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1 Introduction

Two-sided markets are markets in which agents match through a platform,
which designs and prices matching opportunities. Typical examples include
ad-exchanges matching advertisers with publishers; media outlets matching
readers/viewers with content providers and advertisers; video-game consoles
matching gamers with game developers; operating systems matching end-users
with software developers; e-commerce websites matching buyers with sellers;
business-to-business platforms matching procurers with service providers; and
employment agencies matching employers with job seekers.

In the last few years, platform markets have gained a prominent role in
the organization of business activities. As a result, a conspicuous literature
has flourished examining various aspects of such markets, ranging from pricing
to platform design. In this chapter, we focus on monopolistic pricing and its
connection to matching design. Section 2 contains a flexible model of platform-
mediated matching with transfers. Section 3 reviews some of the classical results
on monopolistic pricing in two-sided markets. Section 4 extends some of these
results to markets in which both the platform and the agents face uncertainty
over the distribution of preferences over the two sides of the market and hence
over the eventual participation decisions. Section 5 considers markets in which
the platform engages in discriminatory practices matching different agents to
different subsets of the participating agents from the other side of the market.
It first considers the case of one-to-one matching and then the case of many-
to-many matching. Throughout the entire chapter, special attention is given to
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the distortions in the provision of matching services that emerge in two-sided
markets when the platform enjoys significant market power.

2 General Setup

Consider a “large” two-sided market in which the impact of each individual
agent in isolation on the platform’s profits is small. We capture such a situation
by assuming that each side is populated by a unit-mass continuum of agents.
This is a point of departure with respect to what assumed in the other chapters
in this book (see, however, the chapter on large matching markets in this book
for other benefits of assuming a large market). The assumption of a continuum
of agents permits us to illustrate in the simplest possible way the distortions that
arise when agents are privately informed and the platform has market power.
It also permits us to bridge the analysis of matching design in this chapter with
the literature on two-sided markets in Industrial Organization where demands
are smooth.

To capture the platform’s market power in the starkest possible terms, we
consider a situation where a single platform matches agents from the two sides
of the market.

Each agent from each side k = a, b has a type ωk drawn from a distribution Fk
with support Ωk, independently across agents (from either side of the market).
Agents privately know their types.

A matching mechanism consists of a matching rule and a payment rule for
each side of the market. By the Revelation Principle, it is without loss of
generality to focus on direct-revelation mechanisms. Accordingly, we define a
matching mechanism as M := {sk(·),pk(·)}k=a,b, where, for each k = a, b, and
each ωk ∈ Ωk, sk(ωk) ⊂ Ω−k is the set of types from side −k (that is, from the
opposite side of the market) that type ωk is matched to, whereas pk(ωk) is the
payment asked/given to the agent. Formally, pk : Ωk → R (both positive and
negative payments are allowed), while sk : Ωk → C(Ω−k), where C(Ω−k) is a
subset of the power set of Ω−k describing the collection of admissible matching
sets. This set captures technological or institutional constraints on the shape
matching sets. For instance, in the case of one-to-one matching, C(Ω−k) is the
collection of singleton sets {ω−k}.

A matching rule {sk(·)}k=a,b is feasible if and only if the following reciprocity
condition holds for all ωk ∈ Ωk, k = a, b:

ω−k ∈ sk(ωk)⇒ ωk ∈ s−k(ω−k). (1)

We assume that agents’ preferences are quasi-linear. Namely, the utility
that a side-k agent of type ωk derives from the matching set s̃k ∈ C(Ω−k) when
making a payment p̃k ∈ R to the platform is equal to uk(s̃k|ωk)− p̃k, with the
real-valued function uk(sk|ωk) describing the agent’s gross payoff. Therefore,
the payoff that type ωk obtains when reporting type ω′k under the mechanism
M is given by

Ûk(ωk, ω
′
k;M) := uk(sk(ω′k)|ωk)− pk(ω′k),
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whereas the payoff from truthful reporting his type is equal to Uk(ωk;M) :=
Ûk(ωk, ωk;M). A mechanism M is individually rational (IR) if Uk(ωk;M) ≥ 0
for all ωk ∈ Ωk, k = a, b, and is incentive compatible (IC) if Uk(ωk;M) ≥
Ûk(ωk, ω

′
k;M) for all ωk, ω

′
k ∈ Ωk, k = a, b. The definition of incentive compati-

bility is the same as in the mechanism design literature; it is de facto equivalent
to the notion of strategy proofness in the introductory chapter and used in most
of the matching literature.

A feasible matching rule is implementable if there exists a payment rule
{pk(·)}k=a,b such that the mechanism M = {sk(·),pk(·)}k=a,b is individually
rational and incentive compatible.

Example 1. Let Ωk = [ωk, ω̄k] ⊂ R+ and uk(sk|ωk) = ωk|sk|, k = a, b, with
|sk| :=

∫
sk
dF−k(ω−k) denoting the measure of the set sk. A feasible matching

rule {sk(·)}k=a,b is implementable if and only if |sk(·)| is non-decreasing, k = a, b.
To see this, note that uk(sk|ωk) is supermodular. Hence, if type ωk weakly
prefers the pair (sk(ωk),pk(ωk)) to the pair (sk(ω̃k),pk(ω̃k)), and |sk(ωk)| >
|sk(ω̃k)|, then any type ω′k > ωk strictly prefers the pair (sk(ωk),pk(ωk)) to the
pair (sk(ω̃k),pk(ω̃k)), which implies that the mechanismM = {sk(·),pk(·)}k=a,b

is incentive compatible only if |sk(·)| is non-decreasing, k = a, b. Lastly, to see
that any feasible rule {sk(·)}k=a,b such that |sk(·)| is non-decreasing, k = a, b, is
implementable, consider the mechanism M in which the payment rule is given
by pk(ωk) = ωksk(ωk)−

∫ ωk

ωk
|sk(ω̃k)|dω̃k, all ωk ∈ Ωk, k = a, b. It is then easy

to see that, because |sk(·)| is non-decreasing,

Uk(ωk;M) =
∫ ωk

ωk
|sk(ω̃k)|dω̃k

≥
∫ ω′k
ωk
|sk(ω̃k)|dω̃k + (ωk − ω′k)|sk(ω′k)| = Ûk(ωk, ω

′
k;M),

which implies that the mechanism M is incentive compatible. That the same
mechanism is also individually rational follows from the fact that Uk(ωk;M) =∫ ωk

ωk
|sk(ω̃k)|dω̃k ≥ 0 for all ωk, k = a, b. Hence the monotone rule sk(·)}k=a,b is

implementable. ♦

In what follows, we specialize the above formulation to capture specific as-
pects of pricing and matching design in two-sided markets.

3 Pricing in Two-sided Markets

The study of pricing in two-sided markets originally focused on environments
characterized by the absence of discrimination (across agents from the same
side), and the presence of cross-side network effects.

The first property implies that all side-k agents that join the platform are
assigned the same matching set. This restriction is motivated by the inability of
many two-sided platforms to customize matching opportunities.1 Accordingly,

1For instance, in a shopping mall or fair, it is impossible or impractical to prevent all
participating buyers and sellers to freely interact.
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for k = a, b, there are sets {Ω̂k}k=a,b, with Ω̂k ∈ C(Ω−k) 6= ∅, such that, for any

ωk ∈ Ωk, either sk(ωk) = ∅, meaning that type ωk is excluded, or sk(ωk) = Ω̂−k,
where Ω̂−k is the set of participating types from side −k. Feasibility obviously
requires that sk(ωk) = Ω̂−k if and only if ωk ∈ Ω̂k for k = a, b. We say that such
a matching rule induces the single network of participating agents (Ω̂a, Ω̂b).

The presence of cross-side network effects is captured by the following as-
sumptions on the agents’ types and preferences. The type of each agent is
a two-dimensional vector ωk = (ωsk, ω

i
k) ∈ R2, where ωsk denotes the agent’s

“stand-alone value,” that is, the benefit the agent derives from all products and
services the platform provides in addition to matching agents from the two sides
of the market, whereas ωik is the agent’s “interaction benefit,” that is, the value
the agent derives from interacting with agents from the other side of the market.
The gross utility of a type-ωk agent from being matched to a set sk ⊆ Ω−k of
types from the other side of the market takes the form

uk(sk|ωk) := ωsk + ωik|sk|, (2)

where |sk| :=
∫
sk
dF−k(ω−k) is the measure of the set sk. Accordingly, the

presence of more agents from the opposite side enhances the utility of a side-k
agent of type ωk if and only if ωik > 0. In advertising markets, for instance, it is
typically assumed that advertisers (on side a) have positive interaction benefits,
ωia > 0, whereas consumers (on side b) have negative interaction benefits ωib < 0
(that is, dislike advertising). In this example, a consumer’s (positive) stand-
alone value is the utility she derives from the content provided by the platform
(e.g., news or services), whereas an advertiser’s (negative) stand-alone value is
cost of producing the advertisement.

