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Abstract

Cooperative approaches to study renegotiation in repeated games have assumed that Pareto-

ranked equilibria could not coexist within the same renegotiation-proof set. With strategic

renegotiation, however, a proposal to move to a Pareto-superior equilibrium can be deterred by

a different continuation equilibrium which harms the proposer and rewards the rejector. This

paper studies strategic renegotiation in repeated games, defining renegotiation-proof outcomes

by a simple equilibrium refinement. We provide distinct necessary and sufficient conditions for

renegotiation-proofness which converge to each other as renegotiation frictions become negli-

gible and which are straightforward to characterize graphically. The analysis suggests a novel

mechanism to explain the persistence of equilibrium inefficiencies, such as miscoordination and

status quo bias, even when information is complete, communication is frictionless, and players

are arbitrarily patient and can credibly agree on efficient outcomes.

1 Introduction

The punishment equilibria used to sustain cooperation in repeated games are often Pareto inef-

ficient. This puts into question their viability and, hence, the viability of cooperative outcomes

based on such punishments, when players are free to renegotiate the continuation of the game.

Incorporating renegotiation satisfactorily in repeated games has been a longstanding challenge.

To address this question, economists have introduced various concepts of renegotiation-proofness

based on the following idea: roughly speaking, an equilibrium is not renegotiation-proof if it entails

a continuation play that is Pareto dominated by some “credible” equilibrium (Pearce (1987), Bern-

heim and Ray (1989), Farrell and Maskin (1989), Abreu and Pearce (1991), and Asheim (1991)).1

∗We are grateful for comments from Larry Samuelson, Ilya Segal, Tadashi Sekiguchi, Takuo Sugaya, Joel Watson,

and seminar participants at the 2015 SAET meeting, the 2015 World Congress of the Econometric Society, and the

2016 Asian Meeting of the Econometric Society. Strulovici gratefully acknowledges financial support from an NSF

CAREER Award (Grant No. 1151410) and a fellowship from the Alfred P. Sloan Foundation
1The first discussion along these lines is due to Farrell (1983), which is subsumed by Farrell and Maskin (1989).

Other approaches to renegotiation include DeMarzo (1988), Benôıt and Krishna (1993), and Bergin and MacLeod

(1993). All these papers follow axiomatic approaches.
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These concepts mainly differ regarding what “credible” means and yield contrasted results:

while Pearce (1987) argued,2 as in the first paragraph, that maximal cooperation may not be

sustained due to the lack of a credible and severe enough punishment, Farrell and Maskin (1989)

found that most renegotiation-proof outcomes, as players become arbitrarily patient, had to be

Pareto efficient.3

Owing to their cooperative (i.e., non-strategic) nature, these concepts have left unexplored an

aspect of renegotiation which arises naturally when one considers an explicit protocol of renego-

tiation: what happens when a player rejects another player’s proposal? Suppose that during the

punishment phase of a two-player repeated game, the continuation payoffs are (X1,X2) and player 1

proposes a Pareto-improving equilibrium with payoffs (Y1, Y2). Clearly, such a Pareto-improvement

need not be accepted if, by rejecting 1’s proposal, player 2 gets rewarded by a higher continuation

payoff Z2 > Y2. Moreover, if 1’s continuation payoff Z1 after 2 has rejected the offer is less than

X1, then it is suboptimal for 1 to propose the Pareto improvement in the first place. With strategic

renegotiation, a Pareto dominated equilibrium may thus withstand renegotiation as long as any

off-path proposal may be deterred in this fashion. Punishing a player who deviates (here, in pro-

posals) and rewarding other players is standard in repeated game analysis. It also seems plausible:

for example, if an agent tries to bribe another one to obtain some advantage (a Pareto improvement

for these agents, other things equal), the agent who rejects and exposes the bribe may be rewarded

and the corruptor punished as a result.

This paper models strategic renegotiation in repeated games by adding a simple stage at the

end of each period: after actions and payoffs have been chosen and observed in period t, one of the

players may be selected with fixed probability to propose a continuation plan. A plan for period

t + 1 is described recursively as follows: it prescribes players’ actions, proposals, and acceptance

decisions in period t+1, as well as the continuation plan for period t+2 as a function of the actions,

proposals, and acceptance decisions observed in period t+ 1.

To give traction to renegotiation, we introduce a simple equilibrium refinement. An equilibrium

of the enlarged game is renegotiation-proof if, as long as no off-path proposal has been accepted,

any accepted proposal is played. Intuitively, this refinement may be viewed as a social norm under

which accepted proposals are taken seriously until, possibly, players abandon this norm by accepting

2See also Abreu and Pearce (1991) and Abreu, Pearce and Stacchetti (1993).
3Farrell and Maskin, like Bernheim and Ray, introduce weak and strong concepts of renegotiation-proofness.

The strong notion is arguably the more satisfactory one as it allows external comparisons: For example, the infinite

repetition of any fixed Nash equilibrium of the stage game always constitutes a weakly renegotiation-proof equilibrium,

but typically fails to be strongly-renegotiation proof. The strong concept is particularly demanding, as a strong

renegotiation-proof equilibrium must win payoff comparisons even against those equilibria which are themselves

eliminated by that concept.
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some off-path proposal.4

Our main object of study is the set of payoffs generated by renegotiation-proof equilibria.

Starting with two players, we characterize this set when players become arbitrarily patient and

renegotiation frictions—modeled as the probability that no one gets to make a proposal within

any fixed time window—become negligible. This set is nonempty and straightforward to describe

graphically: it is the intersection of the set of individually rational payoffs (as in the Folk Theorem)

and of the positive orthant whose boundaries go through the endpoints of the Pareto frontier.

More generally, we compute distinct necessary and sufficient conditions for renegotiation-proofness

which are strictly nested for any finite level of renegotiation friction and converge to each other as

renegotiation frictions become negligible.

Our construction implies path dependence for the set of proposals which are acceptable in equi-

librium. For example, the cooperative proposal (Y1, Y2) mentioned above may be acceptable at the

beginning of the game, but not after a deviation. Several authors have expressed discomfort with

static notions of renegotiation-proofness, precisely because they ruled out path dependence (Abreu

and Pearce (1991) and Asheim (1991)). Path dependence arises naturally when renegotiation is

considered to be part of the equilibrium of a larger game, rather than a restriction on the set of

equilibria of the underlying repeated game.5

The analysis provides a novel explanation for the existence of inefficient equilibria, such as

coordination failures and political inertia, when agents are i) arbitrarily patient, ii) freely able to

communicate, iii) and able to credibly agree on future strategies. As noted, strategic negotiation

requires that continuation play be prescribed not only after off-path actions but also after off-path

proposals, such as suggestions to move to a Pareto-improving equilibrium. In the context of an

oppressive regime, for instance, the equilibrium may specify that any “subversive” (i.e., regime-

threatening) proposal triggers a punishment for the proposer and rewards the players who reject

the proposal.

With three or more players, new conceptual issues emerge. In particular, one must specify

the continuation equilibrium when only a subset of players accept the proposal made by a given

player.6 We explore several specifications, whose predictions for the set of renegotiation-proof

4We also consider a milder refinement requiring only that “credible” accepted proposals be played, where credibility

is defined in Section 5. With two players, the refinements turn out to yield the same necessary and sufficient conditions.
5It also suggests that Farrell and Maskin’s and Bernheim and Ray’s concepts of weak renegotiation proofness

and internal consistency may rule out reasonable renegotiation-proof equilibria by preventing path dependence of

acceptable continuation equilibria. In particular, while those concepts require that no Pareto ranked equilibria

coexist within a given norm, this paper suggests that Pareto-dominated equilibria may withstand renegotiation as

long as the social norm specifies clear punishments and rewards for the proposers and rejectors of Pareto improving

equilibria.
6Other issues arise when a player makes a proposal to a subset of players. While such a proposal is formally
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payoffs range from the Folk Theorem to Pareto efficiency. The simplest one requires that the

continuation equilibrium when a proposal fails to receive unanimous approval be independent of

the rejectors’ identities. In this case, our necessary and sufficient conditions for renegotiation-proof

payoffs both take the form of upper-orthants, a useful qualitative property to model renegotiation

in repeated games. For each assumption that we considered, the sets characterizing necessary and

sufficient conditions become arbitrarily close to each other as renegotiation frictions vanish. The

analysis of this more general environment is contained in Section 7.

Several papers have studied negotiation by players who engage in several rounds of cheap talk

before choosing their actions in a one-shot game, and asked whether this pre-play communication

could help select efficient equilibrium in the one-shot game. Farrell (1987) considers an entry game

in which firms simultaneously announce their intention of whether to enter the market. With

pre-play communication, firms achieve a higher payoff than they do in the symmetric one-shot

equilibrium, but do not achieve perfect coordination. In Rabin (1994), players simultaneously

propose Nash equilibria of the one-shot game and an equilibrium is played if both players propose

it. With sufficiently many rounds of communication, each player is guaranteed to get at least her

worst payoff in the “Pareto meet,” which is the set of Pareto-efficient Nash equilibria in the one-

shot game. Players need not achieve a Pareto-efficient outcome, however. In inefficient equilibria,

players keep proposing their preferred outcome with high probability and may thus fail to reach an

agreement.

The papers closest to ours are Santos (2000) and Miller and Watson (2013). In the alternative-

offer model studied by Santos (2000), players bargain over Nash equilibria of a one-shot game,

and play whichever equilibrium is agree upon. In that paper, each player is guaranteed to get a

payoff in the Pareto meet, but players may still end up playing a Pareto-inefficient equilibrium.

More recently, Miller and Watson (2013) study equilibrium selection in a repeated game with an

extensive bargaining protocol and unbounded transfers in each period. Their goals and analysis are

quite different from this paper’s. In particular, they are interested in understanding how axiomatic

restrictions on disagreements affect bargaining outcomes. This, together with the presence of a

transfer stage separate from the action stage, distinguishes their analysis and results from ours.

The relation between these papers and ours is explained in detail in Sections 4.5 and 6.

2 Setting

We first consider the case of two players, indexed by i ∈ {1, 2}, engaged in a repeated game.

Player i’s stage-game action, ai, lies in a finite set denoted Ai. The vector a = (a1, a2) of actions

similar to a global proposal which requires only the approval of a subset of players, it has a specific structure which

we do not investigate in this paper and hope to explore in future work.
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determines the players’ payoffs for the current period, u(a) = (u1(a), u2(a)). A distribution αi over

Ai is a mixed action for i, and α = (α1, α2) denotes the vector of mixed actions for both players.

Players put a weight ε ∈ (0, 1) on the current period, which corresponds to a common discount

factor δ = 1− ε.

Each period consists of the following stages:

1) Players observe the realization z of a public randomization device taking values in [0, 1];

2) They simultaneously choose mixed actions αi ∈ ∆(Ai), i ∈ {1, 2}. Mixing probabilities are

not observable.7 Conditional on the realization z of the public randomization device, players choose

their mixed actions independently from each other;

3) The vector a of actions is observed and the period’s payoffs are realized;

4) With probability p < 1, one of the players is chosen to propose a new plan for continuation

of the game.8 Each player has the same probability of p
2 being chosen.9 The chosen player may

conceal his proposal opportunity by remaining silent, or mix between making a proposal or staying

silent. The object of a proposal is an infinite-horizon plan m from the set M of all possible plans,

which will be described shortly;

5) If i made a proposal, player −i decides whether to accept it, possibly mixing between accep-

tance and rejection. The resulting decision, D−i, is set to 1 if −i accepts the proposal and 0 if he

rejects it;

7In accordance with current practice, we allow players to use privately mixed strategies. This feature distinguishes

our analysis from some of the earlier work on renegotiation. For example, Farrell and Maskin (1989) assume that

players can observe each other’s mixing strategies, rather than just the realized actions. This distinction can affect

the set of weakly renegotiation-proof equilibria (Farrell and Maskin’s concept), as we show in Appendix H. Intuitively,

when players observe each other’s mixed strategy, there is without loss a single continuation payoff vector, conditional

on players’ mixed strategies. When mixtures are unobservable, however, there must be a continuation vector for each

possible outcome of the mixture, chosen so as to make each player indifferent across all actions in the support of his

mixed strategy. Moreover, all of these vectors must belong to the renegotiation-proof set. This is problematic because

some of these continuations may have Pareto-ranked payoffs, violating weak renegotiation-proofness. Bernheim and

Ray (1989) rule out mixing altogether, focusing their analysis on pure-strategy equilibria.
8It is possible to define proposals in terms of a different message space. For example, players could simply propose

continuation payoffs. Although many message spaces are possible, any accepted message must correspond to some

equilibrium of the dynamic game, and the message space must be rich enough to include all equilibria which the

players may want to consider as continuations of the game. The advantage of presenting messages directly as plans

is to make this connection explicit including, in particular, not only players’ continuation payoffs but also whether

the equilibrium implementing the payoffs satisfies some renegotiation-proof refinement or whether it belongs to some

social norm.
9Our results extend to the case of asymmetric probabilities. The sufficient conditions are unchanged, but neces-

sary conditions entail a payoff lower bound on each player, which increases with that player’s proposal probability,

consistent with the intuition that a higher proposal probability means an increased bargaining power. This extension

is covered in Appendix G.
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The public history of a period consists of the realisation z of the randomization device, the action

vector a, the proposal (which we will later denote as µi) or absence thereof and, if applicable, the

acceptance decision D−i. In addition, each player privately observes the mixing probability used

for each of his decisions.

A plan in period t describes players’ strategy for the infinite repetition of the stage-game de-

scribed above, from period t + 1 onwards. These decisions (actions, proposals, and acceptance

mixtures) are history-dependent. The setting being time invariant, it is convenient to define recur-

sively the set M of plans. A plan m ∈ M in period t is described by the following elements:

a) For each realization z of the public randomization device, a pair α = α[m](z) of mixed actions

that players should play in period t+ 1;

b1) For each player i, a distribution µ̄i = µ̄i[m](z,a) ∈ ∆(M ∪ ∅) over proposals, where the

outcome ∅ means that i abstains from making a proposal (unbeknownst to player −i). We assume

that distributions have a finite support over plans.10 The proposal distribution can depend on the

realization z of the public randomization device and on the pair a of observed actions. Because

p < 1, not observing any proposal from either player is always consistent with “on-path” behavior.

