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Abstract

This paper studies social learning by a succession of forward-looking agents who

endogenously choose their information according to the exploration-exploitation trade-

off at the heart of the experimentation paradigm. We analyze social experimentation

with a continuum of interdependent technologies, emphasizing the distinction, fun-

damental in the literature on innovations, between radical and marginal innovations.

We characterize alternating cycles between radical and marginal innovations, and find

that radical innovation must stagnate in the long run for all parameters of our model.

We also establish a negative relationship between past innovation successes and the

magnitude of radical innovations.
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1 Introduction

Modeling the dynamics of technological innovation is challenging: one must include research

and experimentation by individual firms, the transmission of knowledge across firms, and the

fact that the set of available technologies is time dependent, virtually unlimited, and entails

highly uncertain payoffs. All these aspects are necessary, for instance, to study whether

radical innovation is self-sustainable in the long run or requires external intervention, a

question that has received longstanding interest from economists and policymakers alike.1

One source of inspiration to approach this question comes from social learning models which

have served since Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), as the

main paradigm to analyze knowledge accumulation by successive agents, from the adoption

of new technologies to cultural change. Those models examine the asymptotic efficiency and

fragility of social learning under restrictive assumptions (myopic agents, exogenous signals,

stationary and limited choice sets), however, which make them ill-suited to study important

knowledge accumulation processes, such as technological innovation.

This paper draws on the experimentation, social learning, and innovation literatures to ana-

lyze the dynamics of radical and marginal innovations. Unlike social learning (or “herding”)

models, where each agent learns only from the actions of his predecessors and an exogenous

signal, we model firms as two-period agents, with an incentive to explore new technologies in

their “young” period and exploit existing ones in their “old” period. Compared to strategic

experimentation models, which typically consider tradeoffs between a pre-specified, single

risky technology and a safe one whose payoff is perfectly known,2 we model technologies as

a continuum of related “arms” of varying risks and costs. This spatial representation allows

us to make the distinction, crucial in the industrial organization literature, between radical

and marginal innovation. We define marginal innovations as convex combinations of existing

technologies, which bear no cost other than the opportunity cost of forgoing the exploitation

of known technologies. By contrast, radical innovations are technologies that lie beyond the

convex hull of existing technologies, and incur an additional investment cost.

1See, e.g., Griliches (1992), Hall (1996), Gordon (2012). Recent press coverage includes Slywotsky (2009),

Zakaria (2011). Policymakers’ interest was highlighted by President Obama’s State of the Union Address in

2011.
2Main references include Bolton and Harris (1999), Keller, Rady, and Cripps (2005), and Keller and Rady

(2010).
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Of central importance, in our analysis, is the interplay between the outcomes of past in-

novations and incentives for future innovation. The question is not only whether radical

innovations take place, but also how radical, or ambitious, those innovations are. We find

that past successes reduce not only the value of radical innovation, but also its incremental

value.3 As a result, past successes result in less frequent and less ambitious innovations.

To compare the values of radical and marginal innovations, we partition the technological

space according to units, i.e., intervals whose interior consists of unexplored technologies and

endpoints consist of explored ones. The partition gets finer over time, as more technologies

get explored. The value of innovation of a given unit depends on its width and on the

payoffs of the technologies that delimit it. In addition, it may depend on technologies

outside of the unit only through the highest known payoff. This quasi-independence from

outside technologies results from the assumption that payoffs are drawn from a Brownian

motion with drift: the conditional payoff distribution within any unit, given the payoffs at

its endpoints, is independent from all technologies outside of the interval. Thus, while our

model allows for payoff correlation across technologies, the set of feasible technologies can

be partitioned, after any finite history, into units that are similar to the independent arms

arising in the standard multi-armed bandit problem, up to the aforementioned dependence

on the highest known payoff.

Standard intuition from the social learning literature would suggest that whether radical

innovation is sustained in the long run might depend on the parameters of the model and/or

on the particular realization of the signals (here, payoffs) received by the agents. Could the

drift of the Brownian motion, which determines the expected payoff of new technologies,

influence the answer? Surprisingly, however, we find that radical innovation stagnates for

all histories, regardless of the drift and cost of radical innovation. There is no fragility in

this result: whether big or small, shocks do not affect long-run stagnation. The intuition

for the result may be summarized as follows: if recent radical innovations have been disap-

pointing relative to known technologies, which must eventually happen with probability 1,

then because such radical innovations serve as the basis of further radical innovation, agents

prefer to stay within the confines of marginal innovation. Therefore, a form of informational

cascade arises, in which no agent accepts to bear the cost of radical innovation, and the

outlook for further radical innovation is frozen and negative.

3To avoid confusion with “marginal” innovation, we use the term “incremental” to describe derivatives

of benefits and cost functions.
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The dynamics of innovation may be more fully described as follows. While marginal inno-

vation takes place, the informational (“option”) value of marginal innovation decreases, and

this may spur a new cycle of radical innovations. As new technologies become available, how-

ever, the option value of marginal innovation gets replenished, making marginal innovation

more attractive, and radical innovation gives again way to marginal innovation, generating a

new innovation cycle. Eventually, known technologies prevail over radical innovation, which

is then abandoned forever.

Our paper thus characterizes the short and long run behavior of innovation, showing the

emergence of finitely many cycles of radical and marginal innovations. We also show that

innovations and beliefs have a well-defined limit, despite the fact that both the technology

and payoff spaces are non compact. Showing this innocuous-looking result is actually chal-

lenging. One technical contribution of our paper is to extend to an unbounded domain (both

for the domain of technologies and the range of their payoffs) the techniques developed by

Easley and Kiefer (1988) to show the existence of a well-defined limit for agents’ beliefs

resulting from experimentation.

The papers closest to ours are Jovanovic and Rob (1990) and Callander (2011). Our model

shares with those works the use of Brownian motion as the source of payoff uncertainty

across related technologies (or “policies”). In those models, however, agents live only for

one period. Therefore, the trade-off between exploration and exploitation, at the heart of

the experimentation literature and of our paper, is absent. Jovanovic and Rob circumvent

this issue by allowing the agent to learn, at some fixed cost, the value of a new “technique,”

and then decide whether to try the new technique or use an old one. Thus, by disentangling

information acquisition from technological choice, that model restores some learning from

otherwise myopic agents. As a result of this and other modeling assumptions, if an agent

chooses a new technique, at any time, then all previous techniques are forever abandoned.

Another consequence is that the size of radical innovation (moving to a new technique) is

independent of past technologies. Our model provides arguably richer and more sophisticated

innovation dynamics than Jovanovic and Rob’s seminal model of innovation over Brownian

paths, and is closer to the spirit of experimentation.4 Callander (2011) takes a different

4In a short extension, Jovanovic and Rob consider the case of two-period agents. That extension contains

one result: for a given common history, if a one-period agent is indifferent between old and new technologies,

a two-period agent will strictly prefer the new one. That result is hard to interpret, however, because agents

with different life spans typically generate different histories. The short and long run dynamics of innovation
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approach: instead of looking for the maximum payoff technology or “policy,” his agents

want to find an ideal policy, whose value is normalized to zero. The goal of those agents is

therefore to find some zero of a Brownian path. Even a myopic agent is willing to try a new

technology, because interpolation between negative and positive values yields an expectation

that is closer to his ideal policy.5

The paper is organized as follows. Section 2 describes the baseline model. Section 3 intro-

duces the concepts of values of radical and marginal innovation. Section 4 investigates the

short-run dynamics of innovation, represented by innovation cycles, and the main stagna-

tion result. Section 5 compares equilibrium innovation dynamics with the socially efficient

path. Section 6 shows that the stagnation result persists in the case of optimistic beliefs.

Section 7 compares our mechanism of stagnation with those that have been presented in the

literature on growth and innovation. All the proofs are in the Appendix, which also contains

an extension to the case in which the cost of radical innovation depends on the outcome of

past innovation, and a micro-foundation of the model.

2 The Model

We introduce an overlapping generations model with the following characteristics. An agent

is born at each period t ∈ N = {0, 1, . . . , }, who lives for two periods, “young” and “old.”

The agent is risk neutral and chooses at each period a technology x in the technological

space X = [0,∞). The payoff f(x) of technology x is initially unknown, except at the origin

where f(0) = 0.6

A young agent inherits from the contemporary old agent the knowledge of all technologies

and payoffs that have previously been tried. We assume that this information transmission

is costless and non-strategic.7 The history ht at time t consists of all technology-payoff pairs

are also left open for that case.
5Because agents are averse to risk, experimentation may still stall, as the benefit from interpolation may

be dominated by the risk resulting from the positive variance of new policies. The dynamics of that paper

are very interesting and also very different from ours.
6The function f(·) could represent utils instead of payoffs, as long as agents are expected-utility maxi-

mizers. One could also consider the larger domain X = R. Radical innovation would then have “left” and

“right” components.
7The older generation is not affected by the choice of the younger one and has therefore no incentive to

manipulate the transmission. It could benefit from selling the information. We discuss patents in Section 7.
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that have been experienced in the past. We let zt denote the highest payoff among explored

technologies, x̄t denote the rightmost explored technology, i.e., the current frontier of the

explored domain, and gt = zt − f(x̄t) ≥ 0 denote the difference, or gap, between the payoffs

of the best explored technology and the frontier technology. The set [0, x̄t] of technologies

that are convex combinations of previously explored ones is called the active domain.

The payoff function f is assumed to follow the distribution of a Brownian motion with drift

κ and volatility σ > 0.8 For simplicity we first analyze the case in which κ = 0, and then

extend our main results to general drifts in Section 6. In the benchmark case, the payoff

of a technology x > x̄t has a normal distribution with mean f(x̄t) and variance (x− x̄t)σ2.

Technologies to the right of x̄t thus have the same expected payoff, and a variance that

increases with their distance from x̄t.

The technology space may be partitioned according to previously tried technologies: the

partition consists of the finitely many bounded intervals whose endpoints have been explored

and whose interior points have not, and of the unbounded interval [x̄t,+∞). A unit is

defined by any such interval along with the values of its endpoint payoffs. The distribution

of payoffs within a given unit is described by a Brownian bridge: it is the distribution of

Brownian motion on some interval with known end values.9 In particular, it is conditionally

independent of the payoff of all observed technology-payoff pairs outside of the unit.

For any bounded unit u, let m (M) denote the smaller (larger) of the two endpoint payoffs,

L the width of the underlying interval, and d = M −m ≥ 0 the difference between endpoint

payoffs. These variables clearly depend on the unit they are attached to, but the reference

to u is omitted when there is no ambiguity. The unbounded unit at time t is denoted u∞,

again omitting the reference to t when there is no ambiguity.

A technology x lying in some bounded unit u with endpoints xl < xr has a normally dis-

tributed payoff with mean

f(xl) +
f(xr)− f(xl)

xr − xl
(x− xl) (1)

and variance
(x− xl)(xr − x)

xr − xl
σ2. (2)

8More precisely, we start with a filtered probability space (Ω,F ,P) satisfying the usual regularity condi-

tions (see, e.g., Karatzas and Shreve 1991) and whose outcomes are identified with the paths of a Brownian

motion.
9We refer the reader to Billingsley (1968, p. 64) for an introduction to Brownian bridges.
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Figure 1: History of units after three periods.

The expected payoff of a technology increases linearly from the endpoint technology with

the worst payoff to the one with the highest payoff. The variance, instead, increases as we

move away from either endpoint and it is maximized at the midpoint technology. Observing

the payoff of a technology in a given unit affects only the distribution of technologies lying

in that unit. Figure 1 represents an innovation history up to t = 3.

The literature on growth and technological change has taken numerous approaches to de-

fine marginal and radical innovations, which include informational and payoff components.

Exploiting the spatial structure of our model, we define those concepts as follows.