The next lemma relates the matching rules inducing a single network to the
transfer rules that implement them. The proof is straightforward and hence
omitted. To simplify, assume that, whenever indifferent, agents join the plat-
form.

Lemma 2. A matching rule {sk(·)}k=a,b inducing a single network (Ω̂a, Ω̂b) is
implementable if and only if there exist access prices Pa and Pb such that, for
all k = a, b,

Ω̂k =
{
ωk ∈ Ωk : ωsk + ωik|Ω̂−k| ≥ Pk

}
. (3)

In light of Lemma 2, consider the game in which the side-k agents are offered
to join the platform at the price Pk, and in which the agents’ participation
decisions are simultaneous. There exists an equilibrium of this game in which
each side-k agent joins the platform if and only if ωk ∈ Ω̂k. However, the
equilibrium need not be unique. For example, when the agents’ stand-alone
values are identically equal to zero, that is, ωsk = 0, and the interaction benefits
are homogenous within and across sides, that is, ωik = 1 for k = a, b, any price
vector (Pa, Pb) with 0 ≤ Pa, Pb ≤ 1, implements the single complete network
Ω̂k = Ωk, k = a, b. The implementation is however partial, in that the game
also admits a continuation equilibrium in which none of the agents participates.
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In the rest of this section, consistently with the mechanism design literature,
we shall disregard the multiplicity issue and describe the platform’s problem as
choosing a pair of participation values (Na, Nb), with Nk = |Ω̂k| denoting the
mass of agents from side k joining the platform. By virtue of Lemma 2, such a
pair of participation values can be supported in equilibrium if and only if there
exist sets (Ω̂a, Ω̂b) and prices (Pa, Pb) satisfying (3) and Nk = |Ω̂k|, k = a, b.

3.1 Profit-Maximizing Prices

We consider three scenarios, corresponding to different specifications of the
agents’ preferences. To this end, denote by F sk and F ik the marginal distri-
butions of the joint cdf Fk, and by fk (alternatively, fsk , f ik) the density of Fk
(alternatively, of F sk , F ik) if it exists. We let 1 {A} be the indicator function
taking value 1 if statement A is true, and zero otherwise.

Scenario 1. Agents are heterogeneous in their stand-alone values, but homoge-
nous in their interaction benefits, with the latter equal to ω̊ik > 0. In this case,
Fk(ωk) = 1

{
ωik ≥ ω̊ik

}
F sk (ωsk), with the marginal F sk absolutely continuous over

R.

Scenario 2. Agents are heterogeneous in their interaction benefits, but homoge-
nous in their stand-alone values, which we normalize to zero with no loss of gen-
erality: ω̊sk = 0. In this case, Fk(ωk) = 1 {ωsk ≥ 0}F ik(ωik), with the marginal
F ik absolutely continuous over R.

Scenario 3. Agents are heterogeneous in both their stand-alone values and their
interaction benefits. In this case, Fk is absolutely continuous over R2.

In light of Lemma 2, we can formulate the platform’s problem in terms of
the measure of agents that join from each side of the market. To do so, fix
(Na, Nb) ∈ (0, 1]2 and, for each k ∈ {a, b}, define Pk(Na, Nb) as the unique
solution to the system of equations given by

Nk =

∫
{ωk∈Ωk:ωs

k+ωi
kN−k≥Pk}

dFk(ωk), k = a, b. (4)

Intuitively, the two equations in (4) identify the access prices that implement
a single network in which the measure of participating agents from each side
k = a, b is equal to Nk > 0. In either of the three scenarios considered above,
the inverse demand functions Pk(Na, Nb), k = a, b, are differentiable. We then
define the own-price demand elasticity on side k as

εk(Na, Nb) := −Pk(Na, Nb)

Nk

(
∂Pk
∂Nk

(Na, Nb)

)−1

.

Fixing the measure N−k of participating agents from side −k, 1/εk captures
the sensitivity of the side-k inverse demand with respect to variations in the side-
k participation Nk. Equivalently, given the prices (Pa, Pb) = {Pk(Na, Nb)}k=a,b

5



implementing the participation vector (Na, Nb), εk(Na, Nb) is the elasticity of
the side-k direct demand with respect to variations in the side-k price, for fixed
participation on side −k.

Next, assume that the platform incurs a participation cost csk for each side-k
agent it brings on board, and an interaction cost ci for every interaction between
the two sides it induces. For any (Na, Nb), its profit is then equal to

Π(Na, Nb) :=
∑
k=a,b

Nk (Pk(Na, Nb)− csk)− ciNaNb.

Proposition 3. Consider a profit-maximizing platform designing a single net-
work, and let the agents’ preferences be given by (2). The profit-maximizing
prices (P ∗a , P

∗
b ), along with the participation profile (N∗a , N

∗
b ) they induce, solve

P ∗k −
[
csk +N∗−k

(
ci − ω̃i−k(N∗a , N

∗
b )
)]

P ∗k
=

1

εk(N∗a , N
∗
b )

(5)

for k = a, b, where P ∗k = Pk(N∗a , N
∗
b ), with Pk(Na, Nb) given by (4), and where

ω̃i−k(N∗a , N
∗
b ) := E

[
ωi−k|ωs−k + ωi−kN

∗
k = P ∗−k

]
is the average interaction benefit of those agents from side −k who are just in-
different between participating and not participating, under the profile (N∗a , N

∗
b ).

Proof. The result is obtained by differentiating the objective function Π(Na, Nb)

with respect to Nk, k = a, b, and then noting that ∂Pk(Na,Nb)
∂Nk

Nk

Pk(Na,Nb) =

− 1
εk(Na,Nb) and that ∂P−k(Na,Nb)

∂Nk
= ω̃i−k(Na, Nb), where the last property follows

from the implicit function theorem applied to (4). �

Condition (5) is instrumental to understanding how pricing in two-sided mar-
kets differs from pricing in more traditional one-sided environments. Relative to
the classic Lerner formula for monopoly pricing, two differences stand out. The
first is that, when choosing its side-k price, the platform must account for the
fact that its effective side-k marginal cost is endogenous and depends on the set
of participating agents on side −k. Indeed, when it increases the participation
on side k, to hold constant the participation on side −k, the platform must
adjust its price on side −k by ω̃i−k(Na, Nb), which is the average interaction
benefit among all agents on side −k who are just indifferent between joining the
platform and staying out. When this term is positive, this effect contributes
to a reduction in the side-k marginal cost, whereas the opposite is true when
ω̃i−k(Na, Nb) < 0.

The second difference is that the demand elasticities are a function of the
entire profile (Na, Nb) of participating agents. Because of cross-side network
effects, the participation on side −k affects the willingness to pay of the par-
ticipating agents on side k, and hence the elasticity of the side-k demand with
respect to the side-k price.
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The “two-sided” Lerner formula in (5) highlights that price skewness is a
fundamental feature of markets with cross-side network effects. If, for instance,
the demand elasticity is low on side a, but high on side b, the platform tends
to set high prices on the former side, and low (potentially negative) prices on
the latter side. In light of such considerations, prices on each side should not be
taken in vacuo for competition policy purposes: Neither a low price on side b is a
sign of predation (below-cost pricing) or a high-price on side a is a sign of abuse
of market power (high markup). Rather, the welfare effects of monopolistic
pricing should be evaluated by comparing prices on each side to their efficient
counterparts, as we show next.

3.2 Welfare-maximizing Pricing

Let social welfare include all agents’ utilities and the platform’s profit. Accord-
ingly, the welfare induced by a single network with participation profile (Na, Nb)
is given by

W (Na, Nb) :=
∑

k∈{a,b}

∫
{ωk:ω

s
k
+ωi

k
N−k≥Pk(Na,Nb)}

(
ωs
k + ωi

kN−k − csk

)
dFk(ωk)−ciNaNb.

The term inside the integrals is the total gross surplus of the matches enabled
by the platform (the sum of the agents’ utilities net of all participation costs),
while the last term is the platform’s total interaction cost. The next proposition
derives the welfare-maximizing participation profile, which we hereafter refer to
as the efficient participation profile.

Proposition 4. Consider a welfare-maximizing platform designing a single net-
work, and let the agents’ preferences be given by (2). The welfare-maximizing
prices (P ea , P

e
b ) along with the efficient participation profile (Ne

a , N
e
b ) they induce

solve
P ek = csk +Ne

−k
(
ci − ω̄i−k(Ne

a , N
e
b )
)

(6)

for k = a, b, where P ek = Pk (Ne
a , N

e
b ), with Pk(Na, Nb) given by (4), and where

ω̄i−k(Ne
a , N

e
b ) := E

[
ωi−k|ωs−k + ωi−kN

e
k ≥ P e−k

]
is the average interaction benefit of the participating agents from side −k.

