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Abstract

Complex economic models often lack the structure for the application of stan-

dard techniques in monotone comparative statics. Generalized Monotonicity Anal-

ysis (GMA) extends the available methods in several directions. First, it provides

a way of finding parameter moves that yield monotonicity of model solutions. Sec-

ond, it allows studying the monotonicity of functions or subsets of variables. Third,

GMA naturally provides bounds on the sensitivity of variables to parameter changes.

Fourth, GMA may be used to derive conditions under which monotonicity obtains

with respect to functions of parameters, corresponding to imposed parameter moves.

Fifth, GMA contributes insights into the theory of comparative statics, for exam-

ple, with respect to dealing with constraints or exploiting additional information

about the model structure. Several applications of GMA are presented, including
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1 Introduction

The comparison of model predictions, typically described in terms of solutions to an

optimization or equilibrium problem, for different parameter values is the subject of com-

parative statics (Hicks 1939; Samuelson 1941). Of particular interest is the monotonicity

of solutions in model parameters, giving rise to monotone comparative statics (MCS).

Until the appearance of ordinal methods, the standard tool of MCS was, beyond direct

computation of solutions, the implicit function theorem (IFT). The introduction of ordinal

methods, particularly by Topkis (1968), Milgrom and Shannon (1994), and Athey (2002),

has allowed researchers to characterize MCS in terms of sufficient (and in some sense

necessary) conditions on the primitives of the model.

The standard approach to MCS takes the formulation of the problem (which represents

the model) as given. It cannot deliver positive results when monotonicity does not obtain

with respect to the original variables and parameters. However, interesting monotonicity

properties may generally be found once one broadens the horizon to the monotonicity

of functions of variables with respect to functions of parameters. This paper presents a

simple method, called Generalized Monotonicity Analysis (GMA), to systematically un-

cover and analyze monotonicity properties of solutions to optimization or equilibrium

problems. In GMA, parameters are allowed to move simultaneously in the parameter

space, and monotonicity is investigated for functions of model solutions. The approach,

which is fundamentally geometric, also sheds new light on existing comparative-statics

results. GMA introduces several concepts, such as ‘pseudo-gradients’ and ‘monotonicity

directions,’ which may help applied economists to disentangle various issues that arise

when trying to analyze the monotonicity properties of their models, even when model

complexity rules out the use of standard MCS tools. The GMA approach raises questions

beyond standard comparative-statics analysis. For example, one may ask what structure is

required for the variables of a problem to be monotonic in some parameter aggregate (Sec-

tion 4.3). In problems where parameters represent heterogeneity across some agents, one

may ask what notion of “increased homogeneity” improves their incentives (Section 4.2).

More generally, Section 3 shows that GMA discloses all monotonicity properties relating

solutions of a problem to its parameters given the available information (Theorem 1).

GMA extends comparative statics in yet another direction, namely the study of the rates

at which solutions vary with parameters. This application of GMA is referred to as quan-

titative monotonicity analysis. As one of the many potential applications of quantitative
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monotonicity analysis, we employ it in Section 4.4 to obtain rate constraints in a well-

known problem of robust inference concerned with the empirical determination of firms’

productivity levels.

The gist of GMA can be described as follows. Consider a model described by the param-

eterized equation

f(x, t) = 0,

where x ∈ Rn is the variable, t ∈ Rm is the parameter, and f takes values in Rn. For any t,

let x(t) denote the solution to the above system, which, for this introductory exposition,

is assumed to be unique. For each t, let R(t) ⊂ Rn denote an information set known to

contain the solution: x(t) ∈ R(t). Assume, still for this introduction, that the Jacobian

matrix Dxf of f with respect to x is everywhere invertible. For each nonzero vector v

of Rm, consider the vector

W (x, t, v) = −[Dxf ]−1(x, t)(∂f/∂v),

where ∂f/∂v is the directional derivative of f in direction v. We call this vector a

pseudo-gradient along direction v, because it coincides with the actual gradient of x(t)

with respect to v if one substitutes x = x(t) in the expression for W (x, t, v). The fam-

ily W̄ (t, v|R) = {W (x, t, v)}x∈R(t) of all pseudo-gradients on the information set contains

essential information about solution sensitivity to parameters: even though the exact lo-

cation of x(t) may be unknown, the reaction of x(t) to a parameter change in direction v is

contained in W̄ (t, v|R). The key, then, is to determine properties of W̄ (t, v|R) that permit

statements about which parameter moves will affect solutions monotonically. The simplest

case is when W̄ (t, v|R) is a singleton. Suppose, for example, that W̄ (t, ej|R) = {wj(t)},
where ej is the j-th basis vector of Rm. In general, wj(t) may have some negative com-

ponents: moving from t along the arbitrary direction ej does not necessarily increase

all components of x(t). However, suppose that we can find real numbers λj(t) such

that
∑

j λj(t)wj(t) is a positive vector. Then, moving from parameter t in direction

v(t) =
∑

j λj(t)ej increases all components of the solution x(t), at least locally. We call

such directions of parameter changes monotonicity directions at t. It turns out that the

set V (t|R) of all monotonicity directions at t is a convex cone,1 which is referred to as the

GMA-cone at t. In general, W̄ (t, v|R) contains multiple elements. One can show that the

smaller the set W̄ (t, v|R) (in the inclusion order) and the larger the GMA-cone V (t|R)

1The cone may be empty. In that case, given one’s information about the sensitivity of x to the

parameters, it is impossible to construct parameter moves that guarantee an increase in the solution

(cf. Theorem 1).
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at t, the easier it becomes to find parameter moves along which solutions are monotonic.

Selecting a vector field of monotonicity directions (contained in V (t|R) at each t) yields

trajectories along which a model solution (or smooth selections thereof, in the general case

of a set-valued solution) is necessarily monotonic. — Instead of considering the mono-

tonicity of a model solution directly, GMA can be applied to a function of the solution,

such as an average (discussed in Section 4.3). Lastly, we stress that the method per-

mits the natural use of additional information about solutions through the information

set R(t). For example, if the equation f(x, t) = 0 represents the first-order necessary

optimality condition of a maximization problem, then R(t) may consist of all x that also

satisfy the second-order condition, Dxf(x, t) ≤ 0. A smaller information set R(t) results

in smaller pseudo-gradient sets W̄ (t, v|R), and hence in larger GMA-cones V (t|R) (Theo-

rem 2). Note that instead of its straightforward use to merely guarantee the monotonicity

of model solutions along parameter paths, GMA can also be employed to influence the rate

at which solutions vary with parameters, a more quantitative approach to MCS developed

in Section 3.5.

When analyzing monotonicity properties of solutions to a given problem, results naturally

depend on the concept of monotonicity that is being used. For example, a comparative-

statics analysis based on ordinal methods usually describes the monotonicity of solu-

tions in the strong set order.2 In noncooperative games with strategic complementari-

ties, equilibrium monotonicity is typically limited to the smallest and largest equilibria

(Milgrom and Roberts 1990). However, Echenique (2002) shows that, in such games,

monotonicity results can be extended to all stable equilibria. Allowing for less struc-

tured (e.g., non-supermodular) environments, we allow for any differentiable (or at least

right-differentiable) selection of the solution set X(t) and propose a systematic way to

investigate properties of such a selection. GMA can generate statements of the following

nature.

Each differentiable solution is nondecreasing as parameters are moved in this

direction or along that trajectory.

The differential nature of such statements may or may not restrict the strength of the

results, and can sometimes be relaxed to yield more general statements. The following five

2X(s) ≤ X(t) in the strong set order (Veinott 1989) if and only if (x, y) ∈ X(s) × X(t) implies

that (x ∧ y, x ∨ y) ∈ X(s) × X(t), where x ∧ y denotes the componentwise minimum and x ∨ y the

componentwise maximum of the two vectors x and y.
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points further clarify how GMA can be applied. First, as mentioned earlier, GMA may

be used as an exploratory step to elicit monotonicity properties of a complex problem.

