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Abstract

This paper uses a recursive approach to arrive at a concise formula describing the forces

responsible for the dynamics of wedges (i.e., distortions in the second-best allocations relative to

their first-best counterparts) in a large class of economies with an arbitrary number of periods, and

where the agents’ private information evolves over time, possibly in an endogenous manner. The

formula accommodates for a flexible specification of the planner’s preferences for redistribution

(captured by general non-linear Pareto weights on the agents’ lifetime utilities) and of the agents’

preferences for insurance (captured by the curvature of the agents’ payoffs over consumption),

as well as for rich specifications of the process governing the evolution of the agents’ private

information. The value of the formula is twofold. It helps us unify results in the macro new

dynamic public finance literature and relate them to results in the micro dynamic mechanism

design literature. It also permits us to shed new light on what drives the dynamics of distortions

in various economies of interest. For example, we show how the formula can explain why, contrary

to what suggested in the literature, distortions may increase over time in economies with constant,

or slowly declining, impulse responses of future types to initial ones, even if risk (the variance

of the agents’ types) remains constant or declines with time. We also show that, when utility

is non-transferable, the dynamics of wedges depend on the impulse responses of future types to

types in all intermediate periods, as opposed to just the initial ones, as in standard dynamic

mechanism design with transferable utility.
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1 Introduction

The last fifteen years have witnessed great interest in extending mechanism-design techniques from

static problems to dynamic ones, where the agents’ private information evolves over time and deci-

sions have to be made over multiple periods (see Bergemann and Pavan (2015), Pavan (2017), and

Bergemann and Valimaki (2018) for overviews). While most of the micro literature has confined

attention to settings with transferable utility (i.e., to economies in which the agents’ payoffs are

linear in consumption), the fast-growing new Dynamic Public Finance (DPF) and macro literatures

have been interested primarily in economies with non-transferable utility (see, for example, Farhi

and Werning (2013), Golosov et al. (2016), Stantcheva (2017), Makris and Pavan (2018) and the

references therein).

With non-transferable payoffs, distortions in the second-best allocations (relative to their first-

best counterparts) are best described in terms of wedges, i.e., discrepancies between marginal rates

of substitution and marginal rates of transformation. The formulas for such wedges summarize

all the key forces responsible for the distortions in the second-best allocations due to the agents’

private information. In static economies, examples of such formulas can be found in Mirrlees’ (1971)

seminal work on optimal non-linear taxation and in Diamond’s (1998) and Saez’s (2001) subsequent

generalizations of Mirrlees’ work. In dynamic economies, examples of such formulas have been

documented in various works in the fast-growing new DPF literature (see, for example, Albanesi

and Sleet (2006), Golosov et al. (2006), Kocherlakota (2010), Gorry and Oberfield (2012), Kapicka

(2013), Farhi and Werning (2013), and Golosov et al. (2016)).

Recent years have also witnessed growing interest in extending the theory of dynamic mechanism

design to economies in which the agents’ private information evolves endogenously over time, for

example because of learning-by-doing, other investments in human capital (see, for example, Krause

(2009), Best and Kleven (2013), Kapicka (2006, 2015a,b), Kapicka and Neira (2016), Stantcheva

(2015, 2017), and Makris and Pavan (2018)), habit formation (see, for example, Bose and Makris

(2016)), or experimentation (see, for example, Fershtman and Pavan (2017)).

This paper provides a general formula for the dynamics of the wedges under second-best allo-

cations that unifies all special cases considered in both the micro and the macro literature. We

consider a dynamic environment that accommodates for a flexible specification of (a) the planner’s

preferences for redistribution (captured by general non-linear Pareto weights on the agents’ lifetime

utilities), (b) the agents’ preferences for insurance (captured by the curvature of the agents’ utility

function over consumption), and (c) the process governing the endogenous evolution of the agents’

private information.

The formula is established through a recursive approach that controls for the endogeneity of

the agents’ private information. It summarizes all forces that are responsible for the intra- and

inter-temporal distortions into four terms. The first term captures all the forces that are active

in economies with exogenous private information, transferable utility, and Rawlsian preferences for



redistribution (equivalently, interim participation constraints, as in the micro dynamic mechanism

design literature). The second term summarizes all the forces originating from the endogeneity of

the agents’ private information. These two terms interact linearly (i.e., in an additively separable

way) in the wedge formula. The last two terms are correction terms that control for, respectively,

the non transferability of the agents’ payoffs (equivalently, the heterogeneity in the agents’ marginal

utility of consumption) and alternative specifications of the planner’s preferences for redistribution.

Importantly, these last two corrective terms interact multiplicatively with the first two terms, i.e.,

they operate as amplifiers or dampeners of the first two effects.

LettingWRRN
t denote the wedge under risk neutrality and Rawlsian preferences for redistribution,

Ωt the component of the wedge controlling for the endogeneity of the agents’ private information,

RAt the correction term controlling for the non-transferability of the agents’ payoffs (equivalently,

for the agents’ risk aversion), and D the correction term controlling for the principal’s preferences for

redistribution, we have that the formula for the dynamics of the wedges can be described concisely

as

Wt = [RAt −Dt][W
RRN
t +Ωt].

Below, we comment in detail on each of the above four terms and relate them to the primitives

of the problem. The formula applies to all economies for which the so-called first-order, Myersonian,

approach is valid (i.e., for which the second-best allocations coincide with the solution to a relaxed

problem where only local incentive compatibility constraints are imposed).1

The value of the formula is twofold. It helps us identify, and isolate, the various forces that

shape the dynamics of distortions under second-best allocations. It also helps us reconcile and unify

various results in both the micro and the macro literature and bring them under a common conceptual

umbrella.

The two forces responsible for the dynamics of the wedges (equivalently, of the distortions)

identified in the literature are (i) the dynamics of the impulse responses of future types to the initial

ones (this force is discussed primarily in the micro literature and is behind the dynamics of the

term WRRN
t in the above formula) and (ii) the dynamics of the interaction between the variance of

the period-t types and the agents’ risk aversion (this force is discussed primarily in the macro/DPF

literature and is behind the dynamics of the term RAt − Dt in the above formula). Our analysis

permits us to uncover two new forces. The first one is specific to economies in which the evolution

of the agents’ private information is endogenous, and is captured by the dynamics of the term Ωt in

the above formula. As we explain below, this term controls for the effects of (variations in) period-t

allocations on future rents and plays an important role in economies with learning-by-doing, habit

formation, and other sources of endogenous private information. In previous work (Makris and

Pavan (2018)), we uncovered the role of this force in a special economy in which the agents’ types

change only once. In this paper, we show how such force operates in more general economies with an

1See, among others, Pavan, Segal, and Toikka (2014) and Kapicka (2016) for a description of such an approach.
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arbitrary number of periods and of (endogenous) shocks to the agents’ private information, and how

such force interacts with the other forces identified by the above formula in shaping the dynamics of

the wedges.

The second new force identified in the present paper is the accumulation over time of the “trans-

action” costs to the planner of backward shifting the agents’ information rents. Suppose the planner

increases an agent’s period-t compensation to induce him to reveal his period-t private information,

and then adjusts the agent’s period-1 compensation by deducting from the period-1 compensation

the increase in the expected value of the period-t rent. When the marginal utility of consumption

varies across types and time, such a double adjustment in compensation comes with extra costs to

the planner that grow with the distance between the time at which the rent is given (period t) and

the time at which the rent is partially recouped (period 1). This force is absent in economies in

which the agents are risk neutral. As explained later in the paper, this force, which is also behind

the dynamics of the term RAt in our general formula, has not been identified in previous work. It

is driven by the interaction of the agents’ risk aversion with the dynamics of the impulse responses

of the agents’ future types to their types at all intermediate periods (i.e., the impulse responses of

period-t types to each period-s types, with 1 ≤ s < t).

To appreciate the role of this new force, consider an economy with exogenous types in which the

agents are risk averse, the impulse responses of the future types to the initial ones are either constant

or decline slowly over time (i.e., Ωt = 0 and WRRN
t constant or declining slowly with t for given

effort by the agents), and in which the planner maximizes the sum of the agents’ lifetime utilities by

assigning equal weights to all types (i.e., has an utilitarian objective). Previous work (notably, Farhi

and Werning (2013)) has noticed that, in such economies, wedges tend to increase over the lifecycle

and has attributed such dynamics to the fact that the variance of the agents’ types increases with

time, when evaluated from the perspective of the initial period (which is the case when the agent’s

type follows a random walk, as in their calibrated economy). Our formula permits us to qualify

that the intuition proposed in the literature for why wedges in such economies tend to increase over

time is incomplete. This intuition is based on the idea that the planner benefits from shielding the

agents from risk. To induce the agents to reveal their private information, the planner must let the

agents’ compensation vary with the agents’ labor supply. The volatility of the agents’ compensation,

however, can be reduced by distorting their labor downwards. Because risk grows with time, at the

optimum, distortions in labor supply then naturally increase over the lifecycle.

The reason why this intuition is incomplete is that, in such economies, wedges may increase over

time even when the variance of the agents’ types (and hence the risk the agents face) is constant, or

even declines with time. As we show later in the paper, the dynamics noticed in the literature are,

instead, largely due to the fact that the cost to the planner of recouping the informational rents left

to the agents in future periods by deducting such rents from their consumption in earlier periods

grows with the distance between the period at which the rent is provided and the one at which it

is (partially) recouped (equivalently, with the number of periods the rent is rolled backwards). We

4



also notice that such effect is absent in economies in which the agents’ types change only once (e.g.,

Garrett and Pavan (2015), and Makris and Pavan (2018)). In such economies, the variance of the

agents’ types always increases between period 1 (where it is zero) and period 2 (where it is positive),

and the only relevant impulse responses are the one between period 2 and period 1 (that is, there are

no intermediate impulse responses). As a result, in such simplified economies, the transaction costs

from rolling rents backwards cannot be disentangled from the costs of shielding the agents from risk.

While the exposition in the paper favors macro/DPF applications, the results apply more broadly

to many dynamic mechanism design problems, including the design of managerial compensation

schemes (e.g., Garrett and Pavan (2015)), matching with unknown and time-varying preferences

(e.g., Fershtman and Pavan (2017)), and the sale of experiences goods with habit formation (e.g.,

Bose and Makris (2016)).

Layout. The rest of the paper is organized as follows. Section 2 describes the model. Section

3 provides a characterization of the first-best allocations, that is, the allocations that would be

sustained in the absence of the agents’ private information. Section 4 develops the recursive approach

that yields the second-best allocations, that is, the allocations sustained when the agent possesses

private information. Section 5 uses the results in the previous two sections to arrive at the general

formula for the wedges mentioned above. It then uses the formula to shed new lights on what drives

the dynamics of distortions in various economies considered in the literature.

2 Environment

Hereafter, we refer to the party designing the contractual relationship as the principal (“she”) and

to the informed party as the agent (“he”). The relationship between the two parties lasts for T

periods, where T is finite. The agent receives new private information in each period. The principal

offers a contract that must respect the agent’s incentives (i.e., be incentive-compatible) and a certain

redistribution constraint described in detail below.

In the new dynamic public finance literature, the agent’s type represents the agent’s productivity,

and the allocations the profile of type-dependent consumption and earnings (alternatively, output).

In a canonical buyer-seller model, the agent’s type represents a taste parameter and the allocations

the profile of type-dependent output and monetary transfers. In a managerial compensation setting,

the agent’s type may represent his ability to generate cash flows for the firm and an allocation

represents a profile of type-dependent effort and compensation, with the latter specifying a transfer

from the firm to the manager as a function of performance measures correlated with both the agent’s

type and the agent’s effort.

To fix ideas, hereafter, we will focus on an economy that resembles those studied in the new

dynamic public finance literature. It should be easy to see, though, that the results extend to many

other dynamic mechanism design problems.
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We start with some preliminary notation. Subscripts t denote time, with t = 1, 2, ..., T , where T

can either be finite or infinite. Superscripts t, instead, denote histories up to, and including, period

t. Thus, for any variable a, at ≡ {a1, .., at}, with at denoting the period-t value of a. Furthermore,

for any t, any j ≥ 0, at+jt ≡ {at, ..., at+j}, whereas at−j−1
t ≡ {∅}. For any set A, A0 denotes the

empty set. We also use the convention that, when l < k,
∏l
i=k ai+1 = 1 and

∑l
i=k ai+1 = 0. Finally,

we denote by IA(a) the indicator function taking value 1 when a ∈ A and 0 otherwise.

