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Abstract

How do discount rates affect agents’ decisions and valuations? This paper provides a

common methodology and a systematic analysis of this question, considering stochastic

and managed cash-flows, stochastic discount rates, time inconsistency, and including

arbitrary learning and payoff or utility processes. We show that some of these features

can lead to counter-intuitive answers (e.g., “a more patient agent stops earlier”), but we

also establish, under simple conditions, theorems yielding robust and unifying answers

on the impact of discount rates on control and stopping decisions and on valuations. We

apply our theory to models of search, experimentation, bankruptcy, optimal growth,

investment, and social learning.
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1 Introduction

How do discount rates affect agents’ decisions and valuations? As economists, we are rou-

tinely confronted with this question: whether they concern savings and refinancing decisions,

the exercise of options, or experimentation with reforms or new technologies, discount rates

are at the heart of economic analysis. Given its importance, one might expect there to be

a unified and general treatment of this question, but that is not the case. While there exist

papers that deal with the general relationship between net present value, discount rates,

and optimal stopping (in particular, Samuelson (1937), Arrow and Levhari (1969), and Sen

(1975)), those works only consider the problem in a non-stochastic context.1 When the envi-

ronment is stochastic, answers have been given in different models using different methods,

but there have been few attempts at an overarching and systematic analysis; the aim of this

paper is to do precisely that.

With the multitude of phenomena that could arise in a general setting, it is not clear that

robust comparative statics for discount rates are even possible. Indeed, it is known that, even

in a deterministic context, a lower discount rate can reduce the present value of a project

and precipitate its termination if it has a negative termination value (Sen, 1975) or if there

are restrictions on the dates at which the project can be interrupted (Samuelson, 1937).

Arrow and Levhari (1969) have shown that for deterministic pure stopping problems with

no termination values and no restrictions on stopping times, both the stopping time and the

net present value are increasing with patience. However, most economic applications do not

fit in that framework. We consider more realistic environments where (i) cash/utility flows

are stochastic and there are stochastic (possibly correlated) termination values; (ii) the agent

can manage or influence in some way his cash flows (so his decision problem involves both

stopping and control); (iii) discount rates are also stochastic and correlated with payoff or

utility flows; and (iv) the agent is time inconsistent.2 For reasons explained in Section 2.1,

standard comparative statics techniques are ill suited to analyze the impact of discounting

on decisions. In this paper, we develop a unifying methodology that achieves precisely that.

General results on discounting, stopping, and control

1These papers were concerned with finding conditions guaranteeing the monotonicity of the value of

capital with respect to interest rates and the uniqueness of an internal rate of return. In addition to the

applications provided in the present paper, our results also provide a general answer to these questions.
2Our analysis focuses on a single agent, but the methodology promises fruitful applications to the analysis

of dynamic games (see the brief discussion in the Conclusion (Section 6)). For example, in a game where

players choose effort and efforts are strategic complements, a change in the discount rate that leads to greater

effort from one player will lead to higher equilibrium efforts for all players.
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For pure stopping problems with deterministic discounting, we prove that even with stochas-

tic cash/utility flows and stochastic (but non-negative) termination values, the agent with

the lower discount rate stops later almost surely; similarly the net present value of the

project also increases with a lower discount rate. Many economic decisions (such as search

and experimentation, of which more below) can be modeled as pure stopping problems, so

our general result will apply in all of those contexts. There are also problems where the

agent has the ability to manipulate cash flows or utility flows; in formal terms these are

problems with both stochastic control and stopping. For these problems, one could show

that when the utility flow is a function of some Markov process, the continuation domain

(i.e., the set of states at which stopping is suboptimal) is always shrinking with the discount

rate. However, this does not necessarily mean that the more patient agent stops later and

we give an example of a counter-intuitive situation where the opposite happens. To restore

a positive result, more structure has to be imposed on the agent’s decision environment. In

a large class of models, utility depends on some one-dimensional state variable that follows a

Markov process, such as the wealth of the agent, or the stock of capital available. We show

that, as long as the utility of the agent is increasing in the state, a lower discount rate leads

to (a) higher “effort” to increase the state, (b) a higher state trajectory (pointwise, almost

surely), and (c) later project interruption.

In his presidential address to the American Finance Association, Cochrane (2011) argues

that changes in discount rates matter much more than changes in cash flows in explaining

asset return variation. Cochrane’s address focuses on stochastic discount rates, which are

pervasive in financial and macroeconomic analysis. In this context, we may consider an agent

to be more patient than another if he has a lower discount rate almost surely. However, even

with this strong definition of greater patience, one could build examples where the correlation

between cash flows and discount rates leads to the more patient agent stopping sooner. To

restore a positive result, additional conditions are needed; we show it suffices that (loosely

speaking) lower discount rates are correlated with higher cash flows.

An oft-studied theme in behavioral economics is time inconsistent behavior, which can have

a major impact on the timing of decisions (see, e.g., Akerlof (1991), O’Donoghue and Ra-

bin (1999)). However, the issue of how time inconsistent agents may be ranked by their

patience, and whether such a ranking is related to decisions in a way similar to that between

the discount rate and decisions for time consistent agents, is a largely unexplored issue. We

define an agent to be more patient than another if every one of his future selves is more

patient than the corresponding future self of the other agent. We prove that for all stochas-

tic pure stopping problems, the more patient agent stops earlier, provided the agent (and
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everyone of his future selves) uses a discount function obeying a certain condition satisfied

by hyperbolic and also quasi-hyperbolic discount functions. This result is easily shown for

naive agents; for sophisticated agents whose actions result from an equilibrium amongst the

agent’s multiple selves, the proof is more challenging. Using the same methods, we also show

that for a given time inconsistent agent, increasing his sophistication (in the sense defined

by O’Donoghue and Rabin (2001)) leads to earlier stopping almost surely.

Applications to specific models

Our results can be applied to yield general results on the impact of discounting in a number

of important economic models.

(1) The standard economic model of search is an example of a pure stopping problem. For

certain highly stylized search models, it is known that a more patient agent will search for

a longer period. However, in many applications (e.g., to labor and housing markets), it is

reasonable to suppose that the agent learns about conditions affecting search outcomes along

the search process and he can also become better at searching, which reduces his search cost.

In formal terms, this means that search costs may be stochastic and non-stationary over

time, and the distribution of the termination value can also be state and time dependent. In

some situations, objects encountered in the past can be recalled while in other situations, it

may be reasonable to exclude this possibility; does this influence the impact of discount rates

on optimal stopping? Our general result tells us that, with or without these complexities,

the more patient agent stops searching later.

(2) It is standard in economics to model experimentation as a bandit problem (see Roth-

schild (1974)). In its simplest form, the agent has to decide when to switch from playing

the ‘risky’ arm whose payoff distribution is unknown to playing the ‘safe’ arm, which has

a known payoff distribution. This is a stochastic pure stopping problem and it follows im-

mediately from our result that the more patient agent will switch to the safe arm, i.e., stop

experimenting, later. In a multi-armed bandit problem with independent arms, this result

can be extended to show that the duration of experimentation on each risky arm (and hence

the total time spent on experimentation) also increases with patience.

(3) The recent literature on corporate default has emphasized the role of shareholders’

optimizing behavior on the timing of bankruptcies. These models typically assume that

shareholders’s only decision is to decide on when to default; in cases where the setup is

sufficiently simple, an explicit solution to this problem can be obtained (see, for example,

Leland (1994)). More realistically, debt payments may depend in sophisticated ways on past

performance and shareholders also make decisions on (say) project technologies that have

4



an impact on cash flow. Thus the shareholders’ problem involves both optimal control and

stopping. Whether or not a model with these features can be solved explicitly, our results

guarantee that a lower discount rate leads to later bankruptcy.

(4) A basic question in growth theory is whether a more patient representative agent leads

to ‘capital deepening’, i.e., a higher capital stock at all times (see, for example, Amir et al.

(1991)). Models giving this result are typically deterministic, involve strong assumptions on

the form of the utility and production functions, and restrict the agent’s decision to that of

deciding on the level of consumption/saving at each period. We show, in a continuous time

economy with a stochastic production technology, that a more patient representative agent

leads to capital deepening almost surely; this result does not require shape restrictions on

the utility and production functions (thus permitting increasing returns to scale) and also

allows the agent’s control variable to be multi-dimensional (thus allowing for other decision

variables, besides consumption, to affect capital accumulation).

(5) In consumption-based asset pricing models, the cash flow of a project is discounted by

a stochastic discount function that is proportional to the marginal utility of the economy’s

representative agent at each time and state. We establish a systematic relation between an

agent’s risk attitude and the “patience” implied by his discount function: the less risk averse

agent, the more patient is the discount function, which in turn means that projects will have

higher net present value and terminate later.

Organization of the paper

Section 2 is devoted to the pure stopping problem, beginning with a discussion of the de-

terministic case to provide motivation. Problems involving both stopping and control are

dealt with in Section 3, while Section 4 considers pure stopping problems with stochastic

discounting (in addition to stochastic payoffs). Most of our results do not depend on discrete

time versus continuous time specifications. For simplicity, counterexamples are mostly given

in discrete time, while general results are mostly stated in continuous time. The exception

is Section 3.2 and applications of its main result; the continuous time formulation seems

crucial in that case. Time inconsistency is discussed in Section 5; to keep things technically

manageable, we use a discrete time formulation in that section. All the substantive sections

begin with a formulation of the general theory followed by applications to widespread eco-

nomic models. Some of the simpler proofs are contained in the main part of the paper; all

others are found in the Appendix. Section 6 concludes.
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2 The Stochastic Pure Stopping Problem

In this section we consider how the value and optimal stopping time of a pure stopping

problem varies with the discount rate. This issue has been fully solved in the case where

payoffs are deterministic but not when it is stochastic. Nonetheless, we shall begin with

a brief discussion of the deterministic case because this simpler setting allows us both to

highlight some of the difficulties involved in establishing a general result and also to develop

some intuition for why a general result may be possible.

2.1 Background: the deterministic case

Suppose there is a project that gives a cash flow – which can be either positive or negative

– of π(s) at time s over some interval [0, t̄]. The project can be stopped at no cost at some

time before t̄. An agent with a discount rate of r chooses the stopping time t to maximize

the discounted cash flow U(t, r) =
∫ t

0
e−rsπ(s)ds. The value of the project, as a function of

r is V (r) = U(τ(r), r), where τ(r) is the optimal stopping time at the discount rate r. The

question we wish to ask is the following: how do τ and V (r) vary with r?

The first answer to this problem was provided by Arrow and Levhari (1969), who showed

that τ and V are both decreasing in r. The proof given by these authors is rather complicated

and involves ancillary assumptions, even though the reader may at first blush wonder why

this problem is not completely straightforward. It is not straightforward because common

methods for dealing with comparative statics problems are not applicable in this case. To

see this note that U(t, r) is not typically concave in t; indeed, since ∂U
∂t

(t, r) = π(t), U has

a local maximum at t∗ whenever π(t∗) = 0 and π is locally decreasing. What is worse, the

local maxima do not vary with r, so there is no straightforward way of determining how

τ(r), which is the time at which U is globally maximized, varies with r.