Directly applying ordinal methods to a complex problem may often require much ingenu-

ity or expertise, or may simply fail if one restricts attention to the original variables and

parameters. In contrast, the method proposed here is based on elementary differential

calculus and provides a helpful start to explore monotonicity. The results of this first step

may then be derived under more general conditions using ordinal methods.3 In general,

one should think of differential and ordinal methods as complements, whose strengths can

be combined to yield sharp and general results when analyzing the monotonicity of solu-

tions to an optimization or equilibrium problem. Second, in many problems the solution

is generically unique, so that the question of which selections to consider naturally disap-

pears when X(t) is a singleton that is differentiable in t. If there are multiple solutions

that are locally unique, GMA considers monotonicity of each corresponding selection, and

thus necessarily also the most interesting ones (e.g., stable selections).4 Third, in equilib-

rium analysis, one may be interested precisely in equilibrium evolutions that are smooth

with respect to parameters. Indeed, ruling out solutions that suddenly jump after an

infinitesimal parameter move may be a desirable assumption when analyzing equilibrium

monotonicity.5 Fourth, GMA easily accommodates the introduction of additional con-

straints to discriminate between solutions. For example, nonnegativity of solutions may

be imposed as an additional inequality to the information set R(t). Fifth, monotonicity

can be weak or strict, or even stronger. While ordinal methods yield weak monotonicity,

the differential nature of GMA makes is possible to establish strict monotonicity results.6

As noted earlier, GMA can be used in the form of ‘quantitative monotonicity analysis’ to

obtain explicit bounds for the response rate of model solutions to changes in parameters.7

GMA extends the boundaries of MCS conceptually by providing a systematic method for

investigating the interplay between model structure and available information (including

voluntary restrictions) about model solutions. The approach is constructive, as it endoge-

nously generates the largest cones of directions in the parameter space that are compatible

with monotonicity.8 Parameter directions found this way are likely to have an intuitive

3For example, such exploration was used in Quah and Strulovici (2008).
4The transversality theorem provides simple conditions under which differentiability of solutions ob-

tains generically, as a consequence of the invertibility of Dxf (Guillemin and Pollack 1974, p. 68).
5Similar assumptions are often made in optimization problems, cf. Persico (2000, Assumption A1).
6Edlin and Shannon (1998) focus on strict monotonicity of solutions. Their analysis is based on

differentiability and first-order conditions.
7See Section 3.5 and the application in Section 4.4.
8Jensen (2007) also considers general cones for comparative statics. However, in his analysis the
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interpretation (for example, they can express a notion of “proximity,” as in Section 4.2),

which can be difficult to determine otherwise.

The paper builds on Strulovici and Weber (2008), providing more general foundations and

results for monotonicity analysis, examining new issues such as quantitative monotonicity

analysis and robustness, and proposing economic applications that illustrate the versatility

of the method. Section 2 introduces the concepts of the paper. Section 3 contains core

theoretical results. Section 4 provides applications of GMA to constrained optimization,

non-supermodular games, aggregation theory, quantitative monotonicity analysis, and

monotone comparative dynamics. Section 5 concludes.

2 Concepts and Notation

The GMA approach seeks to establish the monotonicity of a ‘criterion’ in certain param-

eter movements. The (monotonicity) criterion is a function of a variable that solves a

‘primitive equation.’ The approach can accommodate additional solution requirements

which are not encoded in the primitive equation, but are available in the form of an

‘information structure.’ An information structure describes a subset of solutions to the

primitive equation. The method proceeds to compute ‘pseudo-gradients’ to estimate the

criterion change in the different parameter directions. These estimates are then used to

obtain ‘monotonicity directions’ in the parameter space, along which a criterion change

is guaranteed to be nonnegative.

Primitive Equation. Let X(t) denote the set of solutions x(t) to the primitive equation

f(x, t) = 0, (1)

where the (decision) variable x lies in a smooth manifold X ⊆ Rn, the parameter t lies

in a convex subset T of Rm, and f : Rn × Rm → Rn (with n ≥ 1) is a continuously

differentiable (smooth) function.9

Monotonicity Criterion. Instead of considering only the monotonicity of solutions x(t)

to the primitive equation, we introduce a monotonicity criterion x̂ = φ(x), where φ is a

direction cones are treated as exogenous primitives.
9All of our results can easily be extended to allow for infinite-dimensional parameters, although, for

simplicity, we focus on the case with finite-dimensional parameter vectors. Some of the results also

generalize to infinite-dimensional variables, as in Section 4.5.
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Figure 1: GMA Primitives (for x̂ = φ(x) ≡ x).

d-dimensional differentiable function of x (the notation x̂ will sometimes be used instead

of φ(x) for simplicity). For example, monotonicity of the first component of x(t) can be

examined by setting φ(x) = x1. The criterion can also be used to examine the monotonic-

ity of aggregates of the original variables. If, for example, x = (x1, . . . , xn) represents

consumption decisions of n individuals, then the comparative statics of aggregate con-

sumption can be examined by choosing a criterion of the form φ(x) = x1 + · · · + xn. To

avoid obscuring the exposition of the GMA method, we often de-emphasize the presence

of the criterion φ by simply writing x̂ instead of φ(x). Analyzing the monotonicity of the

original variables amounts to setting φ(x) = x or, equivalently, x̂ = x.

Information Structure. For any t ∈ T , let R(t) ⊂ X(t) denote the subset of solutions

to (1) which satisfy a number of additional constraints, given a parameter value of t. Such

additional constraints may include nonnegativity, second-order conditions, or stability

requirements, depending on whether (1) derives from an optimization or an equilibrium

problem.10 The collection R = {R(t)}t∈T defines a parameterized information structure

of the problem. The crucial point is that, when searching for monotonicity directions, one

may be able to exploit not only the fact that any element x(t) of R(t) solves the primitive

equation (by definition), but also that it satisfies the additional requirements implied by

the inclusion x(t) ∈ R(t). A map x : t 7→ x(t) ∈ R(t) is a selection of R. We say that R

is a refinement of R′, denoted by R ⊆ R′, if R(t) ⊆ R′(t) for all t.

10GMA (particularly Theorem 3 and Corollary 1) can be extended to conditions that cannot be sum-

marized by a subset of X , for example conditions involving derivatives of x(t). Such conditions can be

useful to narrow down the set of pseudo-gradients, as in the example of Section 4.1.
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Symbol Dimension Interpretation

x ∈ X n Variable

x̂ = φ(x) ∈ φ(X ) d ∈ {1, . . . , n} Monotonicity criterion

t ∈ T m Parameter

v ∈ Rm m Parameter direction

w(x, t) ∈ Rn n Pseudo-gradient of f at (x, t) in direction v, satisfies (2)

φ : X → Rd d Criterion function

γ : [0, 1]→ T m Path in the parameter space

R(t) n Information set at t (= subset of X(t))

X(t) n Set of solutions to (1) at t

V (t|R) m GMA-cone at t given R, defined in (4)

W (x, t, v) n Set of pseudo-gradients at (x, t) in direction v

W̄ (t, v|R) n Set of pseudo-gradients at t in direction v (= ∪x∈R(t)W (x, t, v))

X ⊂ Rn n Set of feasible decisions (= manifold)

T ⊂ Rm m Parameter set (and the underlying vector space)

Table 1: Summary of Notation.

Parameter Paths. A continuously differentiable map γ : [0, 1]→ T is called a path of the

parameter space. A parameter t ∈ T is on γ if t = γ(λ) for some λ ∈ [0, 1]. A path γ starts

at t ∈ T if γ(0) = t. It starts at t in the direction v ∈ Rm if γ̇(0+) = dγ/dλ|λ=0+ = v. A

path γ that starts at t in the direction v will be referred to as a (t, v)-path. A selection x

of R is γ-differentiable if λ 7→ x(γ(λ)) is differentiable on (0, 1), and is right-differentiable

at 0.

Pseudo-Gradients. A pseudo-gradient of f at (x, t) in direction v is a vector w in Rn such

that

Dxf(x, t)w +Dvf(x, t) = 0 (2)

for some x ∈ R(t). The set of pseudo-gradients is denoted by W (x, t, v). This is the set of

potential gradients assumed by any smooth selection of R, as the parameter moves from t

in direction v. Since any solution to (1) at t which may be of interest is localized to the

information set R(t), the set of all possible pseudo-gradients for a parameter movement

from t in direction v is

W̄ (t, v|R) = {w ∈ W (x, t, v) : x ∈ R(t)}. (3)

The set W̄ (t, v|R) contains all vectors of Rn which may be actual gradients of some

differential solution to (1) as the parameter moves from t in direction v.
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Monotonicity Path. γ is a monotonicity path if x̂ = φ(x) is nondecreasing along γ for

any γ-differentiable selection x.

Monotonicity Directions. Given an information structure R and a parameter t ∈ T , let

V (t|R) = {v ∈ Rm : Dφ(x)w ≥ 0, x ∈ R(t), w ∈ W (x, t, v)} (4)

denote the set of parameter directions in which the monotonicity criterion is nondecreas-

ing.11 As is shown in the next section, V (t|R) forms a convex cone, containing the initial

directions of all monotonicity paths starting at t. It will henceforth be referred to as the

GMA-cone at t.

Table 1 summarizes the notation, and Figure 1 depicts the main GMA primitives.

3 Theoretical Results

In this section, we first show that the set of pseudo-gradients contains all actual gradients

of smooth selections of R (Proposition 1). We then establish that the set V (t|R) of mono-

tonicity directions is a convex cone (Proposition 2), that this cone contains all directions

guaranteeing monotonicity of φ evaluated at the solutions (Theorem 1, the “necessity”

part), and that the cone widens as R becomes more informative (Proposition 2). We

then establish that trajectories following directions in the GMA-cone are monotonicity

paths for φ (Theorem 3, the “sufficiency” part), and provide a simple characterization

of monotonicity when Dxf is invertible (Corollary 1). After summarizing the different

steps of GMA, we show how information contained in R may be folded into the primitive

equation (1), which establishes a form of equivalence between various initial descriptions

of any given problem. The analysis is then modified to consider several other important

concepts of monotonicity: strict monotonicity and quantitative monotonicity (Proposi-

tions 4 and 5). The latter concept, which to the best of our knowledge is new, can be

used to derive “robust” comparative statics, as illustrated by Section 4.4 in the context

of productivity estimation. Another theoretical aspect of the method, concerning the

inclusion of constraints, is treated as an illustrative application in Section 4.1.