The realized proposal is denoted µi;

b2) A probability q−i = q−i[m](z,a, µi) that −i accepts i’s proposal (whenever µi 6= ∅), which
may depend on z, a, and µi;

b3) If no one made a proposal, the acceptance stage is skipped. To economize on notation,

we assume that some player i is, even in that case, conventionally selected (randomly or deter-

ministically) as the proposer and let µi = ∅ and D−i = 0. (So, −i’s conventional response is to

systematically “reject” a non proposal.)

c) A continuation plan m+1 = m+1[m](z,a, i, µi,D−i) ∈ M for period t + 2 onwards, as a

function of z, a, i, µi, D−i, where i indicates the identity of the last proposer.11

This protocol allows plans in which all proposals are ignored regardless of whether they are

accepted (babbling). In the next section, we introduce a refinement requiring that some accepted

proposals be played. The protocol also allows plans for which any rejected proposal results in

the same “default” continuation, which is the “No-Fault Disagreement” Axiom studied by Santos

(2000) and Miller and Watson (2013) and, in a simultaneous-offer setting, by Farrell (1987), Rabin

(1994), Arvan, Cabral, and Santos (1999).12

10We will in fact impose a uniform upper bound on this support, as explained below.
11Clearly, this plan must be independent of i whenever µi = ∅, so that the convention chosen for the proposer in

the absence of any actual proposal is indeed irrelevant. This restriction is applied throughout.
12The protocol also allows counter-intuitive plans for which an accepted proposal is followed by a continuation

plan which has nothing to do with the initial proposal. Appendix G explains why one could without loss restrict

attention to plans which are “truthful,” i.e. such that accepted on-path proposals are always played. This discussion

is postponed to avoid cluttering the analysis.
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While the above definition seems natural, it turns out to be too permissive for the set of plans to

be well-defined: there does not exist a set of plans so large as to contain all the possible continuation

prescriptions allowed above.13 The appendix provides restrictions on plan prescriptions guarantee-

ing that the set of plans is well-defined and flexible enough to include all the plans discussed in this

paper, so this difficulty can be ignored in a first reading.14

3 Concepts

The previous section has introduced an enlarged infinite-horizon game which we term repeated

game with renegotiation. Any strategy profile of this game can be identified with a plan. Indeed,

a plan prescribes history-dependent distributions over decisions (actions, proposals, or acceptance)

at each stage of each period of the game. Accordingly, the subgame perfect equilibria (SPEs) of the

repeated game with renegotiation can be identified as a subset S of M. Unless stated otherwise,

in this paper “SPE” refers to an equilibrium of the repeated game with renegotiation.

Our main concept is a simple equilibrium refinement, which confers its strength to renegotiation.

Definition 1 An SPE m is renegotiation-proof if, as long as no off-path proposal has been ac-

cepted, any proposal that is accepted is played.

Equivalently, players implement all accepted proposals until, possibly, some off-path proposal is

accepted. Unlike the previous literature on renegotiation-proofness, this concept involves no set of

equilibria; it reduces renegotiation-proofness to a simple equilibrium refinement. However, there is

an equivalent formulation of the concept that follows the more familiar of approach of viewing a

13For example, in the above construction, a plan must specify an acceptance decision for each possible proposal.

Therefore, each plan m must specify—among other things—a function which maps each element of M (the proposal)

to a binary decision (acceptance). This implies that the set M of plans must contain, in order to include all possible

prescriptions, its power set 2M. Such a set does not exist, since any set has a strictly lower cardinality than its power

set, by Cantor’s Power Set Theorem (see, e.g., Mendelson (1997)).
14These restrictions are of three kinds: First, the support of the proposal distribution µ̄i[m](z,a) and the set

M+1[m] of possible continuation plans have cardinalities which are uniformly bounded over m, z, and a. Second,

all plans prescribe to accept on-paths proposals and reject off-path ones. Third, the continuation plan is chosen in

M+1[m] according to a choice rule which depends only on the following information: i) whether the proposal was on

path, ii) whether it was accepted, and iii) for each player and continuation plan in M+1[m], the pairwise ranking of

the proposal’s payoff relative that continuation plan’s payoff. There exists a set of plans obeying these restrictions

which has the same cardinality, i2, as the set of real-valued functions over R. Having fixed this set, one may construct

the extensive formulation of each plan from its recursive formulation. To avoid cluttering the analysis, we defer the

details to Appendix F.
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norm as a set of equilibria, and which will facilitate the comparison of the concept with existing

notions of renegotiation-proofness.

Definition 2 A set N ⊂ S of equilibria forms a norm if, for any m ∈ N such that µi ∈ µ̄i[m](z,a)

or D−i = 0, m+1[m](z,a, i, µi,D−i) ∈ N .15

The definition implies that, if players start with an equilibrium in the norm, then all on-path

proposals (whether they are accepted or rejected), as well as rejected off-path proposals, have their

continuations in the norm. In particular, deviations in actions are punished within the norm, as

long as no off-path proposal to leave the norm has been accepted. One may view N as a social

norm: it describes the set of continuations which players perceive as consistent with “business as

usual.” A norm can only be abandoned if some player makes an off-path proposal outside the norm

that is accepted by the other player. The following notion of stability requires that such proposals

be taken seriously by the players.

Definition 3 A norm N is stable if, in any period starting with a continuation equilibrium in

N , whenever i proposes an equilibrium µ ∈ S and −i accepts it, µ is implemented.

Since all on-path continuations of equilibria in N must all belong to N—by definition of a norm—

stability implies that any Pareto-improving proposal lying outside the norm is rejected with proba-

bility 1; for if it were accepted, stability would require that the proposal be implemented. Stability

thus requires that no player ever has an incentive to make proposals outside of the norm—hence

the terminology. Intuitively, stability is achieved by rewarding a player on the receiving end of a

deviating proposal whenever he rejects it. Crucially, however, this continuation, which rewards the

rejector and deters the proposer, must lie within the norm.

As anticipated, norm stability is equivalent to renegotiation-proofness in the following sense.

Proposition 1 An equilibrium is renegotiation-proof if and only if it is part of a stable norm.

The proof of this equivalence is straightforward: First, any SPE of a stable norm must be renegotiation-

proof since all continuations of on-path proposals and rejected off-path proposals lie in the norm,

and thus subject to the stability condition. For the reverse direction, take any renegotiation-

proof SPE and consider the set consisting of this equilibrium together with all of its continuation

equilibria at the beginning of periods following histories for which no off-path proposals has been

accepted. This set forms a norm, by construction, which is stable, by renegotiation-proofness of

the equilibrium.

15When viewing an equilibrium m as a plan, the notation m+1[m](z,a, i, µi, D−i) refers to the continuation equi-

librium of m at the next period, following the observations z,a, i, µi, D−i in the current period.
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These definitions may seem demanding: why should players treat all proposals as “credible”

when they are accepted? A pragmatic answer is that the question is moot: Section 5 shows that

restricting the refinement to a much narrower class of “credible” proposals yields the same necessary

and sufficient conditions as the ones obtained when all proposals are covered by the refinement.16

A more conceptual answer is that all proposals are chosen from equilibria of the repeated game

with renegotiation, which may have their own prescriptions regarding how proposals are handled,

and do not have to satisfy the refinement of the initial norm. For instance, player 1 may offer

to player 2 to move to another equilibrium of the underlying repeated game and treat all future

proposals as babbling. If player 2 accepts this offer, it may be reasonable for the players to ignore

future negotiation.

There is, in fact, an important conceptual reason not to impose the renegotiation-proofness

refinement beyond the first accepted proposal: Players may agree, once, to implement a proposal

lying outside the norm, as implied by the content of the refinement. However, requiring that

further proposals which are off-path relative to the first one be played when accepted undermines

the credibility of this refinement: since these further proposals are off-path, implementing them

would imply de facto that the first proposal has not in fact been implemented and, hence, that the

renegotiation-proofness refinement invoked when the players accepted the first proposal has been

violated.

Payoffs

To delineate players’ incentives at each node of the game, we introduce notation that distin-

guishes players’ payoffs at different stages of each period. Given a subset L of SPEs, let U(L) ⊂ R2

(or just U , when there is no confusion) denote the set of expected payoffs for the players across all

possible SPEs in L, computed before public randomization. V is defined identically but computed

after the realization of the randomization device z. U is thus included in the convex hull of V.
Finally, W consists of continuations payoffs after actions and payoffs are observed and incurred in

the current period, but before the proposal stage. Each element of W is a convex combination of

three expected payoff vectors corresponding to the following events: player 1 gets to make a pro-

posal, player 2 does, or no one does. Because elements of W define continuation payoffs excluding

the current period, to make them commensurate with payoffs in U , we evaluate them at the next

period (i.e., ignoring the discount factor between the two periods). With this convention, payoffs

in W are convex combinations of elements of U .
Elements of U , V, and W are points of two-dimensional sets. For any point U , we let πi(U)

denote the ith component of U , i.e., i’s continuation payoff at the relevant stage of the game.

16A proposal is credible relative to a norm if any ulterior deviation from the proposal, whether at the action or the

proposal stage, triggers a reversal to the norm.
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Definition 4 A point A is q-renegotiation-proof if there exists ε̄ ∈ (0, 1
q
) such that for all ε ≤ ε̄

there exists a stable norm N for p = qε such that A ∈ U(N ). Moreover, A is renegotiation-proof

if it is q-renegotiation-proof for all q’s large enough.17

The coefficient q is inversely related to the amount of renegotiation frictions in the game:18

when q = 0, players never get a chance to renegotiate and the game reduces to a standard repeated

game. As with the Folk Theorem, any point in interior of the individually rational feasible set is 0-

renegotiation-proof. Our main objective is to characterize the set of renegotiation-proof payoffs, i.e.,

the set of payoffs which sustain renegotiation, when opportunities to renegotiate become arbitrarily

frequent.

4 Main Result

4.1 Statement

Let v
¯i

denote i’s minmax payoff in the stage game of the repeated game absent any renegotiation19

and Pi denote the feasible payoff vector that gives i his maximal payoff among all payoff vectors

above the minmax.20 The weak individually-rational Pareto frontier—consisting of points which

are not strictly Pareto dominated—is a piecewise linear curve joining P1 and P2.

Let v1 = π1(P2) and v2 = π2(P1).

Theorem 1 (Renegotiation-Proof Set)

• (Sufficiency) If

πi(A) > vi for i ∈ {1, 2} (1)

or A = P1 = P2, then A is q-renegotiation-proof for all q ≥ 0 and, hence, renegotiation-proof.

• (Necessity) If A is q-renegotiation-proof, then

πi(A) ≥ v
¯ i +max

{

0;
q

2 + q
(πi(P−i)− v

¯ i)

}

(2)

for i ∈ {1, 2}. If A is renegotiation-proof, inequalities in (1) must hold for both players as

weak inequalities.

17This definition concerns payoffs evaluated at the beginning of a period, i.e., before the realization of the public

randomization device.
18One may embed the model into a continuous-time structure, with ε being the time interval between consecutive

periods. For small ε (our case of interest), the coefficient q then corresponds to the rate at which players receive

proposal opportunities per unit of time.
19As usual, player −i is allowed to mix across actions to minmax i.
20If several such points exist, we choose the point among those with the lowest payoff for −i.

10



π2

π1

P2

P1

2
2+q

(π1(P2) − v
¯1

)

v
¯

Figure 1: Necessary and sufficient conditions for fixed q

Condition (1) thus fully characterizes (up to its boundary) the set of renegotiation-proof payoffs.

Sufficiency is established in Section 4.4 which constructs explicitly, for any A that satisfies (1),

a renegotiation-proof equilibrium that implements A.21 The necessary condition is derived in

Appendix A.22

Figure 1 illustrates Theorem 1 for a fixed q: the green region represents the points known

to be renegotiation-proof and the orange region represents the additional points which may be

renegotiation-proof. When q = 0 (no renegotiation), the orange region extends all the way to the

minmax point v
¯
and we recover the Folk Theorem. As renegotiation frictions become arbitrarily

small (q → +∞), the orange region disappears as necessary and sufficient conditions become

identical (up to their boundary).

One consequence of Theorem 1 is that the set of q-renegotiation-proof payoffs is nonempty for

all values of q ≥ 0 and so is the set of renegotiation-proof payoffs. In particular, our concept of

renegotiation-proofness provides a well-defined counterpoint to the standard Folk Theorem when

renegotiation is introduced to repeated games, allowing us to compare the impact of renegotiation

across different strategic situations of the stage game, from perfectly aligned interests to extreme

misalignments, and to establish for a large class of games the possibility of sustaining inefficient

equilibria even when players are arbitrarily patient and can frictionlessly and credibly propose and

21The construction focuses on the case P1 6= P2. If P1 = P2, players have perfectly aligned interests as they both

want to implement P1 and the construction is trivial.
22When P1 = P2, the necessary condition selects this point as the unique outcome as renegotiation frictions become

negligible. If the weak Pareto frontier consists of a segment giving a constant payoff to one of the players—a degenerate

case—the Pareto point maximizing the other player’s payoff is renegotiation-proof. Our conditions do not pin down

which of the other Pareto points are renegotiation-proof.
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agree on Pareto improving equilibria.23

π2

π1

P2

P1

O(1/q)

v
¯
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(a) Renegotiation destroys the Folk Theorem (b) Pareto frontier reduced to one point
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¯

(c) Folk Theorem with extreme deterrence points (d) Asymmetric case

Figure 2: Necessary and sufficient conditions for various configurations

4.2 Relation between players’ interest alignment and renegotiation-proof out-

comes

Figure 2 represents the set of renegotiation-proof payoffs for degrees of player alignment. In config-

uration (a), renegotiation constrains the set of implementable payoffs because the deterrence points

P1 and P2 are too close to each other relative to the vector of minmax payoffs. Configuration (b)

represents a perfectly cooperative game. The only renegotiation-proof outcome is the Pareto effi-

cient point. In configuration (c), the punishment/reward points used to deter off-path proposals are

sufficiently far apart and the Folk Theorem holds despite the presence of frictionless renegotiation.

23It should be noted that for fixed ε, there need not exist any stable norm—or, equivalently, any renegotiation-proof

equilibrium—just as strongly renegotiation-proof equilibria (Farrell and Maskin (1989)) and externally consistent

norms (Berneim and Ray (1989)) may fail to exist for fixed discount factors. Indeed, we have constructed a family

of counter-examples for some fixed ε > 0 and all values of q > 0.
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As the figure illustrates, the impact of renegotiation hinges on the alignment structure of the

stage game. As the game becomes less cooperative (moving from (b) to (a) to (c) on the fig-

ure), there is more scope for disagreement among the players, which can be used to implement a

larger set of feasible payoffs. Strategic renegotiation thus does not destroy the implementability of

Pareto-efficient payoffs, but does not prevent Pareto-inefficient ones either, and the severity of the

inefficiency which may be sustained increases as players’ interests become more divergent.

4.3 Applications: a novel mechanism for miscoordination and inertia

Perhaps the most intriguing consequence of this analysis is the fact that players may be stuck with

rules, constructed explicitly in Section 4.4, which prevent them from moving to Pareto efficient

payoffs, even though the game has complete information, players are arbitrarily patient, and can

perfectly communicate and commit to new equilibria.

Pareto inefficient equilibria may be desirable in some applications, in which the players who

are explicitly modeled create externalities on other economic agents. A social planner in charge of

designing rules between the players may be concerned that high payoffs for these players mean that

they are colluding, polluting, shirking, or, more generally, adversely affecting society members who

cannot influence these players in return.

Consider, for instance, a regulator wishing to prevent collusive pricing in an oligopolistic market.

If the firms can be given self-enforcing rules that prevent collusion, such a design is of course

cheaper for the regulator than explicitly monitoring the firms and administrating the punishments.

Likewise, the manager of administrative office facing high costs of monitoring his employees may

wish to create a social norm between them which implements high effort and under which an

employee’s proposal to shirk is rebuked by other employees and thwarted without requiring the

manager’s intervention. The designer’s role is then simply to set the rules at the beginning of

the game, specifying how players should interpret deviations in actions and proposals. Once this

common understanding is reached, the designer completely withdraws from the game: the players

enforce the rules themselves by punishing one another if one of them ever deviates from these rules.

Of course, proposal-deterring norms do not have to be designed by anyone: players may simply

be trapped in an equilibrium with this feature—perhaps the remain of an unmodeled evolution

before which such a norm made sense. An example may be “acting tough” and discouraging any

suggestion to “soften up” even when do so would in fact lead to a Pareto improvement.

Another insight of the analysis—related to Section 4.2 on players’ alignment—is to emphasize

the potential value, from a designer’s perspective, of creating actions which benefit only one player

but not the other, in order to deter collusive proposals more easily. Instead of taking the stage

game as given, that is, the designer (regulator, manager, etc) may instil some amount of potential
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disagreement between the players.