Proof. The result is obtained by differentiating the objective functionW (Na, Nb)
with respect to Nk, k = a, b, and then applying the implicit function theorem

to (4) to obtain the formula for ∂Pk(Na,Nb)
∂Nk

. �

Condition (6) is the two-sided incarnation of the Pigouvian precept accord-
ing to which, to achieve efficiency, agents should be charged (or remunerated)
for the externalities they impose on other market participants (as in the VCG
mechanism). The price on each side is equal to the total marginal cost that the
platform incurs to bring a marginal agent on board, adjusted by the network
externality that the marginal agent exerts on the participating agents from the
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other side of the market. This externality equals the measure of agents on side
−k multiplied by the average interaction benefit among all the participating
agents on side −k. Note the contrast to the pricing practiced by a profit-
maximizing monopolist, whereby only the externality imposed on the marginal
agents from the opposite side is accounted for.

3.3 Distortions

To understand how the profit-maximizing price profile compares to its efficient
counterpart, let us take the difference between (5) and (6). This leads to the
following decomposition:

P ∗k − P ek =
P ∗k

εk(P ∗a , P
∗
b )︸ ︷︷ ︸

markup

+ Ne
−k
(
ω̄i−k(Ne

a , N
e
b )− ω̃i−k(Ne

a , N
e
b )
)︸ ︷︷ ︸

Spence distortion

+ Ne
−k
(
ω̃i−k(Ne

a , N
e
b )− ω̃i−k(N∗a , N

∗
b )
)︸ ︷︷ ︸

displacement distortion

+
(
Ne
−k −N∗−k

) (
ω̃i−k(N∗a , N

∗
b )− ci

)︸ ︷︷ ︸
scale distortion

.

(7)
The usual markup distortion reflects the market power enjoyed by the mo-

nopolistic platform. The Spence distortion captures the fact that a profit-
maximizing monopolist, when setting the price on side k, internalizes the ef-
fect of expanding the side-k participation on the marginal agent from side −k,
rather than on all participating agents from side −k. The displacement distor-
tion accounts for the difference between the benefits that the marginal agents
on side −k derive from the expansion of the side-k participation under the
profit-maximizing and the efficient allocation, respectively. In turn, the scale
distortion reflects the difference between the participation on side −k induced
by the profit-maximizing monopolist and a welfare-maximizing platform: the
net average benefit ω̃i−k − ci that the marginal agents on side −k derive from
the expansion of the side-k participation (net of the platform’s interaction cost)
applies to a measure of agents equal to N∗−k under profit maximization, whereas
it applies to Ne

−k agents under welfare maximization.
In general, it is not possible to sign the net effect of these four distortions.

As a result, the profit-maximizing prices can be either higher or lower than their
efficient counterparts in either one or both sides of the market. To obtain further
insights, it is useful to express prices on a per-unit basis, that is, by normalizing
the side-k price by the size of the participation on side −k. Further assume
that the participation costs are equal to zero on each side so that csa = csb = 0.

Letting p∗k :=
P∗k
N∗−k

and pek =
P e

k

Ne
−k

denote the side-k per-unit price under profit

and welfare maximization, respectively, we then have that

p∗k − pek =
p∗k

εk(N∗a , N
∗
b )︸ ︷︷ ︸

markup

+
(
ω̄i−k(Ne

a , N
e
b )− ω̃i−k(Ne

a , N
e
b )
)︸ ︷︷ ︸

Spence distortion
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+
(
ω̃i−k(Ne

a , N
e
b )− ω̃i−k(N∗a , N

∗
b )
)︸ ︷︷ ︸

displacement distortion

, (8)

Corollary 5. Consider a monopolistic platform designing a single network, and
let the agents’ preferences be given by (2).

1. Under Scenario 1, the displacement and Spence distortions are nil. The
per-unit price on each side is higher under profit than welfare maximiza-
tion: p∗k > pek, k = a, b.

2. Under Scenario 2, the Spence distortion is always positive on both sides,
whereas the displacement distortion is negative on at least one side. More-
over, the sum of the per-unit prices is higher under profit than welfare
maximization: p∗a + p∗b > pea + peb.

Proof. Part 1 follows directly from (8). For part 2, note that ω̄i−k(Ne
a , N

e
b ) −

ω̃i−k(Ne
a , N

e
b ) > 0 because, by definition, ω̃i−k(Ne

a , N
e
b ) = pe−k whereas ω̄i−k(Ne

a , N
e
b )

is the expectation over all ωi−k satisfying ωi−k ≥ pe−k. Hence, the Spence distor-
tion is always positive. Because, ω̃i−k(Ne

a , N
e
b ) = pe−k and ω̃i−k(N∗a , N

∗
b ) = p∗−k,

Condition (8) can be rewritten as

p∗a + p∗b = pea + peb +
p∗k

εk(N∗a , N
∗
b )︸ ︷︷ ︸

markup

+
(
ω̄i−k(Ne

a , N
e
b )− ω̃i−k(Ne

a , N
e
b )
)︸ ︷︷ ︸

Spence distortion

for k = a, b. Because the markup and the Spence distortions are both positive,
we have that p∗a + p∗b > pea + peb. Therefore, for some k, p∗k > pek. Because the
displacement distortion is equal to −(p∗−k−pe−k), it follows that the displacement
distortion is negative on at least one side of the market. �

Corollary 5 shows that, under scenarios 1 or 2, total per-unit prices are
excessively high when set by a profit-maximizing monopolist. Interestingly, in
Scenario 2, this does not rule out the possibility that the profit-maximizing price
on one side of the market is lower than its efficient counterpart. As we shall see
in Section 5, this possibility stems from the platform’s inability to discriminate
among agents from the same side of the market. When discrimination is possible,
all agents from both sides face higher prices under profit than under welfare
maximization.

4 Unknown preference distribution

We now consider markets in which the joint distribution of preferences in the
population is unknown, both to the platforms and to each agent from either side
of the market. This dimension is important because it introduces uncertainty
over the size of the network externalities.
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Specifically, suppose that preferences are consistent with the specification
in Scenario 1. The uncertain “aggregate state” of the world is thus given by
the pair of distributions F s = (F sa , F

s
b ) from which the agents’ stand-alone

valuations are drawn. As in the previous section, each ωsk is drawn from F sk
independently across agents. To keep things simple, further assume that each
agent’s stand-alone valuation ωsk parametrizes both the agent’s preferences and
the agent’s beliefs over the aggregate state. For simplicity, the platforms are
assumed not to possess any private information.

For any ωsk ∈ R, k = 1, 2, then denote by Qsk(ωsk) the measure of agents from
side k that the platform believes to have stand-alone valuations no smaller than
ωsk.

Next, consider the agents. For any k = a, b, and any (ωsk, ω
s
−k) ∈ R2, let

Ms
−k
(
ωs−k|ωsk

)
denote the measure of agents from side −k with stand-alone

valuation no smaller than ωs−k, as expected by any agent from side k with
stand-alone valuation equal to ωsk. These functions thus reflect the agents’
beliefs over the cross-sectional distribution of preferences on the other side of
the market. They may capture, for example, how consumers use their own
appreciation for the features of a new platform’s product (e.g., its operating
system, interface, and the like) to form beliefs over the number of applications
that will be developed for the new product. Importantly, such beliefs need not
coincide with the platforms’ beliefs.

For any ωsk, we assume that Ms
−k
(
ωs−k|ωsk

)
is strictly decreasing in ωs−k, and

differentiable in each argument.

Definition 6. Preferences are aligned if, for all ωs−k, Ms
−k
(
ωs−k|ωsk

)
is increasing

in ωsk, k = a, b. They are misaligned if, for all ωs−k, Ms
−k
(
ωs−k|ωsk

)
is decreasing

in ωsk, k = a, b.

When preferences are aligned, agents with a higher appreciation for a plat-
form’s product also expect a higher appreciation by agents from the opposite
side, whereas the opposite occurs when preferences are misaligned. Importantly,
the definition does not presume that stand-alone valuations are drawn from a
common prior. It simply establishes a monotone relationship between beliefs
and stand-alone valuations.

The special case of a common prior corresponds to the case in which all
players commonly believe that F s = (F sa , F

s
b ) is drawn from a set of distributions

F according to a distribution F. In this case, the platforms’ and the agents’
beliefs are given by

Qsk(ωsk) = EF[1−F sk (ωsk)], and Ms
−k
(
ωs−k|ωsk

)
=

EF

[(
1− F s−k(ωs−k)

)
fsk (ωsk)

]
EF [fsk (ωsk)]

,

where, as in the baseline model, fsk denotes the density of F sk , and all expecta-
tions are computed by integrating over F under the common prior F.