In each period t, the agent produces output yt ∈ Yt = R+ at a cost ψ(yt, θt), with θt denoting

the agent’s period-t productivity/skill. The latter is the agent’s private information and is learned

by the agent at the beginning of period t. The function ψ(yt, θt) is thrice differentiable, increasing,

and convex in yt. We then let

ψy(yt, θt) ≡ ∂ψ(yt, θt)/∂yt, ψθ(yt, θt) ≡ ∂ψ(yt, θt)/∂θt, and ψyθ(yt, θt) ≡ ∂2ψ(yt, θt)/∂θt∂yt.

We assume that ψyθ < 0, which implies that higher types are more productive in the sense of having

a lower marginal disutility of labor. We also assume that ψyθ is nonincreasing in y which guarantees

a well-behaved solution to the principal’s problem. The agent’s productivity at any period t ≥ 2 is a

function of the agent’s productivity in the previous period, θt−1, the agent’s output in the previous

period, yt−1, and some shock εt. That is,

θt = zt(θt−1, yt−1, εt),

for some function zt(·) equi-Lipschitz continuous and differentiable, increasing in both the first and

third arguments. The dependence of zt on past output may capture learning-by-doing, as in Makris

and Pavan (2018), or other investments in human capital measurable in the agent’s past productivity

and in past output. While in many applications of interest it is natural to assume that zt is increasing

in yt−1, the analysis below does not hinge on such assumption and accommodates for the possibility

that zt be decreasing in yt−1, or non-monotone in yt−1. A negative dependence of zt on past output

may reflect a substitutability between current productivity and past production, as in models of

learning-or-doing, or, in a trade model, a substitutability between current and past consumption,

capturing the idea that a buyer may gradually loose interest in a product he consumed intensively

in the past.

The shock εt is drawn from the interval Et ≡ (εt, εt) ⊆ R according to some cumulative dis-

tribution function Gt, absolutely continuous over the entire real line, and with density gt strictly

positive over Et. Let Ft(θt|θt−1, yt−1) denote the cumulative distribution function of the period-t

productivity θt given the period-(t− 1) productivity θt−1 and period-(t− 1) output, yt−1, as implied

by the combination of the distribution Gt with the function zt. We assume that Ft(·|θt−1, yt−1) is

absolutely-continuous over the entire real line, with density ft(θt | θt−1, yt−1) strictly positive over a

compact subset of Θt ≡ (θt, θt) ⊆ R. The set Θt defines the support of the marginal distribution of

the period-t productivity. Note that the monotonicity of zt(·) in θt−1 implies that

∂Ft+1(θt+1|θt, yt)
∂θt

≤ 0.
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The above distributions describe the evolution of the agent’s private information at all periods t > 1.

The period-1 productivity, instead, is exogenous and drawn from the interval Θ1 ≡ (θ1, θ1) ⊆ R
according to a cumulative distribution function F1, absolutely-continuous over the entire real line,

with density f1 strictly positive over Θ1. For future reference, we also let

η1(θ1) ≡
f1(θ1)

1− F1(θ1)

denote the hazard rate of the period-1 distribution.

Denote by ct ∈ R the agent’s period-t consumption. Let Θt denote the set of period-t productivity

histories, with generic element θt ∈ Θt, and θ ≡ θT . Interpret yt ∈ Y t, ct ∈ Rt, y = yT and c = cT

analogously. Hereafter, we will refer to θt as the agent’s period-t type, and to θ as the agent’s

complete type.

The principal’s lifetime utility is given by

UP (θ, y, c) ≡
T∑
t=1

δt−1
(
vP (yt)− ct

)
whereas the agent’s lifetime utility is given by

UA(θ, y, c) ≡
T∑
t=1

δt−1
(
vA(ct)− ψ(yt, θt)

)
,

with vi : R → R increasing, weakly concave, and twice differentiable, i = A,P. The function U i is

the Bernoulli utility function player i uses to evaluate lotteries over (θ, y, c). We denote by

UAτ (θ, y, c) ≡
T∑
t=τ

δt−τ
(
vA(ct)− ψ(yt, θt)

)
and UPτ (θ, y, c) ≡

T∑
t=τ

δt−τ
(
vP (yt)− ct

)
the two players’ continuation payoffs in the restriction of the game that starts with period τ .

We are interested in environments in which output and consumption are strictly positive in each

period. For this reason, we assume the following Inada conditions hold: (a) limc→0 v
A′(c) = ∞ (when

vA′′(c) < 0),2 and (b) limyt→0

{
vP ′(yt)− ψy(yt, θt)

}
> 0 for all θt. To ease the notation, we will also

drop the superscript A from the various functions referring to the agent’s payoffs, unless there is risk

of confusion.

Consistently with the rest of the new dynamic public finance literature, we assume the agent

cannot privately save (that is, his savings can be controlled by the principal). Output, yt, and

consumption ct, are contractible in all periods. The principal can commit to a contract (equivalently,

a mechanism) specifying, for each period, consumption ct and output yt, as a function of messages

sent by the agent in current and past periods. Without loss of optimality, we will restrict attention

to (deterministic) direct revelation mechanisms that, in each period, ask the agent to report his new

2When vA is linear, as in the micro literature, the distribution of consumption over time is indeterminate, in which

case assuming consumption is positive in every period is without loss of optimality.
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private information, θt, and which are incentive compatible, meaning that, at each history, it is in the

agent’s interest to report truthfully in the continuation game starting with that history, irrespective

of whether the agent reported truthfully in the past.3

An incentive-compatible contract can thus be described by the history-dependent allocations it

induces. Hereafter, we will refer to the mapping from complete types θ to a pair of consumption and

output streams (c, y) as an allocation rule and denote the latter by χ : Θ → R2T . Given χ, we then

let χt(θ
t) = (yt(θ

t), ct(θ
t)) be the period-t allocation under χ, χt(θt) ≡ (χ1(θ1), ..., χt(θ

t)) the history

of allocations up to, and including, period t, and χ(θ) ≡ χT (θT ) the complete allocation, when the

agent’s complete type is θ. We then denote by λ[χ]|θt the endogenous process over Θ that is obtained

by combining the kernels F described above with the allocation rule χ starting from history θt, and

by λ[χ] the ex-ante distribution over Θ, under the rule χ. Similarly, we will denote by λ[χ]|θt, yt the
endogenous probability distribution over Θ that is obtained by combining the kernels F with the

allocation rule χ, starting from history θt and period-t output yt. Given this notation, let

V1(θ1) ≡ Eλ[χ]|θ1 [UA(θ̃, χ(θ̃))]

denote type θ1’s expected lifetime utility, under the rule χ (hereafter, we denote by ∼ random

vectors).

In addition to the aforementioned incentive-compatibility constraints, the principal must guar-

antee that, for any θ1 ∈ Θ1, the following constraint holds

(1− r)V1(θ1) + r

ˆ
q(V1(θ

′
1))dF1(θ

′
1) ≥ κ, (1)

where κ is a constant, r ∈ {0, 1}, and the function q(·) is increasing and (weakly) concave and

captures possible non-linear Pareto weights assigned by the principal to the agent’s expected lifetime

utility. We will refer to the above constraint as the “redistribution/participation constraint”. Note

that, when r = 0, this constraint is equal to the interim participation constraint typically assumed

in the micro literature. In a taxation setting, the case r = 0, instead, corresponds to the problem of

a government with Rawlsian preferences for redistribution.4 The case r = 1 and q(V1) = V1 for all

V1, instead, corresponds to an ex-ante participation constraint. Equivalently, in a taxation problem,

such a case corresponds to the problem of a planner with “Utilitarian” preferences for redistribution.

More generally, a strictly concave function q captures the principal’s inequality aversion (see, for

instance, Saez, 2001, Farhi and Werning, 2013, and Best and Kleven, 2013), with stronger concavity

corresponding to higher inequality aversion.5

3The restriction to mechanism that are incentive compatible at all histories is without loss of optimality in this class

of Markov environments; see Pavan, Segal, and Toikka (2014).
4This is because incentive compatibility requires V1(θ1) to be non-decreasing. Hence, the relevant period-1 type for

which the constraint in (1) binds when r = 0 is the lowest one, implying that (1) is equivalent to the familiar constraint

that V1(θ1) ≥ 0 assumed in the taxation literature with a Rawlsian objective.
5The results below also apply to a different version of the redistribution constraint in which the weights are for the

different period-1 types, i.e., where the constraint takes the form (1 − r)V1(θ1) + r
´
q(θ′1)V1(θ

′
1)dF1(θ

′
1) ≥ κ with the

weighting function q(·) normalized so that
´
q(θ′1)dF1(θ

′
1) = 1.
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We are interested in comparing the second-best allocations for the environment described above

to their first-best counterparts.

Definition 1. The rule χ identifies the first-best allocations for the environment described above

if and only if χ maximizes the principal’s ex-ante expected payoff Eλ[χ][UP (θ̃, χ(θ̃))] over all rules

satisfying the participation/redistribution constraint (1). The rule χ identifies the second-best alloca-

tions for the environment described above if and only if χ maximizes the principal’s ex-ante expected

payoff Eλ[χ][UP (θ̃, χ(θ̃))] over all rules that are incentive compatible for the agent and satisfy the

participation/redistribution constraint (1).

3 First-Best

In the absence of private information, the principal’s optimal allocation rule is obtained by maxi-

mizing Eλ[χ][UP (θ̃, χ(θ̃))] subject to the redistribution constraint (1). This constraint clearly binds

at the optimum. The first-best allocation rule can then be described recursively as follows. For any

t < T , any θt, any yt(θ
t), let

Πt+1(θ
t) ≡

ˆ
Vt+1(θ

t+1)dFt+1(θt+1 | θt, yt(θt))

denote the expected period-(t+1) agent’s continuation payoff, given the period-t productivity history

θt and the period-t output yt(θ
t). If T < +∞, then let ΠT+1(θ

T ) ≡ 0. Equipped with this notation,

note that the agent’s period-t continuation payoff under the rule χ at history θt can be written as

Vt(θ
t) ≡ Eλ[χ]|θ

t
[UAt (θ̃, χ(θ̃))] = v(ct(θ

t))− ψ(yt(θ
t), θt) + δΠt+1(θ

t).

Next, let C ≡ v−1. The first-best allocation rule can then be expressed recursively by letting

QFBt (θt−1, yt−1(θ
t−1),Πt(θ

t−1)) ≡

max
yt(θt−1,·),Vt(θt−1,·),Πt+1(θt−1,·)

ˆ
{vP (yt(θt))− C

(
Vt(θ

t) + ψ(yt(θ
t), θt)− δΠt+1(θ

t)
)

+δQFBt+1(θ
t, yt(θ

t),Πt+1(θ
t))}dFt(θt|θt−1, yt−1(θ

t−1))

subject to

Πt(θ
t−1) =

ˆ
Vt(θ

t)dFt(θt|θt−1, yt(θ
t−1)), for t > 1 (2)

and

κ = (1− r)V1(θ1) + r

ˆ
q(V1(θ

′
1))dF1(θ

′
1), all θ1 ∈ Θ1, (3)

with

ΠT+1(θ) = 0, for all θ ∈ Θ, if T is finite.

Note that QFBτ (θτ−1, yτ−1(θ
τ−1),Πτ (θ

τ−1)) is the period−τ value function of the principal’s problem,

given the period−τ “state variables” (θτ−1, yτ−1(θ
τ−1),Πτ (θ

τ−1)). To understand the formalization,
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note that, in each period t = 1, ..., T , given the state (θt−1, yt−1(θ
t−1),Πt(θ

τ−1)), the choice of the

period-t output schedule, yt(θ
t−1, ·), along with the choice of the agent’s period-t continuation payoff,

Vt(θ
t−1, ·), and the agent’s expected future “promised utility” Πt+1(θ

t−1, ·), determine the agent’s

period-t consumption schedule ct(θ
t−1, ·). For all θt = (θt−1, θt), the latter is simply given by

ct(θ
t) = C

(
Vt(θ

t) + ψ(yt(θ
t), θt)− δΠt+1(θ

t)
)
.