A more sophisticated approach may be to check for single crossing differences (see Milgrom

and Shannon (1994)). Using this approach, a sufficient condition for τ(r) to be decreasing

in r is the following: for all t2 > t1 and r′ > r,

U(t1, r) ≥ (>)U(t2, r) =⇒ U(t1, r
′) ≥ (>)U(t2, r

′) (1)

We now provide an example which illustrates why single crossing differences can fail and also

hints at a way out of the problem. Consider a project, active over the time interval [0, 3],

which has the following payoff: π(t) = A > 0 for t ∈ [0, 1], π(t) = −B < 0 for t ∈ (1, 2] and

π(t) = C > 0 for t ∈ (2, 3]. The local maxima of U(t, r) are at t = 1 and 3, and depending
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on r, either could be the global maximum. Now it is straightforward to check that

U(0, r)− U(2, r) = r−1(1− e−r)
(
Be−r − A

)
.

which, when B is large, goes from positive to negative values as r increases, so there is a

failure of single crossing differences. Put another way, if the agent can only stop at t = 0 or

2, then less patience can lead to later stopping, which is the opposite of what we want. But

in fact, the agent can stop at any time between 0 and 3, so it does not matter that t = 2

becomes preferred to t = 0 as r increases because t = 0 is never optimal. On the other hand,

U(1, r)− U(3, r) = r−1e−r(1− e−r)
(
−Ce−r +B

)
,

which does go from negative to positive as r increases (and thus obeys (1)). This means

that if stopping at t = 1 is preferred to stopping at t = 3 for some value of r, it will remain

preferred as r increases: the impatient stops earlier.

This example suggests that what is needed to establish the monotonicity of τ(r) is something

weaker than single crossing differences — a concept that restricts payoff comparisons to those

pairs of choice variables that are relevant for global optimality. In Quah and Strulovici (2009),

we develop a way of ranking payoff functions (called the interval dominance order) which

has this feature and we use it to establish the monotonicity of τ(r). The techniques in that

paper can be developed (in a non-trivial way) to obtain a general result relating patience

and stochastic optimal stopping, even though the stochastic nature of the problem precludes

a straightforward application of the interval dominance order.

2.2 Stochastic optimal stopping

For T = [0, t̄] or T = [0,∞), let {ut}t∈T and {Gt}t∈T denote real-valued stochastic processes

adapted to the filtration F of some filtered probability space (Ω, P,F = {Ft}t∈T ). The value

function of a pure stopping problem is given by

V (α) = sup
τ∈T

U(τ ;α) = E

[∫ τ

0

α(s)usds+ α(τ)Gτ

]
(2)

where T denotes the set of stopping times adapted to F and taking values in T . We assume

that the discount function α : T → (0,∞) is deterministic (for now) and strictly positive,

with the normalization α(0) = 1. We also assume that E[
∫ t̄

0
α(s)|us|ds] is finite, α(t) and

|Gt(ω)| are uniformly bounded, α and G have bounded variation, that all processes are right-

continuous and have left limits, and that the filtration F is right continuous and satisfies the

usual conditions (see, e.g., Karatzas and Shreve (1991)). These assumptions guarantee that
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all expectations (including conditional expectations) are (almost everywhere) well-defined,

that Fubini’s Theorem can be used, and that Lebesgue-Stieltjes integrals with respect to α

and G are well defined.

The discount function α gives, at each time t, the discount factor between time 0 and time t.

By our definition, the stopping time τ that solves (2) is optimal from the perspective of an

agent at t = 0. The agent is time-consistent, i.e., will not revise at time s > 0 the optimal

stopping time chosen initially, if his discount function at time s is given by ᾱ(s, t) = α(t)/α(s)

where t (with t > s) refers to the time that has elapsed from time 0. It would be reasonable

to restrict discount functions to be decreasing in t, though our results do not in fact require

that assumption.

For expositional simplicity, we assume that the agent stops if and only if he is indifferent

between stopping and continuing, and denote by τ(α) the resulting stopping time. All of

our results can be stated more generally by endowing the set of stopping times with a lattice

structure and making statements in terms of the strong set order. Formally, τ(α) is the

essential infimum of all stopping times that are optimal when the discount function is α.

The right continuity of G and of the filtration {Ft}t∈T guarantee that τ(α) is an optimal

stopping time.3

The stopping problem as stated assumes that the flow payoff after stopping is zero. When

the agent is making a purely financial decision (such as a firm deciding on when to invest in

a project, or a landlord deciding on when to sell an apartment, etc.), then the zero payoff

simply means that the cash flow ceases when the project stops. The agent’s objective in (2)

is to maximize the discounted cash flow and V (α) can then be interpreted as the present

value of the project. In other settings, the post-stopping zero flow payoff is a normalization

and what happens after stopping depends on the setting. For example, imagine an agent

who is engaging in some activity X that gives him a stochastic consumption of xt at time

t. He has the option of switching, without cost but only once, away from this activity to

another activity Y that gives a stochastic consumption of yt at time t.4 The agent has a

discount function α and is risk averse, with the Bernoulli utility function w. Thus the agent’s

problem is to choose a stopping (or, in this context, a switching) time τ that is adapted to

3The essential infimum of an arbitrary family of random variables is uniquely defined up to a set of

measure zero (see Durrett (2004)). The right continuity of G and of the filtration {Ft}t∈T guarantee that

the infimum is itself optimal (see Lamberton and Lapeyre (2007)).
4Note that yt does not depend on the time at which the agent switches from X to Y .
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F and maximizes his lifetime utility

E

[∫ τ

0

α(s)w(xs)ds+

∫ t̄

τ

α(s)w(ys)ds

]
. (3)

Clearly, we can reformulate this problem by treating the agent as choosing τ to maximize

E

[∫ τ

0

α(s) (w(xs)− w(ys)) ds

]
; (4)

this problem then takes precisely the form (2), with us = w(xs) − w(ys), Gt ≡ 0, and a

payoff of zero after stopping. Note also that the optimal stopping time is invariant to affine

transformations of w and, consequently, to linear – but not affine – transformations of us.

2.3 Ordering discount functions

We endow discount functions with the following relation, which (as one could easily check)

is a partial order.

Definition 1 (Patience Order) The discount function β exhibits greater patience than

another discount function α (denoted by α ≺ β) if

β(s)

α(s)
is weakly increasing in s.

If, for instance, α(s) = exp(−rs) and β(s) = exp(−r̄s), then α ≺ β whenever r̄ ≤ r. More

generally, if α(t) = exp
(∫ t

0
−rα(s)ds

)
for some discount rate function rα, with a similar

expression for β, then α ≺ β whenever rβ(t) ≤ rα(t) for all t. We shall refer to an agent

with discount function α as simply the α agent (or agent α) and we say that agent β is more

patient than agent α if α ≺ β. The next result motivates our definition of the patience order.

Proposition 1 5 Two agents with discount functions α and β are choosing between receiv-

ing π1 at time t1 and π2 at time t2, where both payoffs and times can vary freely, subject to

π1 > 0, π2 > 0, and t2 > t1. Then α ≺ β if and only if, whenever agent α chooses π2 then

agent β also chooses π2.

Proof. If α ≺ β and α(t2)π2 > α(t1)π1, then clearly β(t2)π2 > β(t1)π1. Thus agent β is

more patient in the sense that whenever agent α is prepared to wait longer to receive π2

then so is agent β. Conversely, suppose that α 6≺ β, so there is t2 > t1 such that

β(t2)

β(t1)
<
α(t2)

α(t1)
.

5We are very grateful to an anonymous referee for suggesting this characterization.
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If we can choose π1 to be a number strictly between the two ratios and let π2 = 1, then the

agent with discount function β will strictly prefer to receive π1 at t1 to π2 at t2 (because

β(t1)π1 > β(t2)) while the agent with discount function α will have the opposite preference

between those alternatives (because α(t2) > π1α(t1)). �

Notice that this choice problem can also be understood as a problem of optimal stopping,

where the flow payoffs are identically zero, and there are termination payoffs of π1 at t1, π2 at

time t2, and nothing at other times. Therefore, the proposition tells us that, for τ(α) ≤ τ(β)

to hold generally, it is necessary that α ≺ β. The next result tells us that it is also sufficient.

2.4 Patience and Stopping

Theorem 1 Suppose that G is a nonnegative process in the stopping problem (2). Then

V (β) ≥ V (α) and τ(β) ≥ τ(α) a.s. whenever α ≺ β.

A key condition for the result is the agent’s ability to stop at any time in the interval [0, t̄].

In order to get some intuition for this, suppose on the contrary that the agent cannot stop,

and is thus condemned to incur all cash flows till t̄. In this case, there is a perfect symmetry

in the agent’s value function corresponding to a cash flow stream and the opposite of that

stream. In particular, U(t̄; β) > U(t̄;α) for some stream π if and only if U(t̄; β) < U(t̄;α)

for the stream −π. Thus, if the agent is limited to either stopping immediately or incurring

the entire stream of cash flows, it is easy to build examples for which only the more patient

(agent β) stops immediately.

What breaks this symmetry is the endogenous interruption of cash flows at any time in [0, t̄]:

if a cash flow sequence is first positive and then negative, both a patient and impatient

agent will stop after getting the positive cash-flows, and the patient agent will experience a

higher discounted utility from it. By contrast, if the cash flow stream is first negative and

then positive, the present value may be negative for the impatient agent and positive for the

patient agent, but the reverse can never hold. A patient agent may therefore find it optimal

to endure the negative cash flows in order to enjoy the positive ones in the future when an

impatient decides to stop immediately, but the reverse situation can never occur.

Theorem 1 generalizes to a stochastic environment the results of Arrow and Levhari (1969),

Sen (1975), and Quah and Strulovici (2009). The result, like all results of this section, has a

straightforward counterpart in discrete time. The proof of this theorem proceeds by showing

that, at agent α’s optimal stopping time τ(α) (but not at other stopping times),

U(τ(α); β) ≥ U(τ(α);α) = V (α). (5)
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Since V (β) ≥ U(τ(α); β), we obtain V (β) ≥ V (α). Given this result, it is intuitive that

τ(β) ≥ τ(α): at a given time s > 0 and state, agent β’s value of the future payoff stream is

higher than agent α’s; thus if the latter does not stop neither will the former.

The nonnegativity of G is needed in Theorem 1 for the following reason: if the terminal value

gets increasingly negative (e.g., a chore that worsens over time), a more impatient agent may

postpone the chore until the last minute, while a more patient agent, more sensitive to the

worsening of the chore, may decide to stop immediately. Recalling an example emphasized

by Sen (1975), a more patient agent may decide to stop polluting earlier.

Lastly, we consider three agents with discount functions α, β, and γ, with α ≺ β ≺ γ. The

next result, which is a corollary of Theorem 1 says that agent γ prefers the stopping rule of

agent β agent to that of agent α. In particular, if both α and β exhibit impatience, in the

sense that they are decreasing in t, then a perfectly patient agent, i.e., an agent with discount

function γ(t) ≡ 1 for all t ∈ [0, t̄], will prefer the stopping decision of the less impatient agent

β to that of agent α.

Proposition 2 6 Suppose that G is a nonnegative process in the stopping problem (2) and

α ≺ β ≺ γ. Then U(τ(β), γ) ≥ U(τ(α), γ), where τ(α) and τ(β) are the optimal stopping

times of agents α and β respectively.

2.5 Application: Costly Search

Search models play a fundamental role in economics and have numerous applications to labor

and housing markets, macroeconomics and monetary economics (see, for example, Rogerson

et al. (2005)). In these models, it is often assumed that that marginal cost of search is

constant and the item being sought has qualities that are drawn from a distribution that is

fixed over time (either because it is exogenous, or because it is an equilibrium distribution

that is common knowledge). In practice, however, agents learn about this distribution as

their search progresses. For example, a worker learns about labor market conditions or about

the idiosyncratic marketability of his skills. In housing markets, a household’s search strategy

may evolve over time, by narrowing or directing its focus on specific housing locations or

categories. Similarly, search cost can evolve over time: it can increase as a result of scarcer

opportunities (e.g., a job candidate has to look farther for a job), or decrease as a result of

experience or sunk costs (the household hears of more efficient or cheaper real estate agents

along the search processes). Indeed, there are realistic scenarios where search costs and

search outcomes are stochastic and correlated.
6We would like to thank an anonymous referee for suggesting this result.
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Standard search problems are instances of a pure stopping problem where the utility flow

is the search cost cs ≥ 0 and the termination value Gτ is the value of the item eventually

chosen by the agent. Formally, the agent chooses a stochastic stopping time τ to maximize

E

[
−
∫ τ

0

α(s)cs ds+ α(τ)Gτ

]
;

if there is no recall, Gt = Mt, where Mt ≥ 0 is the value of the item uncovered at time t and,

if there is perfect recall, Gt = maxs≤t{Ms}. Theorem 1 tells us that even when the search

cost is time-varying and stochastic, and even when the value distribution of the item being

sought changes over time, the duration of search increases with patience.