Trapped in an improvement-deterring norm, players may be tempted to reach out to each

other anyway and urge each other to forget about the current norm. Note, however, that such

an attempt precisely constitutes the kind of proposal that this paper analyzes. Unless players can

somehow create neologisms that are perceived by other players as immune from the consequences

of the current rules, the attempt will be interpreted as a proposal by the receiver and the proposer

punished as a result. Worse: it is in the receiver’s interest to interpret any attempt to reach out

as a deviating proposal, since by design rejecting such a proposal provides a reward to the rejector,

above and beyond the improvement entailed by the proposal.

In other applications, the designer’s motivations need not reflect any concern for any agent’s

welfare—whether explicitly modeled or passive— other than himself. We briefly describe one

application of each kind below, where Pareto-inefficient equilibria from the players’ perspective are

beneficial or harmful from a broader social perspective.

Cournot competition.

Consider two symmetric firms which, in equilibrium, produce together more than the monopo-

listic output. These firms could achieve a higher profit by each producing half of the monopolistic

output. However, proposals to move away from the current equilibrium may be subject to a norm

treating any such proposal as corrupt behavior. The firm on the receiving end of such a proposal

could reject it, triggering a new equilibrium in which, say, the rejector produces the Stackelberg

leader’s output in each period and the proposer produces the Stackelberg follower’s output. These

outputs constitute an equilibrium, which gives the proposer a lower payoff than the competitive

equilibrium and his competitor a higher payoff than the half of the monopoly’s profit.24

Political inertia and dictatorship.

Consider an authoritarian regime facing the risk of a revolution. In this regime, citizens may be

exploited through high taxes, expropriation, and other channels. Faced with this situation, various

citizen factions may attempt to persuade others to start a revolution (a proposal that lies outside

of the current norm). If all citizens agree on the revolution, the authoritarian regime is toppled and

citizens all become better off. However, the regime may impose a norm that thwarts this threat

by rewarding anyone who reveals the plot and punishing its instigator. Rewards and punishments

are all administered by the citizens, without the dictator needing to get involved or even monitor

them.25 This provides a novel, completely endogenous explanation for the stability of dictatorships,

24The punishment for the proposer, i.e., the Stackelberg equilibrium, is inefficient. However, it suffices to incentivize

a rejection to the proposal and thus deter a Pareto-improving proposal.
25While the application obviously involves more than two players, the gist of the many-player analysis is identical

to the two-player one, as shown in the many-player extension of Section 7.
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which allows coordination among citizens but exposes the limits of attempts to coordinate when

the norm in place anticipates such attempts.

The dynamic nature of social norms and the importance of neologisms

The previous examples hint at the dynamic nature of social norms, particularly with regard

to how “innovative” proposals are perceived. For instance, starting from a Pareto-dominated

equilibrium, a proposal to increase cooperation and increase both players’ payoffs may be viewed

as a good idea and implemented. To be sustained, however, this cooperation may require the threat

of punishments in which the kind cooperation originally proposed is no longer acceptable.

In other applications, this norm dynamic looks as if each player had an endogenous “reputation,”

not about an intrinsic type—such type does not exist in our model—but about the kind of actions

or proposals that she is allowed to pursue. If a player proposes to disrupt the current equilibrium

(say, by implementing a higher cooperation, or a revolution), she risks losing her reputation if the

other player rejects her proposal. Following a rejection, the proposer may be treated as if she were

“soft” or “crazy” (for making such a proposal) and shunned or punished as a result.

Players facing an improvement-deterring norm may be tempted to reach out to each other

anyway and argue that they should forget the current norm and coordinate on a Pareto-improving

equilibrium. As noted earlier, however, such a message amounts to exactly the kind of proposal

that our model aims to capture. If it is clear to all players (firms, citizens) that reaching out in

this way constitutes a proposal punishable within the norm, then it is definitely in the receiver’s

interest to reject the proposal, which deters the proposer from making his proposal in the first

place. When “proposals” belong to a general message space (a possibility mentioned in Section 2), a

comprehensive norm should prescribe the deterrence response to any possible message. Realistically,

however, this opens the possibility of environments with “weak” norms, which are not immune to

neologisms to which no pre-specified continuation has been attributed.

4.4 Proof (sufficiency): construction of a renegotiation-proof equilibrium

Outline. We construct, for any point A of the feasible set that satisfies (1) and ε small enough,

an equilibrium m which implements A and is renegotiation-proof for all q ≥ 0. The construction is

based on points A1 and A2 such that Ai gives i his worst possible payoff among all continuations

of m.26 When i’s continuation payoff is at an ε-independent distance above his payoff from Ai, it

is easy to incentivize him to follow any prescribed action, since any deviation provides a maximal

gain of order ε and can be punished by implementing Ai. One challenge is to choose Ai so that i

is adequately incentivized near Ai. The second important points of the construction are D1 and

26Unless stated otherwise, points refer to payoffs viewed from the beginning of the current period, i.e., to elements

of the set U .
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Figure 3: Construction of a renegotiation-proof equilibrium

D2, which serve to deter off-path proposals. These points are chosen to be Pareto efficient, and set

so that any relevant off-path proposal by i may be deterred by having −i reject the proposal and

have Di be implemented instead. Di must therefore be chosen so that −i is sufficiently rewarded,

and i punished, for any proposal that i may entertain.

For each player i, there are two configurations to consider, depending on whether i’s minmax

payoff v
¯i

lies above or below πi(P−i). We first consider the case in which both players are in the

former configuration.

Notation: throughout the analysis, for any payoff vector X implemented by some continuation

of m, we denote by Xm the corresponding continuation.

Case 1: v
¯1

= π1(P2) and v
¯2

= π2(P1)

Consider any point A satisfying (1). For ε small enough, the points A1 and A2 with coordinates

π1(A1) = v
¯1

+ ε
1
2 ; π2(A1) = π2(A)

and

π1(A2) = π1(A); π2(A2) = v
¯2

+ ε
1
2

are individually rational and such that π1(A1) < π1(A) and π2(A2) < π2(A).

The equilibrium Am
1 implementing A1 is constructed as follows (Am

2 has a similar construction):

1) Action stage: player 2 minmaxes player 1, possibly mixing between several actions {a2j}j .
Player 1 best responds by a pure action a1,minmax achieving his minmax payoff.
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1a) If no deviation in action is observed, the continuation payoff vector B1j ∈ W is a function

of 2’s realized action, a2j , and is chosen so that i) 2 is indifferent between all actions a2j used

to minmax 1, ii) 1’s continuation payoff is independent of j (so the vectors {B1j}j all lie on the

same vertical line as shown on Figure 3), and iii) the promise-keeping condition is satisfied for both

players. In particular,

π1(A1) = εv
¯1

+ (1− ε)π1(B1j) (3)

for all indices j corresponding to some action a2j in 2’s minmaxing distribution. In particular, the

points B1j all lie within an ε-proportional distance of A1.

1b) If 2 deviates in action (i.e., chooses an action outside of the mixture used to minmax 1),

the continuation payoffs jump to the point A2, mentioned above, which gives 2 her lowest possible

payoff.27 For small ε, this punishment suffices to incentivize 2 because any deviation gain is of

order ε whereas π2(A2) is arbitrarily close to 2’s minmax payoff, causing 2 an ε-independent loss.

1c) If 1 deviates in action, disregard this. Such a deviation is suboptimal since 1 was prescribed

to best respond to being minmaxed by 2.

2) Proposal stage: the equilibrium Bm
1j implementing B1j is as follows: if either 2 gets a chance

to make a proposal, or no player does, the continuation payoffs return to Am
1 . 2 is prescribed

to remain silent. If 1 gets a chance to make a proposal, he proposes a continuation Cm
1j whose

corresponding payoff vector C1j lies on the line going through A1 and B1j and is chosen so as to

satisfy the promise-keeping condition

π1(B1j) =
(

1− p

2

)

π1(A1) +
p

2
π1(C1j) (4)

Player 2 is prescribed to accept proposal Cm
1j . The points {C1j}j give the same payoff to 1,

independently of j. Their implementation is described in 3) below.

2a) If 1 proposes any plan other than Cm
1j that improves his payoff, he is punished by an

equilibrium Dm
1 such that i) π1(D1) < π1(C1j) and ii) 2 prefers π2(D1) to her payoff under 1’s

proposal. Precisely, D1 is defined as the point of the Pareto frontier that gives 1 a payoff of

π1(A1) + π1(C1j)

2
(5)

As explained shortly, 1’s payoff at C1j is of order
√
ε above what 1 gets at A1 or B1j . If 1 proposes

a plan that makes him worse off than Cm
1j , 2 accepts it if only if improves her payoff. Of course,

such a proposal never arises in equilibrium.

2b) If 2 deviates by making a proposal or rejecting 1’s offer to move to C1j , the equilibrium

jumps to Am
2 , which punishes 2’s deviation (in the former case, it is optimal for 1 to rejects 2’s

proposal and trigger Am
2 ).

27More precisely, it jumps to the point B21, which is the analogue of the point B11, following the implementation

of A2.
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3) Next periods: the equilibrium Cm
1j is easily implemented because it gives 1 a payoff of

order
√
ε above what A1 and B1j give him. A deviation in action by 1 brings a gain of order

ε and is punished by a drop of order
√
ε in 1’s continuation payoff, and is thus suboptimal, for

ε small enough. Cm
1j can be implemented by a deterministic sequence of actions keeping players’

continuation payoffs within a distance Kε from C1j . The rules implementing this sequence are

simple: play a deterministic action profile keeping continuation payoffs ε-close to C1j and do not

allow any proposal. If 1 deviates in actions, jump to one of the continuations Bm
1j ; if he deviates in

proposals, jump to Dm
1 if 2 rejects this offer. A similar rule is applied for player 2, who has even

more to lose from a deviation.

4) The payoffD1 also gives 1 a payoff of
√
ε above A1 and B1j . D

m
1 can therefore be implemented

similarly to Cm
1j . Again, any proposal is ignored.

The construction is represented on Figure 3. The magnitudes of payoff differences between the

points involved in the construction are indicated on Figure 4.

We verify the claim that all C1j ’s lie at a
√
ε-proportional distance to the right of A1. From (3)

and (4), we have

π1(A1) = εv
¯1

+ (1− ε)π1(Bj) = εv
¯1

+ (1− ε)
[(

1− qε

2

)

π1(A1) +
qε

2
π1(C1j)

]

Ignoring the terms of order ε2 and higher, this implies that

π1(A1) = εv
¯1

+
(

1−
(

1 +
q

2

)

ε
)

π1(A1) +
qε

2
π1(C1j).
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Subtracting π1(A1) from both sides and dividing by ε yields

ε
1
2 = π1(A1)− v

¯1
=

q

2
(π1(C1j)− π1(A1)) , (6)

which shows the claim.

The direction of each vector
−−−−→
A1C1j , which is also

−−−−→
A1B1j’s direction, depends only on 2’s action,

a2j ; it does not change when ε goes to 0. This shows that, for ε small enough, C1j is a feasible

payoff and π2(C1j) exceeds π2(A2) by an ε-independent value.

As noted, the system of actions and proposals implementing Am
i ’s, Bm

ij ’s and Cm
ij ’s and Dm

i ’s

is incentive compatible in actions and in proposals. To conclude the construction, observe that

A gives each player i a payoff higher than Ai, by an amount that is independent of ε. One may

therefore implement A by a deterministic sequence of actions, chosen so that the continuation

payoffs stay within a distance Kε of A.28 Deviations in actions are punished by moving to Bm
11

or Bm
21, depending on the deviator’s identity. Deviations in proposals are similarly punished by

moving to Dm
1 or Dm

2 .

To verify that the equilibrium is renegotiation-proof, notice that whenever 1 gets to make a

proposal (at any of continuations considered in the construction), his payoff is at least π1(D1).

Since D1 is on the Pareto frontier, any proposal giving 1 strictly more than π1(D1) must give 2 less

than π2(D1). This means that Dm
1 can serve as a punishment in case 1 makes such a proposal.

Remaining cases: v
¯1

< π1(P2) and/or v
¯2

< π2(P1)

The construction is almost identical in other cases. The only difficulty is that the difference

π1(A1) − v
¯1

is now bounded below away from zero, whereas it was previously of order
√
ε. This

may lead to situations in which the points C1j constructed above are no longer feasible and/or

give 2 a payoff lower than π2(A2). The difficulty is easily addressed by adding, for each j, a point

E1j lying on the segment [A1B1j ]—and thus also on the line (A1C1j)—such that if player 2 gets

a chance to make a proposal, or if nobody does, players’ continuation payoffs jump to E1j . The

promise keeping condition (4) becomes

π1(B1j) =
(

1− p

2

)

π1(E1j) +
p

2
π1(C1j) (7)

Choosing E1j close enough to B1j ensures that C1j lies within a distance
√
ε of B1j and, hence,

of A1. This guarantees that C1j is feasible and does not drop below π2(A2), so that the rest of

the argument for the first case can be applied. To implement Em
1j , we use public randomization to

implement it as a probabilistic mixture of Am
1 and Cm

1j .

28It is possible to show that A, A1, and A2 can all be implemented so that players’ continuation payoffs eventually

converge to a Pareto-efficient point. Under this “redemptive” implementation, if players switch to a Pareto-inefficient

element following a deviation, they will eventually forgive and forget past deviations.
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4.5 Relation to the existing literature

When renegotiation is viewed as a strategic interaction, renegotiation-proof equilibria may contain

Pareto-ranked continuations. This happens when Pareto-improving proposals are dissuaded by

punishing the proposer and rewarding the rejector beyond the proposal. This idea also underlies

the results of Santos (2000) who considers players bargaining over which equilibrium to play in a

one-shot game, as well as Miller and Watson’s (2013) Theorem 1, which shows that renegotiation

has no restrictive power when it must only obey their “Internal Agreement Consistency” Axiom.

That theorem and ours differ in two important ways. First, their argument requires unbounded

transfers: to punish a proposer, say player 1, one requires him to make a very high transfer to 2

in the next period. If the weight of a single period is ε, the transfer must be of order 1
ε
, hence the

necessity of unbounded transfers as ε goes to zero. These large transfers permit 1’s continuation

value to jump immediately from some punishment payoff v01 to a higher continuation value v1, which

is easy to implement. Second, the transfer stage takes place, in each period, before the action stage

(and, in particular, is distinct from it). If 1 deviates by making a lower transfer than prescribed, it

suffices to have him minmaxed by the other player and reset the continuation value to v01 for the

next period in order to punish this deviation.

When stage-game payoffs are bounded, as in our setting, the continuation value of a player

cannot jump by an ε-independent amount. The equilibrium construction must thus keep track of

continuation values and make sure that these continuation values are implementable at all stages

and following all deviations. In the absence of a separate transfer stage, moreover, if player 1

deviates in action when implementing v01, his continuation value must fall below v01. Implementing

this lower value may be difficult or even impossible. In fact, it is this impossibility which creates

new restrictions on the set of renegotiation-proof payoffs and destroys the Folk Theorem obtained

in Miller and Watson’s Theorem 1.

Both Santos (2000) and Miller and Watson (2013) consider a further restriction, which is that

the continuation of the game, in case of a disagreement, be independent of the identity of the

proposer and of the nature of the proposals. This restriction guarantees a higher level of efficiency.

The consequences for our model of such a refinement are studied in Section 6.

