ = θ and D = D. This is because only such choices yield G∗ when the cost

is the highest and demand is the lowest.
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An immediate implication of the last lemma is that any price mechanism M̃ = (p, t) ∈
M̃SL in the short list is such that (a) p is non-decreasing, (b) p(θ) = θ, (c) ũ(θ,D) = 0, and

(d)

Ṽ (p(θ);D)− θD(p(θ))− (1− α)ũ(θ,D) ≥ G∗, ∀ θ ∈ Θ and D ∈ D. (13)

Furthermore, any mechanism M̃ = (p, t) satisfying properties (a)-(d) is in the short list.

Now recall from Lemma 3 that, when given D, the quantity procured at each θ is below

the efficient level D(θ) = P−1(θ), then welfare is decreasing in θ. Hence, given any price

mechanism M̃ ∈ M̃ such that p(θ) ≥ θ for all θ, the robustness constraint in (13) is satisfied

if, and only if, for any D ∈ D,

Ṽ (θ;D)− θD(θ)− (1− α)ũ(θ,D) ≥ G∗, (14)

which is the case if and only if ũ(θ,D) = 0.

Finally, observe that, given any M̃ ∈ M̃, the government’s payoff under the conjecture

(V ⋆, F ⋆) (equivalently, (D⋆, F ⋆)) is equal to

θˆ

θ

[
V ⋆(D⋆(p(θ)))− z⋆(θ)D⋆(p(θ))

]
F ⋆(dθ)− (1− α)ũ(θ,D⋆). (15)

Using the above results, we can then provide a simple program yielding all robustly

optimal price mechanisms.

Lemma 6 Suppose F ⋆ is regular. The price mechanism M̃OPT = (pOPT, tOPT) is robustly

optimal if and only if the price schedule pOPT solves the following program

max
p

θˆ

θ

[
V ⋆(D⋆(p(θ)))− z⋆(θ)D⋆(p(θ))

]
F ⋆(dθ) (ROPT-P)

subject to

p non− decreasing

p(θ) = θ (16)

p(θ) ≥ θ ∀ θ ∈ Θ, (17)
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and tOPT is such that the function ũOPT defined, for all θ ∈ Θ and D ∈ D, by ũOPT(θ,D) :=

tOPT(θ,D)− θD(pOPT(θ)) satisfies the following properties:

ũOPT(θ,D) = ũOPT(θ,D) +

θˆ

θ

D(pOPT(y))dy ∀ θ ∈ Θ, ∀ D ∈ D

0 ≤ (1− α)ũOPT(θ,D) ≤ Ṽ (θ;D)− θD(θ)−G∗ ∀ D ∈ D (18)

ũOPT(θ,D) = ũOPT(θ,D⋆) = 0.

It is easy to see that, under SEU, price and quantity regulation are equivalent. Under the

conjecture (V ⋆, F ⋆), the following mechanism implements the same quantity schedule qBM

as the Baron-Myerson original mechanism. The same is true when the original mechanism

is amended to incorporate a quantity floor. Under the conjecture (V ⋆, F ⋆), the following

mechanism implements the same quantity schedule q⋆ as the Baron-Myerson-quantity-floor

mechanism defined in the previous section.

Definition 8 The price mechanism (p, t) is a Baron-Myerson-with-price-cap if and

only if the price function is given by

p(θ) = min(z⋆(θ), θ) (19)

for all θ, and, for all (θ,D), the transfer function t is defined as in Lemma 6.

Note that whereas Baron-Myerson-with-quantity-floor is a unique mechanism, there are

many price mechanisms that qualify as Baron-Myerson-with-price-cap. All these mechanisms

have the same price schedule, with the latter given by (19). They differ in the transfer

schedule t. In fact there are infinitely many transfer schedules satisfying the constraints of

Lemma 6. In particular, these mechanisms differ in the rents ũ(θ,D) given to the highest

type θ for demands D /∈ {D,D⋆}.

We then have the following result.

Proposition 9 Suppose F ⋆ is regular.6 The Baron-Myerson-with-price-cap mechanism is

robustly optimal. Moreover, every robustly optimal price mechanism has the same price

schedule as Baron-Myerson-with-price-cap.

6The result also holds under the weaker requirement that z⋆ is non-decreasing.

35



The result follows from the fact that the virtual surplus function V ⋆(D⋆(p))−z⋆(θ)D⋆(p)

is quasi-concave in p, and attains a maximum at z⋆(θ). The price function in the proposition

is thus the unique one that solves program (ROPT-P).

Proposition 9 thus establishes that there exists a unique robustly optimal price schedule.

It consists in setting a price for each θ equal to the minimum between the virtual cost z⋆(θ)

and θ. We then have the following result:

Corollary 3 Suppose F ⋆ is regular.7 The unique robustly optimal price schedule is invariant

in both the government’s conjectured demand D⋆ and the set of demand functions D the

government considers feasible. It consists in setting a markup equal to (1 − α)F ⋆(θ)/f ⋆(θ)

at each cost θ and then capping the price at θ.

The result follows directly from Proposition 9 and the fact that the price function in (19)

is independent of D⋆ and D.

Figure 7 illustrates Proposition 9 for α = 0. By committing to pay rents contingent

on the realized demand D and setting a markup that only depends on the conjecture F ⋆

over the cost, with a price cap at θ = θ, the regulator maximizes welfare no matter the

uncertainty it faces over the demand and its conjecture F ⋆.

7.2 Price vs quantity mechanisms

As shown above, any robustly optimal price mechanism has the same price schedule as Baron-

Myerson-with-price-cap. The question of interest, though, is whether such mechanisms do

better than their quantity counterparts, which is what we address in this section.

Lemma 5 clarifies that the maximal guarantee (i.e., the maximal welfare under the worst

case scenario) is the same for either type of mechanism. However, as we show next, the max-

imal welfare attainable under the government’s conjecture over the short list of worst-case-

optimal mechanisms need not coincide over the two classes of robustly optimal mechanisms.

7Again, the result in the corollary continues to hold if one replaces the regularity assumption with the

weaker requirement that z⋆is non-decreasing.
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Figure 7: Robustly optimal price schedule for α = 0

Definition 9 Price regulation dominates quantity regulation if

W̃ (M̃OPT;D⋆, F ⋆) ≥ W (MOPT;V ⋆, F ⋆). (20)

Quantity regulation strictly dominates price regulation if the above inequality does not hold.

Price regulation strictly dominates quantity regulation if the above inequality is strict. Quan-

tity regulation dominates price regulation if

W̃ (M̃OPT;D⋆, F ⋆) ≤ W (MOPT;V ⋆, F ⋆).

Price and quantity regulation are equivalent if the inequality in (20) is an equality.

We then have the following result:

Proposition 10 Assume F ⋆ is regular.

1. If Baron-Myerson-with-quantity-floor is robustly optimal (i.e., if MOPT = M⋆), then

quantity regulation dominates price regulation. Further, if D⋆(θ) > D(θ), then quantity

regulation strictly dominates price regulation.
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Figure 8: Graphical illustration of Proposition 10.

2. If Baron-Myerson-with-quantity-floor is not robustly optimal (i.e., if MOPT ̸= M⋆) and

D⋆(θ) = D(θ), price regulation strictly dominates quantity regulation.

Figure 8 illustrates quantity schedules qOPT and demands D⋆(pOPT) under the conjecture

D⋆ for each of the two parts of Proposition 10.