2.6 Application: Experimentation

The most widely used model of endogenous learning is probably the experimentation model

based on the multi-armed bandit framework.7 In this section we consider how the length

of experimentation in a multi-armed bandit model depends on the discount rate of the

agent. The problem is formalized as follows. Let xt = (x1
t , x

2
t , . . . , x

n
t ) denote the state at

instant t, where n is the number of arms. A strategy for the agent is a stochastic process

ι : [0,+∞)→ {1, . . . , n} that is right continuous and has left limits. Denoting by I the set

of all such processes, the value function of the agent is given by

V (x0) = sup
ι∈I

E

[∫ ∞
0

e−rtπ(xιtt , ιt)dt

]
,

where the instantaneous payoff π depends on the arm chosen and on the state of that arm.8

When applied to learning models, the state and payoffs have the following structure: xit
corresponds to the agent’s belief, at time t, about the underlying state, θi, of arm i. In

this case, we have π(xit, i) = E[Π(θi)|xit], where Π(θi) is the expected payoff of arm i if its

underlying state is θi, and xit evolves according to Bayesian updating. The underlying states

{θi}i∈{1,...,n} are assumed to be independently distributed, so that the arms are uncorrelated:

pulling one arm does not tell the agent anything about the underlying state of the other

arms.9 Lastly, we assume that arm 1 is a safe arm in that it has a known payoff distribution,

7One of its earliest applications to economics dates back to Rothschild (1974), who uses a one-armed

bandit to model market learning and pricing by a monopolist. See Bergemann and Välimäki (2006) for a

recent review of the multi-armed bandit theory and its economic applications.
8This formalization excludes lump sum payoffs. At the expense of introducing more notation, the model

could easily be modified to include jumps in payoffs and beliefs, as in Keller et al. (2005).
9In the case of learning with Brownian noise, dxιtt = κιtxιtt (1 − xιtt )dBιtt and dxit = 0 for i 6= ιt, where

{Bit}i,t is a vector of standard Brownian motions and κ = (κ1, . . . , κn) is a vector of constants capturing the

signal-to-noise ratio of each arm (see Bolton and Harris (1999) for the derivation).
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and therefore entails no learning (x1
t = x1

0 for all t ≥ 0); all other arms have unknown payoff

distributions and will be called risky.

It is easy to show that if the agent chooses the safe arm at some instant, then he will play

that arm forever after, because the problem is Markovian and the agent learns nothing new

about the arms, implying that the state becomes constant. Therefore, the experimentation

problem may be re-expressed as follows:

V (x0) = sup
ι∈I−1,τ∈T

E

[∫ τ

0

e−rtπ(xιtt , ιt)dt+

∫ ∞
τ

e−rtπ(x1
0, 1)dt

]
,

where I−1 is the subset of processes in I taking values in {2, . . . , n}, and T is the set of

all stopping times. Without loss of generality, the payoff of the safe arm can be normal-

ized to zero, because the agent’s optimization problem is unchanged if all cash-flows are

translated upwards or downwards by a constant amount. This leads to the following further

simplification of the problem:

V̄ (x0) = sup
ι∈I−1,τ

E

[∫ τ

0

e−rtπ̄(xιtt , ιt)dt

]
, (6)

where π̄(xi, i) = π(xi, i)−π(x1
0, 1) for all xi and i ≥ 2. Stopping experimentation now means

that the agent receives a payoff stream of zero forever after stopping.

Whittle (1980)10 shows the following key result: the optimal stopping time, τ , of problem

(6) is equal to the sum of the stopping times {τi}ni=2, where τi is the solution to (6) in the

case where only arm i and (the safe) arm 1 are available. This result is intuitive: how long

the agent tries a given arm should be independent of other risky arms, because the states of

individual arms are uncorrelated. Therefore, when the agent retires, he must have tried each

risky arm exactly as long as what he would have done if only that arm had been available

(in addition to the safe arm). Now, each bandit problem with one risky and one safe arm is

a pure stopping problem, and Theorem 1 says that τi is increasing in patience. This is true

of every i, and thus of τ =
∑

i τi. We have shown the following result.

Proposition 3 In a multi-armed bandit with uncorrelated risky arms and a safe arm, a

more patient agent will, almost surely, experiment longer on each risky arm (and thus stop

experimentation later).

When there is a single risky arm whose distribution is governed by a binary (“High” or

“Low”) unknown parameter , Cohen and Solan (2012) have characterized the optimal cutoff

10See also Frostig and Weiss (1999, p. 13) for a concise exposition.
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policy, from which it seems easy to derive comparative statics on the discount rate.11 Propo-

sition 3 provides a general result where the agent can experiment with multiple risky arms

and the parameter governing each arm can take arbitrarily many values.

This application illustrates that a more patient can stop later even when he controls his

learning process (here, by choosing which arm to pull at each instant). How general is this

result? In the next section we shall examine the impact of discounting and patience in

models with both control and stopping.12

3 A General Model of Stochastic, Managed Cash Flows

We now extend the setting of the last section to combine both stopping and control decisions.

The optimization problem is now the following:

V (α) = sup
τ,λ

U(τ, λ;α) = E

[∫ τ

0

α(s)u(xλ(s), λ(s), s)ds+ α(τ)Gτ

]
, (7)

where {xλt }, {λt}, and τ are adapted to F and {xλt }t≥0 is controlled by λ. {xλt }t∈T takes values

in some topological space X and {λt}t∈T takes value in some set Λ. {λt}t∈T is assumed to be

admissible, i.e., such that xλ is uniquely defined and such that E
[∫ t̄

0
|α(s)u(x(s), λ(s), s)|ds

]
is finite.13 It is easy to see, given our earlier results, that the value of this combined control

and stopping problem remains monotonic in the discount rate.

Proposition 4 Suppose that G is a nonnegative process and that α and β are discount

functions for problem (7) with α ≺ β. Then V (β) ≥ V (α).

Proof. Suppose (τ(α), λ(α)) is jointly optimal for agent α. Then τ(α) is also optimal for this

agent, conditional on λ(α). Therefore, by (5), we obtain U(τ(α), λ(α); β) ≥ U(τ(α), λ(α);α).

Since V (β) ≥ U(τ(α), λ(α); β), we have V (β) ≥ V (α). �

It would be tempting to conclude that the optimal stopping time is also increasing with

patience. However, that is generally false, because optimal controls may differ under α and β,

11Their result generalizes the characterization of optimal policies (for the one-agent case) in the Brownian

setting of Bolton and Harris (1999) and the Poisson setting of Keller, Rady, and Cripps (2005).
12In the standard multi-armed bandit model, the agent chooses only one arm at each instant. If instead he

can choose the speed of experimentation (for example, by allocating resources between risky and safe arms),

the actual time spent experimenting is not necessarily increasing with patience. As illustrated in the more

abstract setting of the counterexample in Section 3.2, a more patient decision maker may experiment at a

faster rate than a less patient one, resulting in the experimentation boundary being reached faster.
13See Fleming and Soner (1993) for a general definition of admissible controls.
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resulting in different paths for the state variables. An example of this phenomenon is provided

in Section 3.2. When the state has Markov dynamics, however, the next section proves

in full generality that the continuation domain, i.e., the set of states for which stopping is

suboptimal, increases with patience. Section 3.2 will then provide an additional monotonicity

condition under which the optimal stopping time increases in patience.

3.1 Continuation Domain

Suppose now that {xt} is a Markov process: for any t′ and control {λs}s≥t′ , the distribution

of {xs}s≥t′ depends on past history only through xt′ . Also suppose that the termination

value process is of the form Gt = G(xt, t) for some function G of state and time. In this

case, it is well known that the value function depends, at any time t, only on the current

state xt and time t: Vt = V (t, xt) for some function V .

For any discount function α, define the continuation domain at time t by

C(α, t) = {x : V (α, t, x) > G(t, x)}, where

V (α, t, x) = sup
τ≥t,λ

E

[∫ τ

t

α(s)

α(t)
u(xλ(s), λ(s), s)ds+

α(τ)

α(t)
Gτ

]
.

C(α, t) is the set of states at which stopping at time t (and, thus, getting termination

value G(t, x)) is strictly suboptimal. In general, C(α, t) varies with time, but if x has time-

homogeneous dynamics and G(x, t) only depends on x, C(α, t) is a constant subset of X . For

example, if x is a one-dimensional controlled diffusion, then C(α, t) is typically (though not

necessarily) an interval (a, b) such that it is optimal to stop exactly when xt hits a boundary

of the interval.14 The next result says that the continuation domain expands with patience.

Theorem 2 Suppose that, for problem (7), x is a Markov process and Gt = G(xt, t) is

nonnegative. Then C(α, t) ⊂ C(β, t) for all t, whenever α ≺ β.

Proof. Suppose that x ∈ C(α, t). This means that V (α, t, x) > G(t, x). Theorem 4, applied

at time t, implies that V (β, t, x) ≥ V (α, t, x), so x ∈ C(β, t). �

3.2 Patience, Control and Stopping

Theorem 2 does not imply that a more patient agent stops later. Indeed, agents with different

patience levels apply different controls to the state, and a more patient agent may accelerate

14In Sections 3.2 and 3.3, the interval is of the form (a,∞).
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the collision of the state with the boundary of the continuation domain, even though that

domain always expands with patience. This is illustrated in the following example.

A counterexample

Consider a Markov setting with initial state x0 = 0 and with two control levels: Λ = {1, 2}.
The utility flow is equal to u(x, λ) = M for x ∈ [1, 10], u(x, λ) = −M for all x > 10 where

M is a large positive constant, and u(x, 1) = 1 and u(x, 2) = −0.01 for x ∈ [0, 1). Finally,

suppose that
dx

dt
= λt.

The state xt can only go up. Moreover, it is optimal to stop at x = 10, and not before, since

there is always a control yielding positive utility before that level. Thus, the continuation

domain is C = [0, 10] for all discount functions. Finally, it is optimal to spend as much

time as possible in the region with payout rate M , i.e. set λ(x) = 1 for x ∈ [1, 10]. The

only question, therefore, is how fast to get to x = 1. A very impatient agent will never

use the control λ(x) = 2 for x sufficiently close to 0, because that control yields negative

instantaneous utility, while the reward (M) is “far away,” arriving only when xt = 1. By

contrast, a patient agent puts more value on future cash flows; from his perspective, the

small negative cash flow 0.01 is only incurred for a short time, and leads to high cash flows

sooner. Thus it seems possible that for sufficiently high values of M , the more patient agent

will choose λ(x) = 2 for all x ∈ [0, 1) and therefore stop sooner than a less patient agent.

This intuition is proved formally in the Appendix.