4.6 Comparative statics: bargaining frictions and discounting

In standard repeated games with public randomization, it is well known that the set of imple-

mentable payoffs gets larger as players become more patient. This property does not hold with

renegotiation. For example, suppose that the stage game has an inefficient Nash equilibrium that

violates the necessary conditions obtained by Theorem 1 for q = 1
2 . For small ε, Theorem 1 implies

that this Nash equilibrium payoff, and an open neighborhood around it, is not renegotiation-proof.
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However as ε goes to 1, there is an equilibrium in which players follow this Nash equilibrium in the

first period (before possibly renegotiating to a Pareto superior continuation). Since the current-

period weight is arbitrarily close to 1, players’ payoffs are arbitrarily close to the inefficient Nash

equilibrium’s payoffs, which was impossible with a small enough value of ε.

Although discount-factor monotonicity is violated in the presence of renegotiation, a different

kind of monotonicity arises here, with respect to negotiation frictions: the more opportunities

players have to renegotiate their continuation equilibrium, the smaller the renegotiation-proof set.

This result holds at all discount factor levels and is proved in Appendix D.

Proposition 2 For any fixed ε ∈ (0, 1), the set of renegotiation-proof payoffs is decreasing in q.

5 Equivalent notions of stability

This section considers two variations on our definition of renegotiation-proof equilibrium. The first

one introduces the notion of a credible proposal and restricts our earlier refinement to credible

proposals. The second concept is a set-theoretic definition of the renegotiation-proof set. We show

that both concepts are equivalent to the one used in previous sections.

Since these variations are naturally presented in terms of norms rather than equilibrium re-

finements, we use throughout this section the language of stable norms of Definitions 2 and 3

rather than the renegotiation-proofness refinement of Definition 1, recalling that these definitions

are equivalent, by Proposition 1.

5.1 Credible proposals

Stability requires that players implement any continuation equilibrium as long as it is proposed

and accepted. When players are used to a given norm N , one may wonder why players should take

all proposals seriously, particularly when these proposals lie outside of the norm. It turns out that

Theorem 1’s necessary and sufficient conditions are identical if one restricts proposals to a much

smaller subset of “credible” proposals.

Definition 5 Given a norm N , an equilibrium is N -credible (or just “credible”, when there is no

confusion) if any off-equilibrium play (action, proposal, or acceptance decision) triggers a continu-

ation equilibrium in N for the corresponding stage.

Starting with an equilibrium in some norm N , a credible proposal is thus an SPE such that

any deviation triggers a reversal to the norm. For example, if a norm includes a harsh punishment

equilibrium for both players, the norm can sustain many credible equilibria, any deviation from

which triggers the punishment equilibrium.
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Definition 6 A norm N is credibly stable if it satisfies the refinement of Definition 3 for all

N -credible proposals.

Definition 6 is clearly more permissive than Definition 3, because it imposes the refinement over

a smaller set of proposals. However, we have the following result.

Theorem 2 The set of points sustained by credibly stable norms obeys the necessary and sufficient

conditions of Theorem 1.

The proof is straightforward: first, any stable norm is credibly stable since the latter must

sustain fewer proposal challenges than the former. Our construction for the sufficiency condition

thus still applies. Second, the proposals used in Appendix A to derive the necessary conditions of

Theorem 1 are credible, as shown in this appendix. The necessary conditions are thus identical for

stable and credibly stable norms.

5.2 Set-theoretic definition: closed vs. open norms

The norms that we defined earlier were open in the sense that they allowed players to actually depart

from the norm in case an off-equilibrium proposal was made and accepted. This property is quite

unlike the purely set-theoretic approach taken by earlier works which do not explicitly consider

departures from their norms, whether on path or off path. These approaches are reconciled here:

we show that norm stability can entirely be recast in terms of a purely set-theoretic definition.

We start by abandoning altogether the equilibrium refinement underlying norm stability in

Section 3. Unlike this earlier section, players now do not actually take any proposal outside of

the norm seriously, but instead consider their norm as the only possible outcomes, which in effect

“closes” our definition of a norm:

Definition 7 A subset N of S is a closed norm if for any m ∈ N , m+1[m](z,a, i, µi,D−i) ∈ N .

The only difference with Definition 2 is that continuations now still belong to the norm even

when off-path proposals are accepted. To offset this change, our earlier definition of stability is

translated into the language of set-theoretic analysis. To keep in line with the previous section, we

state the definition for credible proposals. Dropping credibility from the definition has no impact

on the equivalence.

Definition 8 A closed norm N is stable if it satisfies the following property: Consider any SPE

of N and history at which i gets a chance to make a proposal, and let Ûi denote i’s continuation

payoff. Then, for any credible proposal with payoff vector U which gives i a payoff πi(U) > Ûi,

there exists a payoff vector U ′ of N such that π−i(U
′) ≥ π−i(U) and πi(U

′) ≤ Ûi.
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Theorem 3

1. For any closed norm N c, there exists an open norm N o which has the same payoff set, and vice

versa.

2. For any stable closed norm N c, there exists a stable open norm N o which has the same

payoff set, and vice versa.

6 Renegotiation-proof equilibria in the absence of proposer-specific

punishments

One virtue of explicitly modeling the renegotiation process is to incorporate the logic of modern

repeated games analysis into renegotiation: just as arbitrary continuation equilibria may follow from

observed actions in a repeated game, here arbitrary continuations may follow rejected proposals.

The paper has explored one consequence of this generality, which is that even good proposals may

be deterred, and Pareto dominated equilibria be sustained as a result.

While in the applications discussed earlier this flexibility seemed reasonable or even desirable,

in other environments it is natural to ask what equilibria may be sustained when proposers cannot

be punished. Indeed, such a restriction is imposed in a number of models of explicit negotiation29

and sometimes formalized as a “No-Fault Disagreement” (NFD) axiom. The axiom requires the

continuation equilibrium following a rejected proposal to coincide with the default continuation in

case no proposal was made. This section shows how our results are modified when this refinement

is added.

In order to keep the language of the analysis as close as possible to the existing literature, this

section adopts the “stable norms” terminology of Definitions 2 and 3 instead of the renegotiation-

proofness refinement.30

Definition 9 A stable norm N is forgiving if for any SPE m in N , for any i and µi,

m+1[m](z,a, i, µi, 0)=m+1[m](z,a, i, ∅, 0).

Our concepts of renegotiation-proofness are modified as follows. A payoff vector A is said to be

forgivingly q-renegotiation-proof if for all ε small enough, there is a forgiving stable norm containing

an equilibrium which expected payoff is equal to A. A is forgivingly renegotiation-proof if it is

forgivingly q-renegotiation-proof for all q’s large enough.

The main result in this case is given by the novel necessary conditions, which are much more

restrictive those of Theorem 1: the continuation payoffs must lie within a distance O(1
q
) of the

29See Santos (2000) and Miller-Watson (2013). A similar idea appears in Farrell (1987), Rabin (1994), and Arvan,

Cabral, Santos (1999) for the case of simultaneous announcements.
30The concepts of this section can be readily adapted to modify renegotiation-proof equilibria.
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P2

P1

A : ρ(A) > 0

B : ρ(B) < 0

Figure 5: Signed distance from (P1P2)

ρ̄1+
q

Figure 6: Renegotiation-proof payoffs without proposer-specific punishments

convex hull of the (individually-rational) Pareto frontier. More precisely, for each feasible payoff

vector A, let ρ(A) denote the signed distance from the line (P1P2), counted positively if A lies

below (P1P2), and negatively otherwise, as indicated by Figure 5.

Let ρ̄ denote the maximum value of ρ among all feasible payoff vectors.

Theorem 4 If A is forgivingly q-renegotiation-proof, then ρ(A) ≤ ρ̄
1+q

.

One may also wonder whether all the feasible payoffs lying above the line (P1P2) can be achieved

in this case. The next result provides a positive answer which is independent of negotiation frictions.

To establish this result, we slightly modify the definition of stability, as follows: deviating proposal

which is accepted needs to be implemented only if it improves the proposer’s payoff by more than

a constant η > 0, arbitrarily small but fixed, over his equilibrium payoff without the deviation.31

31Using the refinement in Theorem 4 affects the corresponding bound by a factor η.
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Definition 10 A norm N is η-stable if the following holds: consider any SPE of N and history

at which i gets a chance to make a proposal and let Ûi denote i’s continuation payoff. Then,

whenever i proposes a plan µ ∈ S giving him at least Ûi + η, and −i accepts it, µ is implemented.

Theorem 5 Assuming η-stability, any payoff vector A strictly above the segment (P1P2) is forgiv-

ingly renegotiation-proof.

The role of η is to prevent off-path proposals whose payoffs lie near the boundary of the norm’s

payoff set, as detailed in the proof of the theorem.

7 Three or more players

The analysis so far has focused on two players, a common restriction to study renegotiation in

repeated games.32 Extending the analysis to more players raises new conceptual issues. Can

proposals be targeted toward a subset of individuals? What happens if only a subset of the players

accepts the proposal?

This section explores some of these issues, allowing for an arbitrary number, n ≥ 3, of players.

After a player has made a proposal, other players vote on accepting the proposal. The continu-

ation payoff may a priori depend on the identity of the players who voted for the proposal. We

consider several dependence structures which vary in their flexibility. The analysis mainly focuses

on environments in which players vote simultaneously over the acceptance decision but also briefly

considers the case of sequential acceptance decisions.

The setting is identical to the two-player case, except for the following aspects. At the proposal

stage, each player i has the same probability p
n
(p < 1) of being chosen to propose a new plan. The

renegotiation friction parameter q is still defined by p = qε. This player may choose to conceal his

proposal opportunity. If i makes a proposal, other players decide on whether to accept it, resulting

in a vector of acceptance votes D−n ∈ {0, 1}n−1.33 Given a plan m at the beginning of a period,

the continuation plan at the next period, m+1 = m+1[m](z,a, i, µi,D−i) ∈ M is a function of z, a,

i, µi, and D−i, where i indicates the identity of the last proposer.

In keeping with the previous two sections, we again focus on the concept of norm stability,

which extends to an arbitrary number of players as follows.

Definition 11 A subset N of S is a norm if, for any m ∈ N such that µi ∈ µ̄i[m](z,a) or

D−i 6= {1}n−1, m+1[m](z,a, i, µi,D−i) ∈ N ;

32E.g., Farrell and Maskin (1989), Benôıt and Krishna (1993), and Santos (2000). Abreu et al. (1993) focus instead

on symmetric equilibria.
33As with the two-player case, if no proposal is made the identity of a proposer is arbitrarily chosen and the null

proposal is assumed to be rejected by everyone else.
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Definition 12 A norm N is stable if for any SPE of N , whenever i proposes an equilibrium

µ ∈ S and all other players accept it, µ is implemented.

Stability specifies the continuation payoff when everyone accepts the proposal. One must also

define players’ continuation payoffs following the rejection of the proposal. We consider three

specifications. The most flexible one allows continuation payoffs to depend arbitrarily on the

identity of the players who accepted and rejected the proposal. The other two specifications have

binary continuation payoffs: one if all players agree on the proposal; the other if at least one player

rejects it. These specifications differ with regard to the continuation payoff in case of a rejection:

can the proposer be punished if his proposal is rejected, or does the game proceed as if no proposal

had taken place, as already prescribed by the No-Fault Disagreement axiom studied in Section 6?

The last two specifications are captured by the following concepts.

Definition 13 A stable norm N is simple if, for any m ∈ N and D−i,D
′
−i 6= {1}n−1,

m+1[m](z,a, i, µi,D−i) = m+1[m](z,a, i, µi,D
′
−i).

Definition 14 A simple norm N is forgiving if, for any SPE m ∈ N , m+1[m](z,a, i, µi,D−i 6=
{1}n−1)=m+1[m](z,a, i, ∅, {0}n−1), for any i, µi.

The definitions of (forgivingly) q-renegotiation-proof payoffs and (forgivingly) renegotiation-

proof payoffs are identical to those of the two-player case.

Throughout the analysis, we assume that the individually-rational payoff set has a full dimension

an in Fudenberg and Maskin (1986).

7.1 Voter-dependent continuations

Suppose, first, that continuation payoffs can depend arbitrarily on the voting decision of each

player—except if everyone agrees on a proposal, in which case stability dictates that the proposal is

implemented. With this high degree of flexibility, norms may be constructed so that all negotiation

proposals are dissuaded and the Folk Theorem obtains.

Theorem 6 For any feasible payoff vector π with πi > vi for all i, π is renegotiation-proof.

To understand this result, we recall that in the underlying repeated game without negotiation,

any strictly individually-rational payoff vector can be implemented for ε small enough by minmaxing

any player i who deviates in actions, and switch to minmaxing any player j 6= i who deviates when

minmaxing player i. The same idea can be applied when negotiation is possible, by deterring it
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as follows: if a player, i, proposes another continuation, everyone else is prescribed to reject the

proposal and to start minmaxing player i. If another player, j, deviates from the prescribed rejection

by accepting i’s proposal, and all other players reject it, then players are prescribed to minmax j

instead of i. If two or more players accept i’s proposal, it is implemented, which guarantees that the

norm satisfies our stability refinement. This prescription guarantees that it is always suboptimal

for a player to unilaterally accept a proposal and, consequently, that it is also suboptimal to make

any proposal. Unless some additional restrictions are imposed on the continuation payoffs, allowing

for the possibility of renegotiation with three or more players thus has no more predictive power

on the set of equilibria and payoffs than the standard Folk Theorem.

7.2 Simple Norms

Suppose now that only two continuations may follow each proposal, depending on whether all

players have agreed to it. As usual with voting games, we eliminate equilibria involving weakly

dominated strategies.

Assumption 1 A player votes in favor of the proposal if it gives him a strictly higher payoff than

its continuation payoff in case of a rejection.

Let P denote the Pareto frontier of the feasible payoffs in the stage game and, for each i, P−i

denote any individually-rational payoff vector of P which minimizes i’s payoff.

The key question, for characterizing stable norms, is to determine each player i’s worst possible

punishment if he makes an unprescribed proposal. Suppose that i proposes an SPE of the rene-

gotiated game, with corresponding payoff vector C, and let V denote the set of achievable payoff

vectors in our candidate norm, N . If N is stable, C will be implemented if all players accept i’s

proposal. If anyone rejects the proposal, norm simplicity implies that there is a single payoff vector

in the norm, D(C), which will be realized. If D(C) gives πj(C) or more to at least one player j 6= i,

that player will refuse the implementation of C, and the equilibrium implementing D(C) will be

played.

Following any proposal with a payoff C by player i, the worst punishment in V for player i

minimizes i’s utility over the set:34

D(C,V) = {D(C) ∈ V : ∃j 6= i : πj(D(C)) ≥ πj(C)}.

Let πi(C,V) denote i’s utility under this worst punishment.

Viewing πi(C,V) as a function of C, one can then find the proposal with a continuation C(V)
which maximizes i’s payoff at the worst punishment: C(V) = argmaxC{πi(C,V)}, and the corre-

sponding payoff, πi(V), for i.
34For the existence of a worst punishment, the set V needs to be closed. Our construction will satisfy this condition.
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One should think of the payoff C(V) as follows. The most efficient way to prevent player i from

making a non-prescribed proposal is by implementing his worst punishment. Anticipating this, if

player i deviates from his prescription, he may as well choose the optimal proposal, which gives the

payoff C(V).
These observations lead to the following sequential construction. We start from the set F of

strictly individually-rational payoffs in the stage game, i.e., what would be implementable without

renegotiation. We consider the minimal payoffs πi(F), i ∈ {1, ..., n} which any player i could

guarantee himself if having a chance to make a proposal and the payoffs sustained by the norm

were in F . We will build two decreasing sequences of sets, starting from F , which will generate

separate necessary and sufficient conditions for a payoff to be renegotiation-proof.