The intuition for why quantity mechanisms dominate when the Baron-Myerson-with-

quantity-floor mechanism is robustly optimal is the following. Controlling quantity or price

leads to the same procurement of output for low costs. For high costs, however, the output

procured under the optimal price mechanism can be higher than the one procured under the

optimal quantity mechanism. This is because, under a price mechanism, ensuring guarantee

G∗ calls for capping the price at θ. When the government expects the demand at p = θ to

be above the minimal feasible level D(θ), by capping the price at θ it then ends up procuring

too much output when cost is high, compared to what it procures when controlling quantity.

In fact, when the Baron-Myerson-with-quantity-floor mechanism is robustly optimal, under

quantity control, the government only needs to procure no less than qℓ = D(θ) ≤ D⋆(θ) to

protect itself under the worst case scenario. In this case, quantity mechanisms thus dominate.

When, instead, the Baron-Myerson-with-quantity-floor mechanism is not robustly opti-

mal, under quantity control, the government needs to reduce the quantity it procures for

intermediate costs below the level qBM(θ) it would optimally procure in the absence of robust-

ness considerations. This downward distortion (over and above the distortion the government
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would make under usual SEU analysis to reduce rents) is costly, and is necessary to guaran-

tee that, if the demand ends up to be below the conjectured one, the government does not

lose too much by procuring a quantity whose value is below the conjectured one. However,

this downward adjustment, can be avoided by fixing the price. This is because, if demand

turns out to be below the conjectured level, the quantity procured under a price mechanism

is reduced, thus sparing the government from the risk of over-procurement. Provided that

the price cap p = θ does not result in over-procurement for large costs (which is never the

case when D(θ) = D⋆(θ)), price mechanisms thus strictly dominate when Baron-Myerson-

with-quantity-floor is not robustly optimal.

The following is then a direct implication of the previous proposition and can be seen by

combining Propositions 2 and 9.

Corollary 4 Suppose F ⋆ is regular and the government faces no uncertainty over the de-

mand. Then price and quantity mechanisms are equivalent.

The result should be expected: without demand uncertainty, it is inconsequential whether

the government induces the seller to supply the desired quantity by fixing the price or by

specifying the output that must be supplied.

8 Conclusions

We consider the procurement problem of a buyer (e.g., a government) concerned with the

possibility that its conjecture over the value and cost of procuring a product or service may

be wrong. We postulate that the buyer first protects itself by identifying all mechanisms

that are worst-case optimal, i.e., that deliver the largest welfare guarantee. This set typi-

cally contains multiple mechanisms. The government then selects the mechanism from this

set that maximizes its expected payoff under its conjecture. The approach seems quite com-

pelling in many situations of interest and yields novel predictions for the structure of optimal

mechanisms.

We show that, when the only uncertainty is over the cost of supplying the good, the

optimal mechanism procures the same output as the Baron-Myerson mechanism, but with a
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floor that protects the buyer in case the cost is higher than conjectured (in which case there

is less value in distorting output to reduce rents). When the buyer faces uncertainty also over

the value of the good, robustness calls for upward adjustments (relative to the case without

uncertainty) in the quantity procured from high-cost sellers and downward adjustments in

the quantity procured from intermediate-cost sellers. We also investigate the implications of

changes in uncertainty (over cost and demand) and the merits and limitations of regulating

prices instead of quantity.

In future work, it would be interesting to study how the buyer ought to respond to the

seller’s own uncertainty, especially when the latter is the seller’s private information. It

would also be interesting to investigate when it may be optimal to regulate quantity for a

set of possible seller’s types and price over the complement set. We also expect the current

results, along with those that these enrichments will deliver, to provide valuable insights over

the structure of optimal policy interventions in other markets in which uncertainty plays a

major role.

9 Appendix: Omitted Proofs

Proof of Lemma 1. Fix any V ∈ V and any F ∈ F , and observe that

W (M ;V, F ) =

ˆ
w(θ,M ;V )F (dθ)

≥
ˆ

w(θ,M ;V )F (dθ) (by definition of V )

≥
ˆ [

inf
θ
w(θ,M ;V )

]
F (dθ)

= inf
θ
w(θ,M ;V )

= inf
θ∈Θ

[
V (q(θ))− θq(θ)− (1− α)u(θ)

]
.

Hence,

G(M) ≥ inf
θ∈Θ

[
V (q(θ))− θq(θ)− (1− α)u(θ)

]
. (21)

Because V ∈ V and, for each θ, the Dirac distribution that puts probability mass one at θ

is in the set F of feasible distributions, we have that, for all θ,

G(M) ≤ V (q(θ))− θq(θ)− (1− α)u(θ). (22)
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Combining the inequality in (22) with the inequality in (21), we obtain condition (3).

Finally, using (3), we obtain that

G(M) ≤ V (q(θ))− θq(θ)− (1− α)u(θ) ≤ V (q(θ))− θq(θ) ≤ V (qℓ)− θqℓ = G∗,

where the second inequality follows from IR and the third inequality follows from the defi-

nition of qℓ. This establishes (4). ■

Proof of Proposition 1. First, we show that there exists an IC and IR mechanism that

delivers the welfare guarantee upper bound in (4). Consider the constant mechanism ML =

(qL, uL) that asks each type θ to produce qℓ and pays θqℓ; that is, qL(θ) = qℓ and tL(θ) = θqℓ,

all θ (yielding a profit uL(θ) = (θ − θ)qℓ to each θ). The mechanism ML is clearly IC and

IR. Under the mechanism ML, welfare when the marginal cost is θ and the gross surplus is

V is equal to

w(θ,ML;V ) = V (qℓ)− θqℓ − (1− α)uL(θ)

= V (qℓ)− θqℓ + α(θ − θ)qℓ

= G∗ + α(θ − θ)qℓ.

Hence, infθ w(θ,ML;V ) = G∗. Condition (3) in Lemma 1 then implies G(ML) = G∗. By

Lemma 1, we get ML ∈ MSL. Condition (4) in Lemma 1 in turn implies that, for any

M ∈ MSL, G(M) = G∗. For a mechanism M = (q, u) to be IC and IR, it must be that q is

non-increasing and, for all θ,

u(θ) = u(θ) +

θˆ

θ

q(y)dy (23)

with u(θ) ≥ 0. Condition (3) in Lemma 1 in turn implies that, if M ∈ MSL, then, for all θ

V (q(θ))− θq(θ)− (1− α)u(θ) ≥ G∗.

This is possible only if u(θ) = 0 (else, the constraint is violated at θ) and, for any θ, constraint

(5) holds.

Conversely, suppose M = (q, u) satisfies properties (a)-(c) in the lemma. Then M is IC

and IR. Furthermore, by Condition (3) in Lemma 1, G(M) ≥ G∗. Because every mechanism

in MSL has a welfare guarantee of G∗, we thus have that M ∈ MSL. Q.E.D.
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Proof of Lemma 2. If F ⋆ is regular, then qBM is decreasing. Moreover, qBM(θ) ≤ qℓ

implies that q⋆ is non-increasing with q⋆(θ) = qℓ. Thus, the quantity schedule q⋆ satisfies

the constraints of the relaxed problem. To complete the proof, observe that for any θ, the

function V ⋆(q) − z⋆(θ)q is strictly concave in q and attains a maximum at qBM(θ), and

therefore, the quantity schedule q⋆ maximizes the objective function in the relaxed program

over all non-increasing functions q satisfying q(θ) = qℓ. ■

Proof of Lemma 3. Fix M = (q, u) and pick any θ, θ′ ∈ I, with θ′ < θ. Note that

W (θ′, q)−W (θ, q) =

q(θ′)ˆ

q(θ)

P (y)dy − θ′q(θ′) + θq(θ)−
θˆ

θ′

q(y)dy + α

θˆ

θ′

q(y)dy. (24)

Proof of Part (A). We consider two cases.