11While the GMA-cone clearly depends on the criterion function φ, we choose to ignore this dependence

in the notation.
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3.1 Construction and Properties of Monotonicity Paths

Proposition 1 (Pseudo-Gradients) If γ is a (t, v)-path and x a γ-differentiable se-

lection of R, then

Dvx(t) =
d

dλ

∣∣∣∣
λ=0+

x(γ(λ)) ∈ W (x(t), t, v).

Proof. Right-differentiating both sides of f(x(γ(λ)), γ(λ)) = 0 at λ = 0+ yields

Dxf(x(t), t)
dx(γ(λ))

dλ

∣∣∣∣
λ=0+

+Dvf(x(t), t) = 0,

which satisfies (2) with x(t) ∈ R(t). �

The next result characterizes the shape of the set of all directions v in which the mono-

tonicity criterion increases.

Proposition 2 (Monotonicity Directions) For any t, V (t|R) is a convex cone.

Proof. Let t ∈ T . We first show that V (t|R) is a cone. It clearly contains the

origin. For any t, v ∈ V (t|R), α > 0, and x ∈ R(t), we have W (x, t, αv) = αW (x, t, v),

since Dαvf = αDvf . Therefore, Dφ(x)w ≥ 0 for w ∈ W (x, t, αv) if and only if Dφ(x)w ≥
0 for w ∈ W (x, t, v). To establish the convexity of V (t|R), consider any v, v′ ∈ V (t|R)

and x ∈ R(t). Since Dv+v′f(x, t) = Dvf(x, t) +Dv′f(x, t), it follows that W (x, t, v+ v′) =

W (x, t, v) +W (x, t, v′), and hence that Dφ(x)w ≥ 0 for all w ∈ W (x, t, v + v′). Since the

last inequality holds for all x ∈ R(t), it follows that v + v′ ∈ V (t|R). �

We now show that V (·|R), when considered on its entire domain T , generates all mono-

tonicity paths along which the criterion is monotonic. Since GMA is concerned with

smooth solutions, we assume (possibly by restricting the information structure) that for

all t, each element of R(t) can be reached by a smooth selection of R. Precisely, R

is smooth if for any path γ, parameter t on γ, and vector x ∈ R(t), there exists a γ-

differentiable selection y of R such that y(t) = x. Smooth information structures rule

out isolated points in the graph of X(t), which are irrelevant for the GMA concept of

monotonicity.

Theorem 1 (Necessity) Suppose that R is smooth and that v /∈ V (t|R). Then there

exists a (t, v)-path γ and a γ-differentiable selection x such that some component of the

criterion x̂ = φ(x) is decreasing in a right-neighborhood of λ = 0.
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Proof. By definition, v /∈ V (t|R) implies that there exist x ∈ R(t), w ∈ W (x, t, v),

and i ∈ {1, . . . , d} such that the i-th component of Dφ(x)w is negative. Let γ be any path

such that γ(0) = t and γ̇(0+) = v. By smoothness of R, there exists a γ-differentiable

selection x of R such that x(0) = x. By construction, the i-th component of Dφ(x(0))w

is negative for w ∈ W (x, t, γ̇(0+)), implying that φi(x(γ(λ))) is decreasing in a right-

neighborhood of λ = 0. �

Thus, the set V (t|R) is in effect the largest cone of directions v (i.e., the “GMA-cone”)

at t, for which the criterion x̂(t) is guaranteed to be monotonic at the beginning of

any (t, v)-path.

The mapping V (·|R) can be viewed as a set-valued vector field: trajectories generated

by V (·|R) are parameter paths with the property that at any t on such a path, the direction

of the path belongs to V (t|R). As the notation indicates, the shape of the cone V (t|R) de-

pends on the point t in the parameter space and on the available information structure R.

Standard methods in comparative statics consider only the case where the GMA-cone is

fixed to the positive orthant, i.e., where V (t|R) = Rm
+ . Trajectories generated by such

a cone require that all components of the parameter path be nondecreasing. Here, by

contrast, the GMA-cone V (t|R) is determined endogenously by the primitives and the

available additional information about solutions to the problem (1). As the information

structure becomes finer, the GMA-cone cannot become smaller.

Theorem 2 (Information-Structure Refinements) If R ⊆ R′, then V (t|R′) ⊆
V (t|R) for all t ∈ T .

Proof. For a given t ∈ T fix an arbitrary v ∈ V (t|R′). Then for any x ∈ R(t) ⊂ R′(t)

and any w ∈ W (x, t, v) we have Dφ(x)w ≥ 0, which implies by (4) that v ∈ V (t|R). �

The finer the available information structure about the solution set, the larger the set

of monotonicity directions in the parameter space. This establishes a partial order over

information structures R, which is similar to Blackwell’s (1951) order for the comparison

of information sources.12

12An information source A is at least as informative as an information source B in the sense of Black-

well, if for any decision, subject to some minor technical requirements, the (outcome-contingent) payoffs

attainable using information source B can also be attained using information source A. Analogously, an

information set R is at least as useful for generating MCS as the information set R′ if R ⊆ R′, since

then W (t|R′) ⊆ W (t|R), i.e., the set of all monotonicity directions generated by R contains the one

generated by R′. If R′ is obtained from R by the removal of constraints, then the partial order is valid
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The next result is the backbone of the GMA method: it states that the criterion x̂ is

nondecreasing along any direction of the cone V .

Theorem 3 (Sufficiency) If γ is a path such that

γ̇(λ) ∈ V (γ(λ)|R) (5)

for all λ ∈ [0, 1], then it is a monotonicity path.

Proof. Fix any γ-differentiable selection x of R. For any λ ∈ [0, 1), let t = γ(λ) and v =

γ̇(λ) (or the right-derivative of γ if λ = 0). By Proposition 1, Dvx(t) ∈ W (x(t), t, v). By

construction of γ, this implies that Dφ(x(t))Dvx(t) ≥ 0. Now, for λ < λ′, the fundamental

theorem of calculus implies that

x̂(γ(λ′))− x̂(γ(λ)) = φ(x(γ(λ′)))− φ(x(γ(λ))) =

∫ λ′

λ

Dφ(x(γ(`)))Dγ̇(`)x(γ(`))d` ≥ 0,

hence that the criterion x̂(γ(λ)) is nondecreasing in λ. �

The differential inclusion (5) describes the dynamics of monotonicity paths (interpreting λ

as time).13 When Dxf is invertible and T is finite-dimensional, the pseudo-gradient is

unique and can be directly computed, which simplifies the statement of Theorem 3.

Corollary 1 Suppose that v : T → Rm is a smooth vector field such that

−Dφ(x)
[

(Dxf)−1(x, t) Dtf(x, t)
]
v(t) ≥ 0 (6)

for all t ∈ T and x ∈ R(t). Then, trajectories generated by v are monotonicity paths with

respect to φ.

Proof. With Dxf invertible, the only vector w satisfying (2) is −[Dxf ]−1Dvf , so that

the condition (4) for all x ∈ R(t) and w ∈ W (x, t, v) reduces to (6). �

3.2 Method Summary

The GMA approach can be summarized as follows.

for any problem of the form (1) in which X and T are fixed.
13Differential inclusions are a standard tool in the description of dynamic systems (see, e.g.,

Smirnov (2002)).
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1. Step 1 (Pseudo-Gradients) For all relevant t and v, use (3) to compute the set of

pseudo-gradients. This set describes the possible changes of any smooth selection

of R along any (t, v)-path, or – in other words – the solution sensitivity to any

(smooth) change of parameters at t in direction v.

2. Step 2 (GMA-Cone) For each t, solve (4) to determine the convex cone V (t|R) of

monotonicity directions at t.

Alternatively, one may wish to impose a cone of monotonicity directions and derive

conditions on the primitives under which parameter changes of interest are mono-

tonicity paths. For example, this is what standard comparative statics does, when V

is identically equal to the positive orthant. This approach is further explored in Sec-

tion 3.3.

3. Step 3 (Monotonicity Paths) When the GMA-cone is not reduced to zero, select-

ing one monotonicity direction for each t generates a vector field. It is typically

possible to generate a smooth vector field (at least for a large subset of T ). Each

of its trajectories is then a monotonicity path. By Theorem 3 this can be accom-

plished by solving the differential inclusion (5). If, however, V (t|R) = {0}, one

needs to gather more information about the solutions to (1) to narrow down the set

of pseudo-gradients which by Proposition 2 can only widen the GMA-cone. Alterna-

tively, it may be useful to choose a less demanding criterion function φ, for example

by reducing its dimension d (which may be achieved by dropping or aggregating

variables).