A marginal innovation in period t is a technological choice x ∈ [0, x̄t], and is assumed to

be costless.10 A radical innovation is a technology that lies beyond the frontier x̄t, and

incurs a cost that depends on how far an agent pushes innovation away from the current

frontier. We motivate this assumption by the fact that large initial investments are arguably

one of the main features of fundamental research, together with its high uncertainty. Encom-

passing both cases, the cost of innovation is equal to c(x− x̄), where c is twice continuously

differentiable, increasing, convex, and such that i) c(y) ≤ 0 for y ≤ 0 (so that marginal

innovation is costless) and ii) either c′(0) > 0 or c′′(0) > 0.11 A radical innovation therefore

creates a positive payoff externality on future generations, in addition to an informational

externality, because all technologies between the old and new frontiers become available at

10The qualitative results of the paper are robust to the introduction of a positive cost, provided that either

i) exploitation incurs the same cost, or ii) the cost of marginal innovation vanishes as the innovation becomes

arbitrarily close to known technologies.
11In an extension (Appendix E), we allow c to also depend on z, to capture the idea that current tech-

nologies affect the cost of further innovations.
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no cost.

Each agent maximizes his total expected payoff, discounting his second period payoff by a

factor δ ∈ (0, 1]. An old agent has no value for information and thus always chooses the

best explored technology (recall that, in this benchmark model, radical innovations all have

the same expected payoff as the frontier’s payoff). A young agent solves the optimization

problem

U(ht) = sup
x∈X

Eht [f(x)− c(x− x̄t) + δmax{f(x), zt}] . (3)

3 Marginal and Radical Values of Innovation

The first step to characterize the dynamics of innovation is to address the correlation across

payoff technologies: trying a technology reveals information not only about that technology,

but also about nearby technologies, with an accuracy that decreases as one moves away from

that technology.12 Our strategy is to group technologies according to the units defined in

the previous section and exploit the fact that experimenting with a given technology changes

only the payoff distribution of technologies that belong to the same unit. The optimization

problem of a young agent may be decomposed as, first, choosing one of finitely many units

and, second, which technology to pick within that unit. The advantage of this decomposition

is that we can characterize the value of each unit according to a simple index, as established

by Theorem 1. This index determines the value of innovation of the unit which forms a key

block in the analysis of innovation cycles, performed in the next section.

We fix a history h = ht with maximum explored payoff z = zt and gap g = z − f(x̄).

Theorem 1 One can associate to each unit u a value of innovation, V (u, z), which has

the following properties:

i) It is optimal for the young agent to choose a technology in the unit with the highest

value of innovation.

12The relation is in fact more subtle: it also depends on how far other explored technologies are from the

newly tried technology.
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ii) There exist functions η : R2
+ → [1,∞), and η∞ : R+ → R+ such that

V (u, z) =


(m− z) + d η

(√
L
d
, z−m

d

)
if u 6= u∞

η∞(g)− g if u = u∞

(4)

iii) If u is bounded and M < z, then V (u, z) is increasing in L, m and M (other things

equal).

Moreover, it is strictly optimal, for a bounded unit, to choose a technology closer to the

endpoint with the higher payoff.13

The value of innovation of a unit represents the (normalized) highest lifetime expected payoff

that a young agent can get, given history ht, when his choice in the first period is restricted

to a technology within the unit u in excess of the payoff guaranteed by exploitation, z. When

his choice in the first period is restricted to technologies in u, a young agent’s value function

may be written as (1 + δ) [z + V (u, z)].

Some units may have a negative value of innovation. Choosing from those units is always

suboptimal: receiving the best explored payoff z in both periods dominates such choices. The

next proposition shows a stronger result: the value of innovation of a unit is nonincreasing

in z and, hence, over time. Once a unit gets a negative value of innovation, it is therefore

abandoned forever.

Proposition 1 (Value Monotonicity) For any bounded unit u, V (u, z) is strictly de-

creasing in z. If, at any time, V (u, zt) < 0, no technology in u is ever chosen after time t.

This monotonicity property is shown in two steps. Consider, first, a unit u that does not

contain the best explored technology, and suppose that the payoff of that technology is

increased from z to z′ > z. The increase has no effect on the payoff distribution of tech-

nologies inside u, but it reduces the probability that any technology in u beats the best

explored technology. This, intuitively, reduces the value of innovating in that unit, implying

that V (u, z′) < V (u, z). Now, consider a unit u whose endpoints include the best explored

technology. For such a unit, a higher value of z increases, linearly, the expected payoff of

all technologies inside the unit. The variance of payoffs within that unit is unaffected (this

13As a consequence, it is optimal to choose the midpoint of a unit whose endpoints have the same payoff.
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is a standard property of Brownian bridge), however, so exploitation with the best explored

technology is relatively more appealing than before the increase, which again reduces the

value of innovation.14

A common issue in experimentation and social learning models is whether, and with what

probability, agents converge in finite time to some specific action. The next result shows that

exploitation – choosing a known technology – is strictly suboptimal, which implies that a new

unit is created at each period and, hence, that the partitioning in units of the technology

space becomes strictly finer over time.

Proposition 2 (Exploitation) If u contains the best explored technology, then V (u, z) >

0.

This proposition implies that choosing z for both periods is strictly dominated by choosing

another technology included in a unit u whose endpoint payoffs include z. Intuitively, a slight

departure from the best explored technology reduces the expected payoff of the agent, but it

also creates an option value that dominates that reduction, because volatility increments of

Brownian motion (of order
√
dt) dominate expectation increments (of order dt). By the same

argument, exploitation would remain suboptimal even if marginal innovation were costly, as

long as the cost of marginal innovation goes smoothly to zero as one gets closer to known

technologies.

To distinguish waves of marginal and radical innovations, we now introduce the key concepts

of the paper. The value of marginal innovation, V M(ht), is defined as the maximum value

of innovation over all finite units. The value of radical innovation is defined as the value

of innovation of the unbounded unit: V R(ht) = V (u∞(ht), zt). From Theorem 1, an agent

prefers radical over marginal innovation if and only if the value of radical innovation exceeds

the value of marginal innovation.

Theorem 1 further implies that the value of radical innovation depends on ht only through

the gap gt = zt− f(x̄t): distinct histories that induce the same gap yield identical incentives

14A starker intuition for this result can be obtained by appealing to the theory of large deviations (see,

Dembo and Zeitouni 1998): as z gets arbitrarily large, the payoff distribution inside the unit u looks closer to

a straight line, joining the low-payoff extremity xl to the best technology xh with payoff z: (f(x)−f(xl))/(z−
f(xl)) →z→∞ m + (z −m)(x − xl)/(xh − xl) a.s., where m is the payoff at xl. As z gets arbitrarily large,

therefore, the probability that any given technology x in u surpasses z, converges to zero. Exploitation of

xh remains suboptimal for all values of z, however, as guaranteed by Proposition 2.
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for radical innovation; in particular, the payoff z of the best explored technology does not

matter per se. To express this particular dependence on history, we will denote by V R(gt) the

value of radical innovation at time t. The next result provides an analogue of Proposition 1

for the unbounded unit.

Proposition 3 (Value of Radical Innovation) V R(g) is decreasing in g. Moreover,

if V R(gt) is negative at any time, radical innovation is abandoned forever after.

Intuitively, incentives for radical innovation are driven by the probability of finding a new

technology whose payoff exceeds zt. Since the payoff distribution of new technologies is

pinned down by the payoff at the frontier x̄t, a higher gap reduces the probability of this

event. If the value of radical innovation becomes negative, it can never be positive again,

because x̄t remains frozen and zt can only increase. This proposition thus has far-reaching

consequences for the sustainability of radical innovation in the long run, which are exploited

in Theorem 2.

4 Innovation Cycles

In our model, social experimentation takes the form of innovation cycles, characterized in

this section, in which radical innovation is followed by marginal innovation. Those cycles

capture the Schumpeterian pattern of successful innovations followed by imitation. Radical

innovations generate a positive externality on all future generations, by expanding the ac-

tive domain and, hence, the set of marginal innovations. While marginal innovation refines

knowledge about technologies in the active domain, it is characterized by more predictable

outcomes and lacks upside potential. As the learning value of marginal innovation goes

down, radical innovation becomes attractive again, provided that the value of radical inno-

vation remains positive. Following a highly successful radical innovation, the best explored

technology lies at the frontier. In that case, further radical innovation is equally likely to out-

perform or underperform the payoff of the current frontier, and a wave of radical innovations

can occur. This and other results are formalized in Proposition 4.

Proposition 4 (Innovation Cycles) Suppose that, following some history ht, V
R(gt) >

0. Then, innovation has the following properties.
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• The probability that radical innovation occurs at time t or at some future date is strictly

positive, regardless of the value of marginal innovation.

• If radical innovation takes place at time t, there exist (history-dependent) cutoffs fRt

and fMt such that, letting ft and ut respectively denote the payoff resulting from that

radical innovation and the newly created unit (i.e., the interval between the old and

new boundaries),

i) radical innovation is optimal at time t + 1 if ft > fRt , and suboptimal if gt = 0

and ft < fRt , and

ii) if marginal innovation is optimal at time t+ 1, it takes place in ut if and only if

ft > fMt and fMt < fRt .

Thus, highly successful radical innovation begets more radical innovation, while moderately

successful innovation is followed by marginal innovation. To appreciate the subtlety of the

first result, we observe that a high payoff increases both the value of marginal innovation

in the new unit and the value of radical innovation. Why does the latter dominate the

former? Intuitively, the conditional payoff distribution on the newly created unit is, for very

high payoff realizations, roughly a straight line, with very low variance.15 This means that

technologies in the new unit have a lower expectation than the last technology, and a low

variance. By contrast, radical innovation has the same expectation as the value of the last

technology, and a variance that is independent of that level, which makes it more attractive.

Whether marginal innovation occurs within the newly created unit, however, depends on

whether or not fMt < fRt . Otherwise, marginal innovation, when optimal, will take place in

the old domain.

Our results thus far may be summarized as follows: from Proposition 2, we know that

exploitation is never optimal. Thus, any wave of marginal innovations reduces the width

of units in the active domain. This, all else equal, reduces the value of innovation in the

active domain, by Theorem 1. The value of marginal innovation may then decrease to the

point of triggering a new round of radical innovation, which continues until it leads to a

disappointing payoff, triggering a new wave of marginal innovations to explore further the

15This result is well-known in the literature on large deviations, see e.g., Dembo and Zeitouni (1998). See

also Footnote 14.
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units created within the new frontier, giving rise to alternating cycles between radical and

marginal innovations.

Because the technological domain is unbounded, it is a priori possible that agents indefinitely

expand the boundary of the active domain as time goes by. Such qualitative property of the

model would correspond to unlimited radical innovation, and to a never-ending succession of

radical and marginal innovation cycles. By contrast, without radical innovation, technology

and knowledge converge to finite levels. Our next result shows that unlimited radical inno-

vation never occurs. This result persists even when radical innovation entails an arbitrarily

positive drift, as long as the optimal policy is well-defined, as shown in Section 6.

Theorem 2 Radical innovation ends in finite time with probability one. After radical in-

novation has ended, the value of marginal innovation converges to zero almost surely.

Thus, only marginal innovation persists along the equilibrium path. As the value of addi-

tional innovation goes to zero, we observe the emergence of a technological standard in the

limit.16

A key step for understanding and proving Theorem 2 is to establish comparative statics for

the incentives of radical innovation. Proposition 5 below shows that the incremental value

and the size of radical innovation are both decreasing functions of z. The argument applies

ideas from the experimentation literature to analyze our spatial model of technological space.

Let xR denote the technology chosen when radical innovation takes place and yRt (ht) =

xR(ht)− x̄t denote the optimal size of radical innovation.17 Also let φ(·) denote the density

function of the standard normal distribution.

Proposition 5 (Radical Innovation) If radical innovation is optimal, yRt solves

δσ

2
√
y
φ

(
gt
σ
√
y

)
= c′(y) (5)

16This result bears some resemblance to the informational cascades analyzed in the social learning litera-

ture, especially according to the definition provided by Lee (1993) for the case of a continuum of actions. As

we already mentioned in the introduction, the mechanism is different here, because the amount of information

is endogenously acquired by each generation.
17There may exist several optima, although such case happens with zero probability. In such knife-edge

cases, the comparative statics in the proposition still apply in the sense of the strong set order of lattice

theory.
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Figure 2: Marginal benefit of radical innovation.

and yRt is strictly increasing in σ and δ. If gt = 0, then yRt is indeed strictly positive. If

gt > 0 and yRt > 0, then yRt is strictly decreasing in gt. Finally, there exists a cutoff g̃ > 0

above which V R(g) < 0.

