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Extended Abstract: In Quah and Strulovici (2007) (henceforth to be referred to as

QS07), we identified a natural way of ordering functions, which we called the interval

dominance order, and showed that this concept is useful in the theory of monotone

comparative statics and also in statistical decision theory. This ordering on functions

is weaker than the standard one based on the single crossing property (Milgrom and

Shannon, 1994) and so monotone comparative statics results based on this property

apply in some settings where the single crossing property does not hold. We also

showed that certain basic results in statistical decision theory which are important in

economics - specifically, the complete class theorem of Karlin and Rubin (1956) and

the results connected with Lehmann’s (1988) concept of informativeness - generalize

to payoff functions that obey the interval dominance order.

These incomplete notes gather together some new results not found in QS07. The

reader is advised to read these notes in conjunction with that earlier paper. The

notes are divided into three sections:

Section 1 defines the interval dominance order for functions defined on lattices and

develops a theory of monotone comparative statics around this property. The results

here generalize the ones in QS07, which only considered the interval dominance order

on functions defined on the real line.

Section 2 uses the interval dominance order to study the impact of the discount rate

in a problem of optimal stopping; it generalizes to a stochastic setting Example 2 in

QS07.

Section 3 has more applications of the theory developed in Section 1.

1This version completed on 9 December 2007. Another version may be available in January 2008.
2Email addresses: john.quah@economics.ox.ac.uk bruno.strulovici@economics.ox.ac.uk
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1. The interval dominance order

Let X be a set and ≥ a relation defined on X. We say that (X,≥) is a partially

ordered set (or poset for short) if ≥ obeys the following properties: (i) if x ≥ y and

y ≥ z then x ≥ z (transitivity); (ii) for all x in X, x ≥ x (reflexivity); and (iii) if

x ≥ y and y ≥ x then x = y (anti-symmetry). For any two elements x′ and x′′, we

denote the set {x ∈ X : x′ ≤ x ≤ x′′} by [x′, x′′]. A subset J of X is an interval of X

if, whenever x′ and x′′ are in J , the set [x′, x′′] is also in J . It is clear that sets of the

form [x′, x′′] are also intervals.

The partially ordered set (X,≥) is a lattice if any two points x and y in X have

a supremum and an infimum. The supremum of x and y refers to that element in

X which is greater than x and y (with respect to ≥) and smaller any other point

that is also greater than x and y. We denote the supremum by x ∨ y. (Note that

it follows from anti-symmetry that the supremum must be unique.) Similarly, the

infimum of x and y refers to the unique element in X which is smaller than x and

y and greater than any other element that is also smaller than both x and y. We

denote the infimum by x ∧ y. A subset S of X is a sublattice of (X,≥) if for any x

and y in S, the points x∨ y and x∧ y are also in S. Note that a sublattice of (X,≥)

is a lattice in its own right (with the inherited order).3

The most familiar example of a lattice is Rl, endowed with the product order, i.e.,

for y and x in Rl, y ≥ x if yi ≥ xi for i = 1, 2, ..., l. With this order, it is not hard

to see that ith-entry of x ∨ y is just max{xi, yi}. Similarly, the ith-entry of x ∧ y is

min{xi, yi}. From this point onwards, whenever a subset X of Rl is considered, we

shall assume that the order ≥ on X is the product order.

Definition and properties of IDO

Let f and g be two functions mapping the partially ordered set (X,≥) to R.

Following Milgrom and Shannon (1994), we say that g dominates f by the single

3For more information on lattices that are relevant to comparative statics, see Topkis (1998).
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crossing property (which we denote by g �SC f) if for all x′′ and x′ such that x′′ > x′,

the following holds:

f(x′′)− f(x′) ≥ (>) 0 =⇒ g(x′′)− g(x′) ≥ (>) 0. (1)

For two real-valued functions f and g defined on X, we say that g dominates f

by the interval dominance order (or, for short, g I-dominates f , with the notation

g �I f) if (1) holds for x′′ and x′ such that x′′ > x′, whenever f(x′′) ≥ f(x) for all x

in the interval [x′, x′′].

