Price Customization and Targeting in Matching Markets

Renato Gomes (TSE) Alessandro Pavan (Northwestern)

November 8, 2019
Matching Intermediaries

(Many-to-many) matching intermediaries:

- ad exchanges
- online retailers
- B2B platforms
- media platforms
- ...

...
Targeting and Price Customization

- Technological progress:
 - **targeting**
 (matching tailored to individual characteristics)
 - **price customization**
 (pricing tailored to individual characteristics)

- Example: ad exchanges and ad-supported platforms
 “compatibility” scores

- Example: online retailing
 pricing algorithms using third-party personal data

- Example: cable TV:
 price of additional channels determined by basic package – **bundling**
Policy Debate: Uniform Pricing

- Policy proposals aimed at curtailing targeting/price customization
 - bans on price customization
 - privacy regulations (e.g., GDPR and ePR)

- Obstacle to targeting/price customization: mkt decentralization
 - e.g., media markets
 - decentralization hinders bundling

- Policy debate lacks formal framework

- More generally,
 - distortions in matching markets?
This Paper

- Tractable, yet rich, model of mediated many-to-many matching:
 - third-degree price discrimination
 - second degree price discrimination

- Effects of uniform pricing obligations (mandated or due to mkt decentralization) on
 - targeting
 - consumer welfare

- Structural elasticities

- Analysis relevant for: ad-exchanges, online retailing, media markets
Related literature

- **Bundling**: Armstrong (2013), Hart and Reny (2015)...

- **Targeting**: Bergemann and Bonatti (2011, 2015), Kox, Straathof, and Zwart (2017)...
Plan

- Model
- Customized tariffs
- Uniform-pricing
- Targeting under customized and uniform pricing
- Welfare under customized and uniform pricing
- Decentralized markets
Model
Model

- Monopolistic platform
- Two sides $k \in \{a, b\}$
- Each side: unit-mass continuum of agents $i \in [0,1]$
- Type of agent i from side k: $\theta^i_k = (v^i_k, x^i_k)$
 - $v^i_k \in V_k = [v_k, \bar{v}_k]$: vertical dimension
 - $x^i_k \in [0,1]$: horizontal dimension (location)
- Each θ^i_k drawn independently from cdf F_k with support $\Theta \equiv V_k \times [0,1]$
Model

- Utility of type $\theta_k = (v_k, x_k)$ from match to type $\theta_l = (v_l, x_l)$:

 $u_k(v_k, |x_k - x_l|)$

 - increasing in v_k
 - decreasing in circular distance $|x_k - x_l|$

- Total utility from being matched, at price p, to set $s \subset \Theta_l$:

 $\pi_k(s, p; \theta) = \int_s u_k(v_k, |x_k - x_l|) dF_l(\theta_l) - p$.
Model
Example 1: Ad Exchanges

- Platform matches advertisers (side a) with publishers (side b).
- Advertiser $\theta_a = (v_a, x_a)$ obtains expected profit

$$u_a(v_a, |x_a - x_b|) = v_a \cdot \phi(|x_a - x_b|)$$

from impression at publisher $\theta_b = (v_b, x_b)$, where:

- v_a: profit per sale
- ϕ: conversion probability
- x_a: advertiser’s profile
- x_b: publisher’s profile

- Heterogeneity in publishers’ payoffs reflects differences in opportunity costs (as well as preferences over ad content)
Example 2: Media Platforms

- Media outlet matches viewers (side a) to content providers (side b)
- Viewer $\theta_a = (v_a, x_a)$ derives utility $u_a(v_a, |x_a - x_b|)$ from content of provider $\theta_b = (v_b, x_b)$, where:
 - x_a: viewer’s preferred content
 - x_b: content provider’s profile
 - $v_a > 0$: overall importance viewer attaches to media consumption

- Providers’ payoff
 $$u_b(v_b, |x_b - x_a|)$$
 may be positive (advertising) or negative (royalties)
Model: Information

- Vertical types: private information

- Horizontal types: public
 - Appendix deals with case locations are also private
Reciprocity

Definition. Tariffs T_k, $k = a, b$, **feasible** if induced matching demands s.t., for all $(\theta_k, \theta_l) \in \Theta_k \times \Theta_l$, $k, l \in \{a, b\}$, $l \neq k$,

$$\theta_l \in s_k(\theta_k) \iff \theta_k \in s_l(\theta_l).$$
Plan

- Model
- Customized tariffs
- Uniform-pricing
- Targeting under customized and uniform pricing
- Welfare under customized and uniform pricing
- Decentralized markets
Price Customization
Customized Tariffs