To get some intuition for Proposition 5, consider, first, the case of a zero gap. Radical

innovations have an expected payoff of zt, regardless of their size. A large size, however, comes

with a higher variance and thus an increased probability of exceeding zt. The incremental

benefit of radical innovation (left-hand side of (5)) is arbitrarily large close to the frontier

(see Figure 2). As the size of radical innovation increases, the volatility (σ
√
x− x̄) increases

at a decreasing rate, and the marginal benefit of radical innovation converges to zero. Since

the marginal cost is increasing, the optimal size of radical innovation is therefore positive

and well-defined.

The situation is quite different when the gap is positive, because the marginal benefit of

radical innovation now converges to zero for radical innovations close to the frontier. Close

to the frontier, a radical innovation is accompanied by an inadequately low increase in

volatility, and virtually no impact on the expected payoff of the agent when he becomes

old. The “outside” option, zt, is thus strictly preferred to small radical innovations. The

incremental benefit of radical innovation is single peaked: it is initially pushed up by the

increase in the probability of discovering a payoff above the current outside option zt, which
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is given by 1− Φ
(

gt
σ
√
x−x̄

)
, where Φ denotes the distribution function of a standard normal

distribution. When the size of radical innovation reaches
g2
t

σ2 , the marginal benefit starts to

decrease, as the probability of obtaining a payoff greater than zt converges to 1
2
. Figure 2

illustrates the marginal benefit of radical innovation for different sizes of the gap.

Because volatility is the agent’s only hope of improving the best technology, a higher volatility

has a positive effect on the incentives to innovate. Similarly, a higher discount factor increases

the incentives to innovate. By contrast, an increase in the gap reduces the incremental benefit

of radical innovation, because it reduces the probability of surpassing the current outside

option. To maintain that probability, an agent must increase the size of radical innovation,

so as to increase payoff volatility.

Proposition 5 hints at the reason why radical innovation cannot be sustained in the long

run: for high gaps, the optimal size of radical innovation drops, which reduces volatility

and, hence, the value of radical innovation, just when volatility is most needed to make

radical innovation attractive. That proposition alone, however, does not imply that radical

innovation terminates in finite time, because the technologies observed in equilibrium are

chosen endogenously. To prove stagnation, a key step is to show that, if the value of radical

innovation were positive at all times, the frontier would keep expanding in steps that are

bounded below away from zero.18

Figure 3 shows a simulated path for the technology payoff function f , along with the equilib-

rium innovation dynamics for two cost specifications. The figure highlights several interesting

features of our model. Innovation cycles arise endogenously along the equilibrium path. Both

the length and the number of cycles is path dependent. In particular, it is not necessarily

the case that a lower cost of radical innovation leads to more radical innovation. The fig-

ure shows that radical innovation may indeed end sooner when experimentation is cheaper.

Cheaper experimentation leads to a larger size of radical innovation when the gap is zero but

this larger size may lead an agent to explore an unattractive part of the technology space

which is exactly what happens in the simulation. In general, a wave of radical innovations

can go on for several periods before radical innovation ends forever. Eventually, the search

for a better technology begins to cluster around a technology discovered by a previous gener-

18See Lemma 2. Intuitively, the size of radical innovation is decreasing in the gap. We know from

Proposition 5 that a high enough gap ends radical innovation forever. For radical innovation to continue,

therefore, the size of the radical innovation must be bounded below.
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Figure 3: Dynamics of innovation: δ = 1, c(y) = y2

2β
. The payoff function is the realized path

of a Brownian motion with zero drift and volatility σ = 3.

ation, yielding the endogenous-information equivalent of an informational cascade. Society

converges to a suboptimal technology, which is largely path dependent: a single experiment

at, say, x = 10 would completely change the dynamics of the search process when radical

innovation is cheaper, shifting innovation towards a different part of the technological space

which would uncover better technologies.

5 Stagnation and Social Inefficiency

Our stagnation result points to a general inefficiency problem with social experimentation.

Radical innovation generates two positive externalities on future generations, by increasing

knowledge and by expanding the active domain. If these externalities were taken into account

by current generations, wouldn’t they systematically push radical innovation beyond the

equilibrium level characterized in earlier sections? We formalize this question by introducing

an infinitely-lived social planner who discounts payoffs with a discount factor δS < 1.

Comparing the equilibrium dynamics of innovation with the social optimum raises several

difficulties. Firstly, it is well-known that optimal experimentation with an infinitely lived

agent and correlated technologies cannot be characterized by the arm-specific index policies

that Gittins and Jones (1974) have identified for the standard multi-armed bandit problem
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with independent arms. This is intuitive: trying a new technology teaches something about

surrounding technologies and affects the set of units.19 Secondly, any comparison between

equilibrium and efficient experimentation has to be of a probabilistic nature. Indeed, it is

easy to construct specific Brownian paths for which equilibrium innovation will last longer

than the social optimum, by assigning an implausibly low payoff to the first technology

tried by the social planner and, repeatedly high payoffs for the radical innovations arising

in equilibrium. The resulting histories are consistent with possible Brownian paths, and

clearly result in equilibrium radical innovations lasting longer than what is prescribed by

the efficient policy. Thirdly, it is not clear how the social planner should discount, if at all,

future generations.

We circumvent all those difficulties by considering a limiting result as δS goes to 1, i.e.,

when the social planner becomes infinitely patient. Let x̄FB(δS) denote the frontier at which

a social planner with discount factor δS stops radical innovation. Despite our inability to

characterize the social optimum notwithstanding, we can prove the following result.

Theorem 3 As δS goes to 1, Prob
(
limδS→1 x̄

FB(δS) = +∞
)

= 1.

Theorem 3 implies, as a corollary, that equilibrium innovation is with high probability inef-

ficiently low compared to the social optimum.

6 Stagnation with Optimistic Beliefs

Theorem 2 assumed that the drift κ which determines the expected payoff of new technolo-

gies, was equal to zero. What happens if agents are more optimistic about κ? Could that

be enough to sustain radical innovation in the long run?

For this problem to have a well-defined solution, we must assume that the incremental cost

of radical innovation eventually exceeds the drift κ. Otherwise, young agents may want to

choose an infinite amount of radical innovation. Precisely, we assume that limy→+∞ c′(y) >

κ(1 + δ). For technical reasons, we also assume that c′′(0) > 0.

19Readers may wonder whether units, which are conditionally independent, can be characterized by

Gittins-like indices. We have explored this possibility and concluded that this was highly unlikely: an

index of the kind that we obtained for two-period lived agents does not seem to exist for infinitely lived

agents.
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The scenario of a positive drift creates an incentive for old agents to innovate as well, as

captured by the objective function

UO,R(ht) = max
x∈[x̄t,+∞)

Eht [f(x)− c(x− x̄t)] = f(x̄t) + κ(x− x̄t)− c(x− x̄t) (6)

This slightly complicates the short-run equilibrium behavior of innovations, because agents

now learn from both old and young generations. This does not, however, change the insight

of Theorem 2.

Theorem 4 Radical innovation stops in finite time, almost surely.

This extension of Theorem 2 is not completely straightforward, and may be explained as

follows.

The size of radical innovation by the old generation, whenever it takes place, is characterized

by the first-order condition

κ = c′(x− x̄t) (7)

Let yO,R denote the solution to (7) and ξ = κyO,R−c(yO,R) > 0. An old agent prefers radical

innovation over exploitation if and only if

f(x̄t) + κyO,R − c(yO,R) ≥ zt, or, equivalently, if gt ≤ ξ. (8)

When choosing the size of his innovation, a young agent considers the effect of his action

today on his incentives tomorrow. This effect can be quantified in a perceived reduction of

the gap from gt to gt−ξ due to the possibility of performing radical innovation in the second

period, which results in higher incentives to perform radical innovation today. However as the

gap increases, ξ becomes negligible and eventually the relative benefit of radical innovation

over exploitation falls short of the explicit cost of innovation. Thus the young agent will

eventually opt for marginal innovation, which is still strictly better than exploitation.

7 Discussion

Causes of Stagnation

Our stagnation theorem differs from the stagnation mechanisms already identified in the

growth literature. For example, Aghion and Howitt (1992) identify a “no growth” equilibrium
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in which no research is carried out because the prospect of a high level of research in the

future destroys current incentives for innovation, due to competition effects. Kortum (1998)

develops a search-theoretic model in which successful innovations make the discovery of even

better technologies harder to achieve. Our economy converges to stagnation without the

requirement that better technologies are harder to discover as time goes by.20

Our analysis also captures Gordon’s intuition that innovation dynamics are based on the

interplay between radical innovations and their refinement through marginal innovation.

Radical innovations eventually get stuck as future generations become unwilling to make

the necessary investments to further push the technological frontier. However, it is the

willingness of each generation to undertake bold innovations that fades away over time, not

the possibilities to innovate radically. As the slowdown in productivity is the product of

myopic behavior by self-interested agents, it leaves open the possibility that a more forward-

looking agent, like a government, could actually help stimulate and sustain growth by either

subsidizing or directly investing in radical innovation.

Our stagnation result continues to hold if marginal innovations are also costly. We do need

to maintain the assumption that exploitation is costless. This natural assumption is, among

others, justified by Romer (1990, p. 72): “once the cost of creating a new set of instructions

has been incurred, the instructions can be used over and over again at no additional cost.

Developing new and better instructions is equivalent to incurring a fixed cost. This property

is taken to be the defining characteristic of technology.” In the Appendix (Section E), we

study the incentives for radical innovation when the cost c of radical innovation also depends,

negatively, on the value of the best explored technology, which captures the idea that old

technologies can also be used as inputs for discovering new ones. Our stagnation result

continues to hold in that case.

There are many mechanisms affecting long-run innovation, which may precipitate or delay

stagnation. Our stagnation result can most easily be circumvented by making the cost of

radical innovation time dependent, either through exogenous shocks or deterministically as a

result of population growth (as in Kortum (1998)), or by assuming, as in Jovanovic and Rob

(1990), that there is a pool of new technologies to choose from, at any time, whose payoffs

are independent from past innovations. More generally, one could assume that the expected

benefit of new technologies depends on more than the payoff at the frontier (for example,

20See also Jones (1995), Segerstrom (1998), and Zeira (2011).
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by introducing a multidimensional technological set). One interpretation of our theorem is

that modeling features of this kind are necessary for radical innovation to be sustained in

the long run. In general, our theorem shows that the intuition, from the experimentation

literature, that forward-looking agents may fail to learn optimum actions, takes a particularly

strong form in the context of radical innovation with an unbounded technological space, as

stagnation occurs with certainty.

Patents and Radical Innovation

One way of improving inefficiently short radical innovation is to use patents. In our model,

patents would consist of transfers between consecutive generations and would be defined by

exploiting the spatial nature of the technological space. In particular, one could assume

that, whenever an agent undertakes radical innovation, the set of technologies that become

available at no cost, due to this radical innovation, are patented to this agent.

Such a patent protection system can affect incentives for radical innovation through two

channels:

1. Getting Royalty Fees Radical innovation now brings a positive probability that the payoff

of radical innovation will be in some intermediate range at which further radical innovation

is suboptimal for the next generation, but marginal innovation takes place in the new unit,

as shown by Proposition 4. When this happens, a small royalty fee just paid by the new

generation increases the ex ante incentives for radical innovation. Perhaps counter-intuitively,

though, even in the case of a flat royalty (let alone a more complex royalty structure), the

level of that royalty affects the incremental value of radical innovation and, therefore, the

optimal size of radical innovation. Moreover, this value may be non-monotonic in the patent

level.21

2. Avoiding Royalty Fees Precisely because an incoming generation has to pay a cost to the

previous generation in order to innovate in a newly created unit, this reduces the value of

marginal innovation for that generation, relative to radical innovation: the new generation

21This may be explained as follows: a bolder radical innovation has a higher variance and, for given mean,

a higher probability of reaching very high outcomes. When this happens, the next generation has a strong

incentive to use the technological domain created by this radical innovation, which generates royalty fees

for the old generation. A higher royalty fee may therefore increase the expected marginal value of radical

innovation, spurring radical innovation and increasing the size of radical innovation. However, as the royalty

fee gets arbitrarily large, the new generation prefers to forgo this opportunity and to innovate in older units,

causing the non-monotonicity.
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is “pushed” towards further radical innovation.