The first-best allocation, expressed in recursive form, is then obtained by choosing policies yt(θ
t−1, ·),

Vt(θ
t−1, ·), and Πt+1(θ

t−1, ·)), for each period t, that jointly maximize the principal’s expected con-

tinuation payoff subject to the consistency (or, equivalently, promise keeping) constraint (2) that the

average of the agent’s period-t continuation utility be equal to the level promised in the previous

period. Importantly, the expectation over θt is computed given the period-(t− 1) productivity, θt−1,

and the period-(t− 1) output, yt−1(θ
t−1). In period one, the promise-keeping constraint is replaced

by the (binding) redistribution constraint (3).

Next, for any rule χ and any truthful history (θt, θt−1, χt−1(θt−1)), define the principal’s period-t

continuation payoff under the rule χ by

V P
t (θt) ≡ Eλ[χ]|θ

t
[UPt (θ̃, χ(θ̃))].

Finally, let

LDFB;χ
t (θt) ≡ δ

∂

∂yt

ˆ {
V P
t+1(θ

t+1) +
Vt+1(θ

t+1)

v′(ct(θt))

}
dFt+1(θt+1 | θt, yt(θt)) (4)

denote the effect of a marginal variation in the period-t output on the expected sum of the principal’s

and of the agent’s period-(t+1) continuation payoffs, with the latter weighted by the inverse marginal

utility of the period-t consumption v′(ct(θ
t)) — if T is finite, let VT+1(θ

T+1) ≡ V P
T+1(θ

T+1) ≡ 0.

Importantly, note that the marginal variation captured by the function LDFB;χ
t (θt) is computed

holding fixed the mapping from future productivity histories into allocations, as specified by the rule

χ. The following result summarizes all the key properties of the first-best allocations:

Proposition 1. Suppose the rule χ = (y, c) identifies the first-best allocations. Then the following

conditions hold at all interior points with λ[χ]-probability one:

vP
′
(yt(θ

t)) + LDFB;χ
t (θt) =

ψy(yt(θ
t), θt)

v′(ct(θt))
all t = 1, ..., T, (5)

v
′
(ct(θ

t)) = v
′
(ct+1((θ

t, θt+1))), any t = 1, ..., T − 1 (6)

and

rq′(V1(θ1))v
′
(c1(θ1)) = rq′(V1(θ

′
1))v

′
(c1(θ

′
1)).

The first condition describes the first-best output schedule. At each period, the principal equalizes

the marginal benefit of asking the agent for an extra unit of output (taking into account its effect
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on future payoffs stemming from the endogeneity of the process) with its marginal cost. The latter

in turn reflects the fact that the principal needs to increase the agent’s utility of consumption

by an amount equal to the agent’s marginal disutility of higher output. The monetary cost of

compensating the agent for the extra disutility is obtained by dividing the marginal disutility of

output by the marginal utility of consumption. Naturally, a high degree of risk aversion (equivalently,

a fast declining v′) increases the cost to the principal of compensating the agent for the extra

disutility of output. When productivity evolves exogenously (equivalently, in the last period T , if

the latter is finite), condition (5) then reduces to the familiar optimality condition vP
′
(yt(θ

t)) =

ψy(yt(θ
t), θt)/v

′
(ct(θ

t)). To appreciate the effects due to the endogeneity of the process, consider the

case where Ft+1(θt+1|θt, yt) is non-increasing in yt, meaning that higher period-t output shifts the

distribution of θt+1 in a first-order-stochastic-dominance way. Further assume that the sum of the

principal’s and of the agent’s future continuation payoffs (adjusted by the agent’s marginal utility

of consumption) is increasing in θt+1. Then, LDFB;χ
t (θt) ≥ 0. In this case, the endogeneity of the

agent’s productivity thus induces the principal to ask for a higher output in period t compared to

the level she would ask if productivity was exogenous. This is because higher output at present

implies higher productivity in future periods (albeit, in a stochastic sense), which in turn brings

higher discounted expected net surplus.

The second and third conditions in turn describe the optimal choice of consumption. When the

agent is risk neutral (meaning his utility is linear in consumption) and the principal has an “utili-

tarian” objective, i.e., r = 1 and q(V1) = V1, all V1, the dynamics of consumption is indeterminate.

The reason is that the agent does not have preferences for consumption smoothing. In the absence of

any inequality aversion on the principal’s side, the distribution of continuation utility across types is

then indeterminate. When, instead, the agent is risk averse, optimality requires the equalization of

the agent’s marginal utility of consumption over any two consecutive type histories θt and (θt, θt+1).

Furthermore, away from the Rawlsian case (i.e., when r = 0), optimality also requires the equal-

ization of the “marginal weights” q′(V1(θ1))v
′
(c1(θ1)) the principal assigns to the agent’s period-1

marginal consumption. In the Rawlsian case, instead, the principal equalizes the expected lifetime

utility of any period-1 type to the participation threshold κ.

4 The Second Best

We now turn to the case where θ is the agent’s private information.

4.1 Incentive Compatibility

Let Iτt (θ
τ , yτ−1) denote the period-τ impulse response of θτ to θt, as defined in Pavan, Segal, and

Toikka (2014). The impulse response incorporates all the ways (direct and indirect) through which

a marginal change in θt affects θτ , τ ≥ t, fixing the shocks ετ that, along with the decisions yτ−1,

11



are responsible for the type history θτ . Specifically, for all t ≥ 1, all (θt, yt−1), Itt (θ
t, yt−1) = 1, and

It+1
t (θt+1, yt) =

∂zt+1(θt, yt, ϵt+1)

∂θt
|ϵt+1=et+1(θt,θt+1,yt) =

∂
∂θt

[1− Ft+1(θt+1|θt, yt)]
ft+1(θt+1|θt, yt)

where et+1(θt+1, θt, yt) is defined implicitly by

zt+1(θt, yt, et+1(θt+1, θt, yt)) = θt+1.

Using the above definition, the impulse response function over non-consecutive periods can then be

defined inductively, for any τ > t, any θτ , any yτ−1, as follows:

Iτt (θ
τ , yτ−1) =

τ−t−1∏
i=0

It+1+i
t+i (θt+1+i, yt+i). (7)

For future reference, also note the following two key properties of these impulse response functions:

(a) for any τ ≥ t, θt, and χ,

Eλ[χ]|θ
t
[Iτt (θ̃

τ , yτ−1(θ̃τ−1))] =
∂

∂θt
Eλ[χ]|θ

t
[θ̃τ |θt, yt−1(θt−1)]

and (b) for any differentiable and equi-Lipschitz continuous function H(θt+1), any (θt, y
t),

∂
∂θt

´
H(θt+1)dFt+1(θt+1|θt, yt) =

´ ∂H(θt+1)
∂θt+1

It+1
t (θt+1, yt)dFt+1(θt+1|θt, yt). (8)

The left-hand-side of (8) is the marginal variation of the expectation of the function H(θt+1) due to

a variation in the distribution of θt+1 triggered by a marginal variation in θt. The right-hand side

of (8) is simply the expectation of the product of the derivative of the H function with the impulse

response of θt+1 to θt, holding (θt, yt) fixed.

Recall that Vt(θ
t) denotes the agent’s continuation payoff at the truthful history (θt, θt−1, χt−1(θt−1)),

under the rule χ. This is the payoff that the agent expects from period t onwards under a truthful

strategy; note that, because χ is deterministic, truthful histories can be described entirely in terms

of the realized type history θt. Therefore, hereafter, whenever there is no risk of confusion, we will

be referring to a truthful history under the rule χ simply by θt. Then, let

Dχ
t (θ

t−1, θt) ≡ −Eλ[χ]|θ
t

[
T∑
τ=t

δτ−tIτt (θ̃
τ , yτ−1(θ̃τ−1))ψθ(yτ (θ̃

τ ), θ̃τ )

]
denote the net present value of all future marginal variations in the disutility of labor, due to a

marginal variation in the period-t productivity. Define Dχ◦θ̂t
t (θt−1, θt) in an analogous way for the

allocation rule χ ◦ θ̂t that is obtained from χ by mapping any period-t message into the message

θ̂t and then determining allocations according to χ as if the period-t message was θ̂t. Theorems 1

and 3 in Pavan, Segal, and Toikka (2014) imply that the allocation rule χ is incentive compatible

if and only if, for all t, all (θt−1, θt), (θ
t−1, θ̂t) ∈ Θt, (a) the agent’s equilibrium continuation payoff

Vt(θ
t−1, ·) under χ is Lipschitz continuous over Θt with derivative given for almost all θt ∈ Θt by

∂Vt(θ
t)

∂θt
= Dχ

t (θ
t−1, θt), (9)
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and (b) ˆ θt

θ̂t

[
Dχ
t (θ

t−1, r)−Dχ◦θ̂t
t (θt−1, r)

]
dr ≥ 0. (10)

Clearly, the marginal variation of Vt due to the marginal change in θt is related to the information

rent that the principal must leave to the agent in the continuation game that starts with period t to

induce truthful reporting. Note that the assumption that each zs is increasing in θs−1 implies that

Iτt > 0, and hence that Vt(θ
t−1, θt) is non-decreasing in θt. Also note that Condition (9) is an envelope

condition that relates the marginal variation in the net present value of the agent’s payments to the

marginal variation in the net present value of the non-monetary allocations, yTt . Condition (10), in

turn, is a dynamic monotonicity condition requiring that the marginal variation in the net present

value of the non-monetary allocations be sufficiently monotone in the period-t report.

4.2 Second-Best Allocations

As anticipated in the Introduction, our goal is to arrive at a general formula describing the evolution

of the distortions in the second-best allocations for all such dynamic problems in which the First-

Order/Myersonian Approach is valid. Such approach considers a relaxed program in which the various

integral-monotonicity conditions of (10) are dropped and checked ex-post. Hereafter, we thus drop

the integral monotonicity conditions of (10) and show that, when such conditions do no bind, the

second-best allocations can be derived by expressing the principal’s problem in a convenient recursive

form that accounts for the endogeneity of the agent’s private information.

As in the previous subsection, write the agent’s (on-path) continuation payoff

Vt(θ
t) ≡ v(ct(θ

t))− ψ(yt(θ
t), θt) + δΠt+1(θ

t)

in the continuation game that starts with the period-t history θt as the sum of the period-t flow

payoff v(ct(θ
t))−ψ(yt(θ

t), θt) and the discounted expected continuation payoff δΠt+1(θ
t), where, for

any t < T,

Πt+1(θ
t) ≡

ˆ
Vt+1(θ

t+1)dFt+1(θt+1 | θt, yt(θt)),

whereas for t = T (when the latter is finite) ΠT+1(θ) ≡ 0, all θ.

Next, for any t < T, let

Zt+1(θ
t) ≡ −Eλ[χ]|θ

t

[
T∑

τ=t+1

δτ−t−1Iτt (θ̃
τ , yτ−1(θ̃τ−1))ψθ(yτ (θ̃

τ ), θ̃τ )

]
(11)

with ZT+1(θ) ≡ 0 if T < +∞. Using this notation, the various local incentive-compatibility con-

straints corresponding to Condition (9) above can also be conveniently written in recursive form

as
∂Vt(θ

t)

∂θt
= −ψθ(yt(θt), θt) + δZt+1(θ

t).
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Furthermore, using Condition (9) for period t+ 1, along with the law of iterated expectations, and

the law of motion of the impulse responses described in (7), we have that

Zt+1(θ
t) =

ˆ [
−ψθ(yt+1(θ

t+1), θt+1) + δZt+2(θ
t+1)

]
It+1
t (θt+1, yt(θ

t))dFt+1(θt+1 | θt, yt(θt)).

The principal’s (relaxed program) can then be conveniently rewritten in recursive form as follows

Qt(θ
t−1, yt−1(θ

t−1),Πt(θ
t−1), Zt(θ

t−1)) ≡ max

yt(θ
t−1, ·), Vt(θt−1, ·),Πt+1(θ

t−1, ·), Zt+1(θ
t−1, ·)

ˆ
Q̂t

((
θt−1, θt

)
, yt(θ

t−1, θt), Vt(θ
t−1, θt),Πt+1(θ

t−1, θt), Zt+1(θ
t−1, θt)

)
dFt

(
θt|θt−1, yt−1(θ

t−1)
)

subject to6

ΠT+1(θ) = ZT+1(θ) = 0, all θ ∈ Θ, (12)

κ = (1− r)V1(θ1) + r

ˆ
q(V1(θ

′
1))dF1(θ

′
1), (13)

∂Vt(θ
t−1, θt)

∂θt
= −ψθ(yt(θt), θt) + δZt+1(θ

t) all t, all θt ∈ Θt, (14)

Πt(θ
t−1) =

ˆ
Vt(θ

t)dFt(θt | θt−1, yt−1(θ
t−1)) all t > 1, all θt−1 ∈ Θt−1, (15)

and

Zt(θ
t−1) =

´ [
−ψθ(yt(θt), θt) + δZt+1(θ

t)
]
Itt−1

(
(θt−1, θt), yt−1(θ

t−1)
)
dFt(θt | θt−1, yt−1(θ

t−1))

all t > 1, all θt−1 ∈ Θt−1,

(16)

where

Q̂t(θ
t, yt(θ

t), Vt(θ
t),Πt+1(θ

t), Zt+1(θ
t)) ≡

vP (yt(θ
t))− C

(
Vt(θ

t) + ψ(yt(θ
t), θt)− δΠt+1(θ

t)
)

+δQt+1

(
θt, yt(θ

t),Πt+1(θ
t), Zt+1(θ

t)
)
.