To derive sufficient conditions, the kth set in the sequence, Fk
s , is reduced by removing all the

payoffs below πi(Fk
s ), to form the k+1-th set in the sequence, starting with F0

s = F . We will show

that this process converges to a stable set which defines sufficient conditions.

To derive necessary conditions, let πmin,i(Fk
n) denote the lowest expected payoff for player i at

the beginning of a period, among all payoff vectors in Fk
n . This value is lower than the continuation

payoff πi(Fk
n) that i can guarantee himself when he gets a chance to make a proposal. We have

πmin,i(Fk
n) ≥ εvi + (1− ε)[

qε

n
πi(Fk

n) + (1− qε

n
)πmin,i(Fk

n)]

Indeed, as in the two-player case, i gets at least vi as his current payoff, and can guarantee himself

πi(Fk
n) if he has a chance to make a proposal. As ε goes to 0, one can express the value πmin,i(Fk

n)

as:

πmin,i(Fk
n) ≥

nvi + qπi(Fk
n)

n+ q
. (8)

At each step the set Fk
n is being reduced by removing the payoffs below (8). Iterations of this

procedure converge to a steady set, as we show in the Appendix.

Proposition 3 Both procedures converge to steady sets.

We denote the limiting sets by Vs and Vn. They both are positive orthants, whose vertices give

lower bounds on players’ payoffs (calculated at the beginning of period) under both procedures,

and are denoted πmin,i(Vs) and πmin,i(Vn), for any player i. By construction, expression (8) holds

as an equality for Vn:

πmin,i(Vn) =
nvi + qπi(Vn)

n+ q
(9)

Similarly, we have πmin,i(Vs) = πi(Vs).

We can now state the main result of this section. Let R denote the open positive orthant

whose vertex is the vector (πi(P−i))
n
i=1. In the two-player case, this set characterized the suffi-

cient conditions for renegotiation-proofness. With n > 2 players, we show that R still consists of
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renegotiation-proof vectors, thought it might not include all of them. The theorem is formulated

for the case where Pareto frontier supports for each player a non-zero range of payoffs.

Theorem 7 Any renegotiation-proof payoff lies in Vn, and generically any payoff in the interior

of Vs is renegotiation-proof. Moreover, any payoff in the interior of R is renegotiation-proof.

In case of feasible set having the unique Pareto-efficient point, it is the only renegotiation-proof

payoff. 35

In the two-player case, the necessary and sufficient conditions became arbitrary tight as rene-

gotiation frictions vanished. The same is true in this more general environment, as shown in

Appendix E.4.

Proposition 4 The sets Vs and Vn converge to each other as q goes to infinity.

If the players are making responses to proposals sequentially, then one has the same result 36.

Each proposal has only two continuations. If the continuation in case of rejection benefits at least

one responder, he rejects the proposal in any extended game. Otherwise, from backward induction,

each player votes for the proposal if it gives higher payoff than rejection - same as in simultaneous

voting.

7.2.1 Sequential voting in case of no restrictions

Sequential voting permits more than two continuation payoffs, depending on the sequence of ac-

ceptance decisions of the players. The resulting stable norm is qualitatively similar to the earlier

analysis with only two continuations, and it is more permissive.

Proposition 5 Suppose that each proposal is decided by sequential voting. Then, analogous con-

structions to the two-continuation case yield sufficient and necessary conditions characterized by

upper orthants. Moreover, each of these sets is larger than the corresponding set obtained with only

two continuations.

Sequential voting with many continuations thus provides more predictive power than simulta-

neous voting, but less predictive power than the simultaneous-voting specification with only two

continuations.

35In the non-generic case of several Pareto points, each giving the same payoff to one of players, in case of at least

two other players having different payoffs on Pareto frontier, the renegotiation-proof payoffs always form a non-empty

full-dimensional orthant. In case Pareto frontier gives the same payoff to all but one player, there is a best Pareto

point, which is renegotiation-proof.
36We actually got the equivalence between sequential and simultaneous votes when assuming that player votes for

the proposal if it gives him higher payoff compared to rejection.
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7.3 Three or more players without proposer-specific punishment

Finally, consider the most restrictive case of a simple norm that is also forgiving, as defined in

the two-player case. The necessary conditions resemble the two-player case. Consider the set of

individually-rational Pareto-efficient payoffs P ′, and consider the convex hull of this set, Co(P ′).

Then one has:

Proposition 6 If A is forgivingly q-renegotiation-proof, the distance from A to Co(P ′) is bounded

above by a decreasing function of q, which converges to 0 as q becomes arbitrarily large.

The proof closely mirrors the argument used for the two-player case and is only sketched here.

Suppose that A is the point of the norm which has the largest distance from Co(P ′) and that A lies

“too far” down away from Co(P ′). Whenever a player gets to make a proposal—which happens

with probability proportional to q—he proposes a Pareto point (or close to it). Moreover, the

continuation payoff A′ which follows if the proposal is rejected cannot lie farther away from Co(P ′)

than A does. Combining this puts a bound on A’s distance to Co(P ′), which vanishes as q gets

large.

We conclude this section with sufficient conditions, whose derivation is more involved and

described in Appendix E.6.

Theorem 8 Assuming η-stability, any point A in the set Co(P ′) lying strictly above the minmax

is forgivingly renegotiation-proof.

8 Discussion

Understanding and tractably modeling renegotiation in repeated games has been a longstanding

challenge. This paper’s approach, based on strategic renegotiation and an equilibrium refinement,

delivers a characterization of renegotiation-proof equilibria, which is straightforward to describe

graphically and has several equivalent formulations. The concepts introduce here shed light on

existing definitions of norms and informal notions of social norms, whether they are dynamic,

encoded as part of a single equilibrium, or viewed as a set of possible equilibria.

With arbitrarily many players, our analysis suggests that under natural specifications the set of

renegotiation-proof payoffs has useful analytical (convergence of necessary and sufficient conditions)

and geometric properties (upper orthant characterization). Beyond these results, some important

issues remain to be explored. In particular, what happens if a player can make a proposal to a sub-

set of players? How such a proposal, if accepted, affects the strategies used by the players excluded

from the proposal? This question seems challenging even when negotiations are public and actions
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are perfectly monitored, and should realistically be expanded to include private negotiations. Ex-

clusive negotiations of this kind are common in economics, when agents are divided into relatively

homogeneous groups within which negotiation is easier or when they are engaged in specific re-

lationships like those arising in supplier chains. They may also arise in community enforcement

models, in which matching parties may engage in local renegotiation to alleviate punishments (Ali,

Miller, and Yang (2016)). Understanding how strategic renegotiation shapes equilibrium outcomes

in environments with segmented groups seems a particularly interesting direction for future work.
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Benôıt, J.-P., Krishna, V. (1993) “Renegotiation in Finitely Repeated Games,” Econometrica,

Vol. 61, pp. 303–323.

Bergin, J., MacLeod, B. (1993) “Efficiency and Renegotiation in Repeated Games,” Journal of

Economic Theory, Vol. 61, pp. 42–73.

Bernheim, B.D., Ray, D. (1989) “Collective Dynamic Consistency in Repeated Games,” Games

and Economic Behavior, Vol. 1, pp. 295–326.

DeMarzo, P. (1988) “Coalitions and Sustainable Social Norms in Repeated Games,” mimeo,

Stanford University.

Farrell, J. (1983) “Credible Repeated Game Equilibria,” Unpublished Manuscript.

Farrell, J. (1987) “Cheap Talk, Communication, and Entry.” Rand Journal of Economics,

Vol. 18, pp. 34-39.

Farrell, J., Maskin, E. (1989) “Renegotiation in Repeated Games,” Games and Economic

Behavior, Vol. 1, pp. 327–360.

Forster, T. (1995) Set Theory with a Universal Set: Exploring an Untyped Universe, Oxford

University Press.

Fudenberg, D., Maskin, E. (1986) “The Folk Theorem in Repeated Games with Discounting

or with Incomplete Information,” Econometrica, Vol. 54, pp. 533–554.

32



Kuratowski, K., Mostowski, A. (1968) Set theory, Elsevier, Academic Press.

Mendelson, E (1997) Introduction to Mathematical Logic, 4th ed. Chapman & Hall, London.

Miller, D., Watson, J. (2013) “A Theory of Disagreement in Repeated Games with Bargaining,”

Econometrica, Vol. 81, pp. 2303–2350.

Pearce, D. (1987) “Renegotiation-Proof Equilibria: Collective Rationality and Intertemporal

Cooperation,” Cowles Foundation Discussion Paper, No. 855.

Rabin, M. (1994) “A Model of Pre-Game Communication,” Journal of Economic Theory, Vol. 63,

pp. 370-391.

Santos, V. (2000) “Alternating-Announcements Cheap Talk,” Journal of Economic Behavior &

Organization, Vol. 42, pp. 405–416.

33



A Proof of Theorem 1 (Necessary Conditions)

The interesting case is when v
¯i

< πi(P−i): otherwise, Theorem 1 predicts only that i’s payoff must be

individually rational. Without loss of generality, we only derive the necessary condition for player 1.

Suppose therefore that π1(P2) > v
¯1

and, by contradiction, that there is a q-renegotiation-proof point A

such that π1(A) < v1 = v
¯1

+ q

2+q
(π1(P2)− v

¯1
): one can construct, for any ε small enough, a renegotiation-

proof equilibrium m that implements A.

Let C1 denote 1’s infimum payoff over all continuation equilibria of m following histories at which it is

1’s turn to make a proposal and no off-path proposal has yet been accepted. Since the Pareto point P2 is a

possible proposal payoff,37 and since it Pareto dominates all payoffs with π1 < π1(P2), C1 must satisfy

π1(P2) ≤ C1.

We now contradict this inequality. LetN denote the set of continuation equilibria ofm at the beginning of

all periods following histories at which no off-path proposal has been accepted. This set forms a stable norm,

by Proposition 1. Also let A1 = infV ∈V(N ) π1(V ), B1 = infW∈W(N ) π1(W ), and D1 = infU∈U(N ) π1(U),

and consider any sequence {Vk} ∈ V(N ) such that π1(Vk) →k→+∞ A1. For any Vk there is an action that

implements it in the first period of the corresponding SPE. However, if player 1 deviates, he can guarantee

himself an immediate payoff of at least v
¯1
, and the worst punishment for him after deviation gives him at

least B1. Therefore, π1(Vk) ≥ εv
¯1

+ (1 − ε)B1. Since this inequality holds for all Vk we obtain, taking the

limit:

A1 ≥ εv
¯1

+ (1− ε)B1 (10)

Since any element of U(N ) lies in the convex hull of V(N ), and player 1 can always conceal his opportunity

to propose, we have

C1 ≥ D1 ≥ A1

Consider now a sequence {Wk} ∈ W(N ) such that π1(Wk) → B1. Any element Wk is a weighted average

of an expected payoff vector EU1
k whenever 1 gets a chance to make a proposal, an expected payoff vector

EU2
k when it is 2’s turn to make a proposal, and a payoff vector U0

k in case no one gets to make a proposal:

Wk =
p

2
(EU1

k ) +
p

2
(EU2

k ) + (1 − p)(U0
k ) (11)

We note that EU1
k is a mixture of elements of U resulting from 1’s mixture over proposals and 2’s mixture

over her acceptance decision. Similarly, EU2
k is a mixture of elements of U .

Since all elements Uk’s belong to U(N ), we have π1(EU2
k ) ≥ A1 and π1(U

0
k ) ≥ A1. Equation (11) thus

implies that

π1(Wk) ≥ (1− p

2
)A1 +

p

2
π1(EU1

k ).

Recalling that C1 denotes 1’s infimum payoff when he gets to make a proposal, we get

π1(Wk) ≥ (1− p

2
)A1 +

p

2
C1.

Taking limits,

B1 ≥ (1− p

2
)A1 +

p

2
C1

or

B1 ≥ (1− qε

2
)A1 +

qε

2
C1. (12)

37By the Folk Theorem, P2 can be implemented by an SPE of the repeated game without renegotiation. By treating

all proposals as cheap talk, P2 can thus also be implemented as an SPE of the game with renegotiation.
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Combining (10) and (12), we conclude that

A1 ≥ εv
¯1

+ (1− ε)[(1 − qε

2
)A1 +

qε

2
C1]

or, ignoring terms of order ε2 in right-hand side,

A1 ≥ εv
¯1

+ (1 − [1 +
q

2
]ε)A1 +

qε

2
C1.

Subtracting A1 on both sides of the last equation and dividing by ε, we obtain

0 ≥ v
¯1

− [1 +
q

2
]A1 +

q

2
C1 (13)

From A1 ≤ π1(A), C1 ≥ π1(P2), and π1(A) < v1 = v
¯1

+ q

2+q
(π1(P2)− v

¯1
), we get

0 < v
¯1

− [1 +
q

2
]A1 +

q

2
C1

which contradicts (13). This shows the necessary condition for player 1. An identical reasoning for player 2

shows the second necessary condition. This proves the result for P1 6= P2. A similar reasoning applies when

P1 = P2.

Credible proposals Section 5 introduced the concept of N -credible proposals, and claimed that the

necessity conditions were unaffected if the proposals involved in the definition of stability were restricted to

being credible. To prove this claim, it suffices to verify that the proposal to move to P2, used just above to

derive the necessary condition, is N -credible. The SPE implementing P2 is constructed as follows: players

are prescribed to play, in all periods, the pure action profile with payoff P2, and to abstain from making any

proposal. Any deviation, whether in action or in proposal, triggers the equilibrium implementing A—which

is supposed to exist, by the contradiction hypothesis. Clearly, player 2 cannot benefit from deviating as she

is getting her highest possible payoff in the game. Moreover, the difference π1(P2)− π1(A) is by assumption

bounded below by 2
2+q

(π1(P2) − v
¯1
), which is ε-independent. Therefore, 1 cannot benefit from deviating

either: a deviation in action may create an immediate gain of order ε, but triggers a drop in continuation

payoffs that is ε-independent and dominates the gain. A deviation in proposal yields the payoff vector A,

which again is detrimental to 1.

B Concept equivalence

1. Any closed norm N c is an open norm as well, so the first statement is trivially true. Now consider any

open norm N o. To construct a payoff-equivalent closed norm N c, we modify each plan/equilibrium m of N o

as follows: m’s rules on and off the equilibrium path are kept unchanged except when a player, say i, makes

a proposal µi which is off the equilibrium path. In this case, because N o is an open norm, the continuation

equilibrium if −i accepts the proposal need not lie in N o. Following such a proposal, players are instead

prescribed to behave as if i had remained silent. The new rules define an equilibrium: when playing the

original equilibrium m, i was not making the proposal µi anyway, so removing this option does not affect

equilibrium behavior and payoffs. By construction, the set of modified equilibria form a closed norm N c,

and because each equilibrium of N o has been modified into a single payoff-equivalent equilibrium of N c, the

norms are payoff equivalent.

2. We start with the observation that if two norms N c and N o have the same payoff sets, then any

proposal that is credible according to either norm is credible according to the other norm.

We now consider any stable open norm N o and construct the corresponding closed norm N c as in Part 1.