These incentives are substitutes of each other: the more the new generation avoids royalty

fees (say, because they are fixed at high levels), and the lower the patent incentives for the

old generation, and vice versa. However, regardless of which effect dominates, royalty fees,

structured in this way, would foster radical innovation.

Infinitely-Lived Firms

We modeled firms as two-period agents. This choice is guided by tractability: it is well-

known and easy to show that, with correlated arms, optimal experimentation is impossible

to characterize by simple indices, even for a single agent. Our two-period firms do capture,

in a tractable fashion, the standard exploration/exploitation trade-off that is at the heart of

experimentation. What we do not capture is the strategic considerations that infinitely lived

firms would have regarding information acquisition, such as free riding and encouragement

effects. Free riding might occur because a firm can avoid radical innovation in the hope

that some other firm will incur the cost of expanding the current frontier. At the same

time, however, radical innovation pursued by one firm may encourage other firms to pursue

more radical innovation when previous experimentation led to the discovery of an attractive

technology. We refer the reader to the work of Bolton and Harris (1999), Keller, Rady, and

Cripps (2005), and Keller and Rady (2010) for key models along these lines.
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Appendix

The Appendix is organized as follows. Appendix A contains the proofs of all the results stated

in Sections 3 and 4, except for the proof of Theorem 2, which is contained in Appendix B.

The proofs of Theorems 3 and 4 are contained in Appendix C and D, respectively. Appendix

E extends the baseline model to the case in which the cost of radical innovation depends on

the outcomes of past innovations. Finally, Appendix F shows that the baseline model can

be interpreted as the reduced form of a competition game between multiple firms.

A Omitted Proofs

Proof of Theorem 1

Given that the distribution of payoffs within each unit is conditionally independent from

other units, we first compute the value of innovation of a bounded unit u. Suppose, without

loss of generality, that M = f(xr) > f(xl) = m (the case of an equality is obtained by taking

the limit as, say, m is increased to M). Then, for any x ∈ [xl, xr],

f(x) ∼ N
(
f(xl) +

f(xr)− f(xl)

xr − xl
(x− xl),

(x− xl)(xr − x)

xr − xl
σ2

)
where N (κ, σ2) denotes the distribution of a Gaussian variable with mean κ and variance

σ2. Letting a(x) = x−xl
xr−xl ,

f(x)−m ∼ N
(
d a(x), a(x)(1− a(x))Lσ2

)
We also define k(x) = f(x)−m and z′ = z−m to obtain an explicit formula for the expected

payoff:

Emax{k(x), z′} = z′Φ

(
z′ − da(x)

σ
√
a(x)(1− a(x))L

)
+ da(x)

[
1− Φ

(
z′ − da(x)

σ
√
a(x)(1− a(x))L

)]

+ σ
√
a(x)(1− a(x))Lφ

(
z′ − da(x)

σ
√
a(x)(1− a(x))L

)
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where Φ and φ are the CDF and pdf of the standard normal distribution. This leads to

Eu [f(x) + δmax{f(x), z}] = (1 + δ)m+ da(x) + δEmax{k(x), z′}

= (1 + δ)m+ d

{
a(x)

(
1 + δ − δΦ

(
z′

d
− a(x)

σ
√
L
d

√
a(x)(1− a(x))

))

+ δσ
√
a(x)(1− a(x))

√
L

d
φ

(
z′

d
− a(x)

σ
√
L
d

√
a(x)(1− a(x))

)

+δ
z′

d
Φ

(
z′

d
− a(x)

σ
√
L
d

√
a(x)(1− a(x))

)}
(9)

Define q1 ≡
√
L
d

, q2 ≡ z′

d
, and

η̄ (a, q1, q2) =
1

1 + δ

{
a

(
1 + δ − δΦ

(
q2 − a

σq1

√
a(1− a)

))

+δq2Φ

(
q2 − a

σq1

√
a(1− a)

)
+ δσ

√
a(1− a)q1φ

(
q2 − a

σq1

√
a(1− a)

)}
(10)

As the common argument of Φ and φ depends only on a(x),
√
L/d and z′/d, we can write

Eu [f(x) + δmax{f(x), z}] = (1 + δ)

{
m+ d η̄

(
a(x),

√
L

d
,
z′

d

)}
(11)

Maximizing the expected payoff over x ∈ [xl, xr] yields

U(u;ht) ≡ max
x∈[xl,xr]

Eu [f(x) + δmax{f(x), z}] = (1 + δ)

[
m+ d η

(√
L

d
,
z′

d

)]
(12)

where

η (q1, q2) = max
a∈[0,1]

η̄ (a, q1, q2) . (13)

Letting V (u, z) =
[
m+ d η

(√
L
d
, z−m

d

)]
− z yields the characterization of the value of inno-

vation for a bounded unit.

Next, notice that

∂η̄(a, q1, q2)

∂a
=

1

1 + δ

{
1 + δ − δΦ

(
q2 − a

σq1

√
a(1− a)

)
+
δσq1

2

1− 2a√
a(1− a)

φ

(
q2 − a

σq1

√
a(1− a)

)}
≥ 1

1 + δ
> 0
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for any a ≤ 1
2
, because the sum of the first three terms in curly brackets is weakly greater

than 1 by the property of Φ and the last term is positive if, and only if, a ≤ 1
2
. Thus, any

a∗ ∈ arg maxa∈[0,1] η̄(a, q1, q2) must be greater than 1
2
. As a(x) = x−xl

xr−xl , the corresponding

optimal technology from a unit with interval [xl, xr], x
∗(u, z), must lie in

(
xr+xl

2
, xr
]

whenever

f(xl) < f(xr).

For this and other comparative statics results, we will apply differential techniques to some

value functions. These techniques can be applied because the relevant functions are always

left and right differentiable, a result which follows from Corollary 4 of Milgrom and Segal

(2002).22 All the comparative statics arguments to follow can be applied to the right deriva-

tive (or, in case of a decrease of the parameter, to the left derivative). For expositional

simplicity, we drop reference to the side of the derivative. The Envelope Theorem implies,

for any bounded unit u, that23

∂V (u, z)

∂L
=

δ

1 + δ

σ

2

√
a∗(1− a∗)

L
φ

(
z′ − da∗

σ
√
a∗(1− a∗)L

)
> 0 (14)

where a∗ ∈ arg maxa∈[0,1] η̄ (a, q1, q2). Similarly, for M 6= z, ∂V (u,z)
∂M

> 0 and ∂V (u,z)
∂m

> 0, as

can be seen from equations (20) and (21) in the proof of Proposition 4.

For the unbounded unit u∞, the expected utility from a technology x > x̄ is

E[f(x)− c(x− x̄) + δmax{f(x), z}] = (1 + δ)f(x̄)− c(x− x̄)

+ δEmax{f(x)− f(x̄), z − f(x̄)}

= (1 + δ)f(x̄)− c(x− x̄) + δEmax{k(x), g},

where k(x) = f(x)− f(x̄). Recall that k(x) ∼ N (0, σ2(x− x̄)). Therefore,

Emax{k(x), g} = σ
√
x− x̄φ

(
g

σ
√
x− x̄

)
+ gΦ

(
g

σ
√
x− x̄

)
. (15)

22The value function may fail to be differentiable at parameter values for which there exist multiple

maximizers. At such values, however, the value function is still left and right differentiable, with the left

(right) derivative being evaluated at the maximizer that minimizes (maximizes) the derivative of the objective

with respect to the parameter. See Milgrom and Segal (2002).
23An argument similar to the proof of Proposition 2, which holds independently of the present comparative

statics, shows that any optimum x∗ is always in the interior of a unit.
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Taking the supremum over x ≥ x̄, we obtain

sup
x≥x̄

{
(1 + δ)f(x̄)− c(x− x̄) + δσ

√
x− x̄φ

(
g

σ
√
x− x̄

)
+ δgΦ

(
g

σ
√
x− x̄

)}
= (1 + δ)

[
f(x̄) + sup

y≥0

1

1 + δ

{
−c(y) + δσ

√
yφ

(
g

σ
√
y

)
+ δgΦ

(
g

σ
√
y

)}]
.

Defining

η∞(g) =
1

1 + δ
sup
y≥0

{
−c(y) + δσ

√
yφ

(
g

σ
√
y

)
+ δgΦ

(
g

σ
√
y

)}
(16)

and V (u, z) = [f(x̄) + η∞(g)] − z = η∞(g) − g yields the formula claimed by Theorem 1.

The value of innovation of each unit corresponds to a normalization of the agent’s value

function when the domain of choice is restricted to that particular unit. Therefore, the

agent optimally chooses a technology within the unit with the highest value of innovation.�

Proof of Proposition 1

For any bounded unit u with M < z we have24

dη(q1, q2)

dz
=

1

d

∂η(q1, q2)

∂q2

=
δ

(1 + δ)d
Φ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)
(17)

where, as before, q1 ≡
√
L
d

, q2 ≡ z−m
d

, and a∗ ∈ arg maxa∈[0,1] η̄ (a, q1, q2). This implies that

∂V (u, z)

∂z
=

δ

1 + δ
Φ

(
z −m− da∗

σ
√
a∗(1− a∗)L

)
− 1 < 0.

If, instead, u contains the best explored technology, then V (u, z) = m−z+(z−m)η
( √

L
z−m , 1

)
.

This yields ∂V (u,z)
∂z

= η
( √

L
z−m , 1

)
−
√
L

z−m
∂η
∂q1

( √
L

z−m , 1
)
− 1, which is strictly negative from (22).

Exploitation of the best explored technology is always feasible for a young agent, and yields

a payoff of (1 + δ)zt. Consider a unit u such that V (u, zt) < 0. Then,

V (u, zt) < 0 ⇐⇒ U(u;ht)

1 + δ
< zt ⇐⇒ U(u;ht) < (1 + δ)zt

where the second equivalence follows from (12). Therefore, choosing the best explored tech-

nology dominates choosing any technology in u. Since zt is nondecreasing in t, once the

value of innovation of a unit is negative, it remains negative. �

24Again, we omit dependence on side-derivatives. See Footnote 22 and the discussion surrounding it.
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Proof of Proposition 2

Suppose that M = z. Differentiating η̄(a, q1, 1) with respect to a yields

(1 + δ)
∂η̄(a, q1, 1)

∂a
=

[
1 + δ − δΦ

(
1

σq1

√
1− a
a

)]
+
δσq1

2

1− 2a√
a(1− a)

φ

(
1

σq1

√
1− a
a

)

which tends to −∞ as a goes to 1. Also, η̄(0, q1, 1) ≡ lima→0 η̄(a, q1, 1) = δ
1+δ

< 1 =

lima→1 η̄(a, q1, 1) ≡ η̄(1, q1, 1). We have thus shown that any solution to (13) lies in (0,1)

whenever q1 > 0 and q2 = 1. Consider any history ht and unit u with z as one of its endpoint

payoffs. Then, d = z −m and

V (u, z) = m−z+(z−m)η

( √
L

z −m
, 1

)
> m−z+(z−m)η̄

(
1,

√
L

z −m
, 1

)
= m−z+(z−m) = 0

which proves that there is always at least one bounded unit with strictly positive value of

innovation. Thus, exploitation is strictly suboptimal. �

Proof of Proposition 3

We need to evaluate the effect of an increase in the size of the gap, g, on the value of

radical innovation V R(g) = η∞(g) − g. We suppose once again that the value function

(16) is differentiable. If there exists an interior solution y∗ > 0 to (16) when g > 0, then
∂V R(g)
∂g

= dη∞(g)
dg
−1 = δ

1+δ
Φ
(

g
σ
√
y∗

)
−1 < 0. If there is no interior solution, then η∞(g) = δ

1+δ
g

which gives ∂V R(g)
∂g

= δ
1+δ
− 1 < 0. When g = 0, V R(g) = η∞(0) and ∂V R(g)

∂g
= 0.