Definition. Tariff T_k **customized** if there exists collection of **matching** plans

$$\{(s_k(x_k), T_k(x_k), \rho_k(\cdot; x_k)) : x_k \in [0,1]\},$$

- $s_k(x_k)$: baseline configuration
- $T_k(x_k)$: baseline price
- $\rho_k(\cdot; x_k)$: customizing price schedules

s.t. an agent with location x_k who selects customization $s_k \in \Sigma(\Theta_l)$ is charged

$$T_k(s_k | x_k) = T_k(x_k) + \int_0^1 \rho_k(q_{x_l}(s_k) | x_l; x_k) dx_l,$$

where $q_{x_l}(s_k)$ is total mass of x_l-agents under customization s_k

Price customization: $\rho_k(\cdot; x_k)$ depends on x_k
Lemma

Following are true:

1. there exists pair of customized tariffs \((T_k^*)_{k=a,b}\) that are profit-maximizing;

2. matching demands \((s_k^*)_{k=a,b}\) under \((T_k^*)_{k=a,b}\)

\[s_k^*(\theta_k) = \{(v_l, x_l) \in \Theta_l : v_l > t_k^*(\theta_k, x_l)\}, \]

with \(t_k^*(\cdot)\) non-increasing in \(v_k\), non-decreasing in \(|x_k - x_l|\).
Matching Sets
Elasticities of Matching Demands

- Elasticity of matching demand by x_k-agents wrt marginal price ρ'_k for q-th unit of x_l-agents:

\[
\varepsilon_k (\rho'_k | x_l; x_k) \equiv -\frac{\partial D_k (\rho'_k | x_l, x_k)}{\partial (\rho'_k)} \cdot \frac{\rho'_k}{D_k (\rho'_k | x_l, x_k)}.
\]

- Semi-elasticities of matching demands

\[
\frac{\varepsilon_k (\rho'_k | x_l; x_k)}{\rho'_k}
\]
Lerner-Wilson formula

Proposition

Fix x_a, x_b. *For any* q_a, q_b *clearing market*, *that is*, *s.t.*

$$q_a = D_b \left(\rho_a^\prime(q_b) \right) \quad \text{and} \quad q_b = D_a \left(\rho_a^\prime(q_a) \right),$$

profit-maximizing schedules satisfy:

$$\rho_a^\prime(q_a) \left(1 - \frac{1}{\varepsilon_a(\rho_a^\prime(q_a))} \right) = 0,$$

net effect on side-a profits

$$+ \rho_b^\prime(q_b) \left(1 - \frac{1}{\varepsilon_b(\rho_b^\prime(q_b))} \right) = 0,$$

net effect on side-b profits
Lerner-Wilson formula

- Fix locations \((x_a, x_b)\)

\[l - F_a(t_b(v_b)) = q_b \]

\[l - F_b(v_b) = q_a \]
Proposition

Either of following two sets of conditions suffice for side-k distortions to decrease with distance:

(1.a) side-k SE increasing in distance, decreasing in price; side-l SE increasing in both distance and price;

(1.b) u_k submodular, x_l and v_l independent, hazard rate for F_l^γ increasing in v_l, u_l submodular and concave in v_l.
Definition. Distortions on side $k \in \{a, b\}$ decrease with distance (alternatively, increase) iff, for all $\theta_k = (v_k, x_k)$,

$$u_l(t_k^*(\theta_k, x_l), |x_l - x_k|) - u_l(t_k^e(\theta_k, x_l), |x_l - x_k|)$$

decreases (alternatively, increases) with $|x_k - x_l|$.
Constant Distortions
Distortions Decreasing in Distance
Plan

- Model
- Customized tariffs
- Uniform-pricing
 - Targeting under customized and uniform pricing
 - Welfare under customized and uniform pricing
- Decentralized markets
Uniform Pricing
Uniform Pricing

- **Definition.** Tariff T_k consistent with **uniform pricing** if prices $p_k(q|x_i)$ invariant to agent's own characteristics, x_k.

- **Mechanism design with novel constraint on implementing tariff**
Uniform Pricing

- **Key property:** non-linear price $p_k(q|x_l)$ side-a agents pay to be matched to q side-b individuals from location x_l invariant to agents' own characteristics, θ_k

- e.g., price advertisers pay to place ad on ad-exchange invariant to ad’s content
Uniform Pricing: Lerner-Wilson Revisited

Proposition 3. Profit-maximizing tariffs:

\[p'_a \left(1 - \frac{1}{\bar{e}_a(p'_a)}\right) + \mathbb{E}_{H(\tilde{x}_a|x_b,p'_a)} \left[p'_b(\hat{q}_b(\tilde{x}_a)) \left(1 - \frac{1}{\hat{e}_b(\hat{p}'_b(\hat{q}_b(\tilde{x}_a)))}\right)\right] = 0, \]

where \(H(x_a|x_b,p'_a) \) is distribution over \(X_a = [0,1] \) whose density given by

\[h(x_a|x_b,p'_a) \equiv \frac{\partial D_a(p'_a|x_b;x_a)}{\partial (p'_a)} \cdot \frac{\partial D_a(p'_a|x_b)}{\partial (p'_a)}. \]
Uniform Pricing: Average Virtual Values