Positive Results: Markovian State with Increasing Utility

To obtain a positive result relating stopping and patience, we consider the following control

problem which is a special case of (7):

maximize U(τ, λ, ;α) = E

[∫ τ

0

e−rsu(x(s), λ(s), s)ds

]
, (8)

subject to

subject to dxt = µ(xt, λt, t)dt+ σ(xt, t)dBt x0 = x, (9)

where {xt} is one dimensional and B is the standard Brownian motion. We assume that σ is

bounded below and away from zero and that the value function is well-defined and smooth,

so that it obeys its Hamilton-Jacobi-Bellman equation.15 As stated, the problem assumes

15For time-homogeneous dynamics, Strulovici and Szydlowski (2012) prove that the value function is

smooth as long as the control space is compact and the drift, volatility, and return functions satisfy standard

Lipschitz and growth conditions.
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constant discounting; this is to simplify the exposition and the case of general discount

functions is treated in the Appendix. Notice also that the termination value is set at zero;

it is not hard to see that allowing it to take arbitrary positive values can lead to the more

patient agent stopping earlier, which is the opposite of the result we want.16 Last but not

least, we assume that the instantaneous utility function, u(x, λ, t) is increasing in x for all

(λ, t). Since it is always possible to think of the state as −x rather than x, any results

obtained with this assumption will have an analog in the case where u(x, λ, t) is decreasing

in x for all (λ, t). In effect, we are excluding cases where u is not monotone in x or where

it increases in x for some values (λ, t) and decreases in x for others. This assumption is

satisfied in many applications, though, obviously, not in the counterexample we gave.

The Markov setting of problem (8) means that the continuation value at any time depends

on the history only through the current state and so could be written as V (x, t, r) and the

optimal control λ can similarly be thought of as a function of just (x, t, r). Because we

assume u is increasing in x, so is V . Indeed, starting from some state y, with y > x, one can

always replicate the control applied when starting from x and get a higher payoff flow at all

times before and upon stopping. The continuation domain at time t consists of the states x

such that V (x, t, r) > 0; therefore, there exists a process a(t) such that the optimal stopping

time is given by τ = inf{xt /∈ (at,∞)}.

Given the initial condition, let X(r) ∈ C ([0, t̄],R) denote17 the path obtained when using

the optimal control at each time t. In other words, for each realization ω of the underly-

ing Brownian motion, X(r) is the trajectory of the state over time. We say that X(r) is

decreasing in r if, for all r′′ > r′, we have Pr ({ω : X(r′′)t ≤ X(r′)t for all t ∈ [0, t̄]}) = 1.

Theorem 3 Let λ(x, t, r) and τ(r) be the control and stopping time that solve problem (8).18

Then µ(x, λ(x, t, r), t), X(r), and τ(r) are all decreasing in r, provided u(x, λ, t) is increasing

in x for all (λ, t).

Theorem 3 says i) the optimal drift, ii) the state path, and iii) the optimal stopping time are

all increasing in patience. There is an intuitive explanation for this result. The key property

is that when u is increasing in x, V is submodular in (x, r); this means that, starting from a

16For example, if the termination value is very high at some time T̄ if the state x ≥ x̄ and zero otherwise,

and if it is costly to raise the value of x over time, a patient agent may incur the cost of raising x to x̄ in order

to get to the high termination value and stop at T̄ , while a very impatient agent, focused only on the high

cost of raising x, may reject this option and stop later (or never), provided the utility flow is nonnegative.
17C ([0, t̄],R) denotes the set of real-valued continuous functions defined on [0, t̄] (or [0,∞), if t̄ = +∞).
18In the case of multiple solutions we refer here to the solution leading to the smallest drift and the earliest

stopping time; see the Appendix for details.
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common state, the agent with the lower discount rate (i.e., the more patient agent), values

an increase in x more than the less patient agent. Consequently, whenever they are in the

same state, the more patient agent will (using his control) drive the state higher than the

less patient. Thus the more patient agent has the higher drift and his state path (which is

a continuous function of time) may touch but will never cross the corresponding path of the

less patient agent. Recall that the stopping boundary takes the form of a lower bound on

the state, and by Theorem 2, that bound has to be lower for the more patient agent. These

observations guarantee that the state trajectory of the more patient agent hits his stopping

boundary later than the trajectory of a less patient agent.

Notice that while Theorem 3 says the optimal drift is decreasing in r, it does not say that

the same holds for the optimal control. Of course, when the control λ is scalar and the

drift function µ is increasing in λ, then the optimal control must be decreasing in r since

µ(x, λ, t) = m. The next result gives conditions under which a multi-dimensional optimal

control is decreasing in r.

Proposition 5 Suppose that Λ (the domain of control λ) is a lattice, µ is increasing in λ,

and u and µ are supermodular in λ. Then λ(x, t, r) is decreasing in r.

3.3 Application: Bankruptcy

Recent models of corporate bankruptcy, starting with Leland (1994), take the view that the

timing of bankruptcy is endogenously chosen by equityholders. Until then, equityholders

firm must pay a coupon rate c(x) to debtholders, where c is decreasing in some performance

measure x of the firm, and receive a payout rate δ(x), with δ increasing in x.19 Following

Leland (1994) and Manso et al. (2009), we assume that the performance measure {xt} is a

time-homogeneous diffusion (for example, a geometric Brownian motion, or a mean-reverting

process). The shareholder problem is thus the pure stopping problem of solving

V (x, r) = sup
τ∈T

Ex

[∫ τ

0

e−rt(δ(xt)− c(xt))dt
]
. (10)

Given the time-homogeneous Markov structure of the problem, and given that δ − c is an

increasing function of x, it is easy to show that optimal default takes the form of a hitting

19For standard debt, c is a constant. However, in many contracts such as performance-pricing loans or

step-up bonds, c increases as some performance measure of the firm deteriorates. This measure maybe the

credit rating, or directly related to the earnings (EBITDA, price-earning ratio, etc.) of the issuing firm (see

Manso, et al. (2009) for examples).
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time τ(r) = inf{t : xt ≤ AB(r)}; AB(r) is called the default-triggering level of the firm, and

is independent of the initial asset level x. If δ(x) = δx, c(x) = c, and x is the geometric

Brownian motion with drift µ and volatility σ, standard computations (see Leland (1994))

imply that

AB(r) =
γ(r)

γ(r) + 1

(
1− µ

r

) c
δ
,

where γ(r) = (m+
√
m2 + 2rσ2)/σ2 and m = µ− σ2/2. Since AB increases in γ and r, and

γ(r) is also increasing in r, AB must be increasing in r. More generally, Theorems 1 and 2

together give us the following result.

Proposition 6 For problem (11), the default-triggering level AB(r) is increasing in r while

the optimal default time τ(r) and the firm’s value V (x, r) are both decreasing in r.

Proposition 6 ensures that the monotonicity of optimal default time with respect to the

interest rate holds for general asset processes and coupon and payout profiles. This result

can be made even more general by allowing the firm to influence state xt through an action

λt that costs f(λt) ≥ 0, with its effect determined by (9). The objective function is then

V (x, r) = sup
τ∈T

Ex

[∫ τ

0

e−rt(δ(xt)− c(xt)− f(λt))dt

]
. (11)

The instantaneous payoff δ(xt) − c(xt) − f(λt) is increasing in the state xt, and so we can

apply Theorem 3, which guarantees that all the conclusions of Proposition 6 hold even in

this more general setting (with both control and stopping).20

3.4 Application: Optimal Growth and Capital Deepening

One of the very first and most important applications of optimal control to economics is to

the optimal growth problem over an infinite horizon. Sensitivity of the optimal path with

respect to discounting has been studied, in a deterministic context, by Brock and Mirman

(1972), Mendelsohn and Sobel (1981), Amir, Mirman, and Perkins (1991), Amir (1996),

and Quah and Strulovici (2009), amongst others. In our earlier paper (Quah and Strulovici

(2009)), we showed in a deterministic, continuous-time model, that a lower discount rate

leads to capital deepening, i.e., a higher level of capital stock at all times. The result relies

on minimal assumptions; in particular, the representative agent’s utility function need not

20Using the results of the present paper, Manso (2013, Proposition 9) obtains an equivalent of Proposition 6

for the equilibrium default boundary arising in a game between the borrower and credit-rating agencies.

Proposition 6 can also be used to study when households default on their mortgages.
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be concave and there are no shape restrictions on the production function, which can exhibit

increasing returns to scale. We now extend this result to a stochastic context.21

An agent with initial capital k0 > 0 manages his capital through consumption, savings, and

efforts so as to maximize his expected lifetime utility. Formally, the agent solves

max
c
E

[∫ ∞
0

e−rsu(cs, ks, s)ds

]
(12)

subject to dkt = H(kt, ct, t)dt+ σ(kt, t)dBt,

where B is the standard Brownian motion, c is a finite dimensional control, and the drift

and volatility functions H and σ are such that k is nonnegative.22 The control c can capture

not only consumption, but also leisure and effort, technological choices, and other realistic

components. kt is the capital available to the agent at time t. Note that we have stated the

problem as one of pure control, without stopping (as is customary for growth models); to fit

this within our framework, we assume that u > 0, so that stopping is never optimal. In the

simplest case where utility depends only on consumption, we can write u(ks, cs, s) = ū(csks),

where ū : R+ → R+ is the felicity function, so cs ∈ [0, 1] is consumption expressed as

proportion of the capital stock and u is increasing in ks provided ū is increasing. Since the

drift H is completely arbitrary (subject to the usual integrability conditions), we are allowing

for arbitrary returns to scale in technology.

An application of Theorem 3 immediately yields the following result.

Proposition 7 Suppose that u(c, k, t) is increasing in k for all c, t. For any initial capital

level k0, the trajectory of capital {kt}t≥0 at the solution to (12) decreases in r almost surely.

4 Stochastic Discounting

Dynamic stochastic models in macroeconomics and finance typically involve stochastic dis-

counting, where the stochastic discount is a “state price deflator,” representing some (ran-

dom) intertemporal rate of substitution between (in discrete time) consecutive periods.23

Another, related, reason for considering stochastic discounting is to think of discounting

as the borrowing rate of a firm. If there is procyclicality between the interest rate and

21Riedel and Su (2010) study the stochastic irreversible investment decision of single firm and obtain

comparative statics of investment with respect to the cost of capital.
22For example, kt = exp(Kt) for some Itô process.
23See, e.g., Duffie (2001).
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the firm profit (or if on the contrary, its profits are countercyclical with respect to the

general borrowing rate, or lending rate), the discounting rate and cash flows are correlated.

Discounting may also be stochastic because the borrowing rate of the firm depends on its

credit rating. In this case, there is an obvious connection between cash flows and discounting.

Performance pricing loans and step up bonds are examples of debt contracts where the

interest rate depends on some performance measure of the borrower.

The strongest extension of our order on discount functions to a stochastic setting is to

require the ratio process β(s)/α(s) to be increasing in s path by path. However, we provide

an example to show that even this is not sufficient to guarantee that the more patient agent

stops later. To obtain positive results linking patience and stopping times, we need to

introduce certain restrictions on cash flows; we provide two results of this type. The first

theorem is based on some positive correlation condition. The second theorem assumes a

single crossing condition on the utility function.

4.1 Counterexample: Discount-Cash Flow Correlation

There are three periods {0, 1, 2} and two states of the world, “high” and “low,” which are

equally likely. The cash-flows in Periods 0 and 1 are −1 and −2, respectively. The cash-flow

in Period 2 is 21 if the state is high, and -4 if the state is low.

Agent A uses the discount function α(t) =
(

1
2

)t
and strictly prefers to make the investment,

yielding a present value equal to −1 + 1
2
(−2) + 1

4

(
1
2
(21) + 1

2
(−4)

)
> 0.

Agent B faces the stochastic discount function β(0) = 1 and β(1) = 1
2
, and β(2) = 1

4
if the

state is high, and β(2) = 1
2

if the state is low. Agent B is more patient than agent A: the

ratio β/α is increasing over time for each realization of uncertainty, and strictly so if the

state is low. Plainly it makes no sense for anyone to invest in this project and stop after

periods 0 or 1. Assuming that the project is terminated after period 2, the present value to

agent B is −1 + 1
2
(−2) + 1

4
1
2
(21) + 1

2
1
2
(−4) which is still less than zero. So agent B will not

invest in the project.