In words, the principal’s problem consists in choosing, for each period t ≥ 1, history of past types

θt−1, period-(t − 1) output yt−1(θ
t−1), promised expected utility Πt(θ

t−1), and promised marginal

continuation utility Zt(θ
t−1), a period-t output schedule yt(θ

t−1, ·), a period-t continuation utility

Vt(θ
t−1, ·) (including the agent’s period-t flow payoff), a period-t promised expected future utility

Πt+1(θ
t−1, ·), and a period-t promised expected future marginal utility Zt+1(θ

t−1, ·). All these period-
t functions must be selected jointly to maximize the combination of the principal’s flow and future

6Note that, in writing the redistribution/participation constraint (1−r)V1(θ1)+r
´
q(V1(θ

′
1))dF1(θ

′
1) ≥ κ, all θ1, we

used the fact that, at the optimum, such constraint necessarily binds, along with the fact that, when r = 0, V1(θ1) ≥ κ

all θ1 if and only if V1(θ1) ≥ κ.

14



expected payoff, taking into account that the principal will face a similar optimization problem in

future periods, as is always the case in dynamic programming. In addition, the period-t schedules

must respect the promise-keeping constraints that the average period-t continuation utility and

marginal continuation utility be equal to what was promised in the previous periods, i.e., Πt(θ
t−1)

and Zt(θ
t−1)), respectively. Clearly, such promise-keeping constraints apply only to period t > 1. In

period t = 1, instead, the principal is only constrained by the redistribution/participation constraint

(13), which plays the role of an initial condition for the dynamics of the various policies.7

Note two key differences with respect to the recursive problem identifying the first-best optimal

policies. The first one is the presence of the various constraints (14) on the derivatives of the agent’s

continuation payoff. As explained above, such constraints are necessary conditions for incentive

compatibility. The second is the presence of the promise-keeping constraints (16) requiring that the

agent’s expected marginal continuation utility

∂

∂θt−1
E[Vt(θt−1, θ̃t)|θt−1, yt−1(θ

t−1)]

from period t (included) onwards with respect to the period-(t− 1) type θt−1 be equal to what was

promised in the previous period, Zt(θ
t−1).8 Note that, in writing (16), we used property (8) of the

impulse response functions, along with Condition (14) to write

∂
∂θt−1

E[Vt(θt−1, θ̃t)|θt−1, yt−1(θ
t−1)] = E[∂V (θt−1,θ̃t)

∂θt
Itt−1(θ̃

t, yt−1(θ
t−1))|θt−1, yt−1(θ

t−1)]

=
´ [

−ψθ(yt(θt), θt) + δZt+1(θ
t)
]
Itt−1(θ

t, yt−1(θ
t−1))dFt(θt | θt−1, yt−1(θ

t−1)).

(17)

The above problem can thus be seen as a collection of interdependent optimal control problems.

To state our next proposition, which summarizes the solution to the above problem, we need to

introduce some further definitions. First, for any t ≥ 1, any θt ∈ Θt, let λt(θ
t) denote the shadow

cost of increasing the agent’s continuation utility at history θt.9 Next, let

LDχ
t (θ

t) ≡ δ
∂

∂yt
Qt+1(θ

t, yt(θ
t),Πt+1(θ

t), Zt+1(θ
t))

7The above principal problem can be read in two ways: (a) it describes optimality conditions that the policy χ

must satisfy on-path, i.e., at histories (θt−1, χt−1(θt−1)) that are consistent with the implementation of the decisions

specified by the policy χ for periods s ≤ t − 1; (b) it also describes the recursion that can be used to reduce the

dimensionality of the dynamic programming problem —note that the solution to the problem depends on the “state”

(θt−1, yt−1(θ
t−1),Πt(θ

t−1), Zt(θ
t−1)) only through the four numbers

(
θt−1, yt−1(θ

t−1),Πt(θ
t−1), Zt(θ

t−1)
)
.

8Note that the derivative ∂
∂θt−1

E[Vt(θ
t−1, θ̃t)|θt−1, yt−1(θ

t−1)] is with respect to the agent’s true period-(t− 1) type

θt−1, holding fixed the history of output and consumption decisions yt−1(θt−1) and ct−1(θt−1).
9Formally, as we show in the Appendix, λt(θ

t) coincides with the multiplier ξt+1(θ
t) associated with the promised

marginal utility constraint (16) at period t + 1. To see why this is the case, note that, by virtue of (17), (16) is a

constraint on the extra utility ∂
∂θt

E[Vt+1(θ̃
t+1)|θt, yt(θt)] the principal must leave, for incentives reasons, to all period-t

types (θt−1, θ′t), with θ′t ≥ θt, when she increases the continuation utility E[Vt+1(θ̃
t+1)|θt, yt(θt)] of type θt = (θt−1, θt).

The multiplier ξt+1(θ
t) to such constraint thus captures the shadow cost of increasing type θt’s continuation payoff.

15



denote the marginal effect of higher period-t output on the future value of the above optimization

problem (equivalently, on the principal’s continuation payoff, taking into account all future con-

straints), when the values of Πt+1, Zt+1 and yt at history θ
t are the ones determined by the output

and consumption schedules specified by the policy χ. We then have the following result:

Proposition 2. Suppose the rule χ = (y, c) identifies the second-best allocations. The following

optimality conditions must then hold at all interior points with λ[χ]-probability one:

1

v′(ct(θt))
=

ˆ
1

v′(ct+1(θt, θt+1))
dFt+1(θt+1 | θt, yt(θt−1)), for any t < T, (18)

and

vP ′(yt(θ
t)) + LDχ

t (θ
t) =

ψy(yt(θ
t), θt)

v′(ct(θt))
− ψyθ(yt(θ

t), θt) · λt(θt), for all t, (19)

where

λt(θ
t) = 1−Ft(θt|θt−1,yt−1(θt−1))

ft(θt|θt−1,yt−1(θt−1))

´ θt
θt

1
v′(ct(θt−1,θ′t))

dFt(θ′t|θt−1,yt−1(θt−1))
1−Ft(θt|θt−1,yt−1(θt−1))

−1−Ft(θt|θt−1,yt−1(θt−1))
ft(θt|θt−1,yt−1(θt−1))

´ θt
θt

1
v′(ct(θt−1,θ′t))

dFt(θ
′
t | θt−1, yt−1(θ

t−1))

+Itt−1(θ
t, yt−1(θt−1))λt−1(θ

t−1), for all t > 1,

(20)

and

λ1(θ1) =

´ θ1
θ1

1
v′(c1(θ′1))

dF1(θ′1)

f1(θ1)
− r

´ θ1
θ1

q′(V1(θ′1))dF1(θ′1)

f1(θ1)
π, (21)

with

π ≡

´ θ1
θ1

1
v′(c1(θ′1))

dF1(θ
′
1)´ θ1

θ1
q′(V1(θ′1))dF1(θ′1)

.

Together, the conditions in Proposition 2 provide a complete characterization of the second-

best allocations. Condition (18) is the familiar Rogerson-inverse-Euler condition. It appears in

various works in the new dynamic public finance literature (see, among others, Albanesi and Sleet

(2006), Kapicka (2013), Farhi and Werning (2013), and Golosov et al. (2016)). It also appears

in various papers in the managerial compensation literature (see, e.g., Garrett and Pavan (2015),

and the references therein). Such a condition describes the optimal intertemporal allocation of

consumption, for a given output policy. This condition is absent in the micro literature, for, in this

literature, the agent’s payoff is linear in consumption, in which case the intertemporal distribution

of payments/consumption is indeterminate.

Condition (19), in turn, describes the optimal output schedule. The left-hand side is the marginal

benefit to the principal of increasing output at history θt, taking into account the effect that higher

period-t output has on the principal’s continuation surplus, and accounting for the cost of future

incentives, as captured by the term LDχ
t (θ

t). The right-hand side is the marginal cost to the

principal. It combines the direct monetary cost of compensating the agent for the marginal increase
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in the disutility of generating higher output, as captured by the term ψy(yt(θ
t), θt)/v

′
(ct(θ

t)), with

the cost of raising the information rent (equivalently, the continuation payoff) of all agents whose

period-t productivity exceeds θt. This cost combines the familiar term −ψyθ(yt(θt), θt) that captures
the disutility of effort that can be saved by those agents with higher period-t productivity when

mimicking type θt, with the shadow cost λt(θ
t) of increasing the period-t continuation payoff of

all period-t types whose period-t productivity exceeds θt (more on this shadow cost below). As

usual, both the marginal benefit and the marginal cost are per worker of period-t productivity

θt. As a result, the shadow cost is obtained by dividing the aforementioned costs by the density

ft(θt|θt−1, yt−1(θ
t−1)).

The last condition in the proposition, Condition (20), characterizes the dynamics of such shadow

cost, with initial condition given by (21). To understand the initial condition (21), note that, for

incentive reasons, when the principal increases the expected lifetime utility of type θ1 by one unit, she

also needs to increase the expected lifetime utility of all higher period-1 types by the same amount.10

The first term in (21) is the direct cost to the principal, in consumption terms, of providing such

extra utility, taking into account the heterogeneity in the marginal utility of consumption of all types

above θ1. This is the only relevant term in the micro literature, where the redistribution/participation

constraint takes the familiar Rawlsian form v(θ1) ≥ κ all θ1, which is formally equivalent to r = 0

in the redistribution/participation constraint (13)). When, instead, the principal’s preferences for

redistribution are less extreme than in the Rawlsian case (formally, when r = 1 in (13), in which case

the redistribution/participation constraint takes the form
´ θ1
θ1
q(V (θ′1))dF1(θ

′
1) ≥ κ, for some non-

increasing function q(·) describing the non-linear Pareto weights used by the principal to evaluate the

various types’ lifetime expected utilities), increasing the lifetime expected utility of all agents whose

period-1 productivity exceeds θ1 comes with the benefit of relaxing the redistribution/participation

constraint (13). This benefit is captured by the second term in (21). In particular, the term

ˆ θ1

θ1

q′(V (θ′1))dF1(θ
′
1)

is the marginal value of increasing by one util the expected lifetime utility of all period-1 types above

θ1. The term π, on the other hand, is the shadow value of relaxing the redistribution/participation

constraint (13). To see this, note that increasing the value of the left-hand side of the redistribution

constraint (13) by one unit, while ensuring incentive compatibility, can be achieved by increasing

the lifetime utility of each period-1 type by an amount equal to 1/
´ θ1
θ1
q′(V1(θ

′
1))dF1(θ

′
1). Aggregat-

ing across agents, while accounting for the heterogeneity in the different types’ marginal utility of

consumption, we have that the total effect of such relaxation on the resources that the principal can

appropriate (in consumption units) is equal to π. As mentioned above, such benefit is absent in the

Rawlsian case (i.e., when r = 0 in (13)), for, in this case, the principal does not value increasing the

expected lifetime utility of any period-1 type above θ1.