To show that N c is stable, consider any SPE m of N c, history at which player i gets to propose, and credible
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proposal U such that πi(U) is strictly greater than i’s continuation payoff Ûi. From the above observation,

U is also credible for N o. If the proposal U gives player −i a lower payoff that Û does, then the payoff

U ′ = Û satisfies Definition 8. If the proposal U Pareto dominates Û , then for the equilibrium m̃ of N o

corresponding to m, and the same history, −i must reject U with positive probability (for otherwise πi(U)

would coincide with Ûi). Let U
′ denote the continuation payoff if −i rejects U . By stability of N o, −i knows

that if he accepts U it will be implemented. Since it is weakly optimal for −i to reject U , it must therefore

be the case that π−i(U
′) ≥ π−i(U). Moreover, it must also be the case that πi(U

′) ≤ Ûi, for otherwise it

would be strictly optimal for i to deviate by proposing U , and m̃ would not be an equilibrium. Using this

U ′ in Definition 8, this implies that N c is stable.

Next, consider any stable closed norm N c. To construct a payoff-equivalent stable open norm N o, we

simultaneously modify all SPE’s of N c. The modification proceeds in two steps, and is based on the recursive

definition a plan. Recall that a plan is a prescription of actions, proposals and acceptance decisions for the

next period (each depending on what happened in earlier stages), along with a continuation plan resulting

from these stages to be applied in the period after next. In Step 1, we modify the prescriptions for time

t + 1, and still use plans of N c as continuations plans. The purpose of this step is to make a prescription

compatible with the requirement that if a Pareto-improving, credible proposal is made and accepted, then it

has to be played. In Step 2, we replace these continuation plans of N c by those built in Step 1, to guarantee

that the rule applies at all periods, ensuring that credible proposals which are accepted are implemented, so

that Definition 6 holds at all periods.

Consider any SPE m of N c. We modify m as follows. For the modified SPE m̃, the action stage and

on-path proposals are prescribed exactly as in m.38 Now consider a history at which i makes any proposal

U which is not prescribed by m but which is N c-credible. If −i accepts the proposal, we construct m̃ by

prescribing that players implement this proposal.39 If the proposal gives i a strictly higher payoff than his

equilibrium continuation payoff Ûi, then by stability of N c, there must exist a payoff vector U ′ corresponding

to some equilibrium m′ of N c, which gives player −i at least as much as U , and which gives player i at most

Ûi. We prescribe playing the equilibrium corresponding to U ′ in case player −i rejects the proposal. If U

does not improve upon i’s equilibrium continuation payoff, we prescribe playing the continuation equilibrium

corresponding to any of i’s equilibrium proposals in case −i rejects U . Finally, if i makes a non-credible

proposal, the proposal is ignored as if i had stayed silent.

We now verify that m̃ is an SPE that yields the same payoff as m. Since m̃ prescribes the same actions

as m, players are incentivized to follow the prescription. If i gets a chance to make a proposal, any proposal

prescribed by m (and hence m̃) yields the same continuation payoff as in m. If player i makes a credible,

off-equilibrium proposal that improves upon his equilibrium payoff, then player −i is incentivized to reject

it, and i’s continuation payoff is weakly lower than his equilibrium payoff. It is never optimal for i to make

a credible proposal that is lower than his equilibrium payoff, regardless of −i’s acceptance decision. Finally,

we replace all continuation plans by their modified versions.

There remains to verify that the set consisting of all modified equilibria forms a stable open norm,

denoted N o, which is payoff equivalent to N c. First, we notice that continuation equilibria outside of N o

may only arise when a player makes an off equilibrium proposal (which, by construction, also has to be

38We need to make another modification to m whenever i proposes on path a continuation µ outside of the norm

N c, which −i is supposed to accept, and which is followed by a continuation µ′ in the norm N c (as it should, since

the norm is closed). This sequence of moves is replaced by i directly proposing µ′ and having it accepted by −i.

The modified profile is also an equilibrium, as is easily checked. In fact, any SPE of the game can be turned into

a payoff-equivalent “truthful” SPE of the game, i.e., one in which any proposal that is made and accepted on the

equilibrium path is implemented. See Appendix G.
39At this point, we do not know yet that the proposal is N o-credible. We only know that it is N c-credible. However,

the norm N o that we are constructing will be payoff equivalent to N c and hence have the same credible proposals.
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Figure 7: Norm construction with NFD (payoffs)

credible) which is accepted by the other player. Thus, N o is an open norm. By construction, each element of

N o corresponds to exactly one element of N c, which yields the same expected payoff. Therefore, the norms

are payoff equivalent. As observed earlier, this implies that they have the same set of credible proposals.

This, in turn, implies that any Pareto-improving, credible proposal of N o that is accepted is played and,

hence, that N o is stable.

C Proofs of Section 6

Notation: throughout the analysis, for any payoff vector X achieved by some SPE of N , we will denote by

XN the corresponding SPE.

C.1 Proof of Theorem 5 (Sufficient Conditions)

Consider two feasible Pareto points, Q1 and Q2, lying at an arbitrarily small but strictly positive distance

from P2 and P1, respectively, and illustrated by Figure 7. It suffices enough to show that for any ε small

enough, there exists a forgiving stable norm N which includes Q1 and Q1 as equilibrium payoffs, that is,

norm has elements QN
1 , QN

2 . By public randomization, this will imply that this norm can also be made to

contain all payoffs above the segment [Q1, Q2]. The argument below focuses on the case in which P2 and P1

are determined by the minmax payoffs, which is the harder one.40

We construct a norm which continuation payoffs just after the public randomization stage (before the

action stage) consist of the Pareto frontier contained between Q1 and Q2 and of two additional points, A1

and A2, respectively lying within ε-proportional distance from Q1 and Q2, as indicated on Figure 7. We

describe the implementation of AN
1 and QN

1 ; AN
2 and QN

2 have a symmetric implementation.

While Q1 is taken as given, the location of A1 depends on ε, and is determined by the following conditions

π1(A1) = π1(Q1)−Kε

π2(A1) = π2(Q1)− Lε, (14)

for constants K and L which will be determined ulteriorly.

40If, say, π1(P2) > v1, it suffices to set Q1 = P2 in our construction and use it as as the best proposal for player 2.
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To implement AN
1 , players are prescribed to minmax each other. The continuation payoff B after the

action stage is a function of the players’ realized actions, a1 and a2: B = B(a1, a2). The implementation is

illustrated by Figure 8. For any action ai of player i the continuation payoff πi(B(ai, aj)) does not depend

on aj .

Given that player 2 has minmaxed player 1, let Eu1(a1) denote 1’s expected payoff for the period, as

a function of his chosen action, a1. 1’s continuation payoff, π1(B(a1, a2)), satisfies the promise-keeping

condition

π1(A1) = εEu1(a1) + (1 − ε)π1(B(a1, a2)).

A similar relation holds for 2’s continuation payoff. By appropriately choosing players’ continuation

payoffs B(a1, a2)(a1,a2)∈A, the construction can make players indifferent between taking any action in the

game.

Moreover, if the constant K appearing in (14) is large enough, then for any action profile (a1, a2), one

necessarily has π1(B(a1, a2)) < π1(Q1)).
41

Consider any of the continuation payoffs B(a1, a2)(a1,a2)∈A after the action stage—henceforth referred

to as ‘B’ for simplicity. B is a weighted average of three continuation payoffs corresponding to the following

events: player 1 makes a proposal, player 2 makes a proposal, no one makes a proposal. Let C denote the

continuation payoff in case no one makes a proposal (this payoff is computed before the public randomization

taking place in the following period).

For the norm to be forgiving, any rejected proposal results in payoff C. This implies that if player 1 gets

to make a proposal, in equilibrium he proposes the element with a Pareto-efficient payoff C1 which gives 2

her default value π2(C), making player 2 to accept the proposal in equilibrium.

The situation is different if player 2 gets to make a proposal. BN gives player 1 a lower payoff than QN
1 ,

and player 2 is prescribed to propose an element QN
1 , which achieves her highest payoff in the norm and also

gives player 1 a higher payoff than CN does.

As shown on Figure 8, at element BN if player 1 gets a chance to make a proposal, he proposes CN
1 , if 2

gets a chance to make a proposal, she proposes QN
1 . B is thus a weighted average of C, C1 and Q1. Given

any point B, one can find a default option C such that B is indeed the right weighted average, given the

probabilities of proposal for each player.

We will verify at the end of this proof that the constants K and L from (14) may be chosen so that C

lies to the right of the line (A1, Q1). If this is true, CN may be implemented, before public randomization,

as a weighted average of AN
1 , QN

1 , and QN
2 .

41Indeed, the distance between A and B(a1, a2) is proportional to ε, with a coefficient bounded above by the highest

absolute value of the payoff of the stage game.
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The remaining element of interest, QN
1 , is implemented as follows: players are prescribed to choose the

pure-strategy Pareto-efficient payoff northwest of Q1. If 1 deviates in action, the continuation payoff jumps

to B; if 2 deviates, it jumps to the analog of B near Q2. Players are incentivized to play as prescribed as

long as π1(Q1)−π1(B)
ε

is large enough. This is achieved by judiciously choosing the constants K and L arising

in (14), as explained next.

Determination of the constants K and L

First, we observe that for K large enough, the threat of jumping to continuation BN is enough to

incentivize player 1 to play as prescribed in the implementation of QN
1 . We fix such a K—this choice is

independent of ε. We now show that for L big enough, for any realization of B (which depends on which

actions players choose while implementing AN ), the point C will lie to the right of line A1Q1, as mentioned

earlier.

Since a player’s probability of proposal and the distance from B to the Pareto line are both proportional

ε, the distance between B and C must be proportional to ε2. Therefore, if we can show that each continuation

point B(a1, a2) lies to the right of the line A1Q1, at a strictly positive ε-proportional distance, so does the

point C, for sufficiently small ε.

The points B(a1, a2) are constructed by promise-keeping conditions. Let B∗ denote the continuation

payoff, out of all continuations B(a1, a2), which gives the lowest payoff to player 1 and the highest payoff to

player 2. B∗ corresponds to the highest value Eu1(a1) out of all actions a1 and to the lowest value Eu1(a2)

out of all actions a2. It suffices to show that B∗ lies to the right of A1Q1. We recall the promise-keeping

conditions

π1(A1) = εEu1(a1) + (1− ε)π1(B
∗)

π2(A1) = εEu2(a2) + (1− ε)π2(B
∗)

or, equivalently,

[π1(A1)− π1(B
∗)] = ε[Eu1(a1)− π1(B

∗)]

[π2(A1)− π2(B
∗)] = ε[Eu2(a2)− π2(B

∗)].

The ratio of the absolute values of the right-hand sides in the two equations above, |Eu2(a2)−π2(B
∗)

Eu1(a1)−π1(B∗) |,
determines the tangent of the angle of the vector A1B

∗ above the horizontal. Since B∗ is at an ε-distance

from Q1, this ratio simplifies to |Eu2(a2)−π2(Q1)
Eu1(a1)−π1(Q2)

|, plus ε-terms which can be ignored.

Player 1 cannot obtain a higher payoff than his minmax v1 (as player 2 is minmaxing him), and player 2

cannot obtain a lower payoff than her lowest possible payoff in the game, which we denote as v. Therefore,

the angle of the vector A1B
∗ above the horizontal is no higher than | v−π2(Q1)

v
1
−π1(Q2)

|, a finite value independent

of L and ε.

The tangent of the angle of the line (A1Q1) above the horizonal is equal to L
K
. By choosing L high

enough, this ratio exceeds twice the ratio | v−π2(Q1)
v
1
−π1(Q2)

|. This guarantees that the vector A1B
∗ lies strictly to

the right of the line (A1Q1), as desired.

There remains to check that the norm satisfies all the conditions of Theorem 5. First, both players are

incentivized to propose as prescribed: player 1 proposes the best available option for him, given the default

option C. If player 2 wants to improve upon Q1, she has to propose a continuation which gives her at

least η more than her on-path continuation payoff. For ε small enough, however, the only proposals that

would achieve this would have to give player 1 less than π1(C), and would therefore be rejected. Second, the

continuation payoff, C, is the same when a proposal is rejected, regardless of the identity of the proposer

and the nature of the proposal. The norm is thus forgiving. Finally, the point Q1 is a continuation of the

norm both after and before the public randomization, as desired.
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C.2 Proof of Theorem 4 (Necessary Conditions)

Consider a forgiving stable norm N . For simplicity, we assume that at each stage of the game—before the

action stage, before the proposal stage, and before the public randomization stage—there exist equilibria in

the norm with respective payoff vectors A, B, and C, that yield the maximal value of ρ at the corresponding

stage.42 Let α denote the (possibly mixed) action profile corresponding to the first-period play implementing

element AN—the continuation before the action stage, and let v(α) denote the expected current payoff

resulting from α. Since ρ(v(α)) ≤ ρ̄, we necessarily have

ρ(A) ≤ ερ̄+ (1 − ε)ρ(B)

Point B, which is a continuation payoff before the proposal stage, is the weighted average of the continuation

payoffs following accepted proposals, and of the default option. When a player—player 1, say—gets a chance

to make a proposal, the expected continuation payoff must lie within at most an
√
ε-distance from the

Pareto line. Otherwise, player 1 could propose a Pareto point which increases both players’ payoffs by a

value proportional to
√
ε, and is an equilibrium lying above the minmax.43 This proposal would then be

accepted by player 2 and would be a profitable deviation for player 1. Therefore, if a player gets a chance to

make a proposal, which happens with probability qε, the resulting continuation cannot have a positive value

of ρ that exceeds
√
ε. When no one makes a proposal, the continuation payoff is dictated by the default

continuation, whose value of ρ is at most ρ(C). This implies that

ρ(B) ≤ qε×√
ε+ (1 − qε)ρ(C).

Finally, since C is a convex combination of payoffs, obtained by public randomization, of equilibrium payoffs

before the action stage whose maximal ρ-value is achieved by A,

ρ(C) ≤ ρ(A).

Combining the above inequalities and getting rid of second-order ε terms shows Theorem 4.

D Comparative statics

Consider any q > q′ and any norm N that is stable for q. We will show the existence of a norm N ′, stable for

q′ and payoff-equivalent to N , which implies that all payoffs implemented by N are q′-renegotiation-proof

for the lower value of q′.

In the new norm N ′, any payoff A achieved by N before the action stage is implemented using the same

mixed actions and the same subsequent continuations as prescribed byN . Consider now any vector payoff

B, calculated before the proposal stage, implemented by some equilibrium BN of N . BN is a mixture of

three continuation equilibria: CN
1 , which arises when 1 gets a chance to make a proposal and is calculated

after the proposal stage; CN
2 which arises if 2 gets to make a proposal; and CN , which arises if no one gets

to make a proposal.

With the new negotiation factor q′, B is implemented as follows: players are prescribed to make exactly

the same proposals (with the same prescribed punishments if someone made an off-path proposal). For B to

still to be the weighted average of the continuations occurring after the three proposal events, we change the

42If the supremum values are not achieved, the proof can be easily adjusted by taking appropriate limits.
43With the more permissive concept of an η-stable norm, the continuation payoff has to lie within a distance of

√
ε+ η from the Pareto line. Otherwise player 1 could make a proposal which gives him η more, and gives player 2

√
ε more than the continuation payoff.
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continuation payoff in case no proposal is made: the new continuation payoff in this case, C′, has to lie on

the line between B and C. The new continuation C′N can be implemented by using a public randomization,

as it lies in the triangle (C,C1, C2). This, essentially, yields the new implementation.

There might be a problem, however, with this candidate implementation. One needs to make sure that

players are correctly incentivized to make a proposal, when they get an opportunity to do so, rather than to

conceal this opportunity. This is the case if π1(C1) ≥ π1(C) and π2(C2) ≥ π2(C), i.e., if each player gets at

least as high a payoff when he makes a proposal as when he remains silent. When one moves point C to C′,

these incentives might get violated, and the construction above must be adjusted as follows.