The key feature driving this counterexample is the negative correlation between B’s patience

and cash flows. It is possible to obtain a positive result once this phenomenon is excluded.

4.2 Positive Results with Stochastic Discounting

A stochastic discount function α is a strictly positive process adapted to the filtration F
that is defined on [0, t̄], with α0 = 1 almost surely. An agent solves the following optimal
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stopping problem (using the notation of Section 2):

V (α) = sup
τ∈T

E

[∫ τ

0

α(s)usds.

]
(13)

We would like to compare the optimal stopping behavior under α with that under another

stochastic discount function β, also adapted to F . Since F represents the information that

agents receive, the fact that both are adapted to F prevents an agent from learning more

about future cash flows through his discount process than another agent with the other

discount process. Otherwise, a less patient agent could for example get more positive news

about future cash flows than a more patient one, which could clearly revert the result. For

simplicity, the termination value is set to zero.

Our first result gives a sufficient condition for comparative statics, under the assumption

that α ≺ β almost surely, i.e.,

Pr

({
ω :

β(s)

α(s)
is increasing on [0, t̄]

})
= 1;

we shall denote this simply by α ≺ β. We know from the counterexample that this alone

is not sufficient to obtain a result, but this assumption along with the following positive

correlation condition will suffice:

Corr

(
β(s)

α(s)
, α(s)us1s<τ(α)

∣∣∣∣Ft) ≥ 0 a.s., for all 0 ≤ t < s < t̄, (14)

(where τ(α) refers to the optimal stopping time under α). The condition (14) means that

agent β is more likely to value future cash flows more relative to agent α when i) these

cash-flows are higher, ii) agent α values these cash flows more, and iii) agent α is less likely

to have stopped already.

Theorem 4 Suppose that α ≺ β and that the positive correlation condition (14) holds.

Then, for problem (13), τ(α) ≤ τ(β) and V (α) ≤ V (β).

Assumption 14 involves the optimal stopping time τ(α). The next result relies on assump-

tions directly expressed on primitives. Suppose that us = u(xs) where x ∈ X ⊂ R is some

one-dimensional state and suppose, also, that the discount factors are stochastic only through

the state x, i.e., αs = α(xs, s). Such a specification, where payoffs and the discount factor

depend on some common underlying process arises, for instance, in affine term structure

models (see Duffie (2001, Chapter 7)). In such a context the following result holds.

Theorem 5 Suppose that the discount functions α and β obey
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(a) α(x, ·) ≺ β(x, ·) for all x ∈ X and

(b) β(x, s)/α(x, s) is increasing in x for all s ∈ [0, t̄].

Then for any problem (13) such that us = ū(xs), where ū : X → R has the single crossing

property,24 we obtain τ(α) ≤ τ(β) and V (α) ≤ V (β).

Note that conditions (a) and (b) in Theorem 5 are together equivalent to requiring β(x, s)/α(x, s)

to be increasing in (x, s). Condition (a) simply says that agent β is more patient than α in

every state x. Condition (b) says that agent β’s valuation of future cash flows relative to

agent α’s is greater in the higher states, which (because of the single crossing property on

ū) are also the states with a positive payoff.

4.3 Application: Investment in a Consumption-Based Asset Pric-

ing Model

In consumption-based asset-pricing models, cash flows are discounted according to a stochas-

tic discount function that is proportional to the marginal utility of the representative agent.25

Our results enable us to connect the patience of the representative agent with his level of

risk aversion.26

In formal terms, the present value of a project available at time 0 is

V (u) = max
τ∈T

E

[∫ τ

0

e−ρt
u′(xt)

u′(x0)
πtdt

]
,

where u(·) is the utility of the representative agent, ρ is his discount rate, xt > 0 is the

aggregate consumption at time t, πt is the payoff generated by the project at time t, and

τ is the termination time of the project, which is optimally chosen by its owner. Consider

a project Π that, while active, entails an operating cost of c per unit of time, with the

expected profit at time t depending on the state of the economy: π̄(xt) = p(xt)− c, where p

is increasing.27 It is clear that π̄ has the single crossing property; let x̄ denote the crossing

point, i.e., p(x̄)− c = 0. Finally, suppose that the project has an initial fixed cost I > 0, so

it will be initiated if and only if V (u) ≥ I; in this case we say that the project is u-valuable.

24We mean that, whenever ū(x) ≥ (>) 0, then ū(x̃) ≥ (>) 0.
25See, for continuous-time versions of this result, Breeden (1979) and Duffie and Zame (1989).
26Nachman (1975) studies the impact of time and risk preferences in a setting with a single stochastic

lump sum.
27It is assumed that the project is small compared to the size of the economy and, hence, has a negligible

impact on {xt}.
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Without making any assumption on the aggregate consumption process xt, the next result

shows that Π is less likely to be undertaken if the representative agent is more risk averse

and, assuming the project is underway, higher risk aversion leads to an earlier stopping time.

Proposition 8 Suppose that u is more risk averse to v in the sense that u has the higher

coefficient of risk aversion, i.e., −u′′/u′(x) ≥ −v′′/v′(x) for all x > 0. Then project Π is

v-valuable if it is u-valuable and the project will be abandoned later under v than under u.

Proof. In the case where the representative agent’s utility is u, the stochastic discount

factor is given by αt = α(xt, t), where

α(x, t) = e−ρt
u′(x)

u′(x0)
.

Similarly, in the case where it is v, we have β(x, t) = e−ρtv′(x)/v′(x0). Thus

β(x, t)

α(x, t)
=
u′(x0)

v′(x0)

v′(x)

u′(x)
.

This ratio is independent of time and increasing in x. The latter holds because u is more

risk averse than v and so v′/u′ is increasing in x. Conditions (a) and (b) in Theorem 5 are

both satisfied and thus the claim follows from an application of that theorem. �

Note that a straightforward extension of this proposition holds if the “u” agent, in addition

to being less risk averse than than the “v” agent, also has a lower discount rate.

5 Time Inconsistency and Optimal Stopping

One of the best documented and widely researched behavioral departures from the “standard

model” is time inconsistency (see Frederick et al. (2002) for a survey). The agent’s time

preference is now characterized by a discount bifunction α(s, t) > 0, which is defined for

all t ≥ s, with α(s, s) = 1. At time s, the agent’s time-preference for future cash flows is

governed by the discount function α(s, ·).28 An agent is time consistent if α(s, t′)/α(s, t) is

independent of s for all s ≤ min{t, t′}. If this fails to hold, the agent is time inconsistent; this

gives rise to a game between the selves of an agent at different times, who have misaligned

preferences over cash flows. A naive agent ignores the fact that he is time inconsistent,

while a sophisticated agent fully takes this problem into account. It is common in models of

time inconsistency to assume that the different selves have the same discount function, so

28We use the term ‘bifunction’ to emphasize the dependence on two variables and to distinguish the more

complex discount function of a time-inconsistent agent from the discount function of a time consistent agent.
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α(s, s + k) = α(s′, s′ + k) for all s, s′, and k > 0, though (unless otherwise stated) we shall

not be making this assumption.

Definition 2 (Generalized Patience Order) Let β and α be two discount bifunctions.

We say that β exhibits greater patience than α (denoted by α ≺inc β) if, at each time s,

β(s, t)

α(s, t)
is increasing in t, for all t ≥ s.

This definition simply says that one agent is more patient than another if his s-self is more

patient than the s-self of the other agent (in the sense given by Definition 1), for all s. This

section first establishes that the results of Section 2 extend to the case of naive agents. It

then shows by example that when two agents are sophisticated, the more patient agent can

stop earlier than the less patient one. However, when time inconsistency takes the form of

decreasing patience, a condition satisfied by hyperbolic and quasi-hyperbolic discounting, the

equilibrium stopping time of a sophisticated agent is increasing with patience, which restores

the positive result obtained in Section 2. We also show that a naive agent stops later than

a sophisticated one with the same discount bifunction, and that the stopping time falls with

increasing sophistication. Our analysis will focus on pure stopping problems.

5.1 Naive agents

Consider the pure stopping problem introduced in Section 2. Given a discount function

γ : T → R++, we denote by Vs(γ) the value function at time s of a time-consistent agent

with discount function γ. Now consider a (possibly) time-inconsistent and naive agent with

discount bifunction α : (s, t) 7→ α(s, t) ∈ R for s ≤ t. This agent believes at time s that his

future selves all have the discount function α(s, ·). Therefore, he believes that stopping at

time s is optimal if and only if Vs(α(s, ·)) = 0. We assume that the agent stops whenever

Vs(α(s, ·)) = 0 and denote the stopping time arising from this rule by τN(α).

It is easy to show that if A and B are naive agents with discount bifunctions α and β

respectively and that B is more patient than A, then τN(β) ≥ τN(α) with probability 1.

Indeed, for any s < τN(α), we have Vs(α(s, ·)) > 0. That value function is exactly the same

as the one computed in Section 2. Since α(s, ·) ≺ β(s, ·), Theorem 1 applied to time s and

discount functions β(s, ·) and α(s, ·) implies that Vs(β(s, ·)) ≥ Vs(α(s, ·)). Therefore, B finds

it strictly optimal to continue at time s whenever A does.
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5.2 Sophisticated agents: A counterexample

With sophisticated agents, the multiple selves (one for each time) of an agent play an equilib-

rium where, at each time, exactly one of the selves makes a single move (a formal definition

is given in Section 5.3). Consider the following sequence of cash flows

1, −M,
M

n
,
M

n
, . . . ,

M

n
, 0, 0, . . .

where M = 10, say, n is a large integer, and there are exactly n+ 1 periods where the cash

flow equals M
n

.

Agent A is time–consistent with discount function α(t) = 1
2t

. As is easily checked, A opti-

mally takes the first cash flow and stops before getting −M .

Agent B has the same discount function as A at period 0 but suddenly becomes perfectly

patient after period 1. Formally, β(0, t) = 1
2t

for all t ≥ 0 and β(s, t) = 1 for all s > 0 and

t ≥ s. If B does not stop at time zero, his Period-1 self optimally incur the loss −M in order

to get future total benefits close to (n + 1)M/n > M . This continuation is strictly worse,

seen from the perspective of Period-0 B, than stopping at time zero. The more patient agent,

B, stops at Period 0, while the less patient, A, stops at Period 1.

5.3 Sophisticated agents with Decreasing Patience

We now assume that time is discrete, with final period t̄. Cash flows {u(t)}t≤t̄ follow any

arbitrary (possibly non Markovian) process with finite unconditional and conditional expec-

tations. We focus on pure-strategy equilibria: at each time s, the s-self of the agent optimally

decides whether or not to interrupt the cash flows, if no previous self has already done so,

given the strategy profile of his future selves. Formally, let T = {0, 1, . . . , t̄} denote the set

of periods, and Ht denote the set of cash-flow histories from time 0 to time t excluded.29

The set of outcomes is then given by Ω = Ht̄+1. A pure-strategy equilibrium is a binary

map e : {(t, h) : t ∈ T, h ∈ Ht} 7→ {C, S} that determines, for each t and h ∈ Ht, whether

the t-self of the agent continues (C) or stops (S), given that previous selves have continued.

Optimality requires that e(t, h) = C only if the value function conditional on continuing is

positive. (For simplicity, we rule out here any termination value, so that stopping yields

zero.) We also assume, to pin down the equilibrium, that any indifferent agent stops. With

these assumptions, the equilibrium is unique and can be computed by backward induction.

29By convention, we assume that at time t, the agent must decide whether to continue before observing the

time t cash flow. The opposite convention, where current-period uncertainty is resolved before the agent’s

decision to continue, does not affect the analysis.
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For s ≤ t, let α(s, t) denote the discount factor of the s-self at time t. Let S(α) denote

the set of pairs (t, h), with h ∈ Ht, at which the agent stops, in equilibrium. This set is

completely determined by backward induction, and is independent of play history up to time

t (excluded): whether the t-self decides to continue or stop depends only on the behavior

of his future selves, not one the decisions or time preferences of his past selves. If ω ∈ Ω

denotes the realized sequence of cash flows, let ωt ∈ Ht denotes the truncation of ω up to

time t. The equilibrium stopping time τα of an agent with discount function α is given by

τα(ω) = min{t : (t, ωt) ∈ S(α)}.