10To see this, use (14).
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Next, consider the law of motion (20) describing the dynamics of the shadow costs λt of increasing

the agent’s continuation payoffs at any period after the first one. The first term in the right-hand

side of (20) is the direct marginal cost, in consumption terms, of increasing the period-t expected

continuation utility of all agents whose period-t productivity exceeds θt (fixing the period-(t − 1)

history θt−1). As usual, such cost is computed taking into account the heterogeneity in the types’

marginal utility of consumption. To understand the second term in the right-hand side of (20),

note that, when the principal increases by one util the continuation payoff of all period-t types

(θt−1, θ̃t) with θ̃t > θt, then all agents at history θt−1 expect an increase in their lifetime utility by

δ[1−Ft(θt|θt−1, yt−1(θ
t−1))]. The principal can then reduce the compensation she provides in period

t− 1 to such agents by
δ
[
1− Ft(θt|θt−1, yt−1(θ

t−1))
]

v′(ct−1(θt−1))

while maintaining unchanged the continuation utility of all such agents. Next, use the Rogerson-

inverse-Euler Condition (18) to observe that

δ
[
1− Ft(θt | θt−1, yt−1(θ

t−1))
]

v′(ct−1(θt−1))
= δ

ˆ θt

θt

1− Ft(θt|θt−1, yt−1(θ
t−1))

v′(ct(θt−1, θ′t))
dFt(θ

′
t | θt−1, yt−1(θ

t−1)),

which implies that, in terms of period-t consumption, the amount the principal can recoup (normal-

ized by the density ft(θt|θt−1, yt−1(θ
t−1))) by reducing the compensation paid to the agent at history

θt−1 is equal to the second term in the the right-hand side of (20).

The last term in the right-hand side of (20), for t > 1, is the extra cost to the principal of

increasing by one util the continuation utility of all period-(t−1) types (θt−2, θ′t−1) with θ
′
t−1 > θt−1.

To see this, observe that, when the principal increases the continuation utility of all period-t types

(θt−1, θ′t), with θ
′
t > θt, by one util, to preserve incentives at period t− 1, she then needs to increase

the continuation utility of all period-(t− 1) types (θt−2, θ′t−1), with θ
′
t−1 > θt−1, by

δ
∂[1− Ft(θt|θt−1, yt−1(θ

t−1))]

∂θt−1
.

This is true despite the adjustment in the period-(t−1) compensation of type θt−1 = (θt−2, θt−1) de-

scribed above.11 Such increase is necessary to discourage these types from mimicking type (θt−2, θt−1)

and originates from the fact that such types attach a higher probability to having a period-t produc-

tivity above θt than type (θt−2, θt−1) and hence enjoy the extra rent promised to the period-t types

(θt−1, θ′t), with θ
′
t > θt. Using the fact that

∂[1−Ft(θt|θt−1,yt−1(θt−1))]
∂θt−1

ft(θt|θt−1, yt−1(θt−1))
= Itt−1(θ

t, yt−1(θt−1)),

11Importantly, note that if the principal did not reduce the period-(t− 1) consumption of type θt−1 so as to hold the

latter type’s continuation utility constant, she would then have to increase the continuation utility of all period-(t− 1)

types (θt−2, θ′t−1) with θ′t−1 > θt−1 by

δ∂[1− Ft(θt|θt−1, yt−1(θ
t−1))]/∂θt−1 + δ

[
1− Ft(θt | θt−1, yt−1(θ

t−1))
]
.
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we then have that the shadow cost of increasing the continuation utility of all period-(t − 1) types

(θt−2, θ′t−1), with θ
′
t−1 > θt−1 (again, in terms of period-t consumption, and normalized by the density

ft(θt|θt−1, yt−1(θ
t−1))) is equal to the last term in the right-hand side of (20).

Note that the first two terms in the right-hand side of (20) vanish when the agent’s utility is linear

in consumption, as in the micro literature. This is because, under transferable utility, the increase in

the expected future payoff of type θt−1 is perfectly offset by the decrease in the compensation paid

to this type in period t− 1. Combining (20) with (21), it is then easy to see that, with transferable

utility, the shadow cost of increasing the period-t continuation payoff of all period-t types (θt−1, θ′t),

with θ′t ≥ θt, in terms of period-1 consumption, is equal to the impulse response

It1(θ
t, yt−1(θt−1)) =

t−1∏
i=1

Ii+1
i (θi+1, yi)

of θt to θ1, as noticed in the micro literature (see, e.g., Pavan, Segal, and Toikka (2014)). In this

case, the dynamics of distortions under second-best allocations are entirely driven by the dynamics

of the impulse responses It1 of period-t types to period-1 types. In contrast, with non-transferable

utility, the shadow cost of increasing the period-t continuation utility of all period-t types (θt−1, θ′t),

with θ′t ≥ θt, in terms of period-1 consumption, depends also on the impulse responses Its, t > s, of

period-t types to intermediate types. This property has important implications for the dynamics of

distortions (see the discussion after Theorem 1).

5 Wedges

Equipped with the results in the previous sections, we now show how the various forces responsible

for the dynamics of distortions under second-best allocations can be summarized in a concise formula

for the wedges.

Definition 2. The period-t “wedge” at history θt, under the rule χ, is given by

Wt(θ
t) ≡ vP

′
(yt(θ

t)) + LDFB;χ
t (θt)− ψy(yt(θ

t), θt)

v′(ct(θt))
.

To understand the definition, recall that (first-best) efficiency requires that the marginal cost to

the principal of asking for higher period-t output (the term ψy(yt(θ
t), θt)/v

′(ct(θ
t)) in the formula for

the wedges) be equalized to its marginal benefit, where, with endogenous private information, the

latter takes into account also the effect of higher period-t output on the principal’s and the agent’s

joint future surplus, as captured by the term LDFB;χ
t (θt) introduced above. The period-t wedge is

thus the discrepancy between the marginal benefit and the marginal cost of higher period-t output

at the proposed allocation. Importantly, such discrepancy is computed holding fixed the policies

that determine future allocations, so as to highlight the part of the inefficiency that pertains to the

period-t allocations.
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In a taxation problem, wedges are also related to non-linear marginal income tax rates. To see

this, note that, in a taxation problem, vP (y) = y, in which case the principal’s (dual) problem consists

in maximizing the net present value of tax revenues subject to the agents’ incentive compatibility

constraints and the redistribution constraint (1). As in most of the macro literature, let the agents’

return on saving (after deducting any possible linear capital tax rate) be equal to r̃ = 1/δ− 1. Then

let Tt(yt) denote the total period-t tax bill charged to any agent whose period-t history of past and

current incomes is equal to yt and denote by

Rt(θ
t) ≡ Eλ[χ]|θ

t

[
T∑
s=t

δs−tTs(ys(θ̃s))

]

the period-t expected net present value of current and future tax bills, for any worker of period-t

productivity history equal to θt, given the tax code T ≡ (Tt(·)). As we show in the Appendix, the

period-t wedge is related to the current and future marginal tax rates by the following relationship12

Wt(θ
t) = ∂Tt(yt(θt))

∂yt
+ δ ∂

∂yt

´
Rt+1(θ

t+1)dFt+1(θt+1|θt, yt(θt))

+δEλ[χ]|θt
[∑T

s=t+1 δ
s−t−1 ∂Ts(ys(θ̃s))

∂yt

v′(cs(θ̃s))
v′(ct(θt))

] (22)

with the last two terms equal to zero when t = T . In the formulas for Wt(θ
t) in (22), the income

and consumption policies χ = (y, c) are the ones induced, in equilibrium, by the tax code T , when

agents make their consumption and labor decisions optimally. Contrary to static settings, in a

dynamic environment, wedges are thus related to both current and future marginal tax rates taking

into account the effects of labor supply at present on the evolution of the agents’ productivity.

Importantly, note that the dependence of future taxes on current incomes is both direct (the third

term in (22)), and indirect, via the effect of a variation in current income on the distribution of

future productivity (the second term in (22)).13

Following the tradition in the macro and public finance literature, hereafter we will consider the

following transformation of the wedges

Ŵt(θ
t) ≡ Wt(θ

t)
ψy(yt(θt),θt)
v′(ct(θt))

12The derivative in the second term in the right-hand side of (22) is with respect to the measure Ft+1, holding the

function Rt+1(θ
t+1) constant.

13The formula in (22) can be interpreted as a “labor” wedge. In addition, there is also a “savings” wedge which is

given by

WS
t (θt) ≡ 1− v′(ct(θ

t))

(1 + r̃)δ
´
v′(ct+1(θt+1))dFt+1,y(θt+1|θt, yt(θt))

where r̃ is the rate of return on savings net of any possible linear capital tax. Such intertemporal wedges have been

studied extensively in the received new dynamic public finance literature (see, e.g., Albanesi and Armenter (2012) and

the references therein). The forces shaping such wedges are fairly well understood. In this paper, we thus abstain from

discussing them further and, instead, focus on the labor wedges.
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which captures the wedge relative to marginal cost of higher period-t output (in consumption terms),

at the proposed allocations. The advantage of expressing the inefficiencies in terms of relative wedges

comes from the fact that the latter are absolute (i.e., percentage) numbers, and hence unit free. We

will refer to Ŵt(θ
t) as the relative wedge.

Fix the rule χ, and let

ht(θ
t, yt) ≡ −I

t
1(θ

t, yt−1)

η1(θ1)
ψθ(yt, θt)

denote the period-t “handicap.” Note that, while the wedges measure marginal distortions in the

allocations, the ex-ante net present value of the handicaps measures the expected total surplus the

principal must leave to the agent, over and above the level V1(θ1) left to the lowest period-1 type,

to induce truthful revelation of the agent’s private information:

E
[
V1(θ̃1)

]
= E

[∑
t

δt−1ht(θ̃
t, yt(θ̃t))

]
+ V1(θ1).

Then let

ŴRRN
t (θt) ≡ It1(θ

t, yt−1(θt−1))

η1(θ1)

|ψyθ(yt(θt), θt)|
ψy(yt(θt), θt)

,

Ωt(θ
t) ≡

∂
∂yt

Eλ[χ]|θt,yt(θt)[
∑T

τ=t+1 δ
τ−thτ (θ̃

τ , yτ (θ̃τ ))]

ψy(yt(θt), θt)
,

TCt(θ
t) ≡ 1−Ft(θt|θt−1,yt−1(θt−1))

ft(θt|θt−1,yt−1(θt−1))


´ θt
θt

1
v′(ct(θt−1,θ′t))

dFt(θ′t|θt−1,yt−1(θt−1))
1−Ft(θt|θt−1,yt−1(θt−1))

−
´ θt
θt

1
v′(ct(θt−1,θ′t))

dFt(θ
′
t | θt−1, yt−1(θ

t−1))

 , (23)

RAt(θ
t) ≡ v′(ct(θt))

[
η1(θ1)

t∑
τ=2

TCτ (θ
τ )

Iτ1 (θ
τ , yτ−1(θτ−1))

+

ˆ θ1

θ1

1

v′(c1(θ′1))

dF1(θ
′
1)

1− F1(θ1)

]
,

and

Dt(θ
t) ≡ rv′(ct(θt))

ˆ θ1

θ1

1

v′(c1(θ′1))
dF1(θ

′
1)

´ θ1θ1 q′(V1(θ′1)) dF1(θ′1)
1−F1(θ1)´ θ1

θ1
q′(V1(θ′1))dF1(θ′1)

 .

The next theorem is the paper’s main result:

Theorem 1. Suppose the rule χ = (y, c) identifies the second-best allocations. Then at any period

t ≥ 1, with λ[χ]-probability one, the relative wedge is given by

Ŵt(θ
t) =

[
RAt(θ

t)−Dt(θ
t)
] [
ŴRRN
t (θt) + Ωt(θ

t)
]
. (24)

The theorem provides a convenient representation of wedge dynamics under second-best allo-

cations. In particular, it illustrates how the agent’s risk-aversion, the persistence and endogeneity

of the agent’s private information, and the principal’s preferences and constraints for redistribution

interact over time in shaping the allocations under optimal contracts.
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The term ŴRRN
t in (24) is the period-t (relative) wedge when the agent is risk neutral (that is,

when v(c) = c, all c) and the principal’s preferences for redistribution are Rawlsian (equivalently,

when the redistribution constraint (1) takes the familiar form V (θ1) ≥ κ all θ1, as typically assumed

in the micro literature).

The term RAt, in turn, is a correction due to the agent’s risk-aversion. This correction accounts

for all the extra costs to the principal of moving compensation across time and across (endogenous)

productivity histories, over and above the costs coming from the need to leave surplus to the agent

to incentivize truthful information revelation. Clearly such correction is absent when the agent is

risk neutral, in which case RAt(θ
t) = 1, all θt. To see this more clearly, recall from the discussion

following Proposition 2 that, with non-transferable utility, the period-t shadow cost to the principal

of providing one extra unit of continuation utility to all types (θt−1, θ′t), with θ′t > θt is equal to

λt(θ
t). Now combine (20) with the initial condition (21) to observe that

λt(θ
t) =

t∑
τ=2

Itτ (θ
t, yt−1(θt−1))TCτ (θ

τ ) + It1(θ
t, yt−1(θt−1))λ1(θ1).