A strategy profile for the agents then constitutes a continuation (Bayes-
Nash) equilibrium in the game that starts after the platform announces its access

10



prices P = (Pa, Pb) if each agent’s participation decision is a best response to
all other agents’ equilibrium strategies.

Each agent from side k with stand-alone valuation ωsk then joins the platform
if and only if

ωsk + ω̊ikE [N−k|ωsk] ≥ Pk, (9)

where E [N−k|ωsk] is the participation on side −k expected by the agent. Pro-
vided the interaction benefits (ω̊ia, ω̊

i
b) are not too large, we then have that, for

any vector of prices (Pa, Pb), the demand expected by the platform on each side
k = a, b is given by Qsk(ω̂sk), where (ω̂sa, ω̂

s
b) is the unique solution to the system

of equations given by

ω̂sk + ω̊ikM
s
−k
(
ω̂s−k|ω̂sk

)
= Pk, k = a, b. (10)

Now, suppose the platform aims at getting on board Na agents from side a and
Nb agents from side b. Because the platform does not know the exact distribu-
tion of preferences, Na and Nb must be interpreted as the participation expected
by the platform, where the expectation is taken over all possible distributions
F s using the platform’s own beliefs. Given (10), the platform should set prices
(Pa, Pb) such that the thresholds (ω̂sa, ω̂

s
b) satisfy Qk(ω̂sk) = Nk, k = a, b. The

key difference with respect to the case of complete information is the following.
When the platform adjusts its prices so as to change the participation it expects
from side k while keeping constant the participation it expects from side −k, it
need not be able to keep constant the side-k’s marginal agent’s beliefs over the
participation of side −k. This is because uncertainty over the distribution of
preferences in the population de facto introduces statistical dependence between
the agents’ beliefs over the other side’s participation and their own preferences,
reflected in the fact that

∂E[N−k|ω̂sk]

∂ω̂sk
=
∂Ms
−k
(
ω̂s−k|ω̂sk

)
∂ω̂sk

6= 0. (11)

In particular, when preferences are aligned between the two sides, E[N−k|ω̂sk] is
increasing in ω̂sk, whereas the opposite is true when preferences are misaligned.
In the first case, this novel effect contributes to steeper inverse demand curves,
whereas in the second case to flatter inverse demands. When preferences are
aligned, the new marginal agent that the platform attracts by lowering its price
on side k is more pessimistic about the participation of the other side than
any of the infra-marginal agents who are already on board (those with a higher
stand-alone valuation). To get the new marginal agent on board, the platform
must thus cut its side-k price more than what it would have done under complete
information. Importantly, this novel effect is present even if the platform adjusts
its price on side −k so as to maintain its expectation of that side’s participation
constant (which amounts to maintaining ω̂s−k constant).

The above novel effects play an important role for how platforms price access
to their network on each side of the market. Using (10), we can reformulate
the platform’s objective in terms of the participation thresholds (ω̂sa, ω̂

s
b) rather

11



than the prices (Pa, Pb) that induce these thresholds. Accordingly, the platform
chooses (ω̂sa, ω̂

s
b) to maximize∑

k=a,b

{
ω̂sk + ω̊ikM

s
−k
(
ω̂p−k|ω̂

s
k

)
− csk

}
Qsk(ω̂sk)− ciQsa(ω̂sa)Qsb(ω̂

s
b). (12)

We then have the following result:

Proposition 7. Suppose that preferences are as in Scenario 1 and that the
distribution of preferences over the two sides is unknown to the agents and the
platform. The profit-maximizing prices (P ∗a , P

∗
b ), along with the stand-alone

thresholds (ω̂s∗a , ω̂
s∗
b ) they induce, satisfy the following optimality conditions

P ∗k = csk + ciQs−k(ω̂s∗−k) +

[
1 + ω̊ik

∂Ms
−k(ω̂s∗

−k|ω̂
s∗
k )

∂ω̂s
k

]
Qs

k(ω̂s∗
k )

|dQs
k(ω̂s∗

k )/dω̂s
k|

+ω̊i−k
∂Ms

k(ω̂s∗
k |ω̂

s∗
−k)

∂ω̂s
k

Qs
−k(ω̂s∗

−k)

|dQs
k(ω̂s∗

k )/dω̂s
k|
,

(13)

with P ∗k = ω̂s∗k + ω̊ikM
s
−k
(
ω̂s∗−k|ω̂s∗k

)
, k = a, b.

Proof. The result follows directly from differentiating the profit function in (12)
and then using (10). �

Note that the price formula in (13) is the incomplete-information analog of
the corresponding complete-information formula

P ∗k = csk + ciN∗−k −
∂Pk(N∗a , N

∗
b )

∂Nk
N∗k −

∂P−k(N∗a , N
∗
b )

∂Nk
N∗−k (14)

derived above. It requires that profit does not change when the platform in-
creases the participation it expects from side k (given its own beliefs), while
adjusting the price on side −k to maintain the participation it expects from
side −k constant.

In particular, the last term in the right-hand side of (13) is the benefit of
cutting the price on side k due to the possibility of raising the price on side −k,
typical of two-sided markets (see (5)).2 Note, however, an important difference
with respect to complete information. The measure of additional agents from
side k that the platform expects to bring on board by cutting its price on side
k now differs from the measure of agents expected by the marginal agent on
side −k (the one with signal ω̂s∗−k who is just indifferent between joining and not
joining). This novel effect is captured by the term

∂E[Nk | ω̂s∗−k]

∂Nk

∣∣∣∣
ω̂s∗
−k=const

= −
∂Ms

k

(
ω̂s∗k | ω̂s∗−k

)
∂ω̂sk

1

|dQsk(ω̂s∗k )/dω̂sk|

2Observe that ∂Mk

(
ω̂s∗
k | ω̂

s∗
−k

)
/∂ω̂s

k < 0, irrespective of whether preferences are aligned

or misaligned.
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in (13).3 Irrespective of whether preferences are aligned or misaligned between
the two sides, this term is always positive, thus contributing to a lower price on
side k.

The term in square brackets in the right-hand side of (13) captures the
adjustment in the side-k price necessary to expand the side-k demand. Inter-
estingly, this term accounts for how a variation in the participation from side
k comes with a variation in the beliefs of the side-k’s marginal agent about the
participation from side −k (the second term in the square bracket). Such vari-
ation occurs even when the platform adjusts its price on side −k to maintain
the identity of the marginal agent on that side unchanged (thus maintaining the
participation expected by the platform from that side constant). As indicated
above, when preferences are aligned across sides, this effect contributes to a
steeper inverse demand on each side and hence, other things equal, to higher
prices. The opposite is true in markets in which preferences are misaligned. The
latter effect has no counterpart under complete information.

We conclude by comparing the profit-maximizing prices to their efficient
counterparts. To this purpose, consider the problem of a planner that shares
the same beliefs as the platform (which is always the case when stand-alone
values are drawn from a common prior). The planner’s problem then consists
in choosing (ω̂sa, ω̂

s
b) so as to maximize

Ŵ (ω̂sa, ω̂
s
b) :=

∑
k=a,b

∫
{ωs

k≥ω̂
s
k}
(
ωsk + ω̊ikM

s
−k
(
ω̂s−k | ωsk

)
− csk

)
d[1−Qsk(ωk)]

−ciQsa(ω̂sa)Qsb(ω̂
s
b).

Proposition 8. Consider a welfare-maximizing platform designing a single
network, and let the agents’ preferences be as in Scenario 1. The welfare-
maximizing prices (P ea , P

e
b ), along with the efficient stand-alone thresholds (ω̂sea , ω̂

se
b )

they induce solve

P ek = csk + ciQs−k(ω̂se−k) + ω̊i−k

∫
{ωs
−k≥ω̂

se
−k}

(
∂Ms

k(ω̂se
k |ω

s
−k)

∂ω̂s
k

)
d[1−Qs−k(ωs−k)]

|dQsk(ω̂sek )/dω̂sek |
(15)

where P ek = ω̂sek + ω̊ikM
s
−k
(
ω̂se−k|ω̂sek

)
, for k = a, b.