Let also ταt denote the stopping time of the agent restricted to ταt ≥ t, i.e., when all selves

before time t are forced to continue. From the previous observation, we have

ταt (ω) = min{t′ : (t′, ωt
′
) ∈ S(α) and t′ ≥ t}.

The stopping times are stochastic because the cash-flow histories (ωt) are stochastic.

For any s ≤ t and history h ∈ Ht, let V̄ t
s (h) denote the continuation value of the s-self of the

agent, from time t onwards, if all selves before time t are forced to continue, and cash-flow

history h has been realized. In particular,

V̄ t
s (h) = E

[
ταt −1∑
t′=t

α(s, t′)u(t′)|h

]
,

where by convention the sum equals zero if the index set is empty, and where τ = t̄ + 1 if

the agent never stops.

Given our counterexample, a positive result on the stopping behavior of sophisticated agents

must involve additional restrictions. We shall impose the following condition.

Definition 3 (Decreasing Patience) The discount bifunction α exhibits decreasing

patience if, for any s < s′, α(s′, ·) ≺ α(s, ·) on the time interval T ∩ [s′, t̄]:

α(s, t)

α(s′, t)
is increasing in t for t ≥ s′.

It is easy to see that the property hold for the two most popular ways of modeling time-

inconsistency.30

30Prelec (2004) introduces a similar condition which he calls “decreasing impatience.” The difference in

terminology comes from our different viewpoints: the agent exhibits more impatience between two dates

as he gets closer to the earlier of the two dates, according to our patience ordering (that is what we call

decreasing patience). However, fixing the time at which the agent sits, he exhibits less impatience between

any two dates separated by a fixed duration, as these dates get further away in time. The conditions are

consistent whenever α(s, t) = α̃(t− s) for some function α̃ : T → R+.
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Example 1 (Hyperbolic Discounting) Decreasing patience holds for hyperbolic dis-

counting, defined as

α(s, t) = 1/(1 + k(t− s))

for t > s, where k is some positive parameter.

Example 2 (Quasi-Hyperbolic Discounting) Decreasing patience holds for quasi-hyperbolic

discounting (also referred to as β-δ discounting), defined as

α(s, t) = 1 for t = s and

α(s, t) = β δt−s for t > s,

where δ ∈ (0, 1) and β ∈ (0, 1).

To clarify the notation, we let V̄ t
s (h;α) denote the value function V̄ t

s (h) for agent α.

Theorem 6 Suppose that α and β exhibit decreasing patience and β �inc α. Then,

S(β) ⊂ S(α)

(thus τβ ≥ τα) and, for all (s, h) with h ∈ Hs, V̄ s
s (h; β) ≥ V̄ s

s (h;α).

5.4 Comparing naive, sophisticated, and partially sophisticated

agents

It is easy to see that between a sophisticated and a naive agent with the same discount

bifunction α, the sophisticated agent always stops before the naive agent. This is because the

naive agent thinks that he is time consistent. Equivalently, he believes that his future selves

will do exactly what he wants them to do, in contrast to the sophisticated agent, who realizes

that he has to compromise with his future selves. Therefore, the naive agent’s perceived value

function must be weakly higher than the sophisticated agent’s, because it is optimal from

his perspective. In particular, whenever the sophisticated agent has a positive continuation

value, so will the naive agent. So he only wants to stop if the sophisticated agent wants

to stop.31 The result below formalizes this observation; τN(α) (τS(α)) denote the optimal

(equilibrium) stopping time of a naive (sophisticated) agent with discount function α.

31This argument is reminiscent of the control-sharing effects in Strulovici (2010): an individual incentives

to pursue experimentation are always higher if he is a dictator than if he shares control with other members

of society (see Theorems 1 and 8 in that paper). The relevant interpretation here is that the naive agent

erroneously believes that he is a dictator over his future selves.
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Proposition 9 Given any discount bifunction α(s, t), τS(α) ≤ τN(α) almost surely.32

Using Theorem 6, we could extend this result to partial sophistication. Suppose that a

time-inconsistent agent has a β-δ discount function. O’Donoghue and Rabin (2001) propose

a model of partial sophistication in which the agent believes, at any time s, that his future

self at time s′ > s has the discount function α̂(s′, t) = 1 for t = s′ and α̂(s′, t) = β̂δt−s
′

for

t > s′ and some β̂ ∈ [β, 1]. The case β̂ = 1 corresponds to a naive agent, while β̂ = β (the

true value) corresponds to a fully sophisticated agent. Thus, sophistication varies inversely

with β̂. We denote by τβ̂ the stopping time of an agent whose sophistication coefficient is β̂.

Proposition 10 If two agents have the same quasi-hyperbolic discount function α but dif-

ferent levels of sophistication, the more sophisticated agent will stop earlier, i.e., if β̂′ > β̂′′,

then τβ̂′ ≥ τβ̂′′.

Proof. At any time s, the agent with sophistication coefficient β̂ ∈ [β, 1] perceives the

value of the stopping process in the same way as a (fully) sophisticated agent with the

discount function γβ̂, where γβ̂(s, t) = α(s, t) for all t ≥ s, and γβ̂(s′, t) = 1 for t = s′ > s

and γβ̂(s′, t) = β̂δt−s
′

for t > s′. Note that γβ̂ exhibits decreasing patience in the domain

{(s′, t) : t ≥ s′ ≥ s} and that γβ̂′ �inc γβ̂′′ on the same domain. Therefore, by Theorem 6,

if V̄ s
s (h; γβ̂′′) > 0 then V̄ s

s (h; γβ̂′) > 0. So the less sophisticated will continue if the more

sophisticated agent decides to continue. �

5.5 Application: Social Experimentation and Altruism

It is well known in the dynamic social choice literature that pure altruism (i.e., a generation

takes into account the fact that later generations care about even later generations) results in

time inconsistency.33 For example, consider a dynastic model where each generation lives for

one period, and let xt denote the vector of goods consumed by the time-t generation. This

vector could include, among other items, the pollution level in period t, and hence embed

trade-offs between the production of perishable goods and the production of long-lasting

pollution. Suppose that each generation cares about the utility of future generations at a

decaying exponential rate: using Ut to denote the total utility of the time-t generation, and

32In both this result and in Proposition 10, we assume that the payoffs received over time do not vary

with the sophistication of the agents. In particular, we assume that the termination values equal zero in

both cases. When stopping involves the agent moving on to some other activity, and if that activity is also

subject to time consistency issues, then we have a situation where the termination value of a project is itself

a dependent on the agent’s sophistication; in such a situation the result can be overturned.
33See, e.g., Andreoni (1989) and Saez-Marti and Weibull (2005).
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u(·) the immediate utility that it receives from immediate consumption of xt, we have

Ut = u(xt) +
∑
t′>t

γt
′−tUt′

for some discount factor γ. This formula, which holds for each t, implies a time-inconsistent

β-δ discount function in terms of the consumption stream, given by

Ut = u(xt) +
1

2

∑
t′>t

(2γ)t
′−tu(xt′).

(See Saez-Marti and Weibull (2005) for the derivation.) This utility function is well-defined

provided γ < 1/2. Therefore, a decision maker who, at each period, represents the interests

of the current generation, will make decisions taking into account the interests of future

generations: the situation is formally equivalent to dynamic decision making by a time-

inconsistent social planner.

Social discounting is of primary importance in evaluating the optimal level of experimentation

in social/public policy. An application of particular interest concerns policies towards global

warming (see, e.g., Karp (2005)). What is the equilibrium amount of social experimentation

when the social planner exhibits time inconsistency, and how does it vary with patience? As

we pointed out in Section 2.6, experimentation is a stochastic pure stopping problem when

it is modeled as a bandit problem with one risky arm and one save arm; thus Theorem 6

provides a general answer: if the social planner exhibits decreasing patience, such as β-δ

discounting, then increasing his overall patience level will result in an increase in social

experimentation.34

6 Conclusion

Whether they are financial, economic, or psychological, time preferences play a central role

in economic decisions. This paper provides a new methodology to systematically analyze the

impact of discount rates on agents’ values and decisions, yielding insights into the validity

of common intuition on this issue. We provide examples with counter-intuitive outcomes

arising in some plausible economic environments, as well as new conditions guaranteeing

34Another widely studied source of time inconsistency, in dynamic political models, comes from the fact

that elected representatives and pivotal voters typically change over time (see Persson and Svensson (1989)

and Tabellini and Alesina (1990)). This time inconsistency is particularly important in the context of social

experimentation, as noted by Strulovici (2010) and Callander and Hummel (2013). Theorem 6 shows that

as all decision makers become more patient, social experimentation lasts longer, provided that the sequence

of discount functions used by the successive decision makers in office exhibits decreasing patience.
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positive results in other, at least as natural, environments. Therefore, the main lesson of the

paper is not simply that “lower discount rates imply higher valuation and later stopping.”

Instead, we provide a road map for economists that identify environments under which such

intuitive statements hold, as well as key mechanisms that could lead to its violation.

Our analysis has been mostly limited to a single agent, although the arguments used for time

inconsistent agents illustrate how our methodology can be employed to analyze multi-agent

settings. In particular, our techniques provide a way of analyzing supermodular games in

which the timing decisions of all agents exhibit complementarities, with or without cash-flow

management. One promising application concerns the analysis of partnerships in stochastic

matching models. For example, McAdams’ (2011) description of how discounting affects the

length of partnerships is consistent with our results, while Fujiwara-Greve and Yasuda (2011)

obtain similar comparative statics results with respect to outside options in dynamic part-

nerships.35 More generally, our techniques could be applied to analyze models of multi-agent

search and experimentation; exploring those connections is a natural and promising area for

future research.

7 Appendix

Proof of Theorem 1

Zero Termination Value We first prove Theorem 1 when the termination value is zero. The

proof is based on several lemmas.

Lemma 1 Let τ be any optimal stopping time for the stopping problem (2). Then

P

{
ω ∈ Ω : t ≤ τ and E

[∫ τ

t

α(s)usds|Ft
]
< 0

}
= 0

Proof. Let Aε = {ω ∈ Ω : t ≤ τ and E
[∫ τ
t
α(s)usds|Ft

]
≤ −ε} for ε ≥ 0. We need to

show that P (A0) = 0. It suffices to show that P (Aε) = 0 for all ε > 0 since this implies that

P (A0) = P (∪∞n=1A1/n) ≤
∑∞

n=1 P (A1/n) = 0. Suppose on the contrary that P (Aε) > 0 for

some ε > 0, and let τ ∗ = t1ω∈Aε + τ1ω/∈Aε . Since Aε is Ft measurable, τ ∗ is a stopping time.

35The authors also observe that the comparative statics of the present paper holds in their setting.
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Denoting Ω \ Aε by Acε, we have

E
[∫ τ∗

0
α(s)usds

]
= P (Acε)E

[∫ τ∗
0
α(s)usds|Acε

]
+ P (Aε)E

[∫ τ∗
0
α(s)usds|Aε

]
= P (Acε)E

[∫ τ
0
α(s)usds|Acε

]
+ P (Aε)E

[∫ τ∗
0
α(s)usds|Aε

]
≥ P (Acε)E

[∫ τ
0
α(s)usds|Acε

]
+ P (Aε)(E

[∫ τ
0
α(s)usds|Aε

]
+ ε)

= E
[∫ τ

0
α(s)usds

]
+ P (Aε)ε,

which contradicts the optimality of τ . �

Given an optimal stopping time τ for problem (2), we define v : R+ → R by

v(s) = E[us1s<τ ]; (15)

v(s) is the expected payoff rate at time s, where the payoff is zero in the event that one

has stopped before s (i.e., s ≥ τ). By the optimality of τ , Fubini’s theorem applied to

V (α) = E
[∫ τ

0
α(s)usds

]
implies that

V (α) = U(τ(α);α) =

∫ t̄

0

α(s)v(s)ds. (16)

The next result is a simple consequence of the fact that, at every point in time, the expected

payoff of an optimizing agent looking forward must be non-negative.