Finally, if V R(gt) < 0, the previous comparative statics, monotonicity of the sequence {zt},
and the fact that f(x̄t) is unaffected by marginal innovation, imply that radical innovation

will never be undertaken for any t′ > t, as it is always dominated by exploitation of the best

explored technology. �

Proof of Proposition 4

If V R(gt) > V M(ht), then radical innovation occurs with probability 1 at time t. Thus,

consider a history ht such that V M(ht) > V R(gt) > 0. By continuity, there exists ε > 0

such that the value of radical innovation remains positive if the current gap is increased to

gt + ε. Let B(ε) denote the set of paths of f on [0, x̄t] which are compatible with ht and

are bounded above by zt + ε. B(ε) occurs with positive probability. By construction, the

sequence {zt′}t′>t stays below zt + ε for any path in B(ε), which implies that the value of

marginal innovation converges to zero over time, by Theorem 2. Thus, the value of marginal
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innovation must fall below the value of radical innovation, which is uniformly bounded away

from zero for any path in B(ε).

Next, suppose that radical innovation occurs at an arbitrary history ht. Let ft denote the

corresponding payoff of radical innovation, and let ut denote the newly created bounded

unit. For the rest of this proof, it turns out to be more convenient to work with the auxiliary

indexes γ(u, z) = V (u, z) + z = m + d η (q1, q2) and γ(u∞, z) = η∞(g) + f(x̄) which are

a simple normalization of the value function of a young agent when his first period choice

is restricted to a unit u. Thus, the young agent experiments with a technology within the

unit with the highest (auxiliary) index γ(u, z). In particular, we can define the indexes for

marginal and radical innovation by

γM(ht) = max
u∈P(ht)

γ(u, z) and γR(ht) = γ(u∞, z) (18)

for any history ht, where P(ht) is the collection of bounded units induced by a history ht.

After radical innovation has taken place, the new index for marginal innovation at the start

of time t+ 1 is

γM(ht+1) = max

 max
u∈P(ht)

γ(u,max{zt, ft}︸ ︷︷ ︸
γ̄(max{zt,ft})

), γ(ut,max{zt, ft})


We first consider how γ̄(max{zt, ft}) varies with ft. If ft ≤ zt, γ̄(·) is unaffected by ft. If

ft > zt, consider any unit u ∈ P(ht). Then,25

∂γ(u, ft)

∂ft
=

∂

∂ft

[
m+ dη

(√
L

d
,
ft −m
d

)]
=

∂η

∂q2

(√
L

d
,
ft −m
d

)
∈
(

0,
δ

1 + δ

)
(19)

by (17). Next, we consider the index of the new unit ut. To this end, define fl as the payoff

associated with the left endpoint of unit ut. If fl < ft ≤ zt, then

∂γ(ut, zt)

∂ft
=

∂

∂ft

[
fl + (ft − fl)η

( √
L

ft − fl
,
zt − fl
ft − fl

)]

=
a∗

1 + δ

[
1 + δ − δΦ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)]
> 0 (20)

25Again dropping dependence on side-derivatives, see Footnote 22.
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where a∗ ∈ arg maxa∈[0,1] η̄ (a, q1, q2). If, instead, ft < min{zt, fl}, then

∂γ(ut, zt)

∂ft
=

∂

∂ft

[
ft + (fl − ft)η

( √
L

fl − ft
,
zt − ft
fl − ft

)]

= (1− a∗)

[
1− δ

1 + δ
Φ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)]
∈
(

0,
1

1 + δ

)
(21)

The upper bound follows from the fact that a∗ ∈
(

1
2
, 1
)
, then

(1− a∗)

[
1− δ

1 + δ
Φ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)]
≤ 1

2

[
1− δ

1 + δ

1

2

]
=

2 + δ

4(1 + δ)
<

1

1 + δ

for any δ ∈ [0, 1]. Finally, suppose that ft > zt (≥ fl), then we have

∂γ(ut, ft)

∂ft
=

1

1 + δ

[
a∗(1 + δ) + δ(1− a∗)Φ

(
1

σq1

√
1− a∗
a∗

)]
∈
(

δ

1 + δ
, 1

)
(22)

The upper bound follows from a∗ < 1, since q2 = 1 in this case, while the lower bound follows

from a∗ ≥ 1
2
, by Theorem 1.

Below zt, γ̄ is flat as a function of ft, while the index of the new unit strictly increases

in ft, by (20) and (21). Above zt, γ̄ grows at most by δ
1+δ

following an increase in ft,

while the derivative of the index of the new unit is at least δ
1+δ

as shown by (22). If

γ̄(zt) > γ(ut, zt)|ft=zt , the index of the new unit is strictly below γ̄(zt) for any ft < zt. Since,

above zt, the lowest slope of the index of the new unit is strictly higher than the largest

slope of γ̄(·), the two indexes intersect exactly once. If instead γ̄(zt) < γ(ut, zt)|ft=zt , the

two indexes necessarily cross only once at some ft < zt, but never above zt. We ignore the

case γ̄(zt) = γ(ut, zt)|ft=zt , which occurs with zero probability. The intersection is denoted

by fMt and it is such that marginal innovation would occur, when optimal, in the newly

created unit if and only if ft > fMt .

We now analyze how the index of radical innovation varies with ft, which again denotes the

new frontier payoff. With a slight abuse of notation, the index of radical innovation at time

t + 1 is given by γRt+1(ft) = ft + η∞(gt+1) = ft + η∞ (max{(zt − ft), 0}) as a function of the

frontier payoff ft. For any ft ≥ zt, γ
R
t+1(ft) = ft + η∞(0) and

∂γRt+1

∂ft
= 1.

Suppose instead that ft < zt. From Proposition 5, there exists a threshold g̃ above which

the optimal size of radical innovation is 0. Define f̃ by zt − f̃ = g̃. Then, for any ft ≤ f̃ ,

γRt+1(ft) = ft+δzt
1+δ

, because the time-t + 1 generation would prefer the frontier technology to

any technology to its right. Thus, in this case
∂γRt+1

∂ft
= 1

1+δ
.
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For ft ∈ (f̃ , zt), the maximizer of (16) may be interior. In that case,
∂γRt+1

∂ft
= 1− δ

1+δ
Φ
(
zt−ft
σ
√
y∗

)
∈(

1
1+δ

, 1
)
, where y∗ is the optimal size of radical innovation following history ht+1. Thus, the

derivative is always at least 1
1+δ

.

We need to consider two cases.

Case 1 : gt = 0. Let fMt denote the cutoff such that marginal innovation occurs in the new

unit if, and only if, ft ≥ fMt , whose existence we just proved. If fMt ≥ zt, the index of

marginal innovation is flat for any ft < zt, and

∂γMt+1

∂ft
∈

{ (
0, δ

1+δ

)
from (19) if zt ≤ ft < fMt(

δ
1+δ

, 1
)

from (22) if ft ≥ fMt

which follows from our previous analysis. Since the slope of the index of radical innovation

is always at least 1
1+δ
≥ δ

1+δ
below fMt and 1 above fMt (as fMt ≥ zt), it follows that γRt+1 and

γMt+1 as functions of ft cross exactly once. Let fRt = fR(ht) denote such intersection.

Similarly, if fMt < zt, the index for radical innovation is unchanged, but

∂γMt+1

∂ft


= 0 if ft < fMt

∈
(
0, 1

1+δ

)
from (21) if fMt ≤ ft < zt

∈
(

δ
1+δ

, 1
)

from (22) if ft ≥ zt

A direct comparison of the slopes of the indexes shows that there exists exactly one inter-

section.

Case 2 : gt > 0. If fMt ≥ zt, the analysis is the same as for Case 1. Thus, there exists a

unique intersection fRt .

If fMt < zt, the slope of the index of marginal innovation over the range [max{fMt , fl}, zt)
is given by (20), which cannot be compared with the slope of γRt+1 in an unambiguous way.

Thus, we cannot exclude the possibility of multiple intersections between the two indexes.�

Proof of Proposition 5

If g = 0, the expected utility from radical innovation of size y > 0 is equal to

Eh [f(x̄+ y)− c(y) + δmax{f(x̄+ y), z}] = (1 + δ)f(x̄)− c(y) + δσ
√
yφ(0),

from (16). The first-order condition yields Equation (5) with g = 0. The right-hand side of

(5) is increasing in y, while the left-hand side is strictly decreasing. The left-hand side is
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also unbounded around 0, and converges to 0 as y → +∞. Therefore, there always exists a

solution to Equation (5) when g = 0, and it is unique. The second-order condition

−δσφ(0)

4y3/2
− c′′(y) < 0

is satisfied, guaranteeing that the first-order condition characterizes maxima.

If g > 0, the expected utility from radical innovation of size y > 0 is

(1 + δ)f(x̄)− c(y) + δσ
√
yφ

(
g

σ
√
y

)
+ δgΦ

(
g

σ
√
y

)
The first-order condition is again given by (5). Differentiating (5) with respect to g, we obtain

− δg
2σy3/2φ

(
g

σ
√
y

)
, which is strictly negative. Since the objective function in (16) is submodular

in (y, g), the Strict Monotonicity Theorem 1 of Edlin and Shannon (1998) implies that the

optimal size of radical innovation is decreasing in g. Similarly, the objective function is

supermodular in (y, δ) and (y, σ).

We now show the existence of a cutoff g̃ above which radical innovation has a negative value.

Let A(y, g) ≡ δσ
2
√
y
φ
(

g
σ
√
y

)
denote the marginal benefit of radical innovation, given a gap g

and a size y of radical innovation.26

Lemma 1 For any g > 0,

1. limy→+∞A(y, g) = limg→+∞A(y, g) = limy→0A(y, g) = limy→0
∂A(y,g)
∂y

= 0;

2. ∂A(y,g)
∂g

< 0.

3. A(y, g) is strictly quasi-concave in y, and maximized at g2

σ2 .

Proof. The first two limits in 1) and the sign of the derivative in 2) directly follow from the

properties of φ(·). The limit limy→0A(y, g) is computed using the fact that limy→0
1√
y
e−

1
y =

limz→∞
z1/2

ez
= 0. One shows similarly that limy→0

∂A(y,g)
∂y

= 0. Strict quasiconcavity of A

in y comes from the fact that

∂A(y, g)

∂y
=

δσ

4y3/2

[
g2

σ2y
− 1

]
φ

(
g

σ
√
y

)
,

which is nonnegative below g2

σ2 and negative above. This also shows that g2

σ2 maximizes

A(·, g). �

26A(y, g) corresponds to the left-hand side of equation (5).
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To establish the existence of the threshold g̃ > 0, we start by showing that y∗ = 0 is the

unique maximizer of (16), whenever g is high enough. If c′(0) > 0, Lemma 1 implies that

limy→0A(y, g) = 0 < c′(0) for any g > 0. Also by Lemma 1, ∂A(y,g)
∂g

< 0, limg→+∞A(y, g) = 0,

and A(y, g) ≤ A
(
g2

σ2 , g
)

= δσ2

2g
φ(1). This, combined with the properties of c, implies the

existence of a large enough threshold g̃ such that c′(y) > A(y, g) for all g > g̃ and y > 0.

A similar argument applies if c′(0) = 0 and c′′(0) > 0, because limy→0
∂A(y,g)
∂y

= 0, from

Lemma 1. Substituting y∗ = 0 into (16) yields η∞(g) = δg
1+δ

. Therefore, the value of radical

innovation is equal to V R(g) = − g
1+δ

< 0, for g > 0. �

B Proof of Theorem 2

Step 1: We first show that radical innovation ends in finite time almost surely. From

Proposition 5, there exists a threshold g̃ > 0 such that radical innovation ends after any

history such that gt ≥ g̃. Therefore, it suffices to show that this threshold is reached almost

surely.

Consider an innovation path along which radical innovation happens infinitely often, and

let {ϕ(t)} denote the sequence of times at which radical innovation occurs. In particular,

yRϕ(t) = xRϕ(t) − x̄ϕ(t) > 0 for all t.

Lemma 2 {x̄ϕ(t)} is unbounded a.s.