Proof. The result follows directly from differentiating the welfare function in
(12) and then using (10) to relate the stand-alone thresholds to the prices that
induce them. �

When combined with Proposition 7, the result in the previous proposition
identifies the distortions due to market power. First, as under complete infor-
mation, a profit-maximizing platform accounts for the effect that a reduction

3Under complete information,
∂Ms

k

(
ω̂s
k|ω̂

p
−k

)
∂ω̂s

k
= 1
|dQs

k
(ω̂s

k
)/dω̂s

k
| in which case the second

term in (13) reduces to ω̊i
−kN−k, as discussed above.
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in the side-k price has on the profit collected from all infra-marginal agents
from the same side. This effect is captured by the third term in the right-hand
side of (13). This is the same markup distortion discussed above. The nov-
elty relative to complete information is that the adjustment in the side-k price
must account for the difference between the platform’s beliefs and those of the
side-k’s marginal agents. Other things equal, such a difference contributes to
larger distortion when preferences are aligned and to a smaller one when they
are misaligned. Second, a profit-maximizing platform internalizes the effect of
expanding the side-k participation by looking at the externality exerted on the
marginal agent from side −k instead of all participating agents from side −k.
This effect is the analog of the sum of the Spence and the displacement distor-
tions discussed above and is captured by the difference between the last term
in (13) and the last term in (15). Other things equal, whether such distortions
are amplified or mitigated by dispersed information depends to a large extent
on the modularity of the beliefs, that is, on whether |∂Ms

k

(
ω̂sek | ωs−k

)
/∂ω̂sk| is

increasing or decreasing in ωs−k. The last factor contributing to a discrepancy
between the profit-maximizing and the welfare-maximizing prices is a scale dis-
tortion analogous to the one under complete information, but again adjusted
for the difference in beliefs between the marginal and the infra-marginal agents.

5 Matching Design

Matching design relaxes one of the the key restrictions in the analysis of pricing
in two-sided markets; namely the absence of discrimination (within agents from
the same side). This opens the door to customized matching rules, where the
matching set of each participating agent depends on his type.

5.1 One-to-One Matching

We first consider markets in which matching is one-to-one, capturing situations
or rivalry or of severe capacity constraints on the part of agents. Recall that, in
this case, the set C(Ω−k) is the collection of all singletons {ω−k}, with ω−k ∈
Ω−k.

We identify the type of each agent with a vertical characteristic which we
refer to as quality. We let Ωk = [ωk, ω̄k] ⊂ R++ denote the set of types from
side k, and assume that the type of each side-k agent is an independent draw
from the distribution Fk.

Agents’ preferences take the following form: for each ωk ∈ Ωk, the gross
utility that each side-k agent with type ωk derives from the matching set sk =
{ω−k} is given by

uk(sk|ωk) := φk(ωk, ω−k), (16)

where the function φk is differentiable, equi-Lipschitz continuous, strictly in-
creasing in both arguments, and supermodular. Accordingly, the surplus of
each match increases with each of the involved agents’ quality, and the gain
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from a better-quality partner is higher for agents of higher quality. A sim-
ple example satisfying these assumptions is the multiplicative surplus function
φa(ωa, ωb) = ωaωb often assumed in applications.

The cost the platform incurs for each match it induces is c ∈ R+. To make
things simple (but interesting), assume that

∑
k φk(ωa, ωb) ≤ c ≤

∑
k φk(ω̄k, ω̄k).

To properly describe the platform’s matching design problem, we first need
to amend the definition of matching rules introduced in Section 2. Namely, it
is necessary to allow for stochastic matching rules that assign to each type a
distribution over the type of the matching partner from the opposite side.

To do so formally, let Ω̂k be the (Lebesgue-measurable) set of participating
types from side k. For any ωk ∈ Ωk \ Ω̂k, sk(ωk) = ∅. For ωk ∈ Ω̂k, instead,
sk(ωk) ∈ ∆(Ω̂−k) is a probability measure over Ω̂−k describing the likelihood
that each side-k agent of type ωk is matched with any of the participating types
from the other side of the market. We denote by Gsk(·|ωk) the cdf associated
with the measure sk(ωk).

Feasibility then dictates that the sets of participating agents from the two
sides have the same measure, |Ω̂a| = |Ω̂b|, where, as before, |Ω̂k| is the Fk-
measure of the set Ω̂k. This requirement is self-explanatory, as no one-to-one
matching rule can be constructed when the mass of participating agents is un-
equal across sides. In addition, feasibility also requires that the measure of types
from side −k matched to any subset Ω̃k ⊆ Ω̂k of participating types from side
k have the same measure as Ω̃k. That is, for any Ω̃k ⊆ Ω̂k,

|Ω̃k| :=
∫

Ω̃k

dFk(ωk) =

∫
Ω̂−k

∫
Ω̃k

dGs−k
(ωk|ω−k)dF−k(ω−k),

where the double integral in the right-hand side is the total measure of agents
from side −k that are matched to those agents from side k whose type is in Ω̃k.
Because the equality above has to hold for any measurable set Ω̃k, we can define
the joint distribution F according to dF(ωk, ω−k) := dGs−k

(ωk|ω−k)dF−k(ω−k).

Note that, by construction, this joint distribution couples the marginals |Ω̂a|−1Fa
and |Ω̂b|−1Fb.

Accordingly, feasibility requires that there exists a joint distribution F, with
support Ω̂a× Ω̂b and marginals |Ω̂a|−1Fa and |Ω̂b|−1Fb, such that, for each ωk ∈
Ω̂k, Gsk(·|ωk) is the conditional distribution of ω−k given ωk, as induced by the
joint cdf F. Intuitively, this requirement guarantees that any profile of realized
matches satisfies the reciprocity condition (1). Heuristically, the function F
describes the distribution of matched pairs under the rule {sk(·)}k=a,b.

For instance, random matching (with full participation, that is, with Ω̂k =
Ωk, k = a, b) corresponds to the joint cdf F defined by F(ωa, ωb) = Fa(ωa)Fb(ωb),
all (ωa, ωb) ∈ Ω, and the associated stochastic matching rule has cdf’sGsa(·|ωa) =
Fb and Gsb(·|ωb) = Fa, for all (ωa, ωb) ∈ Ω. In this example, the partner of each
side-k agent is drawn (independently across agents) from the marginal distribu-
tion F−k, irrespectively of the agent’s own type.

The case of a deterministic matching rule corresponds to the case where each
type from each side k = a, b is assigned a single type from the opposite side.
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We shall abuse notation and write the corresponding matching rule as sk(ωk) =
ω−k, with the understanding that, in this case, Gsk(·|ωk) is a degenerate Dirac
delta assigning probability one to type {ω−k}. Formally, this corresponds to an
endogenous joint distribution F whose conditional distribution F−k|k specifies
a collection of Dirac deltas, one for each ωk from sides k = a, b.

A deterministic matching rule of special interest is the (truncated) positive
assortative one. In order to define it formally, we first need to introduce the
following:

Definition 9. A pair of absolutely continuous random variables (X,Y ), with
cdf’s FX and FY , respectively, is co-monotone if there is a random variable
U uniformly distributed over [0, 1] such that X = F−1

X (U) and Y = F−1
Y (U),

where F−1
k (U) := inf{ωk ∈ Ωk : Fk(ωk) ≥ U}.

As it is well known, any random variable can be represented as being gen-
erated from a draw from a uniform distribution (probability integral transform
theorem). The definition imposes that the draw be the same across the two
random variables, implying that the two variables are related by the identity
Y = F−1

Y (FX(X)). Co-monotone random variables are intimately related to
positive assortative matching:

Definition 10. A matching rule {sk(·)}k=a,b is truncated positive assortative
if, for each k ∈ {a, b}, there exists a participation threshold ω̂k ∈ Ωk such that

sk(ωk) =

{
(F−k)

−1
(Fk(ωk)) if ωk ≥ ω̂k
∅ if ωk < ω̂k.

Therefore, a positive assortative matching rule renders the types of matched
agents co-monotone random variables (also note that, by feasibility, Fa(ω̂a) =
Fb(ω̂b)).

5.1.1 Efficient Matching Design

Equipped with the notation introduced above, the platform’s welfare-maximization
problem consists of choosing a pair of sets (Ω̂a, Ω̂b) and a joint distribution F
over Ω̂a × Ω̂b that couples the marginals |Ω̂a|−1Fa and |Ω̂b|−1Fb to maximize4

Ŵ (F; Ω̂a, Ω̂b) := |Ω̂a|
∫

Ω̂a×Ω̂b

(φa(ωa, ωb) + φb(ωb, ωa)− c) dF(ωa, ωb).

Proposition 11. Consider a welfare-maximizing platform designing one-to-one
matches, and let the agents’ preferences be given by (16). The efficient match-
ing rule is truncated positive assortative with participation thresholds (ω̂ea, ω̂

e
b)

satisfying ω̂eb = F−1
b (Fa(ω̂ea)) and

φa(ω̂ea, ω̂
e
b) + φb(ω̂

e
a, ω̂

e
b) = c. (17)

4Because of one-to-one matching, the measure of matches induced by the platform is |Ω̂a| =
|Ω̂b|.
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Proof. First, consider the case in which c = 0. It is evident that, in this case, it
is never optimal to exclude any type, implying that (Ω̂a, Ω̂b) = (Ωa,Ωb). Next,
let the the match surplus function be step-function with coefficients (α, β) ∈ R2:

φk(ωa, ωb) = φα,β(ωa, ωb) := 1 {ωa ≥ α}1 {ωb ≥ β}

Observe that, in this case, the welfare-maximizing matching rule is untruncated
positive assortative (in that ω̂k = ωk for each k).