Lemma 2 For all t in [0, t̄),
∫ t̄
t
α(s)v(s)ds ≥ 0.

Proof. By definition of v,∫ t̄

t

α(s)v(s)ds = E

[∫ t̄

t

α(s)us1s<τds

]

= E

[
E

[∫ t̄

t

α(s)us1s<τ1t<τds|Ft

]]

= E

[
E

[∫ τ

t

α(s)usds|Ft
]

1t<τ

]
.

Optimality of τ and Lemma 1 imply that the inner expectation is almost surely nonnegative

if t < τ . Therefore, the random variable E[
∫ t̄
t
α(s)us1s<τds|Ft]1t<τ is always nonnegative,

and so is its expectation. �

The next lemma is proved in Quah and Strulovici (2009).
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Lemma 3 Suppose that γ and h are integrable real-valued functions defined on some compact

interval [x′, x′′] of R, with γ increasing. If
∫ x′′
x
h(s)ds ≥ 0 for all x in [x′, x′′], then∫ x′′

x′
γ(s)h(s)ds ≥ γ(x′)

∫ x′′

x′
h(s)ds. (17)

We now conclude the proof of Theorem 1 for the case of a zero termination value. First,

note that V (β) ≥ V (α) since V (β) ≥ U(τ(α); β), V (α) = U(τ(α);α) and

U(τ(α); β) =

∫ t̄

0

β(s)v(s)ds =

∫ t̄

0

β(s)

α(s)
α(s)v(s)ds ≥

∫ t̄

0

α(s)v(s)ds = U(τ(α);α). (18)

The inequality follows from Lemmas 2 and 3 and the last equality from (16).

It remains for us to establish that the smallest optimal stopping times are ranked, i.e.,

τ(β) ≥ τ(α) almost surely. Suppose on the contrary that the set Ω′ = {ω : τ(β) < τ(α)}
has strictly positive probability. By mimicking at time τ(β) the argument that gave us (18),

we have on Ω′ (which is Fτ(β)-measurable)

E

[∫ τ(α)

τ(β)

β(s)usds

∣∣∣∣∣Fτ(β)

]
≥ β(τ(β))

α(τ(β))
E

[∫ τ(α)

τ(β)

α(s)usds

∣∣∣∣∣Fτ(β)

]
a.s.

This gives a lower bound for the continuation value with discount β at time τ(β), whenever

τ(β) < τ(α). Since τ(α) is the essential infimum of the optimal stopping times for the

discount function α, E[
∫ τ(α)

τ(β)
α(s)us|Fτ(β)] > 0 almost surely on Ω′. Otherwise the agent

would be weakly better off stopping at τ(β) when the event Ω′ occurs, on a set of positive

probability. Since the ratio βt/αt is also strictly positive for all t, this implies that

E

[∫ τ(α)

τ(β)

β(s)usds 1Ω′

]
> 0. (19)

Therefore, the stopping time max{τ(α), τ(β)} strictly dominates τ(β) for the discount func-

tion β, contradicting optimality of τ(β).

General Case Here we consider the case of an arbitrary nonnegative termination value

process Gt. By absolute continuity of α(t)Gt, the objective can be reexpressed as

max
τ

E

[∫ τ

0

α(s)

(
usds+ dGs +Gs

dαs
αs

)]
,

where the last two integrals are Lebesgue-Stieltjes integral.36 This objective is similar to the

case of a zero termination value, except that the new utility flow now directly depends on α

36See, e.g., Royden (2007) for a definition. The integrals are well defined whenever the integrating process

has bounded variation and the integrand is measurable and bounded.
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through the third term Gs
dαs
αs

. Optimality of τ implies that

E

[∫ τ

t

α(s)

(
usds+ dGs +Gs

dαs
αs

)]
≥ 0

for all t < τ . We use the following generalization of Lemma 3:

Lemma 4 Let H be a stochastic process of bounded variation such that E[Ht] ≤ E[Ht̄] for

all t ∈ [0, t̄).37 Then, for any positive, increasing, deterministic process γ, we have

E

[∫ t̄

0

γsdHs

]
≥ γ(0)E[H(t̄)−H(0)].

The proof is by integration by parts: we have∫ t̄

0

γsdHs = γ(0)(H(t̄)−H(0)) +

∫ t̄

0

(Ht̄ −Hs)dγs.

Taking expectations proves the lemma. Applying the lemma to γ = β/α and to the process

H defined (up to a constant) by

dHs = α(s)

(
usds+ dGs +Gs

dαs
αs

)
1s<τ ,

we obtain

E

[∫ t̄

0

β(s)

(
usds+ dGs +Gs

dαs
αs

)]
≥ E

[∫ t̄

0

α(s)

(
usds+ dGs +Gs

dαs
αs

)]
. (20)

Since β/α is increasing, dβs
βs
≥ dαs

αs
for all s (the inequality holds even when β and α are

discontinuous). This, combined with (20) and the fact that G is nonnegative, implies that

E

[∫ τ

0

β(s)

(
usds+ dGs +Gs

dβs
βs

)]
≥ E

[∫ τ

0

α(s)

(
usds+ dGs +Gs

dαs
αs

)]
≥ 0.

Therefore, V (β) ≥ V (α). The rest of the proof is similar to the case of a zero termination

value: on the set Ω′, we can show that continuing until at least τ(α) is strictly beneficial, using

an inequality similar to (20) for continuation values evaluated at time τ(β) and contradict

optimality of τ(β). �

Proof of Proposition 2

37If t̄ is infinite, Ht̄ is the limit of Ht as t→∞, and is assumed to exist a.s.
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Suppose that α ≺ β. Theorem 1 implies that τ(α) ≤ τ(β) with probability 1. This means

that, at time τ(α), continuing until τ(β) is optimal for agent β and in particular yields

positive value. Since β ≺ γ, by an argument analogous to that leading to (18), we know that

the value of continuing until τ(β) is positive for the γ agent, and thus preferred to stopping

at τ(α). �

Counterexample of Section 3.2

Suppose that the agent discounts future cash flows at rate r. The Bellman equation for

x ∈ [0, 1] is given by

0 = max{−rV (x) + 1 + V ′(x);−rV (x)− 0.01 + 2V ′(x)},

where the first term corresponds to the control λ = 1 and the second term to λ = 2. Thus

it is optimal to choose λ = 2 if and only if

V ′(x) ≥ 1.01. (21)

We will check that for r small enough, the solution to the HJB equation is maximized by

the second term, which corresponds to control λ = 2. The general solution to

−rV (x)− 0.01 + 2V ′(x) = 0

is

V (x) =
−0.01

r
+ c exp

(rx
2

)
. (22)

The boundary condition is V (1) = M [1 − exp (−rT )]/r, where T is the time it takes for x

to go from 1 to 10 under control λ = 1 (so T = 9). This implies that

c =
e−r/2

r

[
M
(
(1− e−rT

)
+ 0.01

]
, (23)

and hence that

V ′(x) =
exp (r(x− 1)/2)

2

[
M
(
1− e−rT

)
+ 0.01

]
≥ exp (−r/2)

2

[
M
(
1− e−rT

)
+ 0.01

]
,

(24)

which is uniformly, arbitrarily large for M large and r fixed. In particular, at a given discount

rate r̃, there is M̃ such that (21) is satisfied. This shows that the function V defined by (22),

with c defined in (23), and the control λ = 2 solve the HJB equation, and hence setting

λ(x) = 2 for all x ∈ [0, 1) is optimal for this agent.38

38From straightforward inspection of the righthand side of (24), one can show the following, sharper result:

for all M > 1, there exists r̄ such that for all r′ < r̄, it is optimal to set λ = 2 for all x ≤ 1.
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On the other hand, for a fixed x̂ ∈ (0, 1) and with M = M̃ , it is clear from (24) that (21)

will be violated if r is sufficiently high above r̃. Such an agent’s optimal control will involve

choosing λ(x) = 1 for at least some x ∈ [0, 1); consequently, she will stop later than the

agent with discount rate r. �

Proof of Theorem 3

Recall that V (x, r) is the continuation value at time 0 when the state is x and the discount

rate is r. Our first objective is to prove the following result.

Lemma 5 V (x, r) is submodular in (x, r).

Proof. Given the discount rate r, we denote the optimal control at state x̂ and time t by

λ(x̂, t) and let τ(x) denote the optimal stopping time with initial state x. We claim that if

y > x, then

E

[∫ τ(y)

0

se−rsu(ys, λ(ys, s), s)ds

]
≥ E

[∫ τ(x)

0

se−rsu(xs, λ(xs, s), s)ds

]
(25)

To see this, define

hs = E
[
u(ys, λ(ys, s), s)1τ(y)≥s − u(xs, λ(xs, s), s)1τ(x)≥s

]
, (26)

where the expectation is taken with respect to the Wiener measure (the probability measure

generated by the paths of Brownian Motion). Notice that for all t,
∫∞
t
e−rshsds ≥ 0. This

is because (proceeding as in the proof of Lemma 2) we can write∫ ∞
t

e−rshsds = E
[
V (yt, t, r)1t≤τ(y) − V (xt, t, r)1t≤τ(x)

]
;

since V (yt, t, r) ≥ V (xt, t, r) ≥ 0 and 1t≤τ(y) ≥ 1t≤τ(x) (the latter because it takes more

time to hit the lower boundary when starting from a higher level), the difference inside

the expectation is nonnegative almost surely and, therefore, so is the expectation. Using

Lemma 3, this time with the function γ(s) = s, we conclude that∫ ∞
0

se−rshsds ≥ 0.

This inequality can in turn be rewritten as (25).

By a generalized envelope theorem (see Milgrom and Segal, 2002),39

Vr(x, r) =
∂

∂r
E

[∫ τ

0

e−rtu(xt, λt, t)dt

]
,

39The parameter r does not affect the distribution of the underlying process, which justifies the application

of the theorem.
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evaluated at the optimal controls λ and τ . Computing the derivative explicitly,

Vr(x, r) = E

[∫ τ

0

(−t)e−rtu(xt, λt, t)dt

]
.

This implies that for y > x,

Vr(y, r)− Vr(x, r) = −E

[∫ τ(y)

0

se−rsu(ys, λ(ys, s))ds

]
+ E

[∫ τ(x)

0

se−rsu(xs, λ(xs, s))ds

]
,

which is less than zero from (25). �

We can now conclude the proof of Theorem 3.

Proof. The smoothness of the value function V implies that it satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation.

0 = sup
λ

{
u(x, λ, t) + µ(x, λ, t)Vx(x, t, r) + Vt(x, t, r) +

1

2
σ2(x)Vxx(x, t, r)− rV (x, t, r)

}
(27)

for all x > a(t). We first make a change of variable, replacing the initial control variable by

a direct determination of the drift. Let υ(x,m, t) = sup{u(x, λ, t) : µ(x, λ, t) = m}, with

υ(x,m, t) = −∞ if the defining set is empty. Thus, υ(x,m, t) is the maximal utility one

can achieve at (x, t) while providing a drift m to the state. We assume that this maximum

is achieved whenever υ is finite, which is easy to guarantee by simple assumptions on the

primitives.40 The optimal control problem can be re-expressed in terms of m:

0 = sup
m

{
υ(x,m, t) +mVx(x, t, r) + Vt(x, t, r) +

1

2
σ2(x)Vxx(x, t, r)− rV (x, t, r)

}
. (28)

Any drift-control process {mt} that achieves at all times the supremum in (28) is an optimal

control. Reciprocally, a control process that fails to achieve the supremum in (28) on a set of

positive measure is suboptimal.41 We assume that the set of maximizers of (28) is nonempty

and compact for all (x, t).42 Let m(x, t, r) be the smallest maximizer of (28) for state x, time

t, and discount r. By Lemma 5, V (x, t, r) is submodular in (x, r), so the objective function

in (28) is submodular in (m, r). By standard monotone comparative statics arguments (see

Milgrom and Shannon (1994)), we know that m(x, t, r) is decreasing in r.