4. Step 4 (Optional - Reparametrization) If monotonicity paths cover T , they may

naturally be used to provide a new parametrization of the initial problem, under

which monotonicity obtains with respect to the first of these new parameters. More

precisely, if one can find a (Lipschitz-continuous) function σ : T × [0, 1]→ Rm, such

that

γ(0) = t, γ̇(λ) = σ(γ(λ), λ) ∀λ ∈ (0, 1) ⇒ γt(λ) = γ(λ) ∀λ ∈ (0, 1)

for all t ∈ T , then, by the rectifiability theorem for direction fields (see, e.g., Arnold

and Il’yashenko (1988)), it is possible to (at least locally) transform coordinates

such that monotonicity is guaranteed. The function σ can be obtained by pasting

together the differential equations that describe γt by selecting a continuous σ such

that

σ(t, λ) = γ̇t(λ) ∈ V (γt(λ)|R)
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for all t ∈ S. One method is to use a (k− 1)-dimensional plane P that is transverse

(i.e., never collinear) to the (Lipschitz-continuous) vector field described by v(t) =

σ(γt(0), 0) for all t ∈ S. Then, any t ∈ S corresponds to a unique point on the

plane (described by the m−1 contra-variant coordinates s2, . . . , sm) and the time it

takes to get to or from the plane P to t (described by the co-variant coordinate s1),

depending on the direction of the flow. This defines a new parametrization t = ϕ(s)

in s = (s1, . . . , sm) on S such that the criterion x̂(ϕ(s1, s2, . . . , sn)) is nondecreasing

in s1.
14

3.3 Imposed Monotonicity Paths

The method described thus far discloses all paths in the parameter space along which the

criterion x̂ = φ(x) is nondecreasing for all smooth solutions x. In some problems, one may

wish to reverse the question, and find conditions under which some particular directions

of the parameter space are guaranteed to yield monotonicity of φ(x). For example, usual

comparative statics consider the case in which V contains the positive orthant of the

parameter space. Such conditions can be tested by checking that extreme rays of the

corresponding GMA-cone, which are unit vectors of the parameter space, belong to V .

Imposing that extreme rays of the positive orthant belong to V generates inequalities

that are equivalent to the differential characterization of supermodularity as applied to

objective functions of optimization problems.

More generally, suppose that one wishes to ensure that a particular cone V0 of parameter

directions guarantees the monotonicity of smooth solutions (or some criterion thereof),

and let ∆ denote a set of vertices (directions in T ) generating the cone V0. Then the

following result obtains, the proof of which is immediate and therefore omitted.

Proposition 3 If ∆ ⊂ V (t|R), then the criterion x̂ = φ(x) is nondecreasing along any

trajectory generated by V0, i.e., any path γ with γ̇ ∈ V0 is a monotonicity path.

Section 4.3 illustrates this result in the context of parameter aggregation.

14Further details on global reparametrizations, using additional tools in the theory of ordinary dif-

ferential equations, have been developed elsewhere (Strulovici and Weber 2008). As the applications in

Section 4 demonstrate, it is often enough to restrict attention to the first three steps of GMA to obtain a

fairly complete picture of the monotonicity properties of the solutions to a given problem of the form (1).
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3.4 Folding Information into the Primitive Equation

The analysis so far has maintained a clear distinction between the primitive equation (1)

and the additional conditions imposed by the information structure R. In fact, the addi-

tional information encapsulated in R can often be folded into the primitive equation. To

see this, consider an example. Suppose that

R(t) = {x ∈ X : g(x, t) = 0 and h(x, t) ≤ 0},

where the smooth constraint function h(x, t) takes values in Rk (with k ≥ 1). This

situation arises when (1) represents the first-order necessary optimality condition of a

maximization problem. The corresponding necessary second-order optimality condition

(at any interior solution x, not on the boundary of X ) is that fx(x, t) ≤ 0. Define Z =

X ×Rk, z = (x, y) with y ∈ Rk. The information from R(t) can be folded into the initial

equation if f is extended to

f̂(z, t) =


f(x, t)

g(x, t)

h(x, t) + y2

 ,
where y2 = ((y1)

2, . . . , (yk)
2) ∈ Rk

+ represents a vector whose elements are the nonnegative

slacks associated with the components of the inequality constraint.

To further illustrate this technique, suppose that x is one-dimensional, and that R(t) =

{x : f(x, t) = 0 and fx(x, t) ≤ 0} ⊂ R. Consider any smooth selection x : t 7→ x(t)

of R. If fx(x(t), t) < 0, then x′(t) = −ft(x(t), t)/fx(x(t), t) by the implicit function

theorem. However, this theorem cannot be applied if fx(x(t), t) = 0. Suppose now that

the second-order condition is incorporated into f . The resulting equation is

f̂(x, y, t) =

[
f(x, t)

fx(x, t) + y2

]
= 0.

Differentiating these equations yields15 relations: fxx
′+ ft = 0 and fxxx

′+ fxt + 2yy′ = 0.

For y(t) 6= 0, fx is invertible and the implicit function theorem can be used. If y(t0) = 0 for

some parameter t0, the second relation yields x′(t0) = −fxt(x(t0), t0)/fxx(x(t0), t0), which

describes the sensitivity of the selection x(t) at t0, despite the singularity of the equation

at that particular parameter and solution (as long as fxx(x(t0), t0) 6= 0). Thus, folding

15Smoothness of y(t) obtains by the relation fx(x(t), t) + y2(t) = 0, as well as the smoothness of fx
and x in t.
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the second-order condition into f implies sharp predictions for the pseudo-gradient, even

at singularity points.16

3.5 Quantitative Monotonicity Analysis

Another innovation of this paper is to examine at some degree of generality the rate at

which solutions are monotonic. We believe that this question, for which ordinal methods

are ill-suited, may arise in many important instances, as illustrated by the application in

Section 4.4. In contrast, this question is a natural extension of our method. Quantitative

monotonicity analysis investigates the magnitude of the change in the solution to the

primitive equation (1) as a consequence of parameter variations. We start by extending

our previous result to the strict monotonicity of solutions to (1), considering directions in

V̂ (t|R) = {v ∈ Rm : Dφ(x)w > 0, x ∈ R(t), w ∈ W (x, t, v)} ,

which for all t ∈ T is a subset of the GMA-cone V (t|R).

Proposition 4 If γ is a differentiable path such that γ̇(λ) ∈ V̂ (γ(λ)|R) for all λ ∈ [0, 1],

then φ(x) is (strictly) increasing along γ.

Proof. Consider any γ-differentiable selection x of R and λ ∈ [0, 1), and let t = γ(λ)

and v = γ̇(λ) ∈ V̂ (t|R). From Proposition 1, Dvx(t) ∈ W (x(t), t, v). By assumption,

Dφ(x(t))Dvx(t) > 0. For 0 ≤ λ < λ′ ≤ 1, it is

φ(x(λ′))− φ(x(λ)) =

∫ λ′

λ

Dφ(x(γ(`)))Dγ̇(`)x(γ(`))d`.

The last integral is positive, which shows the result. �

If one can find a positive lower bound for the sensitivity of the criterion, the result can

be strengthened as follows.

Proposition 5 (Quantitative Monotonicity Analysis) Let γ be a differentiable

path. If there exists a vector ρ = (ρ1, . . . , ρd) with strictly positive components such that

w ∈ W̄ (γ(λ), γ̇(λ)|R) , x ∈ R(γ(λ)) ⇒ Dφ (x(γ(λ)))w ≥ ρ

16As long as R(t) describes a closed subset of the solution X(t), the above method works. Indeed,

a theorem by Whitney (Postnikov 1987, p. 20) states that any closed set Z at t can be written in the

form f̂(z, t) = 0 with an appropriate function f̂ that is smooth in z. The smoothness of f̂ in (z, t) can

also be guaranteed by Whitney’s theorem, as long as the graph of the set-valued mapping, which assigns

the relevant constraint set Z(t) to each parameter value t, is closed.
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for all λ ∈ (0, 1), then

0 ≤ λ < λ′ ≤ 1 ⇒ x̂(γ(λ′))− x̂(γ(λ)) ≥ ρ(λ′ − λ).

The proof is essentially identical to the proof of Proposition 4 and is therefore omitted.17

By a similar argument, one can derive upper bounds on the rate of monotonicity. Propo-

sition 5 can be used, for example, to show that x increases faster (or slower) than a

parameter (taking ρ = 1). The value of ρ provides valuable information about the rate of

increase (or decrease), giving rise to quantitative statements. A simpler result than Propo-

sition 5 has been used when φ(x) = xi for some i ∈ {1, . . . , n}, t is finite-dimensional,

and the path γ amounts to increasing a single component tj of the parameter vector

(Samuelson 1947). Indeed, suppose that Dxf is invertible that i = j = 1. Then Corol-

lary 1 with v = (1, 0 . . . , 0)T and Dφ = (1, 0, . . . 0) yields the condition m(x, t)Ta(x, t) ≥
ρ, where m(x, t) is the first row of the matrix −[Dxf ]−1(x, t) and a(x, t) is the vec-

tor (df1/dt1, df2/dt1, . . . , dfn/dt1). An application of quantitative monotonicity analysis

to robust inference is provided in Section 4.4.