Case 1: P (q(θ′)) ≥ θ > θ′. Note that the right-hand-side of (24) equals to

q(θ′)ˆ

q(θ)

(P (y)− θ)dy +

(θ − θ′)q(θ′)−
θˆ

θ′

q(y)dy

+ α

θˆ

θ′

q(y)dy. (25)

The first term in (25) is non-negative because, for all y ∈ (q(θ), q(θ′)), P (z) > P (q(θ′)) ≥ θ,

which follows from P being decreasing. Furthermore, if q(θ′) > q(θ), then this first term

in (25) is positive. Next, observe that, because q is non-increasing, the expression in curly

brackets in (25) is non-negative. Finally observe that the last term in (25) is non-negative

because q is positive over I. We conclude that W (θ′, q) ≥ W (θ, q), i.e., W (·, q) is non-

increasing over I (decreasing when α > 0, or when q is decreasing over I).

Case 2: θ > P (q(θ′)) ≥ θ′. Use Figure 9 to observe that the sum of the first four terms in

(24) is equal to

P (q(θ′))ˆ

θ′

(
q(θ′)− q(y)

)
dy +

θˆ

P (q(θ′))

(
P−1(y)− q(y)

)
dy +

P (q(θ))ˆ

θ

(
P−1(y)− q(θ)

)
dy. (26)

Now we argue that each of these three terms in expression (26) is non-negative. The first

term is non-negative because q is non-increasing. Next observe that, for all y ∈ (P (q(θ′)), θ),

P−1(y) ≥ q(y). Hence, the second term in (26) is also non-negative. Finally, the last term

in (26) is also non-negative because, for any y ∈ (θ, P (q(θ))), P−1(y) ≥ q(θ), which follows
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q

qq(θ) q(θ′)θ′q(θ′)

θq(θ)
θ

θ′

q(θ′)∫
q(θ)

P (z)dz − θ′q(θ′) + θq(θ)−
θ∫
θ′
q(y)dy

P

P (q(θ))

P (q(θ′))

Figure 9: Illustration of Case 2 in Part A.

from P being decreasing. We conclude that W (·, q) is non-increasing over I (decreasing when

α > 0, or when q is decreasing and such that q(y) < P−1(y) for all y ∈ I).

Proof of Part (B): Because α = 0, the difference in welfare W (θ, q)−W (θ′, q) across the

two states is given by the (negative of the) expression in (24), which can be rewritten as

W (θ, q)−W (θ′, q) =

θˆ

θ′

(
q(y)− q(θ)

)
dy +

q(θ′)ˆ

q(θ)

(
θ′ − P (z)

)
dz. (27)

We consider two cases.

Case 1: P (q(θ)) ≤ θ′. In this case, P (z) < θ′ for all z > q(θ). This implies that the

second integral in (27) is non-negative and the first integral is non-negative because q is

non-increasing. If q is decreasing, both integrals are positive.

Case 2: θ′ < P (q(θ)) < θ. We then have that q(θ′) > P−1(θ′) > q(θ). Hence, using (27),

we have that

W (θ, q)−W (θ′, q) ≥
θˆ

θ′

(
q(y)− q(θ)

)
dy −

P−1(θ′)ˆ

q(θ)

(
P (z)− θ′

)
dz (28)

See Figure 10 for an illustration of the right-hand-side of the inequality in (28). Changing
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q(θ) q(θ′)P−1(θ′)

θ′
(
P−1(θ′)− q(θ)

)

P (q(θ′))

P (q(θ))

P
θ∫
θ′
(q(y)− q(θ))dy −

P (q(θ))∫
θ′

(P−1(y)− q(θ))dy

Figure 10: Illustration of Case 2 in Part B.

the variable of integration, the second integral can be written as

P−1(θ′)ˆ

q(θ)

(
P (z)− θ′

)
dz =

P (q(θ))ˆ

θ′

(
P−1(y)− q(θ)

)
dy.

Thus, the right-hand-side of (28) reduces to (see Figure 10 for an illustration)

θˆ

θ′

(
q(y)− q(θ)

)
dy −

P (q(θ))ˆ

θ′

(
P−1(y)− q(θ)

)
dy, (29)

which is non-negative because P (q(θ)) < θ and P−1(y) < q(y) for all y ∈ I. Thus, W (θ, q) ≥
W (θ′, q), i.e., W (·, q) is non-decreasing over I. The above inequality also reveals that, when

q is decreasing, the expression in (29) is positive, implying that W (·, q) is increasing over I.

■

Proof of Proposition 2. If F ⋆ is regular and V ⋆ = V , then qBM(θ) < (P ⋆)−1(θ) =

P−1(θ) = qℓ, implying that q⋆(θ̄) = qℓ. From Lemma 2, we know that the quantity schedule

q⋆ solves the relaxed program (RP-1). To establish the proposition, it thus suffices to show

that the quantity schedule q⋆ satisfies the robustness constraint (6).

Because qBM(θ) < qℓ, we have θ⋆ < θ. Note that for all θ ∈ [θ, θ⋆], q⋆(θ) = qBM(θ) <

(P ⋆)−1(θ) = P−1(θ). By Lemma 3, W (θ, q⋆) is non-increasing in θ in the interval [θ, θ⋆].
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That q⋆(θ) = qℓ for all θ ≥ θ⋆ implies that W (θ, q⋆) is also non-increasing over [θ⋆, θ̄]. Hence,

we conclude that W (θ, q⋆) ≥ W (θ, q⋆) = V (qℓ)− θqℓ = G∗ for all θ (with equality at θ = θ).

This means that constraint (6) is satisfied. Q.E.D.

Proof of Proposition 3. The proof is divided into different lemmas. The following lemma

establishes Part 1 in Proposition 3.

Lemma 7 Suppose F ⋆ is regular. Then, Baron-Myerson-with-quantity-floor is robustly op-

timal if and only if θm = θ and qBM(θ) ≤ qℓ.

Proof : If qBM(θ) ≤ qℓ, then, by Lemma 2, q⋆ solves the relaxed problem. If θm = θ, then

W (θ, q⋆) ≥ W (θ, q⋆) for all θ ∈ Θ. But u⋆(θ) = 0 and q⋆(θ) = qℓ imply that W (θ, q⋆) = G∗.

Hence, W (θ, q⋆) ≥ G∗ for all θ ∈ Θ, implying that the robustness constraint (6) is satisfied

and Baron-Myerson-with-quantity-floor is robustly optimal.

For the converse, suppose Baron-Myerson-with-quantity-floor is robustly optimal. Then,

the robustness constraint (6) holds at θ, that is, W (θ, q⋆) = G∗. Because u⋆(θ) = 0, we

must have that q⋆(θ) = qℓ which implies that qBM(θ) ≤ qℓ. Now, because the robustness

constraints hold for all θ, it must be that W (θ, q⋆) ≥ G∗ = W (θ, q⋆). As a result, θm = θ. ■

The next three lemmas establish Part 2.

Lemma 8 If θm = θ and qBM(θ) > qℓ, then θ⋆ = θm. If, instead, θm < θ, then θm < θ⋆

and q⋆(θm) ≥ P−1(θm). Moreover, there exists δ > 0 such that q⋆(θ) > P−1(θ) for all

θ ∈ (θm, θm + δ].