It is clear that the interval dominance order (IDO) is weaker than ordering by

SCP and our previous paper has given an example of functions that are comparable

by IDO but not by SCP. We now turn to some properties of this new way of ordering

functions. It is obvious that the order is transitive, i.e., if h �I g and g �I f then

h �I f . Our first result gives some other, quite natural, properties of this order. It

is not hard to check that the properties listed in Proposition 1 below are also true of

ordering by SCP; establishing them for IDO is slightly more involved. The proposition

requires a mild regularity condition: the function f : X → R is said to be regular if

argmaxx∈[x′,x′′]f(x) is nonempty for any points x′ and x′′ with x′′ > x′.4

Proposition 1: Let f , g, and h be three regular real-valued functions defined on

the poset (X,≥).

(i) If h �I g and h �I f , then h �I F (g, f), provided F : R2 → R is increasing in the

following sense: F (x̄, ȳ) ≥ (>) F (x, y) whenever (x̄, ȳ) ≥ (�) (x, y).5

(ii) If h �I f and g �I f , then F (g, h) �I f .

(iii) If g �I f , then g �I F (g, f) �I f.

(iv) If g �I f , then g �I max{g, f} �I f and g �I min{g, f} �I f

4Suppose the set X is a subset of Rl such that X ∩ [x′, x′′] is always closed, and thus compact,

in Rl (with the respect to the Euclidean topology). Then f is regular if it is upper semi-continuous

with respect to the relative topology on X.
5By (x̄, ȳ) � (x, y), we mean that x̄ > x and ȳ > y. Note that our restriction on F allows for

the possibility that F (x̄, y) = F (x, y) when x̄ > x.
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The proof of this proposition requires Lemma 1 below. Lemma 1 says that the

interval dominance order can be equivalently defined in terms which are (loosely

speaking) the mirror image of the one we chose.

Lemma 1: Let f and g two regular real-valued functions defined on the poset

(X,≥). Then g �I f if and only if the following property holds:

(M) if g(x′) ≥ g(x) for x in [x′, x′′] then

g(x′)− g(x′′) ≥ (>) 0 =⇒ f(x′)− f(x′′) ≥ (>) 0.

Proof: Suppose x′ < x′′ and g(x′) ≥ g(x) for x in [x′, x′′]. There are two possible

ways for property (M) to be violated. One possibility is that f(x′′) > f(x′). By

regularity, we know that argmaxx∈[x′,x′′]f(x) is nonempty; choosing x∗ in this set, we

have f(x∗) ≥ f(x) for all x in [x′, x∗], with f(x∗) ≥ f(x′′) > f(x′). Since g �I f , we

must have g(x∗) > g(x′), which is a contradiction.

The other possible violation of (M) occurs if g(x′) > g(x′′) but f(x′) = f(x′′). By

regularity, we know that argmaxx∈[x′,x′′]f(x) is nonempty, and if f is maximized at x∗

with f(x∗) > f(x′), then we are back to the case considered above. So assume that

x′ and x′′ are both in argmaxx∈[x′,x′′]f(x). Since f �I g, we must have g(x′′) ≥ g(x′),

contradicting our initial assumption.

So we have shown that (M) holds if g �I f . The proof that (M) implies g �I f is

similar. QED

Proof of Proposition 1: Notice that the maps (x, y) 7→ max{x, y} and (x, y) 7→

min{x, y} are both increasing in the sense defined in the proposition, so (iv) follows

from (iii). It is also clear that (iii) follows from (i) and (ii). Choosing h = g in (i), we

obtain g �I F (g, f). Choosing h = f in (ii), we obtain F (g, f) �I f . We now turn to

the proofs of (i) and (ii).

To prove (ii), assume that f(x′′) ≥ f(x) for x in [x′, x′′]. Since both h and g
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I-dominates f , we have h(x′′) ≥ (>) h(x′) and g(x′′) ≥ (>) g(x′) if f(x′′) ≥ (>) f(x′).

Therefore F (g(x′′), h(x′′)) ≥ (>) F (g(x′), h(x′)) if f(x′′) ≥ (>) f(x′), as required.

To prove (i), we rely on Lemma 1 and establish the ‘mirror’ property (M) instead.