Proof. Suppose that x̄ϕ(t), which is increasing in t, converges to some finite limit x̃. This

implies that yRϕ(t) converges to 0. From Proposition 5, yRϕ(t) is decreasing in the gap. There-

fore, there must exist a subsequence {ψ(t)} of {ϕ(t)} such that {gψ(t) = zψ(t) − f(x̄ψ(t))} is

increasing. Since that sequence is bounded above by g̃, it must converge to some strictly

positive limit ρ, and zψ(t) converges to the limit ρ + f(x̃). For sufficiently high t, the ex-

pected payoff from radical innovation is approximately equal to f(x̃) + δz̃, while the payoff

from exploitation is approximately (1 + δ)z̃. Since z̃ > f(x̃) by construction, an agent will

eventually strictly prefer to exploit the best explored technology yielding a payoff close to z̃

over the radical innovation corresponding to times in {ϕ(t)}, a contradiction. �

From Proposition 5, ȳ = yR(0) is an upper bound on the optimal size of radical innovation

for any size of the gap. Therefore, |x̄ϕ(t+1) − x̄ϕ(t)| ≤ ȳ. For any ζ > 0 and path f , let

Aζ(−g̃) = sup

{
x′ − x : max

x′′∈[x,x′]
{f(x′′)} < −g̃, and x < x′ < ζ

}
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Lemma 3 Aζ(−g̃) > ȳ almost surely as ζ → +∞.

Proof. By the recurrence property of Brownian motion, there exists a.s. an x̃ > 0 such that

f(x̃) < −g̃ and, hence, some ζ > 0 such that Aζ(−g̃) > 0. The result then follows from the

scaling property of Brownian motion. �

Lemma 3 means that if radical innovation goes far enough, with each leap size bounded

above by ȳ, the frontier is bound to “fall” into a region where its payoff is less than −g̃.

Because z is always nonnegative, the gap z−f(x̄) after such history will exceed g̃, prompting

radical innovation to stop. Combined with Lemma 2, this guarantees that radical innovation

must stop in finite time, almost surely.

Step 2: Belief convergence.

After radical innovation stops, all innovation takes place in a compact domain. The payoff

distribution over that domain is characterized by finitely many Brownian bridges, whose

endpoints correspond to previously explored technologies. We now establish that the beliefs

resulting from the subsequent innovation converge to a well-defined limit. Let K = [0, x̄]

denote the domain of innovation after radical innovation has stopped, and µ0 denote the

distribution of f on K, given the history leading up to the end of radical innovation. For

notational simplicity, we will reset to 0 the time at which radical innovation has stopped.

Let Θ denote the space of continuous functions on K starting at 0. At any time t the belief

µt is a probability distribution over Θ: µt ∈ ∆(Θ). Some arguments that we need to use

hold only for compact spaces. Because of this, we will sometimes need to replace the paths

f by some bounded counterpart. For Λ > 1, we will consider any transformation G(·,Λ) of

R such that i) G(·,Λ) is continuous and strictly increasing, ii) G(x,Λ) = x for all x such

that |x| < Λ−1, and iii) limx→−∞G(x,Λ) = −Λ and limx→+∞G(x,Λ) = +Λ. Such function

is easily built, and is bounded by Λ.

For any Brownian path f , the transformed path bΛ : x 7→ G(f(x),Λ) is continuous and

bounded by Λ, and is homeomorphic to f . In particular, bΛ and f are observationally

equivalent. Any belief µ about f has a corresponding belief µΛ about bΛ and vice versa. Let

Θ(Λ) denote the subset of Θ whose elements are bounded in absolute value by Λ, and ∆(Λ)

denote the set of distributions over Θ(Λ)

Given a sequence {xt}t≥0 of technology choices, let {µΛ
t } denote the sequence of beliefs in

∆(Λ) about the underlying transformed path bΛ, obtained through Bayesian updating. It is

well-known that this sequence is a martingale and converges to some limit µΛ. This result
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follows from the Martingale Convergence Theorem, and is proved similarly to Theorem 4

in Easley and Kiefer (1988). Translating this result in terms of f , this shows that the

sequence {µt} of beliefs about the path f also converge to some limit µ.

For any history h leading to the belief µ, let ZΛ(µ) = sup{bΛ(xt) : xt contained in h}. As

is easily checked, ZΛ(µ) is independent of the particular history leading up to the limiting

belief µ, and continuous in µ. We can similarly let Z(µ) = max{f(xt)} = G−1(ZΛ(µ),Λ)27

where, for each Λ, G−1(·,Λ) denotes the inverse of G(·,Λ).

Step 3: Technology Convergence and Vanishing Value of Marginal Innovation.

The next step is to characterize the limit to which technologies converge. For any (z1, z2) ∈
R × R+, let r(z1, z2) = z1 + δmax{z1, z2} denote the payoff of an agent if the payoff of his

chosen technology when young is z1 and the best explored payoff until then was z2. Given a

technology x, payoff z, and belief µ, let

u(x, µ, z) =

∫
Θ

r(f(x), z) dµ(f).

and

uΛ(x, µ, z) =

∫
Θ

r(G(f(x),Λ), z) dµ(f).

Using the distribution µΛ implied on Θ(Λ) by µ, we have

uΛ(x, µ, z) = v(x, µΛ, z),

where we define v, for any µ̃ ∈ ∆(Λ), by

v(x, µ̃, z) =

∫
Θ(Λ)

r(bΛ(x), z) dµ̃(bΛ).

We will use the following lemma, which is proved at the end of this Appendix (Section B.1):

Lemma 4 v(x, µ, z) is continuous over K ×∆(Λ)× [−Λ,Λ].

Given a belief µ with corresponding maximum explored payoff z, a young agent solves the

maximization problem:

U(µ, z) = max
x∈K

u(x, µ, z)

The equilibrium technological path, denoted {x∗t} is such that, for each t, x∗t maximizes

u(x, µt, zt). We now derive properties for the long-run technologies arising in equilibrium.

Given a sequence of technologies {xt}∞t=0, let M({xt}) be the set of its limit points.

27This maximum is also well defined, because f is continuous on the compact domain K.
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Proposition 6 For any history h, limiting belief µ, and x ∈M({x∗t}), x ∈ argmaxx′∈K u(x′, µ, Z(µ))

and f(x) = Z(µ).

Proof. Let {x∗tk} denote a subsequence converging to x. By construction,

u(x∗tk , µtk , Z(µtk)) ≥ u(x′, µtk , Z(µtk)) (23)

for any x′ ∈ K. Because Lemma 4 applies only to bounded payoffs, we cannot directly take

the limit in the previous inequality. Instead we will approximate it by its equivalent when

the payoffs are bounded by Λ for Λ arbitrarily large. Let Ω(Λ) = {f ∈ Θ : maxx∈K |f(x)| >
Λ− 1}. We have for any x, µ̂, z

|u(x, µ̂, z)− uΛ(x, µ̂, z)| ≤
∫

Θ

|r(f(x), z)− r(G(f(x),Λ), z)|dµ̂(f) ≤ 2

∫
Ω(Λ)

|r(f(x), z)|dµ̂(f).

(24)

We now show that the right-hand side converges to zero as Λ goes to infinity, uniformly

on the domain K × ∪t{µt} × [0, Z(µ)]. For all x ∈ K and z ∈ [0, Z(µ)], |r(f(x), z)| ≤
(1 + δ)(Z(µ) + maxx∈K |f(x)|). Therefore, the right-hand side of (24) is bounded above by28

2(1 + δ)

∫
Ω(Λ)

(
Z(µ) + max

x∈K
f(x)−min

x∈K
f(x)

)
dµ̂(f).

We will show that

sup
µt:t≥0

∫
Ω(Λ)

(
Z(µ) + max

x∈K
f(x)−min

x∈K
f(x)

)
dµt(f)

converges to zero as Λ goes to infinity. For this, it suffices to show the convergence for

sup
µt:t≥0

∫
Ω(Λ)

(
max
x∈K

f(x)

)
dµt(f),

since the other two terms can be treated similarly.29 We will establish a stronger result,

whose proof is in Appendix B.2. Let P(K) denote the set of all finite partitions of K and,

for each Π ∈ P(K) and Z̄ ≥ 0, let µZ̄Π denote the probability measure over Θ corresponding to

Brownian bridges with endpoints at consecutive elements of Π and endpoint values identically

equal to Z̄.

28The inequality relies on the fact that, since f(0) = 0, maxx∈K f(x) ≥ 0 and minx∈K f(x) ≤ 0.
29The last term obtains by symmetry, the first term with the constant Z(µ) can in fact be incorporated

in Z̄ in the argument following Lemma 5.
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Lemma 5 For any constant Z̄ ≥ 0,

lim
Λ→+∞

{
sup

Π∈P(K)

{∫
Ω(Λ)

(
max
x∈K

f(x)

)
dµZ̄Π(f)

}}
= 0.

For each µt, maxx∈K f(x) is clearly dominated, in the sense of first-order stochastic domi-

nance, by the same maximum under the distribution µΠ, whose partition corresponds to the

units of µt, and whose endpoints are equal to Z(µ), which is greater than Z(µt).
30 Applying

Lemma 5 to Z̄ = Z(µ) thus proves the desired uniform convergence.

This implies that there exists, for any ε > 0, a positive threshold Λ(ε) such that |uΛ(x, µt, z)−
u(x, µt, z)| < ε for all (x, t, z) ∈ K × N × [0, Z(µ)] and Λ > Λ(ε). Therefore, (23) implies

that, for a sequence converging to x, we have

uΛ(x∗tk , µtk , Z(µtk)) ≥ u(x∗tk , µtk , Z(µtk))− ε

≥ u(x′, µtk , Z(µtk))− ε

≥ uΛ(x′, µtk , Z(µtk))− 2ε.

Taking the limit as Λ goes to infinity, and using Lemma 4, we obtain that

u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ))− 2ε.

Since ε was arbitrary, this proves that u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ)). Proposition 2 also im-

plies that u(xtk , µtk , Z(µtk)) > (1+δ)Z(µtk), which shows that U(µ, Z(µ)) = u(x, µ, Z(µ)) ≥
(1 + δ)Z(µ). Moreover, f(x) ≤ Z(µ), since Z(µ) = supt{f(xt)}, f is continuous, and x is

a limit point of {xt}, and u(x, µ, Z(µ)) = f(x) + δZ(µ) ≤ (1 + δ)Z(µ), where the equality

holds because f(x) is known given µ. Therefore, U(µ, Z(µ)) = (1 + δ)Z(µ). In particular,

f(x) = Z(µ). �

Proposition 6 and its proof also show that the value of marginal innovation converges to zero

over time: for any x, u(x, µt, Z(µt))− (1 + δ)Z(µt) becomes nonpositive.

B.1 Proof of Lemma 4

Let Θ̃ = Θ(Λ) (Λ is fixed throughout, so there is no ambiguity about the underlying space).

Let {(xn, µn, zn)} be a sequence from K × ∆(Θ̃) × [−Λ,Λ] which converges to (x, µ, z) ∈
30Indeed, µΠ is obtained from µt by raising to the level Z(µ) the payoff of each technology explored by

time t.
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K ×∆(Θ̃)× [−Λ,Λ]. Then,

|v(xn, µn, zn)−v(x, µ, z)| =
∣∣∣∣∫

Θ̃

r(bΛ(xn), zn) dµn −
∫

Θ̃

r(bΛ(x), z) dµ

∣∣∣∣
≤
∣∣∣∣∫

Θ̃

[r(bΛ(xn), zn)− r(bΛ(xn), z)] dµn

∣∣∣∣+

∣∣∣∣∫
Θ̃

[r(bΛ(xn), z)− r(bΛ(x), z)] dµ

∣∣∣∣
+

∣∣∣∣∫
Θ̃

[r(bΛ(xn), z)− r(bΛ(x), z)] dµn

∣∣∣∣+

∣∣∣∣∫
Θ̃

r(bΛ(x), z) dµn −
∫

Θ̃

r(bΛ(xn), z) dµ

∣∣∣∣
≤ δ|zn − z|+ 2

∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµ

+

∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµn +

∣∣∣∣∫
Θ̃

r(bΛ(x), z) dµn −
∫

Θ̃

r(bΛ(x), z) dµ

∣∣∣∣
The last term converges to zero by weak convergence of the beliefs. We focus on the second

term ∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµ ≤ (1 + δ)

∫
Θ̃

|bΛ(xn)− bΛ(x)| dµ

which converges to zero by the Bounded Convergence theorem. Next,∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµn ≤ (1 + δ)

∫
Θ̃

|bΛ(xn)− bΛ(x)| dµn

K is compact and every bΛ ∈ Θ̃ is continuous, hence also uniformly continuous. Fix ε > 0

and let

A

(
1

j
, ε

)
=

{
bΛ ∈ Θ̃ : ∃ λ > 1

j
s.t. |x− y| < λ =⇒ |bΛ(x)− bΛ(y)| < ε

}
By the previous observations, it also follows that for any bΛ ∈ Θ̃, there exists j = j(bΛ) such

that bΛ ∈ A
(

1
j′
, ε
)

, ∀ j′ > j. Thus, Θ̃ =
⋃∞
j=1A

(
1
j
, ε
)

.