Proof : That θ⋆ = θm when θm = θ and qBM(θ) > qℓ follows directly from the definition of

θ⋆. Thus suppose that θm < θ. Then, by Lemma 7, M⋆ ≡ (q⋆, u⋆) is not robustly optimal,

meaning that, for some θ, W (θ, q⋆) < G∗ and hence W (θm, q⋆) < G∗. If θ⋆ < θ, then for

every θ ≥ θ⋆, q⋆(θ) = qℓ and W (θ, q⋆) = G⋆ + α(θ − θ) ≥ G∗. Thus, θm < θ⋆. Now suppose

θ⋆ = θ, then θm < θ implies the desired inequality θm < θ⋆. Hence, θm < θ⋆, implying that

q⋆(θm) = qBM(θm).

Now suppose that q⋆(θm) < P−1(θm). Because P−1 is continuous and q⋆ is non-increasing

and continuous, and θm < θ⋆, there exists δ > 0 such that, for all θ ∈ [θm, θm + δ], 0 < qℓ <
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q⋆(θ) < P−1(θ). Part A of Lemma 3 then implies that the function W (·, q⋆) is non-increasing
over [θm, θm + δ], contradicting the definition of θm. Hence, q⋆(θm) ≥ P−1(θm). Because

q⋆ is continuous at θm, the arguments above then imply that there exists δ > 0 such that

q⋆(θ) > P−1(θ) for all θ ∈ (θm, θm + δ]. ■

Lemma 9 Suppose θm < θ or θm = θ and qBM(θ) > qℓ. Then every robustly optimal

mechanism MOPT = (qOPT, uOPT) is such that qOPT(θ) = qℓ for all θ ∈ [θ⋆, θ].

Proof : Clearly, because qOPT must satisfy the robustness constraints (6) it must be that

qOPT(θ) = qℓ. The result thus holds when θ⋆ = θ, which is the case when θm = θ and

qBM(θ) > qℓ.

Now suppose that θ⋆ < θ and there exists θ′ ∈ (θ⋆, θ) such that qOPT(θ′) > qℓ. The

monotonicity of qOPT then implies that qOPT(θ) > qℓ for all θ ∈ [θ⋆, θ′]. This means that

there exists a non-zero Lebesgue measure of types such that qOPT(θ) > qℓ. Then consider

the mechanism M̃ = (q̃, ũ) where the quantity schedule is given by

q̃(θ) =

qOPT(θ) if θ < θ⋆

qℓ if θ ≥ θ⋆,

and where the rents ũ are given by the envelope formula together with ũ(θ) = 0. Because q̃

is non-increasing, this ensures that M̃ is IC and IR. By definition, q̃(θ) ≤ qOPT(θ) for all θ.

Clearly, for all θ < θ⋆,

W (θ, q̃) := V (q̃(θ))−θq̃(θ)−(1−α)

θˆ

θ

q̃(y)dy > V (qOPT(θ))−θqOPT(θ)−(1−α)

θˆ

θ

qOPT(y)dy ≥ G∗.

The first inequality follows from the fact that (a) for any such θ, q̃(θ) = qOPT(θ), along

with the fact that (b) for any y > θ, q̃(y) ≤ qOPT(y), with the inequality strict over a

Lebesgue positive measure set of types. The second inequality follows from the fact that

MOPT = (qOPT, uOPT) ∈ MSL which means that

V (qOPT(θ))− θqOPT(θ)− (1− α)

θˆ

θ

qOPT(y)dy ≥ G∗.
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Next, observe that, for any θ ≥ θ⋆,

W (θ, q̃) := V (qℓ)− θqℓ + αqℓ(θ − θ) = G∗ + αqℓ(θ − θ) ≥ G∗.

So the schedule q̃ satisfies the robustness constraints (6). Hence, the mechanism M̃ = (q̃, ũ) ∈
MSL. The government’s payoff

θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
F ⋆(dθ)

under M̃ is strictly higher than under MOPT. This follows from the fact that, for any θ ≥ θ⋆,

qℓ maximizes V ⋆(q)−z⋆(θ)q over q ≥ qℓ, along with the fact that F ⋆ is absolutely continuous.

This contradicts the optimality of MOPT. ■

Lemma 10 Suppose θm < θ or θm = θ and qBM(θ) > qℓ. Then every robustly optimal

mechanism MOPT = (qOPT, uOPT) is such that qOPT(θ) ≤ qBM(θ) for almost all θ ∈ [θ, θ⋆),

with the inequality strict over a Lebesgue positive-measure set of types I ⊆ [θ, θ⋆).

Proof : From Lemma 9, qOPT(θ) = qℓ for all θ ∈ [θ⋆, θ]. Now suppose there is a positive-

Lebesgue-measure set of types I ⊆ [θ, θ⋆) such that qOPT(θ) > q⋆(θ) = qBM(θ). Consider the

mechanism M̃ = (q̃, ũ) where the quantity schedule is given by

q̃(θ) = min{q⋆(θ), qOPT(θ)}

and where the rents ũ are given by the envelope formula together with ũ(θ) = 0. Clearly,

because q̃ is non-increasing and ũ satisfies the above properties, the mechanism M̃ is IC and

IR. The next two claims establish that M̃ = (q̃, ũ) satisfies the robustness constraints (6).

Claim 1 Suppose θ is such that either q̃(θ) = qOPT(θ) or P−1(θ) ≤ q̃(θ) = q⋆(θ) < qOPT(θ).

Then W (θ, q̃) ≥ G∗.

Proof : That W (θ, q̃) ≥ G∗ for any θ such that q̃(θ) = qOPT(θ) follows from the fact that

q̃(y) ≤ qOPT(y) for all y ≥ θ, and hence, W (θ, q̃) ≥ W (θ, qOPT) ≥ G∗. Thus, consider a θ for
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which P−1(θ) ≤ q̃(θ) = q⋆(θ) < qOPT(θ). The quasi-concavity of the function V (q)− θq in q

implies that

V (q⋆(θ))− θq⋆(θ) > V (qOPT(θ))− θqOPT(θ).

Together with the fact that q̃(y) ≤ qOPT(y) for all y ≥ θ, this means that W (θ, q̃) ≥
W (θ, qOPT) ≥ G∗. ■

Claim 2 Suppose θ is such that q⋆(θ) < min{P−1(θ), qOPT(θ)}. Then, W (θ, q̃) ≥ G∗.

Proof : The proof considers two cases to establish the existence of θ′ < θ such that W (·, q̃)
is non-increasing on [θ, θ′] with W (θ′, q̃) ≥ G∗.

Case 1. Suppose q⋆(θ) = qℓ = P−1(θ). Because q⋆ and P−1 are both continuous, there

exists θ < θ′ ≤ θ such that q⋆(y) ≤ P−1(y) for all y ∈ [θ, θ′], with q⋆(θ′) = P−1(θ′). Thus,

q̃(θ′) = min{P−1(θ′), qOPT(θ′)}.

Further, for all y ∈ [θ, θ′],

q̃(y) = min{qOPT(y), q⋆(y)} ≤ P−1(y).

Part A of Lemma 3 implies that W (·, q̃) is non-increasing over [θ, θ′] whereas Claim 1 implies

that W (θ′, q̃) ≥ G∗. Hence W (θ, q̃) ≥ G∗.

Case 2. Now suppose q⋆(θ) = qBM(θ) > qℓ = P−1(θ). Then, because q⋆(θ) < P−1(θ), and

P−1 and q⋆ are continuous (latter due to regularity of F ⋆), there exists θ < θ̂ < θ such that

q⋆(θ̂) = P−1(θ̂) and q⋆(y) > P−1(y) for all y > θ̂. Again, just like we argued in Case 1,

there exists θ < θ′ ≤ θ̂ such that q⋆(y) ≤ P−1(y) for all y ∈ [θ, θ′] with q⋆(θ′) = P−1(θ′).