4 Applications

In Section 4.1 we show how constraints can be incorporated into the framework of Sec-

tion 3 and give two illustrations of GMA with constraints. The first recovers Chipman’s

(1977) normal-good theorem for supermodular, strongly concave utility functions (Sec-

tion 4.1). The second derives a condition on the marginal rate of substitution of a utility

function in order for a good to be a Giffen good. Section 4.2 is a key application of the

paper. It considers a non-supermodular game in which each player has two decisions

(investment and location) and a one-dimensional type. Using GMA, we obtain condi-

tions for investment decisions to be nondecreasing in parameter directions that increase a

certain ‘proximity’ between players. This application also illustrates the use of criterion

functions (to select a subset of the variables) and of the GMA-cone (to describe parameter

directions in which the players’ proximity increases). The notion of proximity is derived

endogenously. The subsequent application, presented in Section 4.3, illustrates another

aspect of GMA, demonstrating the consequences of imposing a large cone of monotonic-

ity directions. Specifically, it is shown that requiring monotonicity with respect to any

additive increasing function of the parameters implies that the solution depends only

17Proposition 5 can easily be extended to the case in which ρ is a function of the parameter.
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on that function. The result is proved for the case where the aggregate is a parameter

sum. A simple transformation of each parameter component generalizes this proof to

any additive, increasing function of the parameters. This result, which goes beyond pure

comparative-statics analysis, provides a good illustration of the use of GMA-cones. In

Section 4.4, quantitative monotonicity analysis is used as a tool for robust inference about

unobservable parameters in the context of productivity estimation. The last application,

discussed in Section 4.5, concerns comparative dynamics. More than all of the preced-

ing applications, it shows the importance of pseudo-gradients for monotonicity analysis.

Proof is provided for a general theorem for comparative dynamics, which implies a simple

result about the implications of local properties of the law of motion on the monotonicity

of solutions (related to Huggett (2003)). It is then shown how global properties of the

dynamic equation also can be exploited by the theorem, in a result that can be interpreted

as a stylized model of the influence of positive global cycles on the growth of individual

firms.

4.1 Constrained Optimization

Constrained optimization problems often prevent the use of ordinal methods, by violating

crucial lattice assumptions.18 GMA can accommodate problem constraints in a natural

manner, as long as they are described in terms of smooth functions.19 The general argu-

ment is described first, then applied both to prove Chipman’s normal-good theorem for

supermodular, strongly concave utility functions, and to derive a condition under which

a good is a Giffen good. Consider the problem

maxy∈Rn G(y, t),

s.t. g(y, t) = 0,

where G : Rl×Rm → Rl and g : Rl×Rm → Rk are twice differentiable. A necessary con-

dition for optimality (Bertsekas 1995, p. 255) is the existence of a k-dimensional vector ν

such that at the optimum

F (y, ν, t) = DyG(y, t) + ν ·Dyg(y, t) = 0.

18A notable exception is Quah’s (2007) ordinal method, which provides conditions on the transformation

of constraints to guarantee monotonicity for the entire vector of decision variables.
19As pointed out in Footnote 16 at the end of Section 3.4, provided that the problem constraints confine

the variable to a closed set, the assumption of a constraint representation in terms of smooth functions

is not restrictive, at least from a theoretical point of view.
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Together with the k equations g(y, t) = 0, this determines a system of n = l+k equations

in n variables x = (y, ν),

f(x, t) =

[
DyG(y, t) + ν ·Dyg(y, t)

g(y, t)

]
= 0,

corresponding to the primitive equation (1) of our analysis. The approach can easily be

extended to allow for both equality and inequality constraints (cf. Section 3.4).

Example: Normal Goods. As an illustration, consider the budget-constrained optimal-

consumption problem

U(t) = max
y: g(y,t)=0

G(y),

where g(y, t) = p · y − t, p � 0 denotes the price vector for a commodity bundle y,

and t > 0 is the available budget. Our goal is to show that if G is increasing, strongly

concave, and supermodular, then any smooth optimizer selection y(t) is nondecreasing

in t. The constraint g(y, t) = 0 does not define a lattice if there are three or more goods.20

With G concave and differentiable, the first-order condition and budget constraint can be

written in the form

f(x, t) =

[
DyG(y)− λp

g(y, t)

]
= 0,

where x = (y, λ) and λ is the nonnegative Lagrange multiplier associated with the budget

constraint.

In this problem, the natural criterion function is φ(x) = φ(y, λ) = y, since only mono-

tonicity in demand matters. The information set R(t) consists of two constraints. The

first constraint is the equation itself, f(x, t) = 0. The second constraint stems from the

observation that the value function U is concave in t as21 the maximum of a concave func-

tion subject to the convex constraint p · y ≤ t. Since λ = U ′(t), concavity of U implies

that λ′(t) ≤ 0. The constraints f(x, t) = 0 and λ′(t) ≤ 0 define the information struc-

ture of the problem. Finally, normal-good monotonicity means that any wealth increase

should increase demand in all goods. This implies that the GMA-cone must be V = [0,∞)

(since t lies in R, a nontrivial GMA-cone is necessarily one of the rays [0,∞) or (−∞, 0]).

20With two goods, adopting the new order (reversing the sign of the quantity of the second good) is

enough to recover the lattice structure and show the result.
21See for example Luenberger (1969, p. 216).
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For any x and t, the pseudo-gradients w(x, t) must solve, by definition,[
Dyfwy(x, t)− pwλ(x, t)

p · wy(x, t)− 1

]
= 0,

where wy and wλ are the components of w corresponding to y and λ. Strong concavity

of G implies that Dyf is invertible. Since G is concave and supermodular, the diagonal

elements of Dyf are nonpositive, while its off-diagonal elements are nonnegative. This

implies (see, e.g., Samuelson 1947) that all elements of [Dyf ]−1 are nonpositive. Therefore,

wy(x, t) = wλ(x, t)[Dyf ]−1p has nonnegative components. This proves the following result.

Proposition 6 (Normal Goods) If G is strongly concave, supermodular, and twice

differentiable, then yi(t) is nondecreasing in t for all i ∈ {1, . . . , n}.

The result is identical to Chipman (1977). The proof there is very similar to ours, but

does not proceed from a general approach to comparative statics: it uses properties of the

indirect utility function instead of treating Lagrange multipliers as part of an enlarged

system of equations. This leads to one subtle difference: while we exploit the fact that the

Lagrange multiplier has a nonpositive derivative to prove good normality, Chipman first

shows that demand either increases for all goods or decreases for all goods, and concludes

by observing that, the budget having expanded, all demand has necessarily increased for

some good.22

Example: Giffen Goods. Consider the budget-constrained optimal-consumption prob-

lem

max
(x,y)∈B(p,q)

u(x, y) (7)

where u is increasing and concave, p, q are positive prices, and consumption (x, y) is

constrained by the budget set

B(p, q) = {(x, y) ≥ 0 : px+ qy ≤ 1} .

We use GMA to derive conditions under which the second good, say, behaves as a Giffen

good, i.e., such that the demand y(p, q) for the second good increases in q. We focus on

interior solutions. From our earlier analysis, the problem can be rewritten in the form
ux(x, y)− λp
uy(x, y)− λq
px+ qy − 1

 = 0, (8)

22See also Quah (2007) for a treatment of comparative statics of this and other constrained optimization

problems without differentiability assumptions.
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where λ is the Lagrange multiplier associated with the budget constraint.

Applying Step 1 of the GMA-method (cf. Section 3.2) yields a description of the set of

pseudo-gradients as a solution to
uxx(x, y) uxy(x, y) −p
uxy(x, y) uyy(x, y) −q

p q 0



wx

wy

wλ

+


−λ 0

0 −λ
x y


[
vp

vq

]
= 0 (9)

in terms of w = (wx, wy, wλ)
T for any given parameter vector (p, q), candidate solu-

tion (x, y), and (nonzero) parameter direction (vp, vq). Using a symbolic solver (and the

equalities ux/p = uy/q = λ), we find that the unique solution for wy is

wy =
1

q

(
ux

uy

)
x

(xvp + yvq) + ux

uy

(
vp − ux

uy
vq

)
ux

uy

(
ux

uy

)
y
−
(
ux

uy

)
x

=
1

q

(xµx + µ)vp + (yµx − µ2)vq
µµy − µx

, (10)

where µ(x, y) = ux(x, y)/uy(x, y) > 0 is the consumer’s marginal rate of substitution

between the two goods. To characterize situations where the second good is a Giffen

good, we use the alternative Step 2 (cf. Section 3.3) of the method by imposing the

parameter change vp = 0 and vq = 1, and asking that wy be nonnegative. Concavity23

of u can be used to show that the denominator in the rightmost expression of (10) is

positive. This yields the following result.

Proposition 7 (Giffen Goods) y(p, q) is (locally) increasing in q if and only if µ2 <

yµx evaluated at (x(p, q), y(p, q)).