The functions TCt(θ
t) can be thought of as the net transaction costs the principal has to incur to

increase by one unit the continuation utility of all period-τ types (θτ−1, θ′τ ) with θ′τ > θτ , while

adjusting the compensation of type θτ−1 so as to hold this type’s continuation utility constant. In

other words, these are the costs to the principal of backward shifting (i.e., of rolling backward) the

information rents given to the agents in periods other than the first one.

Recall that, when the principal increases by one unit the continuation utility of all types (θt−1, θ′t)

with θ′t > θt, she then also needs to increase by

δ
∂[1− Ft(θt|θt−1, yt−1(θ

t−1))]

∂θt−1

the continuation utility of all period-(t − 1) types θt−1 = (θt−2, θ′t−1) with θ
′
t−1 > θt−1. Such an in-

crease is necessary to preserve such types’ incentives to report truthfully. Because of such an increase,

the principal can, however, reduce the compensation of type θt−2 to hold the latter type’s continuation

utility constant. The net cost to the principal of increasing the continuation utility of all period-

(t − 1) types (θt−2, θ′t−1), with θ
′
t−1 > θt−1, normalized by the density ft−1(θt−1|θt−2, yt−2(θ

t−2)) is

thus equal to TCt−1(θ
t−1)Itt−1(θ

t, yt−1(θt−1)). Continuing backwards all the way to period one and

summing over all intermediate periods, we thus have that the total shadow cost of providing one ex-

tra unit of continuation utility to all types (θt−1, θ′t), with θ
′
t > θt, in terms of period-1 consumption,

is equal to λt(θ
t).

Importantly, note that, with non-transferable utility, the shadow costs λt(θ
t) depend not only

on the impulse response of period-t types to period-1 types, but also on the impulse responses of

period-t types to all intermediate period-s types, 1 < s < t. This property, which has been ignored

in the micro literature by focusing on the transferable utility case, has important implications for

the dynamics of wedges under second-best allocations.
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Next, consider the term Dt in the formula for the wedges. This term is a second correction

that controls for the principal’s preferences for redistribution when the latter differ from the ones

in the Rawlsian benchmark (equivalently, for the possibility that the redistribution/participation

constraint (1) takes the integral form
´ θ1
θ1
q (V1(θ

′
1)) dF1(θ

′
1) ≥ κ, as typically assumed in the macro

and/or (dynamic) public finance literature, instead of the interim form V (θ1) ≥ κ, all θ1, as typically

assumed in the micro literature). While, with risk-adverse agents, the term RAt tends to amplify the

other two terms in the wedge formula, the term Dt tends to dampen them. The reason is that, when

the principal values the utility of period-1 types above θ1, the costs to the principal of increasing the

agent’s expected lifetime utility for incentive reasons is diminished by the positive effect that such

an increase has on the participation/redistribution constraint (1).

Finally, consider the term Ωt in the wedge formula. This term summarizes all the effects due to

the endogeneity of the agent’s private information. Naturally, this term is equal to zero when the type

process is exogenous. As anticipated above, when impulse responses It1(θ
t, yt−1) are nondecreasing

in past output, yt−1, and the kernels Ft(θt|θt−1, yt−1) are nonincreasing in yt−1, the term Ωt is

typically positive, thus contributing to higher wedges. In models of taxation with learning-by-

doing, a positive dependence of the impulse responses on past output may capture the idea that

learning-by-doing has stronger effects for highly productive workers than for less productive ones, a

property that seems plausible, albeit whose empirical support has not been overwhelming (see, for

example, the discussion in Stantcheva, 2017). Similarly, in a trade model with habit formation, the

property of impulse responses increasing in past trades may reflect the idea that habit formation is

stronger for individuals with high willingness to consume. In all these cases, the endogeneity of the

agent’s private information calls for additional distortions in the second-best allocations. By further

distorting downwards the allocations yt, the principal economizes on the costs of future incentives

by shifting the period-(t + 1) type distribution towards levels that command smaller continuation

payoffs (equivalently, smaller rents).

As anticipated above, the theorem favors a useful reinterpretation of the key forces responsible

for the dynamics of distortions in the special cases considered in the literature. Start with the case

of a planner with Rawlsian preferences for redistribution facing a risk-neutral agent (recall that this

specification also corresponds to the case of transferable utility and interim participation constraints

considered in the micro literature). In this case, RAt(θ
t) = 1 all t, all θt, and Dt(θ

t) = 0, all θt.

Consider first the case where the agent’s private information is exogenous, which is the benchmark

in most of the existing literature. In this case, the formula for the wedges reduces to

Ŵt(θ
t) = ŴRRN

t (θt) =
It1(θ

t)

η1(θ1)

|ψyθ(yt(θt), θt)|
ψy(yt(θt), θt)

.

When t = 1, the above formula coincides with the one

ŴRRN
1 (θ1) =

1

η1(θ1)θ1
ϵ
ψy

θ (y1(θ1), θ1)
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familiar from the early public finance literature (see, e.g., Mirrlees (1971), Diamond (1998), Saez

(2001)), with

ϵ
ψy

θ (y1(θ1), θ1) ≡
|ψyθ(y1(θ1), θ1)|θ1
ψy(y1(θ1), θ1)

denoting the elasticity of the marginal disutility of labor with respect to the agent’s productivity.

For any period t > 1, instead, the formula for ŴRRN
t (θt) is adjusted by taking into account the

intertemporal informational linkage between type θt and type θ1, as captured by the impulse response

It1(θ
t) of θt to θ1. A higher impulse response of θt to θ1 implies a larger increase in the information

rent that the principal must leave to all agents whose period-1 productivity exceeds θ1 when she

asks for higher output at history θt. Hence, the higher the impulse, the higher the distortion. The

dynamics of the wedges in this case are then driven entirely by the (exogenous) dynamics of the

impulse responses, as discussed at length in the micro literature (see, e.g., Pavan, Segal, and Toikka,

(2014)).

Next, consider the case in which the planner’s aversion to inequality is less than Rawlsian (i.e.

r = 1), but continue to assume that the agent’s utility is linear in consumption and that private

information is exogenous. In this case, the correction in the wedges due to the principal’s lower

aversion to inequality is constant over time and equal to

1−D1(θ1) := 1−

´ θ1
θ1
q′(V1(θ

′
1))

dF1(θ′1)
1−F1(θ1)´ θ1

θ1
q′(V1(θ′1))dF1(θ′1)

.

The dynamics of the wedges then continue to be driven by the dynamics of the impulse responses,

with the only difference relative to the benchmark with Rawlsian preferences for redistribution coming

from the scaling of the wedges ŴRRN
t (θt) by the correction term 1−D1(θ1) which is non-negative,

less than one, and increasing in θ1. Importantly, while such correction has no effect on the qualitative

properties of the dynamics of distortions, it may have non-negligible effects on the progressivity of

the period-1 wedges.

Next, consider the case in which the agent is strictly risk averse (i.e., his utility over consumption

v is strictly concave), and continue to assume that the process governing the evolution of the agent’s

private information is exogenous. A special case of interest to the new dynamic public finance

literature is that of a planner with utilitarian preferences for redistribution (see, e.g., Farhi and

Werning (2013), Kapicka (2013) and Stantcheva (2016)). In this case,

RAt(θ
t) = v′(ct(θt))

[
η1(θ1)

t∑
τ=2

TCτ (θ
τ )

Iτ1 (θ
τ , yτ−1(θτ−1))

+

ˆ θ1

θ1

1

v′(c1(θ′1))

dF1(θ
′
1)

1− F1(θ1)

]
,

and

Dt(θ
t) ≡ v′(ct(θt))

ˆ θ1

θ1

1

v′(c1(θ′1))
dF1(θ

′
1).

24



Relative to the Rawlsian-risk-neutral benchmark, the net correction to the wedges is then equal to

RAt(θ
t)−Dt(θ

t) = v′(ct(θt))

 η1(θ1)
∑t

τ=2
TCτ (θτ )

Iτ1 (θ
τ ,yτ−1(θτ−1))

+´ θ1
θ1

1
v′(c1(θ′1))

dF1(θ′1)
1−F1(θ1)

−
´ θ1
θ1

1
v′(c1(θ′1))

dF1(θ
′
1)

 .
This literature also typically assumes, in the calibrations, that the process governing the evolution

of the agents’ private information is a random walk, which amounts to assuming that Iτ1 = 1, all

τ . The key finding in this literature is that, in such economies, distortions tend to increase over the

lifecycle. The literature has attributed this finding to the fact that the risk the agents are exposed

to, captured by he the variance of θt, as perceived at time 1, increases with time. To shield the

agents from risk, the principal distorts downwards the agents’ labor supply, which permits him to

reduce the volatility in the agents’ compensation necessary to incentivize them to reveal their private

information. Because such risk increases over time, so do the distortions.

Our formula permits us to qualify that such intuition is incomplete. The dynamics of the wedges

in such economies are also driven by the dynamics of the transaction costs necessary to roll backwards

the agents’ information rents (the terms TCτ (θ
τ ) identified above). Such costs can grow over time

also when the variance of the agents’ types remains constant, or even declines with t. Such costs

grow with the number of periods a rent is rolled backwards, as explained above. As a result, to

contain such costs, the planner may optimally increase the distortions over time, even if the risk the

agents are exposed to remains constant, or declines, with t.

Another special case, of interest for example to the managerial compensation literature, is that of

a principal with Rawlsian preferences for redistribution (recall that the latter property is equivalent

to the imposition of interim participation constraints) facing a risk-averse agent. In this case,

RAt(θ
t) = v′(ct(θt))

[
η1(θ1)

t∑
τ=2

TCτ (θ
τ )

Iτ1 (θ
τ , yτ−1(θτ−1))

+

ˆ θ1

θ1

1

v′(c1(θ′1))

dF1(θ
′
1)

1− F1(θ1)

]
,

while Dt(θ
t) = 0. The relative wedges are then equal to

Ŵt(θ
t) =

|ψyθ(yt(θ
t),θt)|

ψy(yt(θt),θt)
v′(ct(θt))

∑t
τ=2 I

t
τ (θ

t, yt−1(θt−1))TCτ (θ
τ )

+
|ψyθ(yt(θ

t),θt)|
ψy(yt(θt),θt)

v′(ct(θt))
It1(θ

t,yt−1(θt−1))
η1(θ1)

´ θ1
θ1

1
v′(c1(θ′1))

dF1(θ′1)
1−F1(θ1)

.

As the above formula shows, in this case, the dynamics of the wedges are also driven by the dynamics

of the impulse responses of period-t types to all intermediate types (i.e., by Itτ , τ = 1, ..., t− 1). To

the best of our knowledge, this channel too has not been noticed in previous work and plays a major

role for the dynamics of distortions in economies with risk-averse agents. As anticipated in the

Introduction, such intermediate impulse responses contribute to the total cost the principal must

incur to roll backwards the agents’ information rents. In future work, it would be interesting to

study in more detail how these intermediate impulse responses contribute to the dynamics of the

distortions in various economies of interest (see also the numerical analysis in the next section).

25



Lastly, consider models with endogenous private information. In such economies, the terms

ŴRRN
t (θt) and RAt(θ

t) −Dt(θ
t) in the formulas for the wedges retain the interpretation discussed

above. However, naturally, the conditional distributions and the impulse response functions in the

formulas for ŴRRN
t (θt) and RAt(θ

t) −Dt(θ
t) should now be interpreted as the ones corresponding

to the endogenous process induced by the rule χ. The novel effects originating in the endogeneity

of the agent’s private information are the ones captured by the interactions of the terms Ωt(θ
t) with

the correction terms RAt(θ
t)−Dt(θ

t).

Note that the expectational term in the numerator of Ωt(θ
t) is the expected discounted sum of all

future handicaps, hs(θ
s), s > t, with the latter capturing the consumption losses to the principal due

to the need to leave information rents to the agent in future periods to incentivize truthful reporting.

As anticipated above, in general, there are two channels by which the endogeneity of the process

affects the expectation of future handicaps. The first one is by shifting the distribution of future

types, holding fixed all future handicaps. In the case of taxation with learning-by-doing, the future

handicaps are typically increasing in the agents’ future types. When this is the case, by shifting the

distribution of future productivity towards levels for which the handicaps are higher, learning-by-

doing contributes positively to the expectation of future handicaps. Other things equal, this channel

thus contributes to larger distortions in labor supply in the form of higher wedges (see Makris and

Pavan (2018)). We expect similar effects in trade models with habit formation, where higher past

consumption increases future willingness to pay. On the contrary, when past consumption reduces

the interest in future purchases, as in certain trade models featuring intertemporal substitution, the

endogeneity of the agent’s private information may contribute to a reduction in the wedges, as one

can see from the decomposition in Theorem 1.