Repeating the remaining arguments in Case 1 completes the proof. ■

The above two claims establish that q̃ satisfies the robustness constraints (6). Hence

M̃ = (q̃, ũ) ∈ MSL. That the government’s payoff under M̃ is strictly higher than under

MOPT follows from the fact that, for all θ such that q̃(θ) = q⋆(θ) < qOPT(θ),

V ⋆(q⋆(θ))− z⋆(θ)q⋆(θ) > V ⋆(qOPT(θ))− z⋆(θ)qOPT(θ),
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where the inequality follows from the fact that q⋆(θ) maximizes V ⋆(q)−z⋆(θ)q over [qℓ,+∞).

Because F ⋆ is absolutely continuous, the set I ⊆ [θ, θ⋆) over which qOPT(θ) > qBM(θ)

has positive F ⋆-measure, contradicting the optimality of MOPT. Hence, it must be that

qOPT(θ) ≤ qBM(θ) for almost all θ ∈ [θ, θ⋆).

We complete the proof by showing that there must exist a set of types I ⊆ [θ, θ⋆) of

positive Lebesgue measure such that qOPT(θ) < qBM(θ) for all θ ∈ I. To do that assume

for contradiction qOPT(θ) = qBM(θ) almost everywhere on [θ, θ⋆). Moreover, because q⋆ is

continuous and qBM(θ) is the unique maximizer of V ⋆(q)−z⋆(θ)q, it is without loss to assume

that qOPT(θ) = qBM(θ) for all θ < θ⋆. Consider the following two cases:

Case 1. Suppose qBM(θ⋆) = qℓ. Then qOPT(θ) = q⋆(θ) for all θ, which contradicts Part 1 of

Proposition 3.

Case 2. Suppose qBM(θ⋆) > qℓ. Then, by definition of θ⋆, it must be that θ⋆ = θ. Hence,

qOPT(θ) = qℓ < qBM(θ). This means G∗ = W (θ, qOPT) > W (θ, qBM). But for all θ < θ⋆ = θ,

we have qOPT(θ) = qBM(θ). Moreover, W (θ, qOPT) = W (θ, qBM) is continuous in θ on θ ≤ θ⋆

as qBM(θ) is continuous on Θ. Hence, W (θ, qOPT) violates the constraint (6) in the left-

neighborhood of θ, contradicting the robust optimality of qOPT. ■

This completes the proof of Proposition 3. Q.E.D.

Proof of Proposition 4. Part 1. We want to show that θm = θ implies that qBM(θ) ≤ qℓ.

To see why, assume for contradiction, that qBM(θ) > qℓ. Then there exists an interval I

including θ such that qBM is decreasing over I with qBM(θ) > P−1(θ) for all θ ∈ I. Thus, by

Part B of Lemma 3, W (q⋆, θ) is increasing over I, a contradiction to θm = θ.

Part 2. Suppose there exists θ̂ ∈ Θ such that q⋆(θ) > P−1(θ) if θ < θ̂ and q⋆(θ) ≤ P−1(θ)

if θ ≥ θ̂. Lemma 3 then implies that W (·, q⋆) is non-decreasing over [θ, θ̂] and non-increasing

over [θ̂, θ]. This property, along with the fact that W (θ, q⋆) ≥ G∗ and W (θ, q⋆) = G∗, then

implies that θm = θ .

Part 3. The result follows from the following two lemmas.

Lemma 11 Suppose that α = 0, θm ∈ (θ, θ⋆), and F ⋆ is regular. Then, q⋆(θm) = P−1(θm).

Proof : From Lemma 8, we know that q⋆(θm) ≥ P−1(θm). Now suppose that q⋆(θm) >

P−1(θm). Because P−1 is continuous and q⋆ is non-increasing, there exists δ > 0 such that,
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for any θ ∈ [θm− δ,θm), q⋆(θ) > P−1(θ). Since q⋆(θ) > P−1(θ), we must have q⋆(θ) = qBM(θ)

for all θ ∈ [θm − δ, θm). Furthermore, because z⋆ is increasing, qBM is decreasing over

(θm − δ, θm]. Part B of Lemma 3 (using α = 0) then implies that W (·, q⋆) is increasing over

(θm − δ, θm] which contradicts the definition of θm. Hence, q⋆(θm) = P−1(θm). ■

Lemma 12 Suppose that α = 0, θm ∈ (θ, θ⋆), and F ⋆ is regular. Then, for every robustly

optimal mechanism MOPT = (qOPT, uOPT), qOPT(θ) = qBM(θ) for almost all θ ∈ [θ, θm).

Proof : Assume for contradiction that there exists a Lebesgue positive-measure set of types

I ⊆ [θ, θm) such that qOPT(θ) ̸= qBM(θ) for all θ ∈ I. By Lemma 10, we get qOPT(θ) ≤ qBM(θ)

for all θ ∈ I (as qBM is continuous and both qBM and qOPT are non-increasing). Then, let

M̃ = (q̃, ũ) be the mechanism where the quantity schedule is given by

q̃(θ) =

qBM(θ) if θ ∈ [θ, θm]

qOPT(θ) otherwise

and where the rents ũ are given by the envelope formula together with ũ(θ) = 0. Below,

we show that M̃ yields a higher payoff to the government than MOPT and M̃ ∈ MSL,

contradicting the optimality of MOPT. Because, for any θ, qBM(θ) is the unique maximizer

of V ⋆(q)− z⋆(θ)q, the objective function

θˆ

θ

[
V ⋆(q(θ))− z⋆(θ)q(θ)

]
F ⋆(dθ)

is strictly higher under M̃ than under MOPT. Next observe that, because q̃ is non-increasing

and ũ is defined by the envelope formula, M̃ is IC and IR. We now show that q̃ satisfies the

robustness constraints in (6). Clearly, this is true for any θ > θm. Thus consider θ ∈ [θ, θm].

Because for any θ ≤ θm, q̃(θ) = qBM(θ) = q⋆(θ),

W (θ, q̃)−W (θ, q⋆) =

θˆ

θm

q⋆(y)dy −
θˆ

θm

qOPT(y)dy

≥(a)

[
V (qOPT(θm))− θmqOPT(θm)

]
−
[
V (qBM(θm))− θmqBM(θm)

]
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+

θˆ

θm

q⋆(y)dy −
θˆ

θm

qOPT(y)dy

=(b) W (θm, qOPT)−W (θm, q⋆)

≥(c) G
∗ −W (θm, q⋆)

≥(d) G
∗ −W (θ, q⋆),

Inequality (a) follows from the fact that P−1(θm) maximizes V (q) − θmq over all q and

qBM(θm) = P−1(θm) (by Lemma 11). Equality (b) follows from the fact that qBM(θ) = q⋆(θ).

Inequality (c) follows from the fact that MOPT ∈ MSL which implies that qOPT(y) satisfies

the robustness constraints in (6). Inequality (d) follows from the definition of θm. Hence,

W (θ, q̃) ≥ G∗ also for all θ ∈ [θ, θm]. We conclude that M̃ ∈ MSL and yields a higher payoff

to the government than MOPT contradicting the optimality of MOPT. ■

Part 4. The proof is in two steps. Both these steps use the fact that qBM is decreasing,

which follows from the regularity of F ⋆ and P ⋆ being decreasing.