The new continuation payoff when no proposal is made, C′, lies in between C and B. Suppose that it

violates 1’s incentives to make his prescribed proposal: π1(C
′) > π1(C1). Since, in the old norm, we had

π1(C1) ≥ π1(C), such a violation is possible only if π1(C2) > π1(C1). In this case, we modify the prescribed

proposal for player 1 by moving point C1 towards C2. As this happens, the value of π1(C1) increases and the

value π1(C
′) decreases (to keep B the weighted average). When these values become equal, the incentives for

player 1 to make a proposal start holding again. With the new continuation payoff C′
1 for player 1’s proposal

and renewed continuation payoff in case of no proposal C′′, player 1 is incentivized to make the prescribed

proposal. One then can check that both new points can be implemented: the payoff C′
1 lies between C1 and

C2 and therefore can be implemented using public randomization, while point C′′ lies within the triangle

(C,C1, C2) and can therefore also be implemented.

The same procedure can be done for player 2. The modified continuation payoffs can be implemented

using public randomization device. The new norm N ′ therefore has the same set of payoffs as the old norm

N at any stage; and it is stable given the new value of q′.

E Proofs of Section 7 (Three or More Players)

E.1 Proof of Theorem 6

Since v ∈ F , the usual Folk Theorem implies that for ε small enough v can be achieved by an SPE of the

underlying repeated game. This SPE can be embedded into an equilibrium of the repeated game with renego-

tiation. In this equilibrium, no proposals are ever prescribed at any stage of the game. If any player i makes

a proposal, other players are all prescribed to reject it, and the continuation payoff is player i’s punishment,

as in the underlying SPE. If only one player j 6= i accepts i’s proposal, the continuation is the punish-

ment equilibrium for j. If at least two players accept the proposal, it is implemented. These prescriptions

guarantee that any unilateral deviation in action, proposal, or acceptance decision is suboptimal.

E.2 Proof of Proposition 3

We fix one of the two procures and let Fk denote the set corresponding to the k-th step in the sequential

reduction of the set F under this procedures. We first show that points on the relative Pareto frontier P(Fk)

of Fk are never removed by the procedure. Suppose, contrary to the claim, that some point A ∈ P(Fk) was

removed by the procedure. Then there would be a player i such that πi(A) < πi(Fk). If A was prescribed

as a punishment payoff for any proposal of player i, then for i’s optimal proposal with payoff C ∈ Fk,

the punishment payoff A would not be credible as it is removed at the k-th step. That is, any j 6= i has

πj(A) < πj(C). Since A lies on the Pareto frontier of Fk, this means that πi(C) < πi(A): C gives i

a lower payoff than πi(Fk), which contradicts C’s assumed optimality. One could simply prescribe both

continuations to have C as their payoff vector, and this would give i a lower payoff than πi(Fk).

The optimal non-prescribed proposal for player i always lies on a Pareto frontier. Indeed, if i makes

a non-prescribed proposal with payoff C, which is not Pareto-optimal, there must exist another point C′,

which is the payoff of another non-prescribed proposal for player i which Pareto dominates C, given that the
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number of prescribed proposals is finite44 and given our maintained full-dimensionality assumption. The set

D(C,Fk) of possible punishment payoffs is strictly larger than the set D(C′,Fk), since the latter set gives

every player j 6= i a higher lower-bound on his payoff. This implies that the proposal C′ gives player i a

worst punishment payoff πi(C
′,Fk) at least as high as the proposal associated with payoff C. Therefore,

player i can without loss always choose a point on Pareto frontier.

Since no point on the relative Pareto frontier of F is removed in the sequential reduction , the set

of optimal proposals for any player i remains the same along the sequence. However, the set of possible

punishments keeps decreasing at each step, which weakly increases, as a result, the minimal value πi(Fk)

with k. (Recall that πi(Fk) is i’s minimal payoff if he gets a chance to make a proposal). At each step,

the set Fk is characterized by the n lower bounds of the players’ payoffs {πmin,i(Fk)}i∈{1,...,n}. These lower

bounds are weakly increasing at each step, which implies that the procedure converges to a stable point.

E.3 Proof of Theorem 7

Necessity

Suppose that A lies outside of Vn and, for any small enough ε > 0, there exists a stable norm N (ε) such

that A ∈ N (ε). A norm N (ε) has to satisfy the inequality (8) (if being used as an argument instead of

Fk
n), up to an ε-term. Let’s limit ε to 0 and consider a sequence of norms N (ε) which payoff sets converge.

This limit payoff set contains A and satisfies the inequality (8), which in turn means that A should have

not been removed from any of the sets Fk
n . However, that would make A an element in Vn, a contradiction.

Sufficiency: R
We first prove that any point in R is renegotiation-proof. Consider any point A with πi > πi(P−i)

for any i. As in the two-player case, one can find n points Ai such that for j 6= i πj(Ai) = πj(A) and

πi(Ai) = πi(P−i) +
√
ε. Each point Ai will give the lowest payoff for player i in the constructed norm N . In

the equilibrium of the norm AN
i associated with payoff vector Ai, player i is being minmaxed. Since players

other than i may have to use mixed strategies, this generates a set B of continuation payoffs, following the

action stage, which depend on the realization of actions of players other than i. Any continuation B ∈ B
is implemented as follows: if player i can make a proposal, he is prescribed to propose some continuation

with payoff C; other players are prescribed to remain silent; in the absence of any proposal, the continuation

returns to AN
i . As in the two-player case, one can guarantee (possibly using the public randomization), that

the distance AiC is of order
√
ε.

Since the Pareto frontier is connected, so is its truncation to points for which i’s payoff lies above πi(P−i).

One can therefore find a connected subset Sε of the frontier consisting of all points giving, for each i, a payoff

greater than or equal to πi(Ai)+Kε, where K is a constant chosen large enough that players are incentivized

not to deviate in actions.

Continuation equilibria with payoffs in Sε are implemented in such a way that each player i gets at least

πi(Ai) + Kε in all continuations. Players are prescribed to stay silent. Since each point of Sε is Pareto-

efficient, there are no unanimously improving proposals anyway. Moreover, using AN
i as a punishment if i

deviates in actions guarantees that such deviation would be suboptimal.

When implementing AN
i , players are already incentivized to follow the prescribed actions. If i wants to

make a non-prescribed proposal, then by construction of Sε there exists a continuation with a payoff Qi in

set Sε which gives player i a lower payoff than C. Indeed, the lower bound for πi at the set Sε is πi(Ai)+Kε,

while πi(C)− πi(Ai) is of order
√
ε.

Sufficiency: General Conditions

The proof is similar to the two-player case. For any point A ∈ Vs with πi > πmin,i(Vs), consider the set

of points Ai ∈ Vs such that for any i πi(Ai) = πmin,i(Vs)+
√
ε and π−i(Ai) = π−i(A). The points Ai have a

44See Appendix F
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smaller i-th coordinate than A provided that ε is small enough. In addition, we have πi(Aj)−πi(Ai) >>
√
ε

for any j 6= i without loss of generality.

We build a stable norm N such that Ai gives the lowest payoff to player i in the norm (calculated at

the start of the period). At AN
i , player i is minmaxed. Since players other than i may have to mix their

actions, we construct a set of continuations with payoffs B ∈ B, corresponding to the observed actions of

players −i. For any continuation equilibrium BN associated with some payoff B ∈ B, i is prescribed to

make a proposal with some payoff vector C, and all other players are prescribed to remain silent. As with

the two-player case, C can be assumed to lie at a distance of order
√
ε from Ai. When implementing the

equilibrium CN associated with C, players are prescribed to follow a deterministic sequence of actions such

that the continuation payoff remains within an ε-distance from C. Players are prescribed not to make any

proposals.

The initial point A is also implemented by deterministic actions and no proposals. Moreover, each point

in the orthant with lower bounds πi(Ai) + Kε is included in the norm N and implemented in such a way

that πi > πi(Ai) + Kε: AN
i is severe enough a punishment for i that it makes it suboptimal for him to

deviate in action.

This norm can be shown to be generically stable. The only new issue concerns i’s incentives to deviate

in proposal. We have reduced (increased the lower bounds on payoffs) the initial set Vs by an order of
√
ε.

The whole orthant defined by πi > πi(Ai) + Kε for all i is part of the norm, but some points below are

removed from the original set Vs. As a result, the value πi(.), which i can guarantee if having a chance to

propose, can now be larger. Our goal is to show that, nevertheless, generically the value of πi(.) is smaller

than πi(C), and therefore player i is incentivized to propose CN .

When building a set Vs by sequentially removing payoffs with πmin,i(.) < πi(.), the initial set of

individually-rational payoffs gets reduced. If for player i the final value of πmin,i(Vs) is strictly larger

than his minmax payoff vi, then the value of πi(Ai) − vi is of order ε
0. This means that the distance AiC

can be made of ε
1
4 -order. At the same time, the set Vs (and, respectively, the value πi(.)) were changed by

an order of
√
ε, guaranteeing that πi(.) < πi(C).

If player i’s payoff πmin,i(Vs) equals to minmax vi, this means that i’s payoff was not increased when

building set Vs. Put it differently, one can consider a hyperplane of the set Vs with πi = vi, and find the

maximum payoffs of other players πj , j 6= i on that hyperplane. The n−1-dimensional payoff vector {πj}j 6=i

cannot lie within an interior of Vs (otherwise, player i could make a proposal dominating {πj}j 6=i and thus

guaranteeing himself a payoff higher than vi). When the set Vs is reduced by (an arbitrarily small)
√
ε-order,

player i can gain incentives to make an off-path proposal, only if the vector {πj}j 6=i lies exactly on the Pareto

frontier of Vs. However, this possibility is not generic.

E.4 Proof of Proposition 4

Intuition. The sets Vs and Vq
n—necessary conditions depend on q, hence the superscript—are both obtained

from F by sequentially increasing the lower bounds on each player’s payoff when he gets a chance to make

a proposal. Vs is obtained by removing payoffs below πi(·) at each step, while Vq
n is obtained by removing

payoffs below
nvi+qπi(.)

n+q
. When q goes to infinity, the sets of payoffs removed at each step of these procedures

converge to each other. As we show below, this implies that Vq
n converges to the set Vs as q goes to infinity.

The set of sufficient conditions, Vs, can be characterized by two sets of lower bounds for each player i:

πi(Vs) is the lower bound on i’s payoff when he gets a chance to make a proposal and πmin,i(Vs) is the lower

bound for his payoff at the beginning of a period. Vs was constructed in such a way that πi(Vs) ≤ πmin,i(Vs).

To capture the above intuition, we first show by induction that Vs is the largest set S of individually

rational payoffs whose Pareto frontier is equal to P(V) and such that πi(S) ≤ πmin,i(S) for any i. Consider

such a set S. The sequence of sets Fk
s converging to Vs starts with F0

s = F , the set of all individually

rational points. This implies that πi(S) ≥ πi(F0
s ), since F0

s contains S and, hence, the set of punishments
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if i makes an unprescribed proposal is higher with F0
s than with S, resulting in a lower bound πi. We now

show the induction hypothesis: if πi(S) ≥ πi(Fk
s ), then the same condition holds for k + 1. Due to the way

the payoffs are cut at step k, one has for each i, πmin,i(Fk+1
s ) = max{πmin,i(Fk

s ), πi(Fk
s )} ≤ πi(Fk

s ), which

does not exceed πi(S) ≤ πmin,i(S). Since the lower bound πmin,i(Fk+1
s ) is lower than πmin,i(S), the set

Fk+1
s contains S, and one has that πi(S) ≥ πi(Fk+1

s ). By induction, the limit set Vs contains S.
Let Vn denote the limit of Vq

n as q goes to infinity. We wish to show that Vn = Vs. Consider the

sequences {Fk,q
n }+∞

k=0 resulting from the procedure applied, for any fixed q, to derive necessary conditions

for this value of q. Due to the way points are removed at each step, it is easy to check that Fk,q′

n ⊂ Fk,q
n

whenever q′ > q; by the same logic, it is straightforward to check that Vs is contained in Vn. To prove the

reverse inclusion, note for each q and i, we have πmin,i(Vq
n) ≥

nvi+qπi(V
q
n)

n+q
, as this inequality holds at each

step k of the procedure. Taking the limit as q goes to infinity, the limiting set Vn must satisfy for each i

πi(Vn) ≤ πmin,i(Vn). From the previous paragraph, this implies that Vs contains Vn, which concludes the

proof.

E.5 Proof of Proposition 5 (Sketch)

Consider for simplicity the case of three players: player 1 makes a proposal and player 2 responds first,

followed by player 3. Depending on responding players’ votes, there are four possible continuations, one of

which is equal to 1’s proposal and arises when 2 and 3 accept the proposal.

The ability to punish 2 for accepting player 1’s proposal is constrained by the following issue: if 2 accepts

the proposal, 3 will reject it only if the punishment for player 2 gives him at least the same payoff as 1’s

proposal, which will be implemented if he accepts it. This puts a lower bound on 2’s punishment payoff,

which is higher than the minmax v2.

As a result, 1’s punishment for making an off-path proposal is also limited. Since fewer punishments

are available, fewer equilibria are renegotiation-proof: sequential voting has more predictive power than

simultaneous voting.

By nature of the arguments used to derive necessary and sufficient conditions, these conditions are

characterized by upper orthants, even if players randomize their acceptance decision.

Since allowing only two continuations—as simple norms do with simultaneous voting—is a special case

of the more numerous continuations allowed by sequential voting, it follows that simple stable norms have

more predictive power than the stable norms obtained with sequential voting.

E.6 Proof of Theorem 8 (Sketch)

We construct a forgiving η-stable norm N as follows. The norm N includes all Pareto-efficient payoffs which

lie at some arbitrary small, but ε-independent distance from the minmax values. The norm N also includes,

for each player, a set of Pareto-inefficient elements used to build a punishment equilibrium for that player, all

elements in each set lie within a distance of order ε from the Pareto-efficient elements of the norm. For each

player i, there is a Pareto-inefficient payoff vector Ai which gives i his worst payoff in N . The equilibrium AN
i

which achieves payoff Ai, together with its continuations, form the punishment set for player i, as described

below.

If players were unable to make any proposal, one could implement payoff Ai as follows. Player i is being

minmaxed, which may require other players to use mixed strategies. As described in earlier proofs, this

results in a set B1 of continuation payoffs, (potentially) one for each observed action profile (these various

continuations are needed to incentivize the minmaxing strategy). Each continuation payoff B1 ∈ B1 is

implemented by minmaxing player i, which again generates several continuation payoffs in the next period,

with generic element denoted as B2. Player i is minmaxed in this way for several periods. In each period

i’s continuation payoff, πi, increases by an amount of order ε. One can compute the number T of periods
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needed to minmax player i, so that πi exceeds πi(Ai) by a sufficiently high amount that i can be incentivized

to play any action by the threat of returning to Ai. The value of T is independent of ε. After these T

periods, each continuation payoff BT can be implemented by playing a deterministic sequence of actions so

that the continuation payoff always lies within some ε-proportional distance from BT . This implementation

is an equilibrium, since the payoff Ai prevents any deviation from player i, and any deviation by another

player leads to an even larger drop in the continuation payoff of the deviator.