■ Mechanism design with **novel constraint on implementing payments**

■ Under customized pricing, \(\theta_a \) and \(\theta_b \) matched iff

\[
\varphi_a (\theta_a, \theta_b) + \varphi_b (\theta_a, \theta_b) \geq 0
\]

■ Under uniform pricing, \(\theta_a \) and \(\theta_b \) matched iff

\[
\mathbb{E}_H (\tilde{x}_a | x_b, p^{u'}_a) \left[\varphi_a \left(\hat{v}_{x_b} \left(p^{u'}_a | \tilde{x}_a \right), \tilde{x}_a \right), \theta_b \right] \bigg|_{p^{u'}_a = u_a (v_a, |x_b - x_a|)} + \mathbb{E}_H (\tilde{x}_a | x_b, p^{u'}_a) \left[\varphi_b \left(\theta_b, \hat{v}_{x_b} \left(p^{u'}_a | \tilde{x}_a \right), \tilde{x}_a \right) \right] \bigg|_{p^{u'}_a = u_a (v_a, |x_b - x_a|)} \geq 0
\]

where \(\hat{v}_{x_b} \left(p^{u'}_a | x_a \right) \) is unique solution to

\[
u_a(\hat{v}_{x_b} \left(p^{u'}_a | x_a \right) , |x_a - x_b|) = u_a
\]
Plan

- Model
- Customized tariffs
- Uniform-pricing
- Targeting under customized and uniform pricing
- Welfare under customized and uniform pricing
- Decentralized markets
Targeting
Targeting

Definition. More targeting under customized pricing if, for each $\theta_a = (v_a, x_a)$, there exists $d(\theta_a) \in (0, \frac{1}{2})$ such that

$$t^c_a(\theta_a, x_b) - t^u_a(\theta_a, x_b) \begin{cases} < 0 & \text{if } |x_a - x_b| < d(\theta_a) \\ > 0 & \text{if } |x_a - x_b| > d(\theta_a). \end{cases}$$
Threshold function $t_c^a(\theta_a, x_b)$ under customized pricing (black solid curve) and uniform pricing $t_u^a(\theta_a, x_b)$ (dashed blue curve) when customized pricing leads to more targeting than uniform pricing
Comparison: Targeting

Proposition

Suppose side-b preferences location-invariant (general case in paper)

1. Uniform pricing (on side a) leads to more targeting than customized pricing (on both sides) when side-a SE increasing in both distance and price.

2. Side-a SE increasing in both distance and price when
 - x_a and v_a independent
 - hazard rate for F_a^v increasing in v_a
 - u_a submodular and concave in v_a
Plan

- Model
- Customized tariffs
- Uniform-pricing
- Targeting under customized and uniform pricing
- Welfare under customized and uniform pricing
- Decentralized markets
Welfare
Convexity of Demands

Convexity of x_a-agents’ demand for q-th unit of x_b-agents wrt p'_a:

\[
CD_a (p'_a|x_b;x_a) = - \frac{\partial^2 D_a (p'_a|x_b;x_a)}{\partial (p'_a)^2} \left(\frac{\partial D_a (p'_a|x_b;x_a)}{\partial (p'_a)} \right)^{-1} p'_a
\]

Condition [NDR] Non Decreasing Ratio:

\[
\frac{p'_a}{2 - CD_a (p'_a|x_b;x_a)}
\]

nondecreasing in p'_a.
Welfare Effect of Uniform Pricing

Proposition

Suppose Condition NDR holds, and either of following alternatives is satisfied:

1. targeting higher under uniform pricing and \(CD_a(p'_a|x_b; x_a) \) decreasing in \(|x_a - x_b| \).

2. targeting higher under customized pricing and \(CD_a(p'_a|x_b; x_a) \) increasing in \(|x_a - x_b| \).

Then welfare of side-a agents higher under uniform pricing.
Plan

- Model
- Customized tariffs
- Uniform-pricing
- Targeting
- Welfare under customized and uniform pricing
- Decentralized markets
Decentralization
Decentralized Markets

- Many mkts transiting from centralized to decentralized structure (sellers post prices)

- E.g., Cable TV

- Decentralized mkt (+ private info on x_a) \Rightarrow uniform pricing on side a

- Similar welfare analysis as for comparison between uniform and customized pricing

- Extra welfare benefit from decentralization: zero markup on sellers side
Conclusions

- Mediated many-to-many matching
 - vertically + horizontally differentiated preferences

- Customized vs uniform pricing

- Monotonicity of semi-elasticities (distance and price) key to
 - distortions
 - targeting under uniform and customized pricing
 - welfare implications of uniform pricing
 - welfare effects of mkt decentralization
THANKS!