40For example, if µ and u are continuous in λ and λ lies in a compact set, then the set {λ : µ(x, λ, t) = m}
is closed and therefore compact, and λ 7→ u(x, λ, t) achieves its maximum on that set.

41Precisely, one may show that any HJB-maximizing control strictly dominates any control that does not

solve (28) for a time set of positive measure.
42This is guaranteed if υ is continuous in m and m lies in a compact set for each (x, t). This, in turn, is

guaranteed, by the maximum theorem, if u and µ are continuous in λ and λ lies in a compact set.
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We now claim that X(r), the path obtained when using the control m, is decreasing in

r. Given an initial state x, let x′t be some realized optimal trajectory for rate r′ (and

xt the corresponding optimal path for r). For r < r′ and for all t > 0, we know that

m(x′t, t, r) ≥ m(x′t, t, r
′). Given this, the paths of xt and x′t cannot cross because, given that

they are continuous, they must first touch, and the moment they touch (i.e. have the same

value of the state variable at the same time), the path of the lower discount rate receives

a higher drift.43 Thus X(r) is decreasing in r. Lastly, we know from Theorem 2 that the

boundary a(r) is increasing in r. The previous observations imply that xt(r) hits a(r) later

than xt(r
′) hits a(r′), path by path, so τ(r) ≥ τ(r′). �

Proof of Proposition 5

We shall prove a bit more than what is stated in the proposition. We shall identify an

optimal control function λ(x, t, r) that is decreasing in r and also (in order to properly link

up this result with Theorem 3) we shall also show that µ(x, λ(x, t, r), t) = m(x, t, r), where

m is defined in the proof of Theorem 3.

It is straightforward to check that the objective function in (27) is supermodular in λ and has

decreasing differences in (λ, r), given our assumptions and using the submodularity of V in

(x, r) (Lemma 5). Therefore, the set of maximizers of (27) form a lattice and are decreasing

in the strong set order (see Topkis (1978) or Milgrom and Shannon (1994)). Let λ(x, t, r) be

the smallest element in the set of maximizers; λ(x, t, r) is then decreasing in r.

To see that µ(x, λ(x, t, r), t) = m(x, t, r), note that, given (x, t), there must be λ̃ such that

µ(x, λ̃, t) = m(x, t, r) and λ̃ must also maximize the objective function in (27). Therefore,

λ̃ ≥ λ(x, t, r), by the definition of λ(x, t, r). Since µ is increasing, m(x, t, r) = µ(x, λ̃, t) ≥
µ(x, λ(x, t, r), t). On the other hand, because λ(x, t, r) maximizes the objective in (27),

µ(x, λ(x, t, r), t) must maximize the objective in (28), so µ(x, λ(x, t, r), t) ≥ m(x, t, r) by the

definition of m. �

Extension of Section 3.2 to General Discount Functions

Suppose that α and β have absolutely continuous logarithms, so α(t) = α(0) exp
(
−
∫ t

0
rα(s)ds

)
,

with a similar expression for β. In this case, α ≺ β is equivalent to rβ(t) ≤ rα(t) for all

t ∈ T . Let

γν(t) = α(t)

(
β(t)

α(t)

)ν
,

43Continuity plays an important role in this argument. In discrete time, or if jumps were allowed, the

paths could cross each other.
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for ν ∈ [0, 1]. It is easy to check that γ0 = α, γ1 = β, and γν ≺ γν′ for all ν ≤ ν ′.

Lemma 5 can then modified as follows: let V (x, ν) denote the value function of an agent

with discount function γν, starting from state x; then, V (x, ν) is submodular. Indeed, the

envelope theorem implies that

∂V (x, ν)

∂ν
= E

[∫ τν

0

(
− log

(
β(t)

α(t)

))
γν(t)u(xt, λν(t))dt

]
.

To show that Vν(y, ν)− Vν(x, ν) ≤ 0 for y ≥ x, we use the same argument as in Lemmas 5,

with the difference that, instead of
∫∞

0
se−rshsds ≥ 0, we show that∫ ∞

0

log

(
β(s)

α(s)

)
γν(s)hsds ≥ 0.

The result is obtained by an application of Lemma 3 to the increasing function s 7→
log (β(s)/α(s)).

The HJB equations are modified only by replacing r with the time varying rate rν(t) =

rα(t) + ν(rβ(t) − rα(t)). The claims in Theorem 3 and Proposition 5 can then be extended

to the case of general discount functions, with the proof proceeding in the same way as the

proof we have already given for the case of constant discount rate. �

Proof of Theorem 4

We first show that if it is strictly optimal for A to continue beyond t = 0, then it is also

strictly optimal for B to do so. Let Vt = E[
∫ τ(α)

t
α(s)usds|Ft] denote the value function of

agent α at time t < τ(α). Optimality of τ(α) implies that E[Vt1t<τ(α)] ≥ 0 and, hence (see

Lemma 2) ∫ t̄

t

E[α(s)us1s<τ(α)]ds ≥ 0

for all t ≤ t̄. Since Agent B can always choose the stopping time τ(α), we have (using, again,

the same manipulation as in the proof of Theorem 1),

V (β) ≥
∫ t̄

0

E

[
β(s)

α(s)
α(s)us1s<τ(α)

]
ds ≥

∫ t̄

0

E

[
β(s)

α(s)

]
× E[α(s)us1s<τ(α)]ds,

where the second inequality comes from condition (14) evaluated at t = 0. The func-

tion E[β(s)/α(s)] is increasing in s, since β(s)/α(s) is increasing path by path. Applying

Lemma 3, we conclude that V (β) ≥ V (α). In particular, if V (α) is strictly positive, then

so is V (β); thus the β agent will not stop at t = 0 if agent α does not stop at t = 0. For

any time t̃ > 0 and realization such that τ(α) > t̃, one shows similarly that τ(β) > t̃, using
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again (14), this time evaluated at t = t̃, and the fact that E[β(s)/α(s)|Ft̃] is increasing in s.

We conclude that τ(β) ≥ τ(α) almost surely. �

Proof of Theorem 5

The proof is identical to that of Theorem 4, except for the following. Single-crossing of the

utility function u and monotonicity of the ratio β/α with respect to x (condition (b)) imply

that

E

[
β(xs, s)

α(xs, s)
α(xs, s)ū(xs)1s<τ

]
≥ β(x̄, s)

α(x̄, s)
× E[α(xs, s)ū(xs)1s<τ ],

where x̄ is a crossing point of u. Condition (a) then implies that we can apply Lemma 3 as

in the proof of Theorem 4, and reach the same conclusion. �

Proof of Theorem 6

We start with the following lemma.

Lemma 6 Suppose that α exhibits decreasing patience. Then for any s ≤ t and history

h ∈ Ht, we have V̄ t
s (h) ≥ 0.

Proof. We show this by backward induction on s that for any t ≥ s and h ∈ Ht. For s = t̄

(and thus, t = s), the final self can always avoid the last cash flow and get 0, which proves

the condition, since ταt̄ is chosen by the last self. Suppose now that the induction hypothesis

holds for all s′ > s. We will show that it holds for s. For t = s, the inequality holds because

the s self can always interrupt cash flows immediately and get 0, and would indeed do so

if his present value, conditional on continuing, were negative. Now suppose that t > s and

h ∈ Ht. We have

V̄ t
s (h) =

t̄∑
t′=t

α(s, t′)v(t′),

where v(t′) = E
[
u(t′)1t′<ταt

∣∣h]. We now show that for all t̃ ≥ t,

t̄∑
t′=t̃

α(t, t′)v(t′) ≥ 0. (29)

We can write this expression as

E

[
1t̃≤ταt

ταt −1∑
t′=t̃

α(t, t′)u(t′)

∣∣∣∣∣h
]

= E

1t̃≤ταt E

 ταt̃ −1∑
t′=t̃

α(t, t′)u(t′)

∣∣∣∣∣∣ h̃
∣∣∣∣∣∣h

 ,
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where h̃ is the history at time t̃, and we use the fact that ταt = τα
t̃

whenever t̃ ≤ ταt (see

observation above). The inner expectation is equal to V̄ t̃
t (h̃) and is nonnegative, by the

induction hypothesis. This shows (29).

Applying the discrete version of Lemma 3 (see Quah and Strulovici (2009)), and using that

α(s, ·) � α(t, ·), we conclude that

t̄∑
t′=t

α(s, t′)v(t′) ≥ α(s, t)
t̄∑

t′=t

α(t, t′)v(t′) ≥ 0,

which proves the induction step and the lemma. �

We can now prove the theorem.

Proof. Let Ss(α) denote the set of pairs (t, h) in S(α) such that t ≥ s, i.e., the pairs of

time-histories, after time s, at which the agent stops. We show by backward induction on s

that Ss(β) ⊂ Ss(α). The inclusion holds as an equality for s = t̄, since both agents continue

at t̄ if and only if the expected utility of that period is positive, and get that expected utility,

multiplied by their discount factor. Suppose that the inclusion holds for all s′ > s. We will

show that it also holds for s. Consider any h ∈ Hs. If A (the α agent) stops at (s, h), then

there is nothing to show. Suppose that A continues at (s, h). We need to show that B (the

β agent) also continues. Since A continues, we have, conditional on h, ταs = ταs+1, and

E

[
ταs −1∑
t=s

α(s, t)u(t)

∣∣∣∣∣h
]
> 0.

If B continues, he gets

E

 τβs+1−1∑
t=s

β(s, t)u(t)

∣∣∣∣∣∣h
 . (30)

By the induction hypothesis, τβs+1 ≥ ταs+1 = ταs . Therefore, (30) may be reexpressed as

E

[
ταs −1∑
t=s

β(s, t)u(t) + V̄ ταs
s (h(ταs ); β)

∣∣∣∣∣h
]
,

where h(ταs ) is the (random) realized history up until time ταs . We show that the first

term is strictly positive and that the second term is nonnegative. The first term equals∑t̄
t=s β(s, t)v(t), where v(t) = E[u(t)1t<ταs |h]. We now show that for all s′ ≥ s,

t̄∑
t=s′

α(s, t)v(t) ≥ 0. (31)
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Proceeding as in Lemma 6, that expression is equal to

E

1s′≤ταs E

 ταs′−1∑
t=s′

α(s, t)u(t)

∣∣∣∣∣∣h′
∣∣∣∣∣∣h

 ,
where h′ is the history at time s′. The inner expectation is equal to V̄ s′

s (h′;α), and is non-

negative by Lemma 6. This shows (31). An application of the discrete version of Lemma 3,

along with the fact that β(s, ·) � α(s, ·), then shows that

t̄∑
t=s

β(s, t)v(t) ≥
t̄∑
t=s

α(s, t)v(t) (32)

and, therefore, that the first term is strictly positive. The second term is nonnegative,

because V̄ t
s (h; β) is always nonnegative, from Lemma 6.44 Therefore, it is strictly optimal

for B to continue at (s, h), which shows the induction step. Finally, (32) implies that

V s
s (h; β) ≥ V s

s (h, α), which shows the second part of the theorem. �
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