This result illustrates how constraints can be dealt with to obtain conditions on the

primitive of the problem (here, the marginal rate of substitution between goods) that

yield monotonicity. Intuitively the condition states that the second good is Giffen provided

that the marginal rate of substitution of the first good with respect to the second is small

compared to the elasticity of that rate of substitution with respect to x: if the price of

the second good increases, an increase in x would reduce the marginal value of the first

good compared to the second by so much that it is better to increase consumption of the

second good instead. Sørenson (2007) provides simple examples for Giffen goods, which

rely on a Leontief-type kink in the demand curve, whereas the condition in Proposition 7

works with smooth primitives.

23More precisely, we assume that the Hessian of u is negative definite.
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4.2 Equilibrium of a Non-Supermodular Game

Supermodular games have been widely studied with comparative-statics techniques, yield-

ing interesting results about the existence and monotonicity of equilibria (Vives 1990;

Milgrom and Roberts 1990; Echenique 2002). Far less is known about monotonicity prop-

erties of non-supermodular games. Such games provide a good illustration of how GMA

can be used to explore a complex comparative-statics problem and get some insights

about its structure. We consider a game with two players in which each player chooses

two actions: a nonnegative quantity qi and a location zi on the real line. Players have a

type ti ∈ R corresponding to some preference in the location space. When choosing qi,

player i ∈ {1, 2} obtains the payoff

Πi(qi, zi, zj, ti) = qiR
i(zi, zj, ti)− Ci(qi),

where Ci is a strictly convex cost function, Ri is player i’s revenue function, and j denotes

the index of the other player. For example, if two firms engage in a joint venture, qi may

represent firm i’s investment, zi its final product positioning, ti its initial preference or

position, Ri is i’s return and Ci its opportunity cost from investing qi in the joint venture

rather than in other projects. We assume that Ri is supermodular in (zi, zj) and (zi, ti)

and strictly concave in zi. Note, however, that Πi is not in general supermodular in (qi, zi),

so that standard results from the theory of supermodular games do not apply. In fact, it

is easy to verify that qi cannot be monotonic in ti or tj over the entire parameter space.

Therefore, monotonicity results are possible only if one looks for other parameter moves.

Our goal is therefore to find parameter moves that jointly increase players’ equilibrium

investments (q∗1, q
∗
2). The above supermodularity assumptions ensure that an increase in

player types increases their location decision. Still, such an increase does not necessarily

increase player i’s revenue Ri or his action qi.

Equilibrium conditions, based on the first order conditions for the two actions of each of

the two players, form a system of four equations:

f(x, t) =


Ri − (Ci)′′

Ri
1

Rj − (Cj)′′

Rj
1

 (x, t) = 0,

where x = (q1, z1, q2, z2) and t = (t1, t2), and Ri
k denotes Ri’s partial derivative with
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respect to its k-th variable. Hessian and cross-partial derivative matrices of f are

Dxf =


−(C1)′′ 0 0 R1

2

0 R1
11 0 R1

12

0 R2
2 −(C2)′′ 0

0 R2
12 0 R2

11

 , Dtf =


R1

3 0

R1
13 0

0 R2
3

0 R2
13

 .

Since we are interested in variations of q∗1 and q∗2, we use the criterion

φ(q1, z1, q2, z2) = (q1, q2).

From Corollary 1, monotonicity directions v = (v1, v2) are given by the condition

−Dφ(x)[(Dxf)−1Dtf ](x, t)v(t) ≥ 0.

After simplification, this yields Av ≥ 0, where

Aii = κi[Ri
3 + δRi

13R
i
2R

j
12],

and

Aij = κi[δRj
13R

i
2(−Ri

11)],

with κi = −[(Ci)′′]−1 > 0 and δ = (R1
11R

2
11 − R1

12R
2
12)
−1. We assume that (−Ri

11) > Ri
12

for i ∈ {1, 2}, ensuring that δ is positive. This condition means that the marginal return

of a player’s action is more sensitive to his own action than to the other player’s. We

also assume that if Ri
1 = Rj

1 = 0 and ti > tj, then Ri
2 and Rj

3 are nonnegative while Rj
2

and Ri
3 are nonpositive. This means that, in equilibrium (when Ri

1 = Rj
1 = 0), player

returns decrease if one widens the gap between their preferences (conditions on R3’s),

and player i’s return increases if player j’s action moves in the direction of i’s preference

(conditions on R2’s). Those assumptions will be satisfied, for example, if one can check

independently that ti > tj implies that zi ≥ zj in equilibrium (this is likely to hold if player

returns are symmetric), and that on the domain {(zi, zj, ti, tj) : zi ≥ zj and ti ≥ tj}, the

above inequalities hold, as can easily be checked for any particular form of the return

functions.

Under those assumptions, one would expect that, as player preferences get closer to each

other, players will benefit more from their interaction and thus invest more. Indeed, the

off-diagonal elements of the matrix A are positive for i and negative for j, which already

implies that if ti > tj, an increase of ti (higher type) causes player j to reduce investment,

while an increase in tj causes player i to increase investment. To obtain global comparative

statics, however, a joint move of player types is required, which brings them closer in a
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particular direction. Thus, suppose, without loss of generality, that t1 > t2, and that t1

is decreased by R2
13, while t2 is increased by R1

13. The effect on (q∗1, q
∗
2) is proportional to

R2
13(−R1

3) + γ((−R1
11)−R2

12), R
1
13R

2
3 + γ((−R2

11)−R1
12),

where γ = R1
13R

2
13 > 0. As a result, investments increase in equilibrium as long as a

player’s action has more impact on his marginal return than on the other player’s, that is

if (−Ri
11) > Rj

12. The slope R1
13/R

2
13 can be interpreted as the ratio of players’ action-type

complementarity. If player 1 exhibits more action-type complementarity than player 2,

increasing investments will be guaranteed only if 2’s preference is increased by a larger

amount than that by which 1’s preference is decreased. That ratio is constant if players

incur a quadratic cost by moving from ti to zi: R
i = −µi(zi− ti)2 +ψi,1(zi, zj)+ψi,2(zj, ti)

for i = 1, 2. With symmetric complementarity (µ1 = µ2), investments increase as player

types get closer to each other, i.e., as |t1 − t2| decreases.24

4.3 Aggregation

GMA can be used to examine the comparative statics of a given criterion in terms of

aggregates of parameters, such as an arithmetic mean or, equivalently, a sum. As an

example, we use the GMA-method to establish, under fairly general conditions, that a

solution to (1) is monotonic with respect to the sum t1 + · · ·+ tm of the parameters only

if it is independent of the individual parameters conditional on that sum.25 The proof of

this result illustrates the use of imposed monotonicity paths (cf. Section 3.3). Given a

criterion φ and an information structure R, by Corollary 1, the condition

(x, v) ∈ R(t)× V (t|R) ⇒ −Dφ(x)[(Dxf)−1Dtf ](x, t)v ≥ 0,

implies that trajectories generated by V (t|R) are monotonicity paths. By Theorem 1, the

last condition is also necessary to guarantee monotonicity.

Let t = (t1, . . . , tm) be a parameter vector, and consider the sum of its components,

sm = t1 + · · ·+ tm. Solution monotonicity in sm is stronger than solution monotonicity in

any given component of t: the former requires not only that the solution is nondecreasing

24For this symmetric quadratic case, there is an n-player equivalent to the result: types get “closer”

if the vector t = (t1, . . . , tn) gets closer (for the usual Euclidean distance) to the first bisector of the

parameter space, i.e., the line whose direction is given by the vector (1, . . . , 1).
25By a simple nonlinear re-scaling of the parameter vector, this result can be extended to any additive

function that is strictly increasing in the parameters.
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in each component of t, but also that it (weakly) increases when a parameter ti is increased

by more than the amount by which another parameter tj is decreased, keeping other

parameters fixed. For simplicity, it is assumed that X(t) is nonempty for all t, and

that fx < 0 everywhere. These assumptions are naturally satisfied when (1) is obtained

as the first-order necessary optimality condition for the maximization of a strongly concave

objective function on a convex set. The solution set X(t) ≡ R(t) contains only a single

element, denoted by x(t).

First, consider the simple case when m = 2. The first three steps of the GMA-method in

Section 3.2 yield that the GMA-cone with respect to monotonicity in s2 is

V (t|R) = {(τ1, τ2) ∈ R2 : τ1 + τ2 ≥ 0}.

This cone itself is generated by ∆ = {(−1, 1), (1,−1), (1, 1)}. Hence, f must satisfy

(x, v) ∈ R(t)×∆ ⇒ −f−1
x

[
ft1(x, t) ft2(x, t)

]
v ≥ 0. (11)

By substituting the different v ∈ ∆, the last relation can be rewritten in the form

x ∈ R(t) ⇒ min {ft1 + ft2 , ft1 − ft2 ,−ft1 + ft2} (x, t) ≥ 0,

which implies that ft1(x, t) = ft2(x, t) ≥ 0 for all x ∈ R(t). Let s = (s1, s2) = (t1, t2) = t

define a smooth change of parameters by t = ϕ(s) = (s1, s2 − s1), and let

F (x, s) = f(x, ϕ(s)).