Next, since
{
A
(

1
j
, ε
)}

converges to Θ̃, it follows that for any ϑ > 0, there exists J > 0 such

that µ
(
A
(

1
j
, ε
))

> 1− ϑ
2
, ∀ j > J . Fix j̃ > J , by weak convergence of beliefs, there exists

N > 0 such that
∣∣∣µn (A(1

j̃
, ε
)c)
− µ

(
A
(

1
j̃
, ε
)c)∣∣∣ < ϑ

2
, for any n > N .

Since xn → x, there exists N ′ > N such that |xn − x| < 1
j̃
, for any n > N ′. Finally, we
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obtain, for n > N ′,∫
Θ̃

|bΛ(xn)− bΛ(x)| dµn =

∫
A
(

1
j̃
,ε
) |bΛ(xn)− bΛ(x)| dµn +

∫
A
(

1
j̃
,ε
)c
|bΛ(xn)− bΛ(x)| dµn

≤ sup
b∈A

(
1
j̃
,ε
) |b(xn)− b(x)|+ 2Λµn

(
A

(
1

j̃
, ε

)c)

≤ ε+ 2Λ

[∣∣∣∣µn(A(1

j̃
, ε

)c)
− µ

(
A

(
1

j̃
, ε

)c)∣∣∣∣+

∣∣∣∣µ(A(1

j̃
, ε

)c)∣∣∣∣]
≤ ε+ 2Λϑ

Since ε and ϑ were arbitrary, this completes the proof. �

B.2 Proof of Lemma 5

Letting Ω+(Λ) = {f : maxx∈K f(x) > Λ − 1} and Ω−(Λ) = {f : minx∈K f(x) < −(Λ − 1)},
we have Ω(Λ) = Ω+(Λ) ∪ Ω−(Λ). Since Z̄ ≥ 0, maxx∈K f(x) is nonnegative for all f in the

support of any µΠ ∈ P(K). Therefore,∫
Ω(Λ)

max
x∈K

f(x)dµΠ(f) ≤
∫

Ω+(Λ)

max
x∈K

f(x)dµΠ(f) +

∫
Ω−(Λ)

max
x∈K

f(x)dµΠ(f).

We will prove that the first term (the harder one) converges to zero as Λ → ∞, uniformly

in Π. The second term can be treated similarly.

Put in the language of probability theory, we need to show that, for each Z̄ ≥ 0, the family

of random variables {XΠ = maxx∈K f(x) : f ∼ µΠ}Π∈P(K) is uniformly integrable.31 To show

uniform integrability, it suffices to prove that there exists p > 1 such that:32

sup
Π∈P(K)

E [Xp
Π] <∞

Without loss of generality, we set Z̄ = 0 (other cases follow by translation) and K = [0, 1]

(other cases follow by the scaling property of Brownian motion). For each Π, we have

Pr(XΠ ≤ Λ) =
∏
πi∈Π

Pr(Xi ≤ Λ),

where {πi}i describes the units of the partition Π, Xi is the maximum of f over πi, and we

are using the fact that the variables {Xi}i are independently distributed. Moreover, each Xi

31A family {Xi}i∈I is uniformly integrable if limΛ→+∞ {supi {E[|Xi| : |Xi| > Λ]}} = 0.
32See, e.g., Durrett (1996), Exercise 4.5.1., p. 260.
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is the maximum of a Brownian bridge with width δi (the width of π) and endpoints equal

to 0. This implies that33

Pr(Xi ≤ Λ) = 1− e−2Λ2/δ2
i .

Therefore, we can compute the density of XΠ, and obtain, for p = 2,

E[X2
Π] =

∫
R+

Λ2
∑
i

(∏
j 6=i

(
1− e−2Λ2/δ2

j

))
e−2Λ2/δ2

i
4Λ

δ2
i

dΛ.

For each i, the product with respect to j is bounded by 1, implying that

E[X2
Π] ≤ 4

∑
i

∫
R+

Λ3e−2Λ2/δ2
i

δ2
i

dΛ.

Making, for each i, the change of variable ui = Λ/δi, we obtain

E[X2
Π] ≤ 4

∑
i

∫
R+

δiu
3
i e
−2u2

i dui.

Since, for any partition Π,
∑

i δi = 1, we conclude that

sup
Π∈P(K)

E[X2
Π] ≤ C

where C = 4
∫
R+
u3e−2u2

du <∞.

C Proof of Theorem 3

We first need to define the values of marginal and radical innovation for the social plan-

ner. Given a discount factor δS and an arbitrary history ht, define the following auxiliary

functions:34

UFB,M(ht; δS) ≡ sup
{xr}+∞r=t

Eht

[
f(xt) +

+∞∑
r=t+1

δr−tS (f(xr)− c(xr − x̄r))

]
(25)

s.t. xt ∈ [0, x̄t], xr ∈ R+, r = t+ 1, ....

33See, e.g., Durrett (1996), Exercise 7.8.1., p. 433. The formula given there is for a Brownian bridge with

width equal to 1. The general formula obtains by the scaling property of Brownian motion, which is easily

shown to be inherited by the Brownian bridge: letting {Bat }t∈[0,a] denote a Brownian bridge with endpoints 0

and a and endpoint values equal to 0, Bat has the law of Bt− t
aBa, where B is the standard Brownian motion.

34Recall the convention that c(y) = 0 for any y ≤ 0.
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and

UFB,R(ht; δS) ≡ sup
{xr}+∞r=t

Eht

[
f(xt)− c(xt − x̄t) +

+∞∑
r=t+1

δr−tS (f(xr)− c(xr − x̄r))

]
(26)

s.t. xt ≥ x̄t, xr ∈ R+, r = t+ 1, ....

UFB,M(ht; δS) is the value function of a social planner with discount factor δS when his time-t

choice is restricted to technologies that lie within the frontier associated with an arbitrary

history ht. Similarly, UFB,R(ht; δS) represents the value function when the time-t choice must

be greater than or equal to the frontier. As for the baseline model, if the social planner finds

optimal to exploit the best explored technology at an arbitrary time t, then he will stick to

that technology forever. This is because no learning occurs from exploitation so that the

social planner would start t+1 with exactly the same beliefs that made exploitation optimal

in the previous period. Thus, despite the higher complexity of the social planner’s problem,

we can define the values of marginal and radical innovation in a similar way to the baseline

model up to normalization:

V FB,M(ht; δS) ≡ UFB,M(ht; δS)− zt
1− δS

, and V FB,R(ht; δS) ≡ UFB,R(ht; δS)− zt
1− δS

(27)

As the values of marginal and radical innovation are simply an affine transformation of the

value functions of the social planner’s maximization problem (restricting the domains of his

first choice within and outside the frontier, respectively), it also follows that the social planner

prefers marginal over radical innovation at a history ht if, and only if, V FB,M(ht; δS) ≥
V FB,R(ht; δS).

We start the analysis with a technical result.

Lemma 6 There exists a sequence {g̃(δS)} with g̃(δS)→ +∞ as δS → 1 such that the value

of radical innovation for a social planner with discount factor δS is positive for any gap

g ≤ g̃(δS).

Proof. Let g and x̄ denote the gap and the frontier associated with an arbitrary history h.

Define a 1-step policy as a policy such that the social planner experiments only once and

then exploits forever after. Given a history h, let V 1,R(g; δS) denote the value of radical

innovation when the social planner is restricted to using only a 1-step policy at any history
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h with associated gap g.35 Clearly, V FB,R(h; δS) ≥ V 1,R(g; δS) as a 1-step policy is a feasible

policy for the social planner. The restriction to 1-step policies has the advantage that we

can explicitly write down the associated maximization problem as

V 1,R(g; δS) = sup
y≥0

{
f(x̄)

1− δS
− c(y) +

δS
1− δS

σ
√
yφ

(
g

σ
√
y

)
+

δS
1− δS

gΦ

(
g

σ
√
y

)}
− z

1− δS

=
1

1− δS
sup
y≥0

{
−g − (1− δS)c(y) + δSσ

√
yφ

(
g

σ
√
y

)
+ δSgΦ

(
g

σ
√
y

)}
(28)

which is equivalent to the maximization problem for an agent in our baseline model with a

discount factor equal to δS
1−δS . Note that, for δS = 1, the maximization problem reduces to,36

sup
y≥0

{
−g + σ

√
yφ

(
g

σ
√
y

)
+ gΦ

(
g

σ
√
y

)}
= +∞ (29)

Thus, V 1,R(g; 1) = +∞, for any g ≥ 0. This implies that there exists a δ̄ ∈ (0, 1) such

that, for any δS ≥ δ̄, we can find a positive number g̃(δS) such that V 1,R(g̃(δS); δS) > 0. By

Proposition 3, it also follows that V FB,R(h; δS) ≥ V 1,R(g; δS) > 0, for any g ≤ g̃(δS).

Suppose by way of contradiction that there is no sequence {g̃(δS)} with δS > δ̄ as defined in

the proof of Lemma 6 such that the sequence diverges. Take any such sequence. Then, there

must exist a ḡ > 0 such that g̃(δS) < ḡ along that sequence.37 This implies that there also

exists g′ > ḡ and a subsequence such that V 1,R(g′; δS) < 0 for any δS along the subsequence.

However, evaluating (29) at g = g′ implies that V 1,R(g′; δS) will eventually be positive as

δS → 1. We thus reached a contradiction. �

Fix a path of Brownian motion. Let x̄FB(δS) denote the frontier at which a social plan-

ner with discount factor δS will stop radical innovation. Suppose by way of contradiction

that lim infδS→1 x̄
FB(δS) = x̂ < +∞. Take a subsequence x̄FB(δS,n) such that x̄FB(δS,n) ↑

x̂ and g̃(δS,n) → +∞ as n → +∞.38 For x̂ < +∞ to be the case, it must be that

the sup norm of the path of Brownian motion over the interval [0, x̄FB(δS,n)], defined as

supx∈[0,x̄FB(δS,n)] |f(x)|, exceeds
g̃(δS,n)

2
for any n. Suppose to the contrary that there exists n̄

such that supx∈[0,x̄FB(δS,n̄)] |f(x)| ≤ g̃(δS,n̄)

2
. By Lemma 6, the value of radical innovation for a

35When restricted to 1-step policies, the value of radical innovation depends on the history only through

the gap as in the baseline model. This is not the case for general policies which can instead depend on the

history in a non-trivial way.

36The derivative of the objective function with respect to y is σ
2
√
yφ
(

g
σ
√
y

)
> 0.

37If necessary, we can restrict attention to a subsequence.
38Such a subsequence exists by Lemma 6.
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social planner with discount factor δS,n̄ would be bounded away from zero over [0, x̄FB(δS,n̄)],

regardless of the history, because the associated gap can never exceed g̃(δS,n̄) over that in-

terval. As the social planner keeps experimenting within the fixed interval [0, x̄FB(δS,n̄)], he

will eventually explore every unit that still generates a positive value of innovation.39 This

is because the frontier stays the same during experimentation and the payoff function over

[0, x̄FB(δS,n̄)] is bounded with probability 1 by the almost sure continuity of Brownian motion,

as in the baseline model. Therefore, the value of marginal innovation for the social planner

must eventually converge to zero and, consequently, below the value of radical innovation.

This means that the social planner will also eventually find radical innovation optimal, which

leads to a contradiction. Hence, it must be the case that supx∈[0,x̄FB(δS,n)] |f(x)| > g̃(δS,n)

2
for

every n along the subsequence that we are considering.