When proposals are re-introduced in the game, there will be changes in the implementation of AN
i , but

these changes will be insignificant. After the first round of minmaxing player i, the resulting continuation

payoffB1 is calculated taken into account the possibility of proposals. That is, B1N is the convex combination

of some default option, C1N , if no one makes a proposal, and of proposals payoffs CN
i for each player, which

are chosen to be Pareto efficient elements of the norm N . The distance between the payoffs B1 and C1 is

of order ε2—as explained the similar proofs seen earlier. In the next period, the continuation payoff before

the actions will be C1 (instead of B1, in the previous paragraph). Therefore, if one repeats minmaxing

player i for T periods, the resulting continuation payoff compared to the case with no proposals, will differ

by an amount of order ε2, which is negligible as ε becomes arbitrarily small. As players become arbitrarily

patient, the modified implementation of Ai, based on minmaxing player i for T periods and then choosing

a deterministic sequence of actions, will thus be an equilibrium even with the possibility of proposals.

Finally, the payoff Ai (and, therefore, all the default continuation payoffs C’s) can be chosen so as to

lie within some distance Kε-distance from the Pareto line. With ε small enough, no player can make an

off-equilibrium proposal that would give him a payoff of at least η more than the equilibrium proposal, while

keeping all other players at least at well as off as with the default payoff C. Therefore, the constructed norm

is η-stable. Using initial public randomization, one can then include in the norm any point in the convex

hull Co(P ′), which concludes the proof.

F Restricting plans

We refine steps b1), b2), and c) as follows. There exist constants k and k′ with k′ > 3k > 0 45such that

b1) for any z, a, and i, the support of µi[m](z, a) contains at most k proposals;

b2) −i is prescribed to surely accept (reject) any on-path (off-path) proposal;

c) for any z and a, the set M+1[m](z, a, µ) of possible continuation plans has at most k′ elements and

contains, in this order: the current proposal, µ; a default option (used if no proposal was made); the set of

possible on-path proposals for each player (at most 2k elements); a finite number of alternative continuation

plans, pre-specified by m as a function of z and a, which may be used as punishments against deviating

proposers.

The condition k′ > 3k guarantees that the list of continuation plans can indeed be included inM+1[m](z, a, µ)

as long as there are no more than k′ − 2k − 2 > 0 alternative continuations plans.

To specify the continuation plan selected for the next period, we partition the proposal stage according

to i) who (if any) got to make a proposal, ii) in the event that a proposal was made, whether the proposal

was prescribed (out of at most k possibilities) or off-path, iii) whether the proposal was accepted or rejected.

As is readily checked, this partition consists of at most k̂ = 1+2× (k+1)× 2 elements. In addition, we also

compare the current proposal, µ (or the default option in case of no proposal), to each of the (at most) k′−1

other feasible continuation plans. Specifically, we consider, for each player and alternative continuation,

which of the current proposal or the alternative continuation plan gives the higher payoff to that player.

Allowing three comparison outcomes ({=, <,>}) for each player yields 32(k
′−1) combinations.

Let E denote the set of possible events at the proposal stage, and k̄ = k̂× 32(k
′−1) denote its cardinality.

A choice rule g determines, for each event, the continuation plan—an element of M+1[m](z, a, µ)—for the

45The plan for n > 2 players is described similarly, with increased constants k and k′ > (n+ 1)k > 0.
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next period. The choice rule g[m](z, a) is pre-specified by m as a function of z and a; and it is an element

of a finite set G with a cardinality (k′)k̄.

In summary, each plan prescribes, for each realization of z and a, a successor (a plan for the following

period) as a function of the choice rule (an element from G) and of the event which occurred. Letting

A = A1 × A2 denote the (finite) set of action profiles, this stage adds Mprop = (k′k̄|G|)[0,1]×A elements to

the prescription, which has the cardinality of the power set of the continuum.46

For any set M , let T (M) denote the set of plans obtained from the recursive construction above, choosing

proposals from M and continuation plans from M . T (M) is the Cartesian product of the prescriptions

obtained at each step of the construction. We now show that there exist sets M ’s for which T (M) has the

same cardinality as M . These sets have cardinality i2 = |2c|, i.e., the cardinality of the power set of the

continuum, which is also the cardinality of RR—the set of all real-valued functions over R—see, e.g., Forster

(1995).47

Proposition 7 If M has cardinality |2c|, then so does T (M).

This implies that any set M with cardinality |2c| is in bijection with T (M).48 The set M of plans is

then structured as follows: let φ denote the bijection between 2c and T (2c). To any m ∈ 2c, we can associate

the plan, defined recursively through φ(m), which specifies mixed strategies for each realization z of the

randomization device, proposals as a function of z and of the observed action profile a, and continuation

plans which are elements of 2c. Thus, each element of M = 2c specifies a plan, which is defined recursively.

Proof. Given the cardinality of M, for each part from a) to c) in the prescription of a plan, one must find

the cardinality added to the plan choice from that part. Since these parts are related by a Cartesian product

and we are dealing with infinite sets, the cardinality of the Cartesian product coincides with the cardinality

of the largest component of the product.49 Part a) maps real-line outcomes (randomization device) into

mixed strategies over A for both players, which is a subset of |A|R. Since RR has the cardinality of 2c, this

has the same cardinality as M. Part b1) maps any outcome (z, a) and proposer into k possible plans in M
and a distribution over these plans, and thus has Mk×[0,1]×A ×∆k(R)

[0,1]×A elements where ∆k(R) is the

probability simplex in Rk. Again, this set has the cardinality of i2 since MR is equivalent to RR. Part b2)

does not add any cardinality since the prescription is to accept only prescribed proposals. Similarly, part

b3) does not add any cardinality. Part c) adds the choice rule specification with a cardinality G[0,1]×A = 2c

and the set M+1 of continuations with the cardinality of Mk′×[0,1]×A, which is the same as M’s, concluding

the proof. �

Special cases used in the analysis

1) Babbling equilibria. These are the SPEs of the underlying repeated game, ignoring any renegotiation

of continuation play. Babbling equilibria are captured by the choice rule which imposes the default contin-

uation (the second element of M+1[m](z, a, µ)), no matter what happens during the proposal stage.

2) Stable norms. We can use choice rules such that if a proposal is accepted it is used as the continuation

plan

46Since [0, 1] has the cardinality of the continuum, Mprop has the same cardinality as the set of functions which

maps real numbers into a finite set, which is the same as the cardinality of 2c, the power set of the continuum.
47Perhaps a simple way to see this is the chain |RR| = |(2ℵ0)2

ℵ0 | = |2ℵ02
ℵ0 | = |22ℵ0 | = |2R|, where the third

inequality holds because N× R is no larger than R.
48By definition, two sets have the same cardinality if there exists a bijection between them. See, e.g., Kuratowski

and Mostowski (1968).
49In particular, for i0 = N, we have |N× N| = |N|. The same is true for higher beth numbers, such as i1 = R and

i2 = 2c.
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3) Forgiving norms. The choice rule specifies that if a proposal is rejected, the default continuation is played

regardless of the proposal and the identity of the proposer.

G Extensions: truthful equilibria and asymmetric proposal prob-

abilities

Truthful equilibria

Appendix F restricts all plans to prescribe a bounded number of proposals and a bounded of possible

continuations, and to prescribe that only on-path proposals be accepted. In particular, any equilibrium

prescribed by a plan must be truthful : any on-path proposal is always accepted and implemented.

This result is general: we now show that for any well-defined, possibly more permissive plan prescriptions

and associated stable norm N , there is a payoff-equivalent stable norm, using the same concept of stability,

that consists entirely of the more restrictive plans used in this paper.

The argument applies to any number of players and any concept of norm stability: consider any stable

norm N which uses plans with milder restrictions. When some player i gets a chance to make a proposal,

he can make any number of proposals in equilibrium, the expectation of which is some continuation payoff

C. We alter the equilibrium by prescribing player i to make only one proposal with payoff C. The altered

equilibrium prescribes all other players to accept the proposal and C to be implemented regardless of the

acceptance decision. The payoff C can be implemented using public randomization.

If i deviates and proposes a Pareto improvement relative to C, everyone is prescribed to reject it. With

two players, the new norm prescribes to have the same rejection continuation as in the original norm, N .

The incentives to accept the proposal have not been changed by the transformation, so the other player

everyone is incentivized to reject an off-path proposal. With more than two players rejecting the off-path

proposal is an equilibrium.

When the norm is simple and players vote for the payoff-improving proposal, as in Assumption 1, player

i is still prescribed to propose C. It remains to be shown that if one has enough continuations to incentivize

the players to reject any off-path proposal in a simple norm with more permissive plans, it is possible to use

only n− 1 of them. If one considers all possible off-path proposals of player i, for each such a proposal there

is at least one player j 6= i who rejects it. This means that for any off-path proposal rejected by player j

there is an element CN
j in the norm which gives j at least as high payoff as the off-path proposal. Any norm

can be expanded to have all the payoffs in its closure by properly designing the prescriptions. Thus, one can

consider the element CN
j with the highest payoff for j and use it as a punishment; and have at most n− 1

continuations in total for the simple norm to be stable.

The equivalence with more permissive plans also holds if one does not impose the stability requirement.

Player i is prescribed to propose CN and the continuation is prescribed to be CN regardless of acceptance

decision. If player i makes another proposal, a default option is always played. This makes accepting CN

and rejecting any other proposal an equilibrium.

Asymmetric proposing probabilities

It is easy to extend the analysis to a protocol in which one of the players has a higher probability fac-

tor qi of proposal than the other player. The sufficient conditions are unchanged in this setting, but the

necessary conditions become tighter for the player whose proposal probability is higher, which translates

into a higher minimal guaranteed payoff for that player, across all renegotiation-proof equilibria. To see this
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starkly suppose that v
¯1

< π1(P2) and v
¯2

< π2(P1) (configuration (a) in Figure 2), so that renegotiation

potentially benefits both players, compared to the minmax payoffs, and consider the case in which 1 can

make frequent proposals while 2 never gets a chance to make a proposal (i.e., q1 is arbitrarily large while

q2 = 0). Then, 2’s minimal guaranteed renegotiation-proof payoff collapses to her minmax payoff, while 1

is guaranteed to get a payoff of at least π1(P2). More generally, player i’s minimal payoff, given by (2), is

calculated using the probability qi that he gets an opportunity to make a proposal, and is independent of

the other player’s probability of getting that opportunity. As qi increases, player i’s guaranteed continuation

payoff increases as well, and vice versa.

H Observability of mixing strategies

We have assumed throughout the paper that when a player randomizes across several actions or proposals,

only the outcome of this randomization is observed by the other player. In particular, players’ continuation

values cannot directly depend on their choice of mixed strategy. Our results do not change if instead we

assume that mixed strategies are observable. For sufficient conditions, this fact is straightforward because

our construction is clearly compatible with players observing more information. For necessary conditions,

payoff lower bounds were computed using only that any player can guarantee himself at least his minmax

payoff during the action stage and at least some particular payoff during the proposal stage which satisfies

the responder. These lower bounds do not change when mixing is observable.

The observability of mixed strategies does affect, however, the set of weakly renegotiation-proof (WRP)

equilibria defined by Farrell and Maskin (1989), as follows. An SPE σ is weakly-renegotiation proof if there

do not exist continuation equilibria σ1, σ2 of σ such that σ1 strictly Pareto dominates σ2. If a payoff vector

arises as players’ continuation payoff following some history of a WRP equilibrium, we will also say that

these payoffs are WRP.

Assuming that mixing probabilities are observable, Farrell and Maskin obtained a sufficient condition

for any feasible payoff to be WRP in the context of two-player repeated games. To formulate this condition,

they define ci(α) = maxa′

i
πi(a

′
i, α−i) as the cheating payoff of player i when he chooses a best response to

the (mixed) action α−i, and establish the following result.

Proposition 8 Let π = (π1, π2) denote a feasible payoff. If there exist (mixed) action pairs αi = (αi
1, α

i
2)

(for i = 1, 2) such that ci(α
i) < πi, and π−i(α

i) ≥ π−i, then the payoff π is WRP if players are sufficiently

patient.

We now present an example with a Pareto-efficient payoff that satisfies the requirement of the above

proposition, but cannot be WRP if mixing probabilities are unobserved.50 The stage game is as follows:

9,-4 -2,-4

-2,-4 9,-4

0,8 8,0

The payoffs (0, 8) and (8, 0) are Pareto efficient and the minmax values of players are v1 = 72
19 = 4 − 4

19

and v2 = −4, as is easily checked (for v
¯1
, 2 mixes so as to make 1 indifferent between the first and last rows).

The Pareto-efficient, individually-rational point A with payoffs π1 = 4+ 1
100 , π2 = 4− 1

100 satisfies the premise

of Proposition 8 with α1 defined by player 1 choosing the last row and player 2 mixing equally between two

columns and α2 defined by player 1 choosing the first row and player 2 choosing the first column. We will

50The definition of WRP is the same as before. The only difference is that equilibrium strategies now depend only

on the history of realized actions rather than on the history that included mixed strategies.
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nevertheless show that A cannot be WRP for low enough ε (arbitrarily patient players), even if players have

access to a public randomization device.

Counter-Example 1 With unobservable mixed strategies, A is not WRP.

Suppose, by way of contradiction, that A is the continuation payoff of some WRP equilibrium σ, and

consider the payoff vector A′ corresponding to player 1’s lowest payoff and, hence, player 2’s highest payoff

among all continuations payoff of σ before public randomization.51 When implementing A′, depending on

the outcome of public randomization, player 2 plays a pure strategy with some probability β and mixes with

the complement probability (1− β).

Since A′ gives 1 his lowest possible payoff, when implementing A′ player 1 cannot get a period payoff

higher than π1(A
′), even if he always plays a stage-game best response. Otherwise, the promise-keeping

constraint would have to prescribe a continuation giving 1 a payoff lower than π1(A
′). If player 2 chooses

a pure strategy, player 1 can guarantee himself a payoff of at least 9. If player 2 chooses a mixed strategy,

player 1 can guarantee himself his minmax payoff of 72
19 . This puts an upper bound on the probability β of

player 2 choosing pure strategy:

π1(A
′) ≥ 9β +

72

19
(1− β) (15)

The continuation payoff π2(A
′) of player 2 is a mixture between continuation payoffs π2,pure and π2,mixed

conditional on her playing a pure and a mixed strategy:

π2(A
′) = π2,pureβ + π2,mixed(1− β) (16)

If 2 mixes between the two columns, by indifference any choice has to give her the same payoff π2,mixed.

Player 2 cannot get more than 0 when choosing the right column, and the continuation payoff from the next

period onward cannot exceed π2(A
′). This puts an upper bound on 2’s continuation payoff:

π2,mixed ≤ 0× ε+ (1− ε)π2(A
′)

Similarly, since 2 cannot get a payoff higher then 8, we have

π2,pure ≤ 8× ε+ (1 − ε)π2(A
′)

Combining these inequalities with (16) yields

π2(A
′) ≤ 8× εβ + (1− ε)π2(A

′).

Rearranging, we get the following lower bound for β:

π2(A
′) ≤ 8β (17)

Combining (15) and (17) yields π2(A
′) ≤ 8

99 (19π1(A
′)− 72). Since π2(A) ≤ π2(A

′) and π1(A) ≥ π1(A
′) this

implies that

4− 1

100
≤ 8

99

(

19

(

4 +
1

100

)

− 72

)

,

which is false (the right-hand side is approximately equal to 0.34) and yields the desired contradiction.

51Since σ is WRP, 1’s lowest continuation payoff is achieved for 2’s highest continuation payoff. The proof can be

easily adjusted if σ’s payoff extrema are not achieved.
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