Then s1 is a contra-variant coordinate, as Fs1(x, s) = ft1(x, ϕ(s)) − ft2(x, ϕ(s)) vanishes

onR(ϕ(s)). Fix s and consider a differentiable selection p 7→ x(s, p). Since Fx(x(ϕ(s)), s) =

f(x(ϕ(s)), ϕ(s)) < 0 by assumption, the solution in the new coordinates, x(ϕ(s)), must be

independent of s1. It can therefore depend only on the parameter aggregate s2. Note that

the information structure in this example is given by R(t) ≡ {x(t)}: the mere knowledge

that x(t) is a solution to (1), along with the stipulated requirement that x be nonde-

creasing in s2, is enough to imply that that x(ϕ(s)) depends only on s2. This conclusion

generalizes to more than two parameter dimensions.

Theorem 4 (Monotonicity and Dependence on Aggregates) Assume that the

solution to (1) is a singleton, i.e., X(t) ≡ {x(t)} on T . If

s′m = t′1 + ...+ t′m > t1 + · · ·+ tm = sm ⇒ x(t′) ≥ x(t)

for all t′ = (t′1, . . . , t
′
m), t = (t1, . . . , tm) ∈ T , then there exists a function y : R→ X such

that x(t) = y(sm) on T , i.e., the solution depends only on the aggregate sm.
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Proof. The result has been already established for m = 2. For m > 2 consider

the following induction step. Assume that the result is true for k ≥ 2 parameters, and

examine the case of k + 1 parameters, so that t = (t1, . . . , tk+1). For a fixed tk+1, the

solution x(t) is nondecreasing in sk and thus depends only on sk, by induction hypothesis.

Thus, x depends only on sk and tk+1. Moreover, x is monotonic in the sum s = sk + tk+1.

Applying the argument for the two-dimensional result to the parameter vector (sk, tk+1)

then establishes that there is a function y : R→ X such that x(t) = y(sk+tk+1) = y(sk+1),

which concludes our proof. �

Theorem 4 implies that the only way a unique solution to a parameterized equation of the

form (1) can be monotonic in a parameter average is if this average is a “sufficient statistic”

for all the parameters involved in its computation. There have been numerous studies

in aggregation and statistics concerning the question of which structures of problem (1)

imply that solutions depend solely on a given parameter aggregate (see, e.g., the treatise

by Blackorby and Shorrocks (1996)). The monotonicity analysis performed here considers

the converse question and therefore yields necessary structural conditions: monotonicity

in an additive aggregate implies that the aggregate must be a sufficient statistic for its

components.26

In aggregation theory, a central question is to determine when some macroeconomic vari-

able will be monotonic in a certain aggregate value of household characteristics. Com-

bining Theorem 4 with previous aggregation results, the above analysis suggests that

aggregate monotonicity can occur only if the macroeconomic variable is determined by

an equation where the aggregate value is the only determinant parameter. Individual

parameters may influence the function only through a multiplicative factor that does not

affect the root of the equation.

26Another way to make the connection between monotonicity and dependence on additive aggregates

is as follows. Suppose that x(t) is monotonic in the sum s2 = t1 + t2. Fix t′ = (t′1, t
′
2), and let s′2 = t′1 + t′2,

a = supt:t1+t2<s′2{x(t)}, and b = inft:t1+t2>s′2{x(t)}. By assumption, a ≤ x(t′) ≤ b. Continuity of x(t)

in t, as a consequence of the maximum theorem (Berge 1963), then implies that a = x(t′) = b. This is

true for all x(t) such that t1 + t2 = s′2. Therefore, x(t) must be constant on the line t1 + t2 = s′2. This

shows that x depends only on the parameters through their sum.
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4.4 Robust Productivity Estimates

An important problem in applied industrial organization is the comparison of firms’ pri-

vate productivity forecasts given their observable investment decisions. Olley and Pakes

(1996) consider a model in which firms base investment decisions on current capital stock

(observed by outsiders) and productivity forecasts (unobserved by outsiders). They pro-

vide conditions under which investment decisions are monotonic in productivity forecasts.

Clearly, if a firm’s productivity forecast were the only parameter influencing its invest-

ment decision, one could simply rank the firms’ productivity forecasts based the observed

investment decisions. However, since capital stock materially affects investment decisions,

such a comparison of productivity forecasts across firms is valid only for a fixed level of

capital stock.

Quantitative monotonicity analysis can be used to show that it is possible to rank two

firms’ productivity estimates, as long as their capital stocks are close, and their investment

decisions differ sufficiently. In that sense the monotonicity disclosed by GMA is robust

with respect to perturbations, and thus allows for robust inference. To simplify the expo-

sition, we first consider a static setting where investment decisions are based on a simple

point estimate of a firm’s productivity, before discussing the dynamic setting in which

investment decisions are always based on the current forecast for the next realization of

the underlying Markovian productivity process.

4.4.1 Static Setting

Suppose that the first-order condition of a firm’s investment problem is

f(x, k, p) = 0,

where x is the investment decision, k is the firm’s capital stock, and p is its productivity

estimate. Assuming invertibility of fx, the pseudo-gradient is (with t = (k, p))

w(x, t) = −f−1
x

[
fk fp

]
(x, t).

Since we are interested only in the monotonicity of any solution x(k, p), the criterion

function here is simply φ(x) ≡ x. Since fx < 0 at any solution (second-order condition,

assuming strict concavity of the objective in the underlying maximization problem), the

firm’s investment decision increases if fkdk + fpdp is positive. Suppose one has observed
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two firms’ investment decisions, x1 = x(k1, p2) and x2 = x(k2, p2), and it is known that

their capital stocks are close, i.e., such that |k2 − k1| ≤ κ for some κ > 0. Then, if fp > ρ

for some ρ > 0 and |fk| < η for some η < 0 on the entire domain of f , then x2−x1 > θ > 0

implies p2 > p1 + (θ − κη)/ρ. In particular, an observed investment difference between

firm 2 and firm 1 of more than κη implies that firm 2’s productivity forecast is surely

larger than firm 1’s productivity forecast, no matter what the firms’ precise capital stocks

are.

4.4.2 Dynamic Setting

In the dynamic setting considered by Olley and Pakes, productivity follows a stochastic

Markov process. The only parameters affecting a firm’s investment decision are capital

stock, productivity level, and the productivity forecast.27

Letting p̃ (or p̃|p) denote the (random) next-period productivity level given that the

current productivity level is p, a firm’s value function Π(k, p) solves the Bellman equation

Π(k, p) = max
x
{π(k, p)− c(x, k) + βE[Π(x+ (1− δ)k, p̃)|p]} ,

where π is the current-period gross payoff, c is the adjustment-cost function, β is the

per-period discount factor, and δ represents the per-period depreciation rate. Convexity

of c in x and concavity of π imply that the optimal dynamic investment policy x(k, p)

satisfies the first-order necessary optimality condition

f(x, k, p) = βE[Πk(x+ (1− δ)k, p̃)|p]− cx(x, k) = 0.

Applying the above analysis yields the following result.

Proposition 8 If there exists η > 0 such that

|β(1− δ)E[Πkk(x+ (1− δ)k, p̃)|p]− cxk(x, k)| < η

for all (x, k, p), then

x(k2, p2) > x(k1, p1) > η|k2 − k1| ⇒ p2 > p1,

where x(ki, pi), for i ∈ {1, 2}, denotes the optimal investment given a current capital stock

of ki and a current productivity estimate of pi.

27In accordance with recent literature (cf. Olley and Pakes (1996)), we abstract from the firm’s age in

this example. For simplicity, we also rule out exit, which means that salvage values are sufficiently low.
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Therefore, any upper bounds on the concavity of the firm’s value function and on the cross-

derivative of the cost function with respect to capital and productivity allow for a robust

inter-firm comparison of private productivity estimates based on observed investments,

as long as capital stocks in the industry are not too different.

4.5 Comparative Dynamics of Equilibrium Paths

Given a parameterized description of a time-varying process in a Euclidean space, mono-

tone comparative dynamics obtain when a parameter increase results in the process taking

on higher values at all points after the initial time. Such an approach to comparative dy-

namics, with applications to growth, has been studied by Brock and Mirman (1972),

Mendelsohn and Sobel (1980), Becker (1983), and Amir et al. (1991).

In what follows, we take the view that comparative dynamics is equivalent to a comparative-

statics problem in which the variable is the entire process, and the equation f = 0 describes

its law of motion.

This section exploits the concept of pseudo-gradients to derive comparative dynamics.

The variable x is a function of time, the evolution of which is described by some dy-

namic equation. The goal is to determine nontrivial changes of the dynamic equation

that increase the value of x at each instant. Cast in the GMA framework, comparative

dynamics imply that pseudo-gradients must satisfy a differential equation. This equation

is first used to prove a simple result relating local properties of the dynamic equation to

the monotonicity of x, and then to show how global properties of the dynamic equation

can be incorporated into monotonicity analysis, providing a highly stylized interpretation

of the impact of global cycles on comparative dynamics (Proposition 10).

For this application, X is infinite-dimensional. In keeping with standard notation in

dynamic systems, the parameter is denoted by α instead of t, and t now denotes time.