Finally, recall that g̃(δS,n) → +∞ as n → +∞ (or δS,n → 1). This implies that the path of

Brownian motion must have an infinite sup norm over the interval [0, x̄] but this cannot be

the case because the a.s. continuity of Brownian motion implies that supx∈[0,x̄] |f(x)| < +∞
with probability 1. We thus reached the desired contradiction. Finally, we can conclude that

lim infδS→1 x̄
FB(δS) = +∞ with probability 1. �

D Proof of Theorem 4

We start by showing the existence of a threshold g̃ above which yR(g) = 0. Suppose, first,

that κ ≤ c′(0), so that an old agent chooses the best explored technology (as observed in the

main text). The expected utility of a young agent from choosing technology x > x̄ is

f(x̄) + κy − c(y) + δ

{
(f(x̄) + κy)

(
1− Φ

(
g − κy
σ
√
y

))
+ σ
√
yφ

(
g − κy
σ
√
y

)
(30)

+(g + f(x̄)) Φ

(
g − κy
σ
√
y

)}
(31)

= (1 + δ)[f(x̄) + κy]− c(y) + δ

{
(g − κy)Φ

(
g − κy
σ
√
y

)
+ σ
√
yφ

(
g − κy
σ
√
y

)}
, (32)

where g = z − f(x̄). The first-order condition is

κ

(
1 + δ − δΦ

(
g − κy
σ
√
y

))
+

δσ

2
√
y
φ

(
g − κy
σ
√
y

)
= c′(y). (33)

39Even if we have not explicitly defined the value of innovation of a unit, such a concept can be easily

defined following (25) and (27).
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The left-hand side of (33) approaches κ as g increases and, for fixed g, the left-hand side

converges to κ(1 + δ) as y → +∞, and to κ as y → 0. Also, the left-hand side is bounded

above by

κ(1 + δ) +
δσ2φ(1)

2g

which converges to κ(1 + δ), as g increases. Thus, limy→+∞ c′(y) > κ(1 + δ) (and c′′(0) > 0,

if κ = c′(0)) implies that there exists g̃ > 0 such that g > g̃ implies yR(g) = 0.

Differentiating (33) with respect to g yields

− δφ

2σ
√
y

[
κ+

g

y

]
< 0

for all g, y > 0. This implies that yR(0) ≥ yR(g) for all g > 0. Repeating the argument used

to prove Theorem 2, we conclude that radical innovation ends in finite time a.s.

Suppose now that κ > c′(0). An old agent experiments radically with a size equal to yO,R > 0

if and only if g ≤ ξ, as shown in the main text. We assume without loss of generality that

g > ξ, so that an old agent does not innovate today and then the expected utility today of

any x > x̄ for a young agent is simply

E[f(x)− c(x− x̄)] + δ{E[f(x) + ξ|f(x) ≥ z − ξ] Prob(f(x) ≥ z − ξ) + z Prob(f(x) < z − ξ)}

= (1 + δ)(f(x̄) + κy)− c(y) + δ

{
σ
√
yφ

(
g − ξ − κy

σ
√
y

)
+ ξ + (g − ξ − κy)Φ

(
g − ξ − κy

σ
√
y

)}
The first-order condition is

κ

[
1 + δ − δΦ

(
g − ξ − κy

σ
√
y

)]
+

δσ

2
√
y
φ

(
g − ξ − κy

σ
√
y

)
= c′(y) (34)

The right-hand side is always greater than or equal to κ. Since gt − ξ > 0, the right-hand

side converges to κ as y → 0, and to κ(1 + δ) as y → +∞. Since also c′(0) < κ, there must

exist an interior solution to the first-order equation (34). When limy→+∞ c′(y) > κ(1 + δ),

the solution is unique for high values of g because the left-hand side of (34) approaches

κ pointwise as g becomes arbitrarily large. As g increases, yR(g) approaches yO,R: the

optimal size of innovation for a young agent converges to the optimal size for an old agent.

This follows from the fact that the first-order condition becomes, dropping negligible terms,
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κ ≈ c′(y). The maximized expected utility is approximately equal to

(1 + δ)(f(x̄) + ξ) + δ

[
κyO,R

(
1− Φ

(
g − ξ − κyO,R

σ
√
yO,R

))

+σ
√
yO,Rφ

(
g − ξ − κyO,R

σ
√
yO,R

)
+ (g − ξ)Φ

(
g − ξ − κyO,R

σ
√
yO,R

)]
≈ f(x̄) + ξ + δz

Since we assumed that g > ξ, it follows that f(x̄) + ξ + δz < (1 + δ)z. The only candidate

for radical innovation gives an expected payoff which is lower than what the young agent

could get by simply exploiting. Thus, there exists g̃ > 0 such that the young agent prefers

exploitation for any gap greater than g̃.

In order to replicate the steps used to prove Theorem 2, we still need to show that there is an

upper bound on the equilibrium size of innovation. When g > ξ, the right-hand side of (34)

is strictly decreasing in g. Thus, the unique positive solution of the first-order condition

when g = ξ provides the desired upper bound. When g ≤ ξ, the old agent is experimenting

with a fixed size yO,R (independent of the gap). Replicating the argument for κ = 0, one

may show that, on the range g ∈ [0, ξ], the value and size of radical innovation are decreasing

in g, providing an upper bound on the size of radical innovation for a young agent, uniform

over all histories.

E Cost Externalities

In the baseline model, the path of innovations affects incentives for radical innovation through

i) the expected value of new technologies, and ii) the opportunity cost of forgoing marginal

innovation. It is perhaps more realistic to allow radical innovation to be directly affected by

past technologies, if those technologies are helpful as inputs to produce radical innovations.

Our model may be extended along this direction, by assuming that the cost of radical

innovation is decreasing in the best available technology: the cost is given by a function

c(x− x̄, αz) for x > x̄ with α ≥ 0 (α = 0 corresponds to the benchmark model). We assume

that, for each w, the function c(·, w) satisfies the same assumptions as in the baseline model.

Let yR(gt, αzt) denote the optimal size of radical innovation at a history ht with associated

gap gt, and current best payoff zt. The following result is established similarly to Proposi-
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tion 5 and is stated without proof.40

Proposition 7 (Comparative statics) Suppose that α > 0 and that c is submodular.

Then, yR(g, αz) is increasing in z and in α.

Monotonicity with respect to z of the optimal size of innovation does not necessarily imply

that radical innovation itself is fostered by a higher z, even if we also assume that the

cost c(y, αz) is decreasing in its second component. Indeed, when the gap is positive, a

higher value of z reduces the cost of radical innovation, but also reduces the value of radical

innovation, as shown by Proposition 3. When the gap is zero, however (following successful

radical innovation), an increase in the best available technology always stimulates radical

innovation. Therefore, this link between cost and the best technology should result in longer

waves of radical innovation.

Monotonicity of innovation size with respect to the gap, which was established by Proposi-

tion 5, may fail in the presence of the cost externality studied here. Indeed, the reduction in

the marginal benefit of radical innovation following a larger gap might be more than com-

pensated by a decrease in the cost and marginal cost of radical innovation. Without the cost

externality, an increase in the gap reduces the marginal benefit while leaving the marginal

cost unaffected. In that case, we already know that there is a threshold for the gap above

which an agent would always set the size of radical innovation to zero.

The next result shows that stagnation still occurs as long as the marginal cost of radi-

cal innovation is bounded below away from zero as the best available technology becomes

arbitrarily large. We now assume that c is decreasing in its second component. Let

c̄(y) = limz→+∞ c(y, αz) denote the lower envelope of the cost functions {c(·, w)}.41

Proposition 8 (Stagnation) Fix α > 0, and suppose that c̄(·) is increasing in a right

neighborhood of y = 0. Then, radical innovation ends in finite time with probability one.

Proof. Since c̄(·) is increasing in a right neighborhood of y = 0, the properties of each cost

function c(·, αz) then guarantee that c̄(·) is increasing everywhere. Replicating the proof of

Proposition 5, one can show the existence of a threshold g̃ > 0 above which the marginal

40The agent’s objective function is submodular in (y, α). When there are multiple maximizers, Proposi-

tion 7 holds in the sense of the strong set order (see footnote 17).
41The function c̄(·) is well-defined because, for each y ≥ 0, the sequence {c(y, w)} is decreasing in w and

nonnegative.
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benefit of radical innovation is strictly less than the marginal cost, at any y > 0, for any

z > 0. Thus, yR(g, αz) = 0 for any g > g̃, regardless of the absolute level of z.

For fixed z, yR(0, αz) is still an upper bound on the size of radical innovation for any g > 0,

because the incentives to perform radical innovation are maximal with a zero gap. Moreover,

yR(0, αz) increases in z, because the cost function is submodular in (y, αz). However, the

marginal cost is bounded away from zero by the properties of the lower envelope c̄(·), which

implies that there exists 0 < Λ < +∞ such that limz→+∞ yR(0, αz) < Λ. Finally, we can

now repeat the same proof as in Step 1 of Theorem 2. �

Even if the long-run dynamics is the same with and without intergenerational cost externali-

ties, the short-run pattern of innovation might be significantly different in the two scenarios.

F Competition Among Firms

Suppose that in each period there is a new cohort of consumers of unit mass and N firms

that produce a good. Firms live for two periods and discount profits at a common rate

δ ∈ (0, 1]. New generations of firms do not overlap. Firms sell their good to consumers.42

Each firm n can experiment with a technology xn ∈ R+ to produce the good which has a net

(of input costs) productivity given by f(xn), so that f(·) can take on negative values. Each

firm shares the same beliefs about the mapping between technologies and net productivity,

f(·), which is represented by the realized path of a Brownian motion with drift κ = 0 and

variance parameter σ2. Experimentation with technologies that are in the active domain is

costless because those technologies are combinations of known technologies. Each firm n in-

stead incurs an experimentation cost c(xn−x̄)
N

from experimenting radically with a technology

xn > x̄.

Consumers have a unit demand and need the good. The firm that preempts all other firms

in the development, production, and marketing of a good captures the entire market. In

particular, given any vector of technology choices, x = (x1, ..., xN), we assume that each

firm has an equal chance of preemption. If firm n wins the race, its profits gross of any

experimentation costs are represented by f(xn). To further simplify the analysis, we assume

42If generations of firms where overlapping, it would create the problem that old firms would not be

exploiting anymore because young entrepreneurial firms could produce a higher quality product that could

reduce their market share to zero.
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that at most one firm wins the race in any period and that this firm sells to all consumers.

Firms may also exploit known technologies. Even if the productivity of a technology that

has been used in the past is known, a firm that has never used that technology may face

problems in its implementation. We capture this possibility by assuming that a firm that

employs a known technology will also face an equal chance of preemption as any other firm.

Firms can freely imitate any known technology but the productivity of a new technology

discovered by a young firm is observable only to that firm until the new cohort of firms is

born.

This formulation of competition among firms follows Loury (1979). Loury assumes a constant

reward for the first firm that introduces an innovation and firms can choose the size of R&D

which determines the likelihood of being the first innovator. We, instead, assume that each

firm has an equal probability to preempt its rivals but the “size” of the reward is stochastic.

In particular, a negative f(x) may be interpreted as the case in which a firm overspent in the

development of the product compared to the consumers’ perceived quality of that product.

A firm may still prefer to sell to the entire market in order to recover some fixed costs.

The next result shows that our baseline model can be interpreted as a reduced-form version

of a more complex model in which several firms compete with each other.

Proposition 9 Competition among firms generates the same equilibrium path as our base-

line model with overlapping generations of single agents.

Proof. Suppose that the industry is composed of old firms. Each old firm solves, with the

convention that c(y) = 0 for y ≤ 0,

max
xn≥0

Eh

[
f(xn)

N
− c(xn − x̄)

N

]
(35)

As each old firm has an equal probability of being the first to develop an innovation or market

the good using a known technology, each firm only cares about developing the product which

guarantees the highest expected profit upon winning the race. Thus, each old firm will exploit

the best explored technology as in the baseline model.

Let x−n denote the vector of technologies chosen by young firms j 6= n. Given that each old

firm behaves as in the baseline model, we can write the maximization problem of a young

firm as

max
xn≥0

Eh

[
f(xn)

N
− c(xn − x̄)

N
+ δ

max{f(xn), z}
N

]
(36)
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The continuation profits follow from the assumption that the young firm can observe the

productivity of any technology it explored, and those explored by other firms except for the

technologies discovered by firms in its own cohort.

The maximization problem (36) is equivalent to (3) up to normalization. Whereas there

could be multiple optimal technologies following an arbitrary history h, given (36) it is

straightforward to show that for any such solution we can construct a symmetric equilibrium

in which each firm experiments with that technology.
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