For general match surplus functions, let φ(ωa, ωb) :=
∑
k=a,b φk(ωk, ω−k),

and consider the function Φ(ωa, ωb) defined by

Φ(ωa, ωb) :=
φ(ωa, ωb)− φ(ωa, ωb)− φ(ωa, ωb) + φ(ωa, ωb)

φ(ω̄a, ω̄b)− φ(ωa, ω̄b)− φ(ω̄a, ωb) + φ(ωa, ωb)

for all (ωa, ωb) ∈ Ω. Because φ is supermodular, Φ is a cdf with support Ω.
Obviously,

Φ(ωa, ωb) =

∫
Ω

φα,β(ωa, ωb)dΦ(α, β).

Now consider the objective

W̃ (F) :=

∫
Ω

Φ(ωa, ωb)dF(ωa, ωb) =

∫
Ω

∫
Ω

φα,β(ωa, ωb)dF(ωa, ωb)dΦ(α, β),

where the equality follows from Fubini’s Theorem. From the arguments above,
among all joint cdf’s that couple Fa and Fb, the one that maximizes the integral∫

Ω
φα,β(ωa, ωb)dF(ωa, ωb) is the cdf F∗ that renders ωa and ωb co-monotone

random variables. Because this is true for all (α, β) ∈ Ω, we conclude that
W̃ (F) is maximized by F∗. Because Φ has the form Φ(ωa, ωb) = δφ(ωa, ωb) +∑
k γkϕk(ωk)+K, where δ, γa, γb and K are constants, and where each function

ϕk(ωk) is invariant in ω−k, it is then easy to see that, when c = 0, F∗ also
maximizes Ŵ (F; Ωa,Ωb) over all joint cdf’s F that couple the marginals Fa and
Fb. We conclude that the un-truncated positive assortative matching rule is
optimal when c = 0.

Next consider the case in which c > 0. Because each φk(ωa, ωb) is strictly
increasing in both arguments, it is easy to see that the welfare maximizing
participation sets Ω̂ek have the form Ω̂ek = [ω̂ek, ω̄k], for some ω̂ek ≥ ωk, k =
a, b. Because it is never efficient to match any pair of types (ωa, ωb) ∈ Ω for
which

∑
k φk(ωa, ωb) − c < 0, we then conclude that the welfare-maximizing

participation thresholds ω̂ea and ω̂eb satisfy (17). Applying the arguments above

to the truncated marginal |Ω̂ea|−1Fa and |Ω̂eb|−1Fb then yields the result that the

function Ŵ (F; Ω̂a, Ω̂b) is maximized by the truncated positive assortative rule
with participation sets (Ω̂ea, Ω̂

e
b).

The next lemma establishes the implementability of truncated positive as-
sortative rules.

Lemma 12. Let {sk(·)}k=a,b be a truncated positive assortative matching rule.
Then {sk(·)}k=a,b can be implementable by the following payment rule:

pk(ωk) = φk(ωk, sk(ωk))−
∫ ωk

ω̂k

∂φk
∂ωk

(ω̃k, sk(ω̃k))dω̃k,
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all ωk ∈ Ωk, k = a, b.

Proof. Consider the mechanism defined by the matching rule {sk(·)}k=a,b along
with the payment rule {pk(·)}k=a,b in the lemma. Each agent with type ωk then
chooses a report ω′k so as to maximize

φk(ωk, sk(ω′k))− φk(ω′k, sk(ω′k)) +

∫ ω′k

ω̂k

∂φk
∂ωk

(ω̃k, sk(ω̃k))dω̃k.

Because sk(·) is monotone and φk is supermodular, it is then easy to see that
truthful reporting uniquely maximizes the agent’s payoff. �

The result in the proposition then follows from the arguments above along
with Lemma 12. �

It is easy to verify that the efficient rule is essentially unique (that is, up
to zero-measure perturbations). This implies that random matching is never
optimal provided the total match surplus φ is supermodular.

5.1.2 Profit-Maximizing Matching Design

Having derived the efficient one-to-one matching rule, we now turn to its profit-
maximizing counterpart. The platform’s profit under any incentive compatible
mechanism {sk(·),pk(·)}k=a,b is equal to

Π :=
∑
k=a,b

∫
Ω̂k

pk(ωk)dFk(ωk)− c|Ω̂a|.

The next lemma expresses the platform’s profit solely in terms of the endoge-
nous joint distribution F induced by the matching rule {sk(·)}k=a,b.

Lemma 13. Suppose that {sk(·)}k=a,b is an implementable matching rule with

participation sets Ω̂k = [ω̂k, ωk], ω̂k ∈ Ωk, k = a, b, and let F be the endogenous
joint distribution over Ω̂a× Ω̂b induced by {sk(·)}k=a,b. The platform’s maximal
profit under such a rule are given by

Π(F; Ω̂a, Ω̂b) = |Ω̂a|
∫

Ω̂a×Ω̂b

(
φ̂a(ωa, ωb) + φ̂b(ωb, ωa)− c

)
dF(ωa, ωb),

where

φ̂k(ωk, ω−k) := φk(ωk, ω−k)−
(

1− Fk(ωk)

fk(ωk)

)
∂φk
∂ωk

(ωk, ω−k)

is the side-k virtual match surplus, k = a, b.

Proof. Let {pk(·)}k=a,b be any payment rule implementing {sk(·)}k=a,b and
M = {sk(·),pk(·)}k=a,b be the mechanism defined by {sk(·)}k=a,b and {pk(·)}k=a,b.
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For any participating type ωk ∈ Ω̂k , the equilibrium payoff (that is, the payoff
under truth-telling) is equal to

Uk(ωk;M) =

∫
Ω̂−k

φk(ωk, ω−k)dGsk(ω−k|ωk)− pk(ωk)

The envelope theorem implies that

Uk(ωk;M) = Uk(ω̂k;M) +

∫ ωk

ω̂k

∫
Ω̂−k

∂φk
∂ωk

(ω̃k, ω−k)dGsk(ω−k|ωk)dω̃k.

Hence,

pk(ωk) =
∫

Ω̂−k
φk(ωk, ω−k)dGsk(ω−k|ωk)

−
∫ ωk

ω̂k

∫
Ω̂−k

∂φk

∂ωk
(ω̃k, ω−k)dGsk(ω−k|ωk)dω̃k − Uk(ω̂k;M).

Replacing the above expression into the profit function Π and integrating by
parts we have that

Π =
∑
k

∫
Ω̂k

∫
Ω̂−k

(
φk(ωk, ω−k)−

(
1− Fk(ωk)

fk(ωk)

)
∂φk
∂ωk

(ωk, ω−k)

)
dGsk(ω−k|ωk)dFk(ωk)

−
∑
k

|Ω̂k|Uk(ω̂k;M)− c|Ω̂a|. (18)

Clearly, any profit-maximizing transfer scheme implementing the matching rule
{sk(·)}k=a,b must satisfy Uk(ω̂k;M) = 0, k = a, b. Feasibility requires that

dGsk(ω−k|ωk)dFk(ωk) = |Ω̂k|dF(ωk, ω−k). Combining the above properties
then yields the result. �

Next, observe that, in any incentive compatible mechanism M , if sk(ωk) 6=
∅, then necessarily sk(ω′k) 6= ∅ for all ω′k > ωk, k = a, b. Hence, under any
profit-maximizing mechanism, the participating set on each side has the interval
structure Ω̂k = [ω̂k, ωk], for some ω̂k ∈ Ωk. In light of this observation and the
result in Lemma 13, we have that the problem of a profit-maximizing platform
is identical to that of a welfare-maximizing one, after one replaces the match
surplus function by its virtual counterpart. Accordingly, the next result follows
from Proposition 11.

Proposition 14. Consider a profit-maximizing platform designing one-to-one
matches, and let the agents’ preferences be given by (16). Suppose that, for each

k ∈ {a, b}, the virtual match surplus function φ̂k(ωk, ω−k) is supermodular.
Then, the profit-maximizing matching rule is a truncated positive assortative
rule with participation thresholds (ω̂∗a, ω̂

∗
b ) satisfying ω̂∗b = F−1

b (Fa(ω̂∗a)) and

φ̂a(ω̂∗a, ω̂
∗
b ) + φ̂b(ω̂

∗
a, ω̂

∗
b ) = c.
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Hence, when the virtual match surplus functions φ̂k satisfy the same prop-
erties as their primitive counterparts φk, k = a, b, the matching partner of any
participating agent is the same as under welfare maximization. Profit maxi-
mization, however, introduces extensive-margin distortions, in that it excludes
an inefficiently large set of agents from both sides.