Suppose that the evolution of a process can be described in terms of the initial value

problem

ẋ(t) = g(x, t, α), x(0) = x0, (12)

for all t ∈ [0, T ], where x0 ∈ RN , T ∈ R++, and α ∈ A = [α
¯
, ᾱ] ⊂ Rm (with α

¯
< ᾱ)

are given constants, and g : RN × [0, T ] × Rm → RN is a smooth function. If x(t, α) is

any given solution to the initial value problem (12), then monotone comparative dynamics
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(MCD) for this dynamic system obtains if

α̂ ≥ α ⇒
(
x(t, α̂) ≥ x(t, α), ∀ t ∈ [0, T ]

)
. (13)

To treat this problem within our framework, we first split the time interval [0, T ] into n

subintervals Ik = [tk−1, tk], k ∈ {1, . . . , n}, where tk = kT/n and n ≥ 1. Discretizing the

initial value problem (12) accordingly yields

xk − xk−1 =

(
T

n

)
gk(xk, α), k ∈ {1, . . . , n}, (12’)

where xk = x(tk) and gk(·, α) = g(·, tk, α). Interpreting (x1, . . . , xn) as an (nN)-dimensional

variable and (g1, . . . , gn) as an (nN)-dimensional function, the discretized initial value

problem (12’) is of the form (1) with f = (f1, . . . , fn), and

fk(x1, . . . , xn, α) = xk − xk−1 − (T/n)gk(xk, α).

The corresponding pseudo-gradient with respect to any direction (α, v) ∈ A× Rm is

Wn(α, v) =
{
w ∈ RN : wk+1 −

(
1 +

(
T

n

)
∂gk(xk, α)

∂xk

)
wk =

(
T

n

)
∂gk(xk, α)

∂α
· v, 0 ≤ k ≤ n− 1

}
,

where w0 = 0. By taking the limit as n → ∞, we therefore obtain an N -dimensional

pseudo-gradient with functional components

W∞(α, v) =
{
w ∈ C1 ([0, T ],Rm) : ẇ(t)− ∂g(x, t, α)

∂x
w =

∂g(x, t, α)
∂α

v, w(0) = 0, t ∈ [0, T ]
}

for any (α, v) ∈ A×Rm. The set of directions w that constitutes the pseudo-gradientW∞(α, v)

is defined by the linear initial value problem

ẇ(t)− ∂g(x(t, α), t, α)

∂x
w =

∂g(x(t, α), t, α)

∂α
v, w(0) = 0,

for all t ∈ [0, T ], any solution of which can be written in the form

w(t, α, v) = F (t, α)

(∫ t

0

F−1(s, α)
g(x(s, α), s, α)

∂α
ds

)
v,

where F is an N ×N fundamental matrix28 satisfying the matrix differential equation

Ḟ (t) =
∂g(x(t, α), t, α)

∂x
F (t)

for all t ∈ [0, T ] and F (0) = 1. The positive cone V ⊂ Rm that admits MCD in the sense

of (13) corresponds to the set of directions v such that w(t, α, v) ≥ 0.

28For N = 1, F (t, α) = exp
[∫ t

0
∂g(x(s,α),s,α)

∂x ds
]
, t ∈ [0, 1]. When N > 1, the fundamental matrix

cannot be given in closed form.
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Theorem 5 If γ is a differentiable (α, v)-path such that

F (t, γ(λ))

(∫ t

0

F−1(s, γ(λ))
g(x(s, γ(λ)), s, γ(λ))

∂α
ds

)
γ̇(λ) ≥ 0, (14)

for all λ ∈ [0, 1] and all t ∈ [0, T ], then

x(t, γ(λ̂)) ≥ x(t, γ(λ))

for all λ̂ ≥ λ ∈ [0, 1] and all t ∈ [0, T ].

As a first application of Theorem 5, suppose that α is one-dimensional, and that one

wishes to find conditions under which x(t, α) is nondecreasing in α. Since F is positive,

inequality (14) reduces to∫ u

0

exp

(
−
∫ t

0

∂g

∂x
(x(s, α), s, α)ds

)
∂g

∂α
(x(t, α), t, α)dt ≥ 0

for u ∈ [0, T ]. This inequality is always true if ∂g/∂α is nonnegative.

Proposition 9 If m = 1 and ∂g/∂α is nonnegative, then x(t, α) is nondecreasing in α.

This proposition can also be proved by dynamic analysis,29 but is much simpler to prove

using Theorem 5. Huggett (2003) proves a similar result in discrete time, allowing for

Markov uncertainty.

As another application, suppose that x represents a firm’s capital, the growth of which at

time t depends on some investment return h(x, t) and some exogenous factor k(t). The

goal is to assess the impact of k(t) on the growth of x: with ẋ(t) = h(x, t) + αk(t), we

wish to derive conditions on h and k so that an increase in the weight α of the external

shock k increases x. If k changes sign (e.g., exhibiting cyclical behavior), ∂g/∂α is not

always positive, so that Proposition 9 does not apply. From Theorem 5, monotonicity

obtains if ∫ u

0

exp

(
−
∫ t

0

hx(x(s, α), s)ds

)
k(t)dt ≥ 0

for all u ∈ [0, T ]. In order to obtain monotonicity, there must be some sense in which k has

an overall positive effect on x, despite sometimes having locally negative effects. Thus,

29 Let α < β and y(t) = x(t, β) − x(t, α). Then y(0) = 0 and y′(t) = g(x(t, β), t, β) − g(x(t, α), t, α),

so y′(t) ≥ 0 whenever y(t) = 0. We wish to show that y(t) ≥ 0 for all t. The only problem is if y(t) = 0

and y′(t) = 0 for some t. Then consider the smallest s > t such that y′(s) 6= 0. By construction, y(t′) = 0

on [t, s], so y′(s) ≥ 0, implying that y′(s) > 0. Thus, y can never become negative.
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we assume that for all t, K(t) =
∫ t

0
k(s)ds ≥ 0. We now use the following lemma, whose

proof is omitted.30

Lemma 1 If ψ is such that
∫ t

0
ψ(s)ds ≥ 0 for t ∈ [0, T ] and v is a decreasing function,

then
∫ t

0
v(s)ψ(s)ds ≥ v(t)

∫ t
0
ψ(s)ds.

Applying the lemma to ψ(t) = k(t) and v(t) = exp
(
−
∫ t

0
hx(x(s, α), s)ds

)
, which is

decreasing in t if hx is nonnegative, we have proved the following result.31

Proposition 10 Suppose that ẋ(t) = h(x, t)+αg(t) and x(0) = x0, with h nondecreasing

in x and
∫ t

0
g ≥ 0 for all t.32 Then x(t, α) is nondecreasing in α for all t.

This result can be interpreted (within a highly stylized, deterministic context) as follows:

if a firm’s growth is subject to exogenous global cycles, each of which has an overall positive

effect, an increased impact of these cycles on the firm results in the firm possessing higher

capital at all times.

5 Conclusion

Analyzing the monotonicity of solutions to optimization or equilibrium problems is of-

ten a difficult task. Despite the recent advances in MCS, many problems in economic

theory and other fields do not fit the mold of standard techniques, which are based on

supermodularity on lattices or on other ordinal concepts, and one is led to either focus on

very simple models or make strong assumptions in order to obtain intuitive monotonicity

results. GMA extends the previous literature on comparative-statics analysis in several

directions. First, it provides a new way of endogenously generating parameter moves that

yield monotonicity. This may result, for example, in partitions of the parameter space into

regions where simple but region-dependent parameter moves do indeed yield monotonic-

ity. It may also result in the emergence of some particular aggregate of the parameters,

such as the notion of parameter closeness derived in Section 4.2. This construction is

30The lemma is nontrivial, since ψ has no sign requirement. Quah and Strulovici (2008) prove a

different version of the lemma, which is equivalent to this one by a change of variables.
31To our knowledge, this result cannot be proved using existing theorems of comparative dynamics

(since g can take negative values). It can be derived along the lines of Footnote 29.
32As usual, we assume that h and g are smooth, to guarantee existence and uniqueness of x(·, α) for

all α.
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achieved thanks to the introduction of a new concept, that of a pseudo-gradient, which

summarizes all available information (provided in the form of an information set) for the

determination of monotonicity properties. Second, GMA naturally permits consideration

of the monotonicity of functions of a solution instead of the monotonicity of the solution

itself as in the standard analysis. This flexibility proves important when analyzing the

monotonicity properties of complex multivariate models. Third, GMA may be used to

derive conditions under which monotonicity obtains with respect to imposed moves of

the parameters, for example corresponding to parameter aggregates. Fourth, the method

introduced here is easily extended to derive bounds on the sensitivity of variables (or

functions thereof) to parameters. Such quantitative results largely escape the reach of

standard ordinal methods. Fifth, GMA introduces several concepts and insights regarding

the nature of comparative statics, for example in dealing with constraints or exploiting

additional information about the problem structure. Owing to its simplicity and system-

atic nature, GMA is a natural and potentially crucial first step to analyze monotonicity

in complex problems, and is in many ways complementary to ordinal methods.
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