Step 1. θm ̸= θ. Using the derivation the Baron-Myerson optimal quantity schedule for a

regular F ⋆, we have that

P ⋆(qBM(θ))− θ =
1

f ⋆(θ)
< P ⋆(qℓ)− P (qℓ),

where the inequality follows from the assumption that P ⋆(q) − P (q) > 1/f ⋆(θ) for all q.

Using the fact that qℓ is such that θ = P (qℓ), we have that qBM(θ) > qℓ = P−1(θ). This

implies that q⋆(θ) = qBM(θ) for all θ. Because qBM is decreasing and P is continuous, there

exists θ̂ < θ such that q⋆(θ) = qBM(θ) > P−1(θ) for all θ ∈ [θ̂, θ]. Part B of Lemma 3 then

implies that the function W (θ, qBM) is increasing in θ over [θ̂, θ]. Hence,

W (θ̂, q⋆) = W (θ̂, qBM) < W (θ, qBM) ≤ W (θ, q⋆).

The last inequality implies that θm < θ.

Step 2. Because θm < θ, Lemma 8 implies that θm < θ⋆. Now assume that θm ∈ (θ, θ⋆).

From Lemma 11, we then have that P (q⋆(θm)) = θm. Therefore,

P (q⋆(θm)) = θm = P ⋆(q⋆(θm))− F ⋆(θm)

f ⋆(θm)
.
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This means that

P ⋆(q⋆(θm))− P (q⋆(θm)) =
F ⋆(θm)

f ⋆(θm)
≤ 1

f ⋆(θ)
,

where the inequality follows from the non-decreasingness of F ⋆(θ)/f ⋆(θ). This is a contra-

diction to the assumption that P ⋆(q)− P (q) > 1
f⋆(θ)

for all q. Hence, θm = θ. Q.E.D.

Proof of Proposition 5. We prove the result by showing that if M = (q, u) ∈ MSL, then

q(θ) = qBM(θ) for almost all θ ∈ Θ. The proposition then follows from this property together

with the monotonicity of q and the continuity of qBM.

First, we show that G(MBM) = W (MBM;V , F ). To do so, observe that, when F is

regular, qBM is such that, for all θ ∈ Θ,

qBM(θ) = P−1(z(θ)),

where, for all θ ∈ Θ, z(θ) := θ + (1 − α)F (θ)/f(θ). Thus, qBM(θ) ≤ P−1(θ) for all θ,

with the inequality strict for θ > θ.8 Part 1 of Lemma 3 then implies that W (θ,MBM) is

non-increasing in θ. Furthermore, because, for all F ∈ F , F ≻FOSD F ,

W (MBM;V , F ) ≤ W (MBM;V , F ).

Because, for any V ∈ V and any F ∈ F , W (MBM;V , F ) ≤ W (MBM;V, F ), we thus have

that W (MBM;V , F ) ≤ W (MBM;V, F ). Thus, G(MBM) = W (MBM;V , F ).

To establish that M = (q, u) ∈ MSL only if q(θ) = qBM(θ) for almost all θ ∈ Θ, it then

suffices to show that G(M) < G(MBM) for any IC and IR mechanism M = (q, u) ∈ M such

that q(θ) ̸= qBM(θ) over a subset of Θ of positive Lebesgue measure. Observe that, for any

such mechanism,

G(M) ≤ W (M ;V , F ) < W (MBM;V , F ),

where the second inequality follows from the fact that qBM is the unique maximizer (in the

almost everywhere sense) of the function W (M ;V , F ).9 Q.E.D.

Proof of Proposition 6. The proof is in two steps. Step 1 establishes that M⋆
s ∈ MSL

whereas Step 2 establishes that, for any M ∈ MSL, W (M ;V ⋆, F ⋆) ≤ W (M⋆
s ;V

⋆, F ⋆), mean-

ing that M⋆
s maximizes the government’s payoff (under (V ⋆, F ⋆)) over the short list MSL.

8This property holds even if F is not regular. In fact, any undominated mechanism M = (q, u) is such

that q(θ) ≤ P−1(θ) for all θ (Mishra and Patil, 2024).
9That is, for any M = (q, u) ∈ M such that q(θ) ̸= qBM(θ) over a subset of Θ of positive Lebesgue

measure, W (M ;V , F ) < W (MBM;V , F ).
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Step 1. We fist establish that M⋆
s ∈ MSL. Let

G∗
s :=

θˆ

θs

(
V (qBM(θ))− z(θ)qBM(θ)

)
F (dθ).

We first establish that G(M⋆
s ) = G∗

s. To see this, observe that, for any (V, F ) ∈ V × F ,

W (M⋆
s ;V , F ) ≤(a) W (M⋆

s ;V , F ) ≤(b) W (M⋆
s ;V, F ).

Inequality (a) follows from the fact that F ≻FOSD F along with the fact that W (·,M⋆
s ) is

non-increasing over Θ. The latter property in turn follows from Part 1 of Lemma 3 along

with the fact that q⋆s(θ) ≤ P−1(θ) for all θ ≥ θs. Inequality (b) follows from the fact that

V (q) ≤ V (q) for any q and V ∈ V . Because

W (M⋆
s ;V , F ) :=

θ́

θs

[
V (qBM(θ))− θqBM(θ)− (1− α)uBM(θ)

]
F (dθ)

=
θ́

θs

[
V (qBM(θ))− z(θ)qBM(θ)

]
F (dθ) = G∗

s

we conclude that G(M⋆
s ) = G∗

s. That M⋆
s ∈ MSL then follows from the fact that, for any

M = (q, u) ∈ M, G(M) ≤ G∗
s, which, in turn, follows from the fact that

G(M) = inf
(V,F )∈V×F

W (M ;V, F ) ≤ W (M ;V , F ) ≤ W (M⋆
s ;V , F ) = G∗

s,

where the second inequality follows from the fact that M⋆
s maximizes W (·;V , F ) over M.

Step 2. Arguments similar to those establishing Proposition 5 imply that if M = (q, u) ∈
MSL, then q(θ) = qBM(θ) for almost all θ ∈ [θs, θ]. That, under the conjecture (V ⋆, F ⋆),

M⋆
s maximizes W (·;V ⋆, F ⋆) over MSL then follows from this observation along with the fact

that, for θ ∈ [θ, θs),

q⋆s(θ) = argmax
q≥qsℓ

{V ⋆(q)− z⋆(θ)q} .

Q.E.D.

Proof of Proposition 7. The proof is in two parts, each establishing the corresponding

part in the proposition.

Part 1. For any θ ∈ (θ, θ), let n(θ) be the largest n > n such that θn ≤ θ < θn+1.

Existence of n(θ) is guaranteed because the sequence (F n) is such that θn ≤ θn+1 < θ and
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limn→∞ θn = θ. For any n ≤ n(θ) − 1, θ ∈ [θn, θ] and θ ∈ [θn+1, θ]. Thus, by Proposition

6, qOPT
n (θ) = qBM

n
(θ), and qOPT

n+1 (θ) = qBM
n+1

(θ). Condition (9) in turn implies that qBM
n

(θ) ≤
qBM
n+1

(θ), that is, qOPT
n (θ) is non-decreasing in n for n ≤ n(θ)− 1.

For any n > n(θ), θ < θn, and therefore, qOPT
n (θ) = max{qBM(θ), P−1(θn)}. The quantity

P−1(θn) is non-increasing in n because θn ≤ θn+1 < θ for every n. Consequently, qOPT
n (θ) is

also non-increasing.

Part 2. To establish the second part of the proposition it suffices to exhibit a pair j, k ∈ N,
with j < k, such that qOPT

j (θ) > qOPT
k (θ). To do so, consider the following two cases.