How strong is the requirement that virtual match surpluses are supermodu-
lar? For an illustration, suppose that φk(ωk, ω−k) = ωkω−k. Then φ̂k(ωk, ω−k)
being supermodular is equivalent to the usual regularity condition from mech-
anism design requiring that virtual values

ωk −
(

1− Fk(ωk)

fk(ωk)

)
being strictly increasing. For other match value functions, this supermodular-
ity condition is harder to satisfy. When the condition is not satisfied, profit-
maximization, in addition to excluding too many agents, leads to inefficient
matching of the participating agents.5

5.2 Many-to-many matching design

Now suppose the platform can engage in many-to-many matching, therefore
customizing the matching set that each agent receives. Formally, C(Ω−k) is now
the collection of all (measurable) subsets of Ω−k. As in the previous subsec-
tion, continue to denote each agent’s type by the unidimensional characteristics
ωk ∈ Ωk := [ωk, ωk] ⊆ R but allow now the latter to take on negative values.
An agent’s type continues to parametrize both the agent’s preferences and the
utility she brings to agents from the other side. In particular, let σk(ωk) ∈ R+

denote the “salience” of each agent from side k with type ωk. Such salience
contributes positively to the utility of those agents from side −k who like inter-
acting with the side-k agents and negatively to those who dislike it. To make
things simple, assume that the absolutely continuous distribution Fk (with den-
sity fk) from which each ωk is drawn is “regular”, meaning that the function
ωk − [1− Fk(ωk)]/fk(ωk) is nondecreasing.

Next, assume that the gross payoff uk(s|ωk) that an agent from side k obtains
by interacting with a set of types s ∈ C(Ω−k) from the opposite side takes the
form

uk(s|ωk) = ωkgk
(
|s|−k

)
, (19)

where gk(·) is a positive, strictly increasing, and continuously differentiable func-
tion satisfying gk(0) = 0, and where

|s|−k :=

∫
ω−k∈s

σ−k(ω−k)dF−k(ω−k) (20)

is the aggregate salience of the set s.

5Indeed, it can be easily shown that the converse to Proposition 14 is true; namely, that
positive assortative matching is optimal only if the total virtual match surplus is supermodular.

20



An agent from side k with a negative ωk is thus one who dislikes interacting
with agents from the opposite side. To avoid trivial cases, assume that ω̄k > 0 for
some k ∈ {a, b}. The functions gk(·), k = a, b, capture increasing (alternatively,
decreasing) marginal utility (alternatively, disutility) for matching intensity.

Finally, assume that all costs are equal to zero, so as to simplify the analysis.
Following standard arguments from mechanism design, it is easy to verify that
a mechanism M is individually rational and incentive compatible if and only if
the following conditions jointly hold for each side k = a, b:6

(i) the matching intensity of the set sk(ωk) is nondecreasing;
(ii) the payoff Uk(ωk;M) of those agents with the lowest type is non-negative;
(iii) the pricing rule satisfies the envelope formula

pk(ωk) = ωkgk (|sk(ωk)|l)−
∫ ωk

ωk

gk
(
|sk(x)|−k

)
dx− Uk(ωk;M). (21)

It is also easy to see that, in any mechanism that maximizes the platform’s
profit, the IR constraints of those agents with the lowest types bind, that is,
Uk(vk;M) = 0, k = a, b. As already shown above, the problem of maximizing the
platform’s profit is then analogous to that of maximizing welfare in a fictitious
environment in which the agents’ types are equal to their virtual analogs. To
economize on notation, for any k = a, b, any ωk ∈ Ωk, let ϕWk (ωk) := ωk and
ϕPk (ωk) := ωk − [1 − Fk(ωk)]/fk(ωk). The platform’s problem thus consists in
finding a pair of matching rules {sk(·)}k=a,b that maximize∑

k=a,a

∫
Ωk

ϕhk(ωk)gk (|sk(ωk)|l) dFk(ωk) (22)

among all rules that satisfy the monotonicity constraint (i) and the reciprocity
condition (1). Hereafter, we will say that a matching rule {shk(·)}k=a,b is h-
optimal if it solves the above h-problem, with the understanding that, when
h = W , this means that the rule is efficient, that is, welfare-maximizing, whereas
when h = P , the rule is profit-maximizing.

For future reference, for both h = W,P, we also define the reservation value
rhk := inf{ωk ∈ Ωk : ϕhk(ωk) ≥ 0} when {ωk ∈ Ωk : ϕhk(ωk) ≥ 0} 6= ∅.

5.2.1 Threshold Rules

Definition 15. A matching rule is a threshold rule if there exits a pair of weakly
decreasing functions tk : Ωk → Ω−k ∪ {∅} along with threshold types ω̂k ∈ Ωk
such that, for any ωk ∈ Ωk, k = a, b,

sk(wk) =

{
[tk(ωk), ω−k] if ωk ≥ ω̂k

∅ otherwise,

and, for any ωk ∈ [ω̂k, ωk],

tk(ωk) = min{ω−k : t−k(ω−k) ≤ ωk}. (23)
6See also Example 1.
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The interpretation is that any type below ω̂k is excluded, while a type
ωk > ω̂k is matched to any agent from the other side whose type is above
the threshold tk(ωk). To satisfy the reciprocity condition (1), the threshold
functions {tk(·)}k=a,b have to satisfy the property in (23).

Note that threshold rules are always implementable because matching in-
tensity is nondecreasing under such rules. However, many other implementable
matching rules do not have a threshold structure.

Proposition 16. Assume that one of the following two sets of conditions holds:
(a) the functions gk(·) are weakly concave, and the functions σk(·) are weakly

increasing, for both k = a, b;
(b) the functions gk(·) are weakly convex, and the functions σk(·) are weakly

decreasing, for both k = a, b.
Then both the profit-maximizing and the welfare-maximizing matching rules

are threshold rules.

Proof sketch. Consider an agent for whom ϕhk(ωk) ≥ 0. Ignoring the mono-
tonicity constraints, it is easy to see that it is always optimal to assign to this
agent a matching set that includes all agents from the other side whose ϕhl -value
is non-negative. This is because (i) these latter agents contribute positively to
type ωk’s payoff and, (ii) these latter agents have non-negative ϕhl -values, which
implies that adding type ωk to these latter agents’ matching sets (as required
by reciprocity) never reduces the platform’s payoff.

Next, consider an agent for whom ϕhk(ωk) < 0. It is also easy to see that it is
never optimal to assign to this agent a matching set that contains agents from
the opposite side whose ϕh−k-values are also negative. This is because matching
two agents with negative h-valuations decreases the platform’s payoff.

Now suppose that gk(·) is weakly concave and σk(·) is weakly increasing, on
both sides. Pick an agent from side k with ϕhk(ωk) > 0 and suppose that the
platform wants to assign to this agent a matching set whose intensity

q = |s|−k >
∫

[rh−k,ω̄−k]

σ−k(ω−k)dF−k(ω−k)

exceeds the aggregate matching intensity of those agents from side −k with non-
negative ϕhl -values (that is, for whom ωl ≥ rhl ). That gk(·) is weakly concave and
σk(·) is weakly increasing, along with the fact that types are private information,
implies that the least costly way to deliver such matching intensity is to match
the agent to all agents from the opposite side whose ϕh−k(ω−k) is the least
negative. This is because (a) these latter agents are the most attractive ones,
and (b) by virtue of g−k being concave, using the same agents from side −k
with a negative ϕh−k-valuations intensively is less costly than using different

agents with negative ϕhl -valuations. Threshold rules thus minimize the costs of
cross-subsidization by delivering to those agents who play the role of consumers
(that is, whose ϕhk-valuation is nonnegative) matching sets of high quality in the
most economical way.
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Next, suppose that gk(·) are weakly convex, and σk(·) are weakly decreasing,
on both sides. The combination of the above properties with the fact that types
are private information, implies that the most profitable way of using any type
ωk for whom ϕhk(ωk) < 0 is to match him to those agents from side −k with the
highest positive ϕh−k-valuations. This is because (a) these latter types are the
ones that benefit the most from interacting with type7 ωk and (b) these latter
types are the least salient ones and hence exert the lowest negative externalities
on type ωk. A threshold structure is thus optimal in this case as well. �

The matching allocations induced by threshold rules are consistent with the
practice followed by many media platforms (e.g., newspapers) of exposing all
readers to premium ads (displayed in all versions of the newspaper), but only
those readers with high tolerance to advertising to discount ads (displayed only
in the tabloid or printed version).

5.2.2 Distortions

We conclude by discussing the distortions in the provision of matching services
due to market power.