The second channel by which the endogeneity of the type process affects the wedges is through the

effect of current output on the impulse responses of future types to current ones, and thereby through

its direct effect on future handicaps, for a given distribution of future types. As discussed above,

in general, future handicaps may be either increasing or decreasing in current output, depending

on whether the impulse responses of future types to the current ones are increasing or decreasing

in current output. For example, in the case of taxation under learning-by-doing, impulse responses

are increasing in current output when current skills and current output are complements in the

determination of future skills. In this case, this second channel adds to the first one and learning-

by-doing contributes unambiguously to higher wedges. When, instead, current skills and current

output are substitutes in the determination of future skills so that higher output at present reduces

the impulse responses of future types to current ones, this second channel contributes to a lower

negative effect of learning-by-doing on expected future losses and hence to lower wedges.

As discussed in Makris and Pavan (2018), the endogeneity of the agent’s private information

may have non-negligible effects not only on the level of the wedges but also on their dynamics

and progressivity. In the next section, we investigate how such endogeneity interacts with the

agents’ risk aversion and the principal’s preferences for redistribution in shaping the dynamics of
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distortions. In particular, we investigate whether such effects are more pronounced at the beginning

of the relationship, when the change in the agents’ types has impact over a larger number of periods,

or later in the relationship when there are fewer periods ahead in which the benefits of the change

can be exploited, but also more urgency to act in case the realized type is not the desired one.

6 Numerical Analysis

TBA

7 Appendix

Proof of Proposition 1. For any t > 1, let πt(θ
t−1) be the multiplier of the period-t promise

keeping constraint (2). Let also q′t(Vt(θt)) ≡ 1 for t > 1 and q′t(Vt(θt)) ≡ q′(V1(θ1)) for t = 1.

Start with the case of r = 1, and let π1 be the multiplier of the redistribution/participation

constraint (3), which is an integral constraint. At the solution to the planner’s problem, the following

necessary conditions with respect to yt(θ
t), Vt(θ

t) and Πt+1(θ
t) must hold with λ[χ]-probability one:

vP ′(yt(θ
t))− ψy(yt(θ

t), θt)

v′(ct(θt))
+ δ

∂

∂yt
QFBt+1(θ

t, yt(θ
t),Πt+1(θ

t)) = 0 for any t = 1, ..., T

1

v′(ct(θt))
+ πt(θ

t−1)q′t(Vt(θt)) = 0 for any t = 1, ..., T

1

v′(ct(θt))
+

∂

∂Πt+1
QFBt+1(θ

t, yt(θ
t),Πt+1(θ

t)) = 0 for any t < T

with π1(θ
0) ≡ π1.

Next, use the envelope theorem to establish that

δ
∂

∂yT
QFBT+1(θ, yT (θ),ΠT+1(θ)) = 0

while, for t < T ,

δ
∂

∂yt
QFBt+1(θ

t, yt(θ
t),Πt+1(θ

t)) = δ
∂

∂yt

ˆ {
V P
t+1(θ

t+1)− πt+1(θ
t)Vt+1(θ

t+1)
}
dFt+1(θt+1 | θt, yt(θt))

and
∂

∂Πt+1
QFBt+1(θ

t, yt(θ
t),Πt+1(θ

t)) = πt+1(θ
t).

Combining the above optimality conditions and using the definition of LDFB;χ
t (θt) gives the result.

Now consider the case where r = 0. Recall that, in this case, the redistribution/participation

constraint (3) takes the form V1(θ1) ≥ κ all θ1 ∈ Θ1. Let π̂1(θ1) be the (Kuhn-Tucker) multiplier

of the redistribution constraint (3). At the solution to the planner’s problem, the same necessary
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conditions as for the case r = 1 must hold, except for the second one for t = 1 which must be replaced

by
1

v′(c1(θ1))
+ π̂1(θ1) = 0.

Combining the various necessary conditions yields the result. Q.E.D.

Proof of Proposition 2. In any period t, the principal is facing an optimal control problem

with integral constraints, for any given "state" (θt−1, yt−1(θ
t−1),Πt(θ

t−1), Zt(θ
t−1)).

For any t > 1, let πt(θ
t−1) and ξt(θ

t−1) be the multipliers of the two “promise-keeping” integral

constraints (15) and (16) associated with the levels of expected utility, Πt(θ
t−1), and marginal ex-

pected utility, Zt(θ
t−1), promised in period t − 1. Also note that the redistribution/participation

constraint (13) can be conveniently rewritten as

Π1 = (1− r)V1(θ1) + r

ˆ
q(V1(θ1))dF1(θ1) (25)

by letting Π1 ≡ κ. Then let π1 be the multiplier associated with constraint (25) and let ξ1(θ
0) ≡ 0.

With some abuse of notation, also let q′1(V ; r) ≡ rq′(V ) and, for any t > 1, q′t(V ; r) = 1, all V, all

r ∈ {0, 1}. Finally, for any t ≥ 1, any θt ∈ Θt, let µt(θ
t) denote the co-state variable associated

with the law of motion of the state variable Vt(θ
t), as specified by Condition (14) in the principal’s

problem.

We start with the case r = 1, and then move to the case r = 0.

Case r = 1.

In this case, the redistribution constraint (25) becomes

ˆ
q(V1(θ1))dF1(θ1) = Π1. (26)

The solution to the principal’s problem must then satisfy the following optimality conditions with

λ[χ]-probability one:{
vP ′(yt(θ

t))− ψy(yt(θt),θt)

v′ (ct(θt))
+ LDχ

t (θ
t)
}
ft(θt | θt−1, yt−1(θ

t−1))

−ψyθ(yt(θt), θt)
[
µt(θ

t)− ξt(θ
t−1)Itt−1(θ

t, yt−1(θ
t−1))ft(θt | θt−1, yt−1(θ

t−1))
]
= 0, for all t,

(27)

∂µt(θ
t)

∂θt
= ft(θt | θt−1, yt−1(θ

t−1))× (28)

×
{

1

v′(ct(θt))
+ πt(θ

t−1)q′t(Vt(θ
t; r))

}
, for all t,

µt(θ
t−1, θt) = 0, for all t, (29)

µt(θ
t−1, θt) = 0, for all t, (30)

δ

v′(ct(θt))
+ δ

∂Qt+1

∂Πt+1
= 0, for all 1 ≤ t < T, (31)
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δ
[
µt(θ

t)− ξt(θ
t−1)Itt−1(θ

t, yt−1(θ
t−1))ft(θt | θt−1, yt−1(θ

t−1))
]
+

+δ
∂Qt+1

∂Zt+1
ft(θt | θt−1, yt−1(θ

t−1)) = 0, for all 1 ≤ t < T, (32)

where ∂Qt+1/∂Πt+1 and ∂Qt+1/∂Zt+1 are shortcuts for

∂

∂Πt+1
Qt+1

(
θt, yt(θ

t), Vt(θ
t),Πt+1(θ

t), Zt+1(θ
t)
)

and
∂

∂Zt+1
Qt+1

(
θt, yt(θ

t), Vt(θ
t),Πt+1(θ

t), Zt+1(θ
t)
)

respectively, and where π1(θ
0) ≡ π1.

Next, use the envelope theorem to observe that ∂Qt+1

∂Πt+1
= πt+1 and ∂Qt+1

∂Zt+1
= ξt+1. It follows that

Conditions (31) and (32) can be rewritten as

1

v′(ct(θt))
+ πt+1(θ

t) = 0, for all 1 ≤ t < T, (33)

and [
µt(θ

t)− ξt(θ
t−1)Itt−1(θ

t, yt−1(θ
t−1))ft(θt | θt−1, yt−1(θ

t−1))
]
+

+ξt+1(θ
t)ft(θt | θt−1, yt−1(θ

t−1)) = 0, for all 1 ≤ t < T. (34)

The solution to the principal’s problem is then given by Conditions (27), (28), (29), (30), (33), and

(34) above, along with the laws of motions for the agent’s continuation payoff as given by (14), the

constraints (15), (16), and (25), the consumption identity

ct(θ
t) = C(Vt(θ

t) + ψ(yt(θ
t), θt)− δΠt+1(θ

t))

and the fact that, for t = T ,

LDχ
T (θ) = δ

∂

∂yT
QT+1(θ, yT (θ),ΠT+1(θ), ZT+1(θ)) = 0

while, for t < T ,

LDχ
t (θ

t) = δ
∂

∂yt
Qt+1(θ

t, yt(θ
t),Πt+1(θ

t), Zt+1(θ
t))

= δ
∂

∂yt

ˆ
Q̂t+1(θ

t+1, yt+1(θ
t+1), Vt+1(θ

t+1),Πt+2(θ
t+1), Zt+2(θ

t+1))dFt+1(θt+1|θt, yt(θt)) (35)

−πt+1(θ
t)δ

∂

∂yt

ˆ
Vt+1(θ

t+1)dFt+1(θt+1|θt, yt(θt))

−ξt+1(θ
t)δ

∂

∂yt

ˆ
∂Vt+1(θ

t+1)

∂θt+1
It+1
t (θt+1, yt(θ

t))dFt+1(θt+1|θt, yt(θt)).

Note that in writing (35) we used the fact that

´ ∂Vt+1(θt+1)
∂θt+1

It+1
t (θt+1, yt(θ

t))dFt+1(θt+1|θt, yt(θt))

=
´ [

−ψθ(yt+1(θ
t+1), θt+1) + δZt+2(θ

t+1)
]
It+1
t (θt+1, yt(θ

t))dFt+1(θt+1|θt, yt(θt)).
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We proceed to show that the above optimality conditions imply those in the proposition. Let

λt(θ
t) ≡ −µt(θt)/ft(θt | θt−1, yt−1(θ

t−1))+ ξt(θ
t−1)Itt−1(θ

t, yt−1(θ
t−1)) for all t ≥ 1. It is then easy to

see that Condition (27) is equivalent to Condition (19) in the proposition.

Next, combine Conditions (33) and (34) with the law of motion for the co-state variable (28) for

t > 1, and use the boundary conditions (29) and (30) for t > 1 to obtain the following alternative

representation of the law of motion of the co-state variables:

µt(θ
t) = µt(θ

t−1, θ̄t)−
´ θ̄t
θt

∂µt(θt−1,θ′t)
∂θt

dθ′t = −
ˆ θt

θt

1
v′(ct(θt−1,θ′t))

dFt(θ
′
t | θt−1, yt−1(θ

t−1))

+
[1−Ft(θt|θt−1,yt−1(θt−1))]

v′(ct−1(θt−1))
.

(36)

When evaluated at θt = θt, the above expression yields

0 = µt(θ
t−1, θt) = −

ˆ θt

θt

1
v′(ct(θt−1,θ′t))

dFt(θ
′
t | θt−1, yt−1(θ

t−1))

+ 1
v′(ct−1(θt−1))

.

(37)

It follows that the expression in (37) is equivalent to

1

v′(ct−1(θt−1))
=

ˆ θt

θt

1

v′(ct(θt−1, θ′t))
dFt(θ

′
t | θt−1, yt−1(θ

t−1)) (38)

which is the Rogerson-inverse-Euler condition (18) in the proposition.

Combining (36) with (38), we also have that

−µt(θt)
ft(θt | θt−1, yt−1(θt−1))

=
1

ft(θt|θt−1, yt−1(θt−1))

ˆ θt

θt

1

v′(ct(θt−1, θ′t))
dFt(θ

′
t | θt−1, yt−1(θ

t−1))

−

´ θt
θt

1
v′(ct(θt−1,θ′t))

dFt(θ
′
t | θt−1, yt−1(θ

t−1))
[
1− Ft(θt | θt−1, yt−1(θ

t−1))
]

ft(θt|θt−1, yt−1(θt−1))

(39)

Using the definition of λt(θ
t) above, we then have that, for any t > 1, Condition (39) is equivalent

to

λt(θ
t) =

´ θt
θt

1
v′(ct(θt−1,θ′t))

dFt(θ′t|θt−1,yt−1(θt−1))

ft(θt|θt−1,yt−1(θt−1))
−
´ θt
θt

1−Ft(θt|θt−1,yt−1(θ
t−1))

v′(ct(θt−1,θ′t))
dFt(θ′t|θt−1,yt−1(θt−1))

ft(θt|θt−1,yt−1(θt−1))

+Itt−1(θ
t, yt−1(θt−1))ξt(θ

t−1).