Case 1. Suppose qBM(θ) ≥ P−1(θn(θ)+1). Then let j = n(θ) and k = n(θ) + 1, and observe

that

qOPT
j (θ) = qBM

j
(θ) = P−1

(
θ + (1− α)

F j(θ)

f
j
(θ)

)
> P−1

(
θ + (1− α)

F ⋆(θ)

f ⋆(θ)

)
= qBM(θ) = qOPT

k (θ),

where the inequality follows from (10).

Case 2. Suppose qBM(θ) < P−1(θn(θ)+1). Then let j = n(θ)+1 and let k be such that θk > θj.

Existence of such an k is ensured by the fact that θn < θ for all n and limn→∞ θn = θ. Then

qOPT
k (θ) = max{qBM(θ), P−1(θk)} < P−1(θj) = qOPT

j (θ).

To see this, observe that θk > θj implies that P−1(θk) < P−1(θj). Hence, if qOPT
k (θ) =

P−1(θk), then qOPT
k (θ) = P−1(θk) < P−1(θj) = qOPT

j (θ). If, instead, qOPT
k (θ) = qBM(θ), the

result follows from the fact that, by assumption, qBM(θ) < P−1(θj). Q.E.D.

Proof of Proposition 8. Part 1. By definition of qℓ, we have that

PN(qℓ) = PN(P
−1(θ)) ≥ P (P−1(θ)) = θ, (30)

where the inequality follows from the fact that PN(q) ≥ P (q) for every q. Because PN

is decreasing and continuous, we have that qℓ = PN
−1(PN(qℓ)) ≤ PN

−1(θ) = qNℓ . Hence

qNℓ ≥ qℓ, with the inequality strict if, and only if, the inequality in (30) is strict, i.e., if and

only if PN(qℓ) > P (qℓ).

The definition of q⋆ and q⋆N along with the monotonicity of these functions then implies

that θ⋆N ≤ θ⋆. That the inequality is strict when qNℓ > qℓ, θ
⋆ < θ follows from the fact that,

in this case, qBM(θ⋆) = qℓ < qNℓ . That q
BM is non-increasing along with the definition of q⋆

and q⋆N then imply that θ⋆N < θ⋆. This completes the proof of part (a).

54



Part 2. Now assume that θ⋆N ≥ θm. Let

∆(θ) := WN(θ, q
⋆
N)−W (θ, q⋆).

Note that, for any θ ≤ θ⋆N ,

∆(θ) =

qBM(θ)ˆ

0

[
PN(z)− P (z)

]
dz −

θˆ

θ

[
q⋆N(y)− q⋆(y)

]
dy

=

qBM(θ)ˆ

0

[
PN(z)− P (z)

]
dz −

θˆ

θ⋆N

[
q⋆N(y)− q⋆(y)

]
dy,

where both equalities follow from the fact that for θ ≤ θ⋆N , q
⋆(θ) = q⋆N(θ) = qBM(θ). Because

the second integral is independent of θ and because qBM is decreasing, ∆(θ) is decreasing over

[θ, θ⋆N ]. That θ
m ≤ θ⋆N , in turn implies that ∆(θ) is decreasing over [θ, θm]. Furthermore, for

any θ ≤ θm,

WN(θ, q
⋆
N) = W (θ, q⋆) + ∆(θ) ≥(a) W (θm, q⋆) + ∆(θm) = WN(θ

m, q⋆N),

where inequality (a) follows from the fact that (i) W (θ, q⋆) ≥ W (θm, q⋆), which in turn

follows from the definition of θm, and (ii) ∆(θ) ≥ ∆(θm), which in turn follows from the

monotonicity of ∆(θ) over [θ, θm]. Thus, we have that θmN ≥ θm. Q.E.D

Proof of Lemma 5. For any M̃ ∈ M̃,

G(M̃) ≤(a) V (D(p(θ)))− θD(p(θ))− (1− α)ũ(θ,D)

≤(b) V (D(p(θ)))− θD(p(θ))

≤(c) V (D(θ))− θD(θ)

= G∗.

Inequality (a) follows because the right-hand-side is just the expected welfare under distri-

bution that puts probability one at θ and when demand D. Inequality (b) follows from the

fact that ũ(θ,D) ≥ 0 as M̃ is EPIR. Inequality (c) follows from the fact that

θ = argmax
p

{
V (D(p))− θD(p)

}
.

Next, observe that G∗ can be guaranteed by offering the constant-price mechanism M̃ :=

(p, t), where p(θ) = θ for all θ, and where t is such that, for all (θ,D), (11) holds with
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ũ(θ,D) = 0. Then for all θ and all D, welfare is equal to

Ṽ (θ;D)− θD(θ)− (1− α)

θˆ

θ

D(θ)dy = Ṽ (θ;D)− θD(θ) + α(θ − θ)D(θ)

≥ Ṽ (θ;D)− θD(θ)

≥ V (D(θ))− θD(θ) = G∗.

The last inequality follows from the fact that, when the cost is equal to θ, the price p(θ) = θ

maximizes total surplus Ṽ (p;D)−θD(p) for anyD. The result then follows from the fact that

total surplus under the surplus maximizing price is increasing in D. The above properties

in turn imply that, for all F and D, W̃ (M̃ ;V, F ) ≥ G∗, which implies that G(M̃) = G∗.

Finally, that any M̃ ∈ M̃ for which G(M̃) = G∗ is such that p(θ) = θ and ũ(θ,D) = 0

follows from the fact that Nature can always selects D = D and a distribution selecting

θ = θ with probability one; when θ = θ and D = D, the only way welfare can be made equal

to G∗ is by inducing efficient output by setting a price p(θ) = θ, and giving no rent to the

seller, which amount to setting ũ(θ,D) = 0. ■

Proof of Lemma 6. The proof is in two steps. Step 1 shows that, without loss of optimality,

the government can restrict attention to price mechanisms that entail only mark-ups. Step

2 uses the result in Step 1 to establish the claim in the lemma.

Step 1. Suppose M̃ ∈ M̃ is such that p(θ) < θ for some θ. There exists another price mech-

anism M̃ † = (p†, t†) ∈ M̃ with p†(θ) ≥ θ for all θ such that W̃ (M̃ †;D,F ) ≥ W̃ (M̃ ;D,F ) for

all D ∈ D and F ∈ F , with the inequality strict if the subset of Θ for which p(θ) < θ has

strict positive measure under F .

To see this, let M̃ † = (p†, t†) be the mechanism constructed from M̃ by setting p†(θ) =

max{p(θ), θ)} for all θ ∈ Θ and by setting t† so that, for all θ ∈ Θ and D ∈ D,

ũ†(θ,D) = ũ(θ,D) +

θˆ

θ

D(p†(y))dy,

where ũ(θ,D) is type θ’s rent under the mechanism M̃ when the demand is D. Clearly, p†

is non-decreasing and M̃ † = (p†, t†) ∈ M̃ meaning that M̃ † is also EPIC and EPIR. Next
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observe that, for all θ ∈ Θ and D ∈ D,

ũ†(θ,D)− ũ(θ,D) =

θˆ

θ

[
D(p†(y))−D(p(y))

]
dy ≤ 0,

where the inequality follows from the fact that p†(θ) ≥ p(θ) for all θ. The inequality is strict

if there exists a subset of Θ of positive Lebesgue measure for which p(θ) < θ. Furthermore,

for all θ ∈ Θ and D ∈ D,

Ṽ (p†(θ);D)− θD(p†(θ)) ≥ Ṽ (p(θ);D)− θD(p(θ)),

where the inequality follows from the fact that Ṽ (p;D)− θD(p) is single picked in p with a

maximum at p = θ. It follows that, for any F and D, W̃ (M̃ †;D,F ) ≥ W̃ (M̃ ;D,F ). We thus

conclude that, to find robustly optimal price mechanisms, it suffices to restrict attention to

price mechanisms with markups (which thus induce underproduction no matter the realized

cost and demand).