Proposition 17. Assume that the conditions for the optimality of threshold
rules in Proposition 16 hold and that, in addition, the functions ψhk : Ωk → R
defined by

ψhk (ωk) :=
ϕhk(ωk)

g′−k (|[ωk, ω̄k]|k) · σk(ωk)

are strictly increasing, k = a, b, h = W,P. Then, relative to the welfare-maximizing
rule, the profit-maximizing rule (a) completely excludes a larger group of agents,
that is, ω̂Pk ≥ ω̂Wk , k = a, b, and (b) matches each agent who is not excluded to a
subset of his efficient matching set, that is, sPk (ωk) ⊆ sWk (ωk), for all ωk ≥ ω̂Pk ,
k = a, b.

Proof sketch. Let ĝk : Ω−k → R+ be the function defined by

ĝk(ω−k) := gk
(
|[ω−k, ω̄−k]|−k

)
= gk

(∫ ω−k

ω−k

σ−k(x)dF−k(x)

)
,

k = a, b. The utility that an agent with type ωk obtains under a threshold rule
from the matching set [tk(ωk), ω−k] is then equal to ωkĝk (tk(ωk)). Then let
4hk : Ωk × Ω−k → R be the function defined by

4hk(ωk, ω−k) := −ĝ′k(ω−k)ϕhk(ωk)fk(ωk)− ĝ′−l(ωk)ϕh−k(ω−k)f−k(ω−k), (24)

for k = a, b. Note that 4ha(ωa, ωb) = 4hb (ωb, ωa) represents the marginal effect
on the platform’s h-objective of decreasing the threshold thk(ωk) below ω−k while

7Indeed such types have matching sets with the highest matching intensity – as required by
incentive compatibility – and, because of the convexity of g−k(·), the highest marginal utility
for meeting additional agents.
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also reducing the threshold th−k(ω−k) below ωk by reciprocity. One can then

show that, under the conditions in the proposition, when 4hk(ωk, ω−k) ≥ 0, the
h-optimal matching rule is such that shk(ωk) = Ωl for all ωk ∈ Ωk, k = a, b.8 In
this case, the platform induces all agents on board from either side of the market.
When, instead, 4hk(ωk, ω−k) < 0, the h-optimal matching rule has the following
structure: (a) If 4hk(ω̄k, ω−k) > 0, the optimal rule induces bunching at the top
on side k and no exclusion at the bottom on side −k (that is, ω̂−k = ω−k
with th−k(ω−k) given by the unique solution to 4hk(th−k(ω−k), ω−k) = 0); (b) If

4hk(ω̄k, ω−k) < 0, the optimal policy induces exclusion at the bottom on side
−k and no bunching at the top on of side k (ω̂−k = thk(ω̄k) with thk(ω̄k) given
by the unique solution to 4hk(ω̄k, t

h
k(ω̄k)) = 0. Intuitively, wherever possible,

the platform balances the marginal gains of expanding the matching set of each
agent with the corresponding marginal cost, taking into account the constraint
imposed by reciprocity and the optimality of using a threshold structure.9 The
results in the proposition then follow from the above properties along with the
fact that ϕPk (ωk) ≤ ϕWk (ωk) for all ωk ∈ Ωk, k = a, b. �

The role of the extra condition in the proposition is to guarantee that, under
the h-optimal rule, bunching occurs only at the bottom of the distribution where
it takes the form of exclusion (shk(ωk) = ∅ for all ωk < ω̂hk ) or at the very top
of the distribution where agents are matched to all agents on board from the
other side of the market (that is, shk(ωk) = [ω̂h−k, ω̄k] for all ωk > t−k(ω̂h−k)).10

To interpret the condition, take the case of profit-maximization, h = P . The
numerator in ψhk (ωk) is the agent’s “virtual type”. This term captures the effect
on the platform’s profit of expanding the intensity of the matching set of each
side-k individual with type ωk, taking into account that the expansion requires
increasing the rents of all side-k agents with higher types. In other words, it
captures the marginal value of a type-ωk agent as a consumer. The denominator,
instead, captures the effect on the platform’s profit of adding such an agent to
the matching set of any agent from the opposite side whose matching set is
[ωk, ω̄k] (that is, whose threshold th−k(ω−k) = ωk). In other words, it captures
the marginal value of a type-ωk agent as an input, under a threshold rule. The
condition then requires that the contribution of an agent as a consumer increases
faster than his contribution as an input.

The intuition for the result in the proposition is the following. Under profit-
maximization, the platform only internalizes the effects of cross-subsidization

8Equivalently, thk(ωk) = ω−k, for all ωk ∈ Ωk, k = a, b.
9The formal proof is tedious and requires adapting some calculus-of-variation results to the

non-standard reciprocity constrained given by (23). However, the intuition is fairly straight-
forward and is well captured by the property of the marginal net benefit function ∆h

k above.
10Note that the condition is equivalent to the property that the marginal benefit func-

tion 4h
k satisfies the following single-crossing property: whenever 4h

k(ωk, ω−k) ≥ 0, then

4h
k(ωk, ω

′
−k) > 0 for all ω′−k > ω−k and 4h

k(ω′k, ω−k) > 0 for all ω′k > ωk. This single-

crossing property guarantees that, whenever the Euler condition 4h
k(ωk, t

h
k(ωk)) = 0 ad-

mits an interior solution ω−k < thk(ωk) < ω̄−k, the threshold thk(ωk) is strictly decreasing.
The condition in the proposition is the “weakest” regularity condition that rules out non-
monotonicities (or bunching) in the matching rule.
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on marginal revenues (which are proportional to the virtual valuations), rather
than their effects on welfare (which are proportional to the true valuations).
Contrary to other mechanism design problems, inefficiencies do not necessarily
vanish as agents’ types approach the “top” of the distribution (that is, the
highest valuation for matching intensity). The reason is that, although virtual
valuations converge to the true valuations as agents’ types approach the top
of the distribution, the cost of cross-subsidizing these types remains strictly
higher under profit maximization than under welfare maximization, due to the
infra-marginal losses implied by reciprocity on the opposite side.

6 Conclusions

The organization of the chapter reflects, to a large extent, the evolution of many
platform markets from a format where all agents on board are matched to all
participating agents from the opposite side of the market (the case considered
in most of the earlier literature) to one where platforms engage in more sophis-
ticated design, matching participating agents in a customized manner. Strong
market power in such markets may result in the complete exclusion of many
agents from either side of the market, and/or to inefficient matching whereby
those agents on board are either matched to the wrong partners (in the case of
one-to-one matching) or to a subset of their efficient matching set (in the case of
many-to-many matching). Such distortions call for regulation and government
interventions, an area that is receiving growing attention in recent years.

The analysis in this chapter has confined attention to markets dominated
by a single platform. An important part of the literature studies competition
between platforms in multi-sided markets, both in the case in which agents
can multi-home (that is, join multiple platforms) and in the case where they
single-home (that is, join at most one platform). Another area that has started
receiving attention recently is dynamics, whereby agents strategically time their
joining of the platform, experience shocks to their preferences over time, and
learn the attractiveness of potential partners by interacting with them. The
literature is also now considering richer specifications of the agents’ preferences
by allowing for different combination of vertical and horizontal differentiation
that permit one to investigate the effects of targeting, a form of third-degree
price discrimination often encountered in mediated matching markets. Finally,
recent work studies matching markets where agents are asked to submit match-
specific bids and where the selection of the matches is done through auctions that
use match-specific scores to control for the agents’ prominence in the market, a
practice employed by many ad-exchanges and sponsored-search engines.

7 Bibliographical Notes

Section 3 is based on Rochet and Tirole (2003), Armstrong (2006), Rochet
and Tirole (2006), Weyl (2010), and Tan and Wright (2018). In particular,
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we considered three scenarios regarding the agents’ preferences: Scenario 1 is
the one studied by Armstrong (2006), Scenario 2 the one in Rochet and Tirole
(2003), and Scenario 3 the one in Rochet and Tirole (2006) and Weyl (2010).
Section 4 is based on Jullien and Pavan (2019). Section 5 is based on Damiano
and Li (2007), Jonhson (2013), Galichon (2016), and Gomes and Pavan (2016).

The literature on competing platforms mentioned in Section 6 is very broad.
See Caillaud and Jullien (2001, 2003), Armstrong (2006), Rochet and Tirole
(2006), and Armstrong and Wright (2007) for earlier contributions and Tan and
Zhou (2020) for recent developments. See also Belleflamme and Peitz (2021)
and Jullien et al. (2021) for an overview of this literature.

The literature on platform pricing in dynamic settings mentioned in Section
6 includes Cabral (2011), Halaburda et al. (2020), and Biglaiser and Crémer
(2020). The case where agents learn about the attractiveness of potential part-
ners over time and submit bids for specific interactions mentioned in Section 6
is examined in Fershtman and Pavan (2017, 2020). The case of platforms prac-
ticing a combination of second- and third-degree price discrimination mentioned
in Section 6 is examined in Belleflamme and Peitz (2020) and Gomes and Pavan
(2020).
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