(40)

Then note that, by definition of λt(θ
t) and (34), for all t > 1, λt−1(θ

t−1) = ξt(θ
t−1). This implies

that Condition (40) is equivalent to Condition (20) in the proposition.

Next, consider t = 1. Applying the law of motion of the co-sate variable (28) to t = 1, and using

the boundary conditions (29) and (30) for t = 1, we then have that

−µ1(θ1)
f1(θ1)

=
1

f1(θ1)

[ˆ θ1

θ1

1

v′(c1(θ′1))
dF1(θ

′
1) + π1

ˆ θ1

θ1

q′(V1(θ
′
1))dF1(θ

′
1)

]
. (41)
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When evaluated at θ1 = θ1, the above expression yields the following formula (recall that µ1(θ1) = 0)

0 =

ˆ θ1

θ1

1

v′(c1(θ′1))
dF1(θ

′
1) + π1

ˆ θ1

θ1

q′(V1(θ
′
1))dF1(θ

′
1),

from which we obtain that

π1 =
−
´ θ1
θ1

1
v′(c1(θ′1))

dF1(θ
′
1)´ θ1

θ1
q′(V1(θ′1))dF1(θ′1)

< 0.

Letting π = −π1, and recalling that, by definition, λ1(θ1) ≡ −µ1(θ1)/f1(θ1), we obtain Condition

(21) in the proposition. This completes the proof for the case of r = 1.

Case r = 0.

The derivation of Conditions (18), (19), and (20) follows from the same steps as in the case r = 1.

The only differences pertain to the derivation of Condition (21). First, observe that, when r = 0,

the redistribution constraint (26) in the optimal control problem described above for the case r = 1

is absent and replaced by the constraint V1(θ1) = κ. As a result, the multiplier π1 in the law of

motion (28) for t = 1 must be set equal to zero. Second, the only relevant period-1 transversality

condition is now µ1(θ̄1) = 0. Setting π1 = 0 in (28) for t = 1, and using the transversality condition

µ1(θ̄1) = 0, we thus have that

0 = µ1(θ1) +

ˆ θ1

θ1

∂µ1(θ
′
1)

∂θ1
dθ′1 = µ1(θ1) +

ˆ θ1

θ1

1

v′(c1(θ′1))
dF1(θ

′
1)

which implies

µ1(θ1) = −
ˆ θ1

θ1

1

v′(c1(θ′1))
dF1(θ

′
1). (42)

Combining (42) with (28) for t = 1, we obtain that

λ1(θ1) ≡
−µ1(θ1)
f1(θ1)

=

´ θ̄1
θ1

1
v′(c1(θ′1))

dF1(θ
′
1)

f1(θ1)
(43)

which is equivalent to Condition (21) in the proposition when specialized to the case r = 0. Q.E.D.

Proof of Theorem 1. From Proposition 2, recall that, under the second-best allocation policies,

the following optimality condition for output must hold with λ[χ]-probability one:

vP ′(yt(θ
t)) + LDχ

t (θ
t) =

ψy(yt(θ
t), θt)

v′(ct(θt))
− ψyθ(yt(θ

t), θt) · λt(θt), for all t, (44)

where

LDχ
t (θ

t) ≡ δ
∂

∂yt
Qt+1(θ

t, yt(θ
t),Πt+1(θ

t), Zt+1(θ
t))

and where Qt+1(θ
t, yt(θ

t),Πt+1(θ
t), Zt+1(θ

t)) denotes the principal’s expected continuation payoff

from period t+1 (included) onward, given the period-t history θt, the period-t output choice yt(θ
t),
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the agent’s promised expected continuation utility Πt+1(θ
t), and the promised expected marginal

continuation utility Zt+1(θ
t), as defined in the main text.

Next, use (35) to observe that

LDχ
t (θ

t) = δ
∂

∂yt

ˆ
[vP (yt+1(θ

t+1))− ct+1(θ
t+1)

+δQt+2(θ
t+1, yt+1(θ

t+1),Πt+2(θ
t+1), Zt+2(θ

t+1))]dFt+1(θt+1|θt, yt(θt))

−πt+1(θ
t)δ

∂

∂yt

ˆ
Vt+1(θ

t+1)dFt+1(θt+1|θt, yt(θt))

−ξt+1(θ
t)δ

∂

∂yt

ˆ
∂Vt+1(θ

t+1)

∂θt+1
It+1
t (θt+1, yt(θ

t))dFt+1(θt+1|θt, yt(θt)),

where recall that πt+1(θ
t) and ξt+1(θ

t) are, respectively, the period-(t+1) multiplier of the promise-

keeping expected utility constraint (15) and of the promise-keeping expected marginal utility con-

straint (16).

Next use the result from the proof of Proposition that πt+1(θ
t) = −1/v′(ct(θ

t)) and ξt+1(θ
t) =

λt(θ
t) to rewrite the above expression for LDχ

t (θ
t) as

LDχ
t (θ

t) = δ
∂

∂yt

ˆ
[vP (yt+1(θ

t+1))− ct+1(θ
t+1)

+δQt+2(θ
t+1, yt+1(θ

t+1),Πt+2(θ
t+1), Zt+2(θ

t+1))]dFt+1(θt+1|θt, yt(θt))

+
δ

v′(ct(θt))

∂

∂yt

ˆ
Vt+1(θ

t+1)dFt+1(θt+1|θt, yt(θt))

−δλt(θt)
∂

∂yt

ˆ
∂Vt+1(θ

t+1)

∂θt+1
It+1
t ((θt, θt+1), yt(θ

t))dFt+1(θt+1|θt, yt(θt)).

Now observe that

vP (yt+1(θ
t+1))− ct+1(θ

t+1) + δQt+2(θ
t+1, yt+1(θ

t+1),Πt+2(θ
t+1), Zt+2(θ

t+1))

is the principal’s continuation payoff from period t + 1 (included) onwards, under the second-best

allocations, and thus coincides with V P
t+1(θ

t+1), as defined in the main text. Using the definition of

LDFB;χ
t (θt), we thus have that

LDχ
t (θ

t) = LDFB;χ
t (θt)

−δλt(θt)
∂

∂yt

ˆ
∂Vt+1(θ

t+1)

∂θt+1
It+1
t ((θt, θt+1), yt(θ

t))dFt+1(θt+1|θt, yt(θt)). (45)

Using Condition (9) to express ∂Vt+1(θ
t+1)/∂θt+1 as a function of future decisions, along with

the property that, for any (τ, s), τ > s, Iτ1 = Is1I
τ
s , and the definition of period-t handicaps in the

main text, we finally have that

LDχ
t (θ

t) = LDFB;χ
t (θt)− λt(θ

t)η(θ1)

It1(θ
t, yt−1(θt−1))

· (46)

·δ ∂

∂yt
Eλ[χ]|θ

t,yt(θt)

[
T∑

τ=t+1

δτ−t−1hτ (θ̃
τ , yτ (θ̃τ ))

]
.
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Replacing (46) into (19), and using the definition of the relative wedges in the main text and of the

functions WRRN
t , RAt, D, and Ωt yields, after some algebra, the formula for the relative wedges in

the theorem. Q.E.D.

Proof of (22). Consider first the worker’s problem when he faces a tax schedule T and a (net

of any linear capital tax) rate of return to savings r# = 1/δ − 1. At any period t, given current

productivity θt, history of past earnings, yt−1, and net savings from the previous period, St, the

associated value function of the worker is given by:

V̂t(St, θt, y
t−1) = max

ct,yt

{
v(ct)− ψ(yt, θt) + δ

ˆ
V̂t+1(St+1, θt+1, (y

t−1, yt))dFt+1(θt+1|θt, yt)
}

where V̂T+1(ST+1, θT+1, y
T ) ≡ 0, and where the current net savings transferred to the next period

are given by the following law-of-motion

St+1 = yt − Tt(yt)− ct + (1 + r#)St

with ST+1 = 0 and where we assumed (without loss of generality) that S1 = 0. The FOCs of this

problem (after suppressing, for notational simplicity, the dependence of the optimal solution on the

“state” (St, θt, y
t−1)) are as follows.14 The FOC with respect to ct, t < T , is

v′(ct) = δ

ˆ
∂V̂t+1(St+1, θt+1, y

t)

∂St+1
dFt+1(θt+1|θt, yt). (47)

In turn, using (47), we have that the FOC with respect to yt is[
1− ∂Tt

∂yt

]
v′(ct) = ψy(yt, θt)− δ

∂

∂yt

ˆ
V̂t+1(St+1, θt+1, y

t)dFt+1(θt+1|θt, yt)

where the second term in the right-hand side of the above condition is zero when t = T .

Now take the second-best rule χ and, given any tax code T , define S(θ) iteratively by15

St+1(θ
t) = yt(θ

t)− Tt(yt(θt))− ct(θ
t) + (1 + r#)St(θ

t−1)

with S1(θ
0) ≡ 0. Forwarding the above law of motion and combining the result with the definition

of V P , we then have that, when vP (y) = y and (1 + r#)δ = 1,

V P
t+1(θ

t+1) = −St+1(θ
t)/δ +Rt+1(θ

t+1) (48)

14Here, we discuss the problem of the worker when T is finite, but the proof can easily be modified to allow for

an infinite T . In such a case, one could show, by following standard techniques, that a well-defined time-invariant

value function exists that satisfies the Bellman equation counterpart of the one that defines V̂t above. Moreover, the

transversality condition limt→∞ St would replace ST+1 above.
15Note that, given an allocation χ and a tax code T , we can think of the path Tt(y

t) as the path of the principal’s

appropriation, in each period t, of the agent’s period-t earnings, given the history of earnings yt, and of St+1(θ
t) as

the transfer of resources in the next period.
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where

Rt+1(θ
t+1) ≡ Eλ[χ]|θ

t+1

[
T∑

s=t+1

δs−t−1Ts(ys(θ̃s))

]
is the NPV of tax revenues from period t+ 1 onwards. Moreover, for any t and any θt,

Vt(θ
t) = V̂t(St(θ

t−1), θt, y
t−1(θt−1)). (49)

Furthermore, after using the envelope theorem for the worker’s problem and the FOC above for ct+1,

we have that, for any s ≥ t,

∂V̂s+1(Ss+1(θ
s), θs+1, y

s(θs))

∂yt
=

−∂Ts(y
s+1(θs+1))

∂yt
v′(cs+1(θ

s+1))+δ

ˆ
∂V̂s+2(Ss+2(θ

s+1), θs+2, y
s+1(θs+1))

∂yt
dFs+2(θs+2|θs+1, ys+1(θ

s+1)).

By iterating forward the last condition over s, we obtain that

∂V̂t+1(St+1(θ
t), θt+1, y

t(θt))

∂yt
= −Eλ[χ]|θ

t+1

[
T∑

s=t+1

δs−t−1 ∂

∂yt
Ts(ys(θ̃s))v′(cs(θ̃s))

]
. (50)

Combining the definition of wedges with (4), (48), (49) and (50), and using the FOC above with

respect to yt, we have that

∂

∂yt

ˆ
St+1(θ

t)dFt+1(θt+1|θt, yt(θt)) = 0.

We conclude that any given wedge schedule (and thereby any given allocation rule) can be imple-

mented via a system of non-linear marginal income tax schedule that satisfies:

Wt(θ
t) =

∂Tt(yt(θt))
∂yt

+

δ{ ∂

∂yt

ˆ
V P
t+1(θ

t+1)dFt+1(θt+1|θt, yt(θt))−
1

v′(ct(θt))

ˆ
∂

∂yt
V̂t+1(St+1(θ

t), θt+1, y
t(θt))dFt+1(θt+1|θt, yt(θt))} =

∂Tt(yt(θt))
∂yt

+ δ
∂

∂yt

ˆ
Rt+1(θ

t+1)dFt+1(θt+1|θt, yt(θt))+

δEλ[χ]|θ
t

[
T∑

s=t+1

δs−t−1∂Ts(ys(θ̃s))
∂yt

v′(cs(θ̃
s))

v′(ct(θt))

]
with the last two terms equal to zero when t = T . Q.E.D
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