Step 2. Equipped with the result in step 1, we now establish the result in the lemma.

Necessity. let M̃OPT = (pOPT, tOPT) be a robustly optimal price mechanism. Because M̃OPT

is EPIC, pOPT must be non-decreasing. Because M̃OPT ∈ M̃SL, Lemma 5 implies that

pOPT(θ) = θ and ũOPT(θ,D) = 0. Because F ⋆ is increasing over Θ, the result in Step 1

implies that pOPT(θ) ≥ θ for almost all θ ∈ Θ. This last property along with the fact that

pOPT is non-decreasing implies that pOPT(θ) ≥ θ for all θ ∈ Θ. Since M̃OPT satisfies (14) and

EPIR, equation (18) holds. Since the maximization of welfare is done under the conjecture

(F ⋆, D⋆), standard arguments imply that ũOPT(θ,D⋆) = 0. Hence pOPT must satisfy all

the constraints in (ROPT-P). Next, recall that, given any mechanism M̃ = (p, t) ∈ M̃SL,

welfare under the conjecture (D⋆, F ⋆) is given by (15). Suppose there exists a price schedule

p† that also satisfies the constraints in (ROPT-P) and such that

θ́

θ

[
V ⋆(D⋆(p†(θ)))− z⋆(θ)D⋆(p†(θ))

]
F ⋆(dθ) >

θ́

θ

[
V ⋆(D⋆(pOPT(θ)))− z⋆(θ)D⋆(pOPT(θ))

]
F ⋆(dθ).

Let t† be any transfer schedule such that the function ũ† defined, for all θ ∈ Θ and D ∈ D,

by ũ†(θ,D) := t†(θ,D)− θD(p†(θ)) satisfies the following properties: (a) for all D ∈ D and
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θ ∈ Θ,

ũ†(θ,D) = ũ†(θ,D) +

θˆ

θ

D(p†(y))dy,

(b) for all D ∈ D, 0 ≤ (1 − α)ũ†(θ,D) ≤ [Ṽ (θ;D) − θD(θ) − G∗], and (c) ũ†(θ,D) =

ũ†(θ,D⋆) = 0. Lemmas 4-5 imply that the mechanism M̃ † = (p†, t†) ∈ M̃SL and yields the

government a payoff under the conjecture (D⋆, F ⋆) strictly greater than M̃OPT, contradicting

the assumption that M̃OPT is robustly optimal. We conclude that pOPT must solve program

(ROPT-P).

Sufficiency. Suppose M̃OPT = (pOPT, tOPT) satisfies the properties in the lemma. Lemmas

4 and 5 along with the result in Step 1 above imply that M̃OPT ∈ M̃SL. The same lemmas,

together with the fact that pOPT solves program (ROPT-P) and the fact that, in any EPIC

and EPIR mechanism, the government’s payoff under the conjecture (D⋆, F ⋆) is given by

(15), imply that the M̃OPT maximizes the government’s objective (under the conjecture

(D⋆, F ⋆)) over M̃SL. Hence, M̃OPT is robustly optimal. ■

Proof of Proposition 9. Note that, for any θ ∈ Θ, the unique price that maximizes the

integrand function in (ROPT-P) over [0, θ] is min{z⋆(θ), θ}. Because z⋆ is increasing and,

for any θ ∈ Θ, z⋆(θ) ≥ θ with z⋆(θ) > θ, the price function p(θ) = min{z⋆(θ), θ} satisfies all

the constraints in (ROPT-P). Because V ⋆(D⋆(p))− z⋆(θ)D⋆(p) is quasi-concave in p, and

attains a maximum at z⋆(θ), we conclude that the unique solution to program (ROPT-P) is

the price function in (19). The proposition then follows from the above properties together

with Lemma 6. Q.E.D.

Proof of Proposition 10. The proof is in two parts, each establishing the corresponding

claim in the proposition.

Part (1). If MOPT = M⋆, then qOPT(θ) = max{qBM(θ), qℓ} for all θ, where qℓ := P−1(θ) =

D(θ) is the efficient quantity for cost θ and demand D. In this case, there exists θ⋆ ≤ θ

such that qOPT(θ) = qℓ if θ ≥ θ⋆, and qOPT(θ) = qBM(θ) if θ < θ⋆. See Figure 11 for the

illustration.

Under the unique robustly optimal price mechanism M̃OPT = (pOPT, uOPT), the quantity

the government expects to procure at the conjectured demand and cost θ is D⋆(pOPT(θ)) =

max{qBM(θ), q̃ℓ}, where q̃ℓ := D⋆(θ) ≥ D(θ) = qℓ. Thus, there exists θ̃⋆ ≤ θ⋆ such that
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θ

q(θ)

θ̃⋆ θ⋆θ

q̃ℓ
qℓ

D⋆(popt(θ)) = max{qbm(θ), q̃ℓ}

qopt(θ) = max{qbm(θ), qℓ}

qbm

Figure 11: Illustration for the proof of Part (1) of Proposition 10

D⋆(pOPT(θ)) = q̃ℓ if θ ≥ θ̃⋆ and D⋆(pOPT(θ)) = qBM(θ) if θ < θ̃⋆. See Figure 11 for the

illustration.

For θ < θ̃⋆, we have that D⋆(pOPT(θ)) = qOPT(θ) = qBM(θ). However, for θ ≥ θ̃⋆, we have

that D⋆(pOPT(θ)) = q̃ℓ ≥ qOPT(θ) ≥ qBM(θ). Because, for any θ, virtual surplus

V ⋆(q)− z⋆(θ)q

is strictly quasi-concave in q, reaching a maximum at qBM(θ), we thus have that, for any

θ ≥ θ̃⋆,

V ⋆(D⋆(pOPT(θ)))− z⋆(θ)D⋆(pOPT(θ)) ≤ V ⋆(qOPT(θ))− z⋆(θ)qOPT(θ).

Thus, we have W̃ (M̃OPT;D⋆, F ⋆) ≤ W (MOPT;V ⋆, F ⋆), with the inequality strict if, and only

if, D⋆(θ) > D(θ).

Part (2). If D⋆(θ) = D(θ), then qℓ = q̃ℓ. In this case, the quantity that the government

expects to procure under its conjecture (D⋆, F ⋆) by running the robustly optimal price

mechanism is D⋆(pOPT(θ)) = max{qBM(θ), qℓ} = q⋆(θ), for all θ. This means that, by

running the robustly optimal price mechanism M̃OPT the government obtains the same

payoff as by running the Baron-Myerson-with-quantity-floor mechanism M⋆, i.e.,

W̃ (M̃OPT;D⋆, F ⋆) = W (M⋆;V ⋆, F ⋆). (31)

As shown in Lemma 2, M⋆ is the solution to a relaxation of the full program yielding the

robustly optimal quantity mechanism, implying that

W (M⋆;V ⋆, F ⋆) ≥ W (MOPT;V ⋆, F ⋆). (32)
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When MOPT ̸= M⋆, the inequality in (32) is strict. Jointly, (31) and (32) imply that, when

MOPT ̸= M⋆ and D⋆(θ) = D(θ), price strictly dominates quantity. Q.E.D.
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