Assume that h(x′) ≥ h(x) for x in [x′, x′′]. Since both f and g are I-dominated by

h, we have f(x′) ≥ (>) f(x′′) and g(x′) ≥ (>) g(x′′) if h(x′) ≥ (>) h(x′′). Therefore

F (g(x′), f(x′)) ≥ (>) F (g(x′′), f(x′′)) if h(x′) ≥ (>) h(x′′). QED

An immediate consequence of Proposition 1(iii) is that if g �I f then

g �I

1

2
f +

1

2
g �I f,

which in turn implies that

3

4
g +

1

4
f =

1

2
g +

1

2

[
1

2
f +

1

2
g

]
�I

1

2
f +

1

2
g.

Our next result is an extension of this observation.

Let {f(·, s)}s∈S be a family of functions defined on the poset (X,≥) and parame-

terized by s in S, an interval in R. We call this an interval dominance ordered family

(or IDO family, for short) if f(·, s′′) I-dominates f(·, s′) whenever s′′ > s′. Given a

density function λ on S, we define

F (x; λ) =

∫
s∈S

f(x, s)λ(s)ds.

The density function γ on S is a monotone likelihood ratio (MLR) shift of λ if

γ(s)/λ(s) is increasing in s.

Proposition 2: Let {f(·, s)}s∈S be a family of regular functions parameterized

by s in S, an interval in R, with each function f(·, s) mapping (X,≥) to R. Suppose

that this is an IDO family; then F (·; γ) �I F (·; λ) if the density function γ is an MLR

shift of the density function λ.

This result appears as Theorem 2 in QS07. Even though throughout that paper we

maintained the assumption that X is a subset of R, nothing in the proof of Theorem 2

requires that assumption. That proof remains valid for any poset (X,≥). Proposition
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2 is useful in problems involving uncertainty where the agent has to choose an action

x before the state of the world is realized; F (x; λ) and F (x; γ) represent the expected

payoff functions before and after a shift in probability towards the higher states. The

result is intuitive: it says that a shift in probability weight towards higher states -

those associated with more dominant payoff functions - will lead to a more dominant

expected payoff function.

The next result gives a simple sufficient condition for checking I-dominance.

Proposition 3: Suppose X is an open and convex subset of (Rl,≥) and let f ,

g : (X,≥) → R be two differentiable functions. Then g �I f if there is an increasing

and positive function α : X → R such that

∂g

∂xi

(x) ≥ α(x)
∂f

∂xi

(x) for i = 1, 2, ..., l. (2)

Note that QS07 has the one-dimensional version of Proposition 3, where X is an

interval of R. QS07 also gives an example to show that condition (2) does not imply

that g SCP-dominates f . The proof of Proposition 3 relies on the following lemma,

whose proof can be found in QS07.

Lemma 2: Suppose [x′, x′′] is a compact interval of R and α̂ and h are real-valued

functions defined on [x′, x′′], with h integrable and α̂ increasing (and thus integrable

as well). If
∫ x′′

x
h(s)ds ≥ 0 for all x in [x′, x′′], then∫ x′′

x′
α̂(s)h(s)ds ≥ α̂(x′)

∫ x′′

x′
h(s)ds. (3)

Proof of Proposition 3: Let x′′ ≥ x′ be two elements in X and suppose that

f(x′′) ≥ f(x) for all x in [x′, x′′]. Define the function H(·; f) : [0, 1] → R by H(t; f) =

f(x′ + t(x′′ − x′)) and the function H(·; g) analogously. Then

H(1; f) ≥ H(t; f) for t in [0, 1]. (4)
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Condition (2) guarantees that

H ′(t; g) ≥ α(x′′ + t(x′′ − x′))H ′(t; f) = α̂(t)H ′(t; f),

where α̂ : [0, 1] → R is given by α̂(t) = α(x′′ + t(x′′ − x′)). It follows from (4) that∫ 1

t
H ′(s; f)ds ≥ 0 for all t in [0, 1]. Therefore, by Lemma 2,

g(x′′)− g(x′) = H(1; g)−H(0; g)

=

∫ 1

0

H ′(s; g)ds

≥ α̂(0)

∫ 1

0

H ′(s; f)ds

= α̂(0) [H(1; f)−H(0; f)]

= α̂(0) [f(x′′)− f(x′)] .

Thus g(x′′) ≥ (>)g(x′) if f(x′′) ≥ (>)f(x′), so g I-dominates f . QED

We turn now to another way of checking for multidimensional I-dominance in the

case where X is an open and convex sublattice of (Rl,≥) and f : (X,≥) → R is

a quasiconcave function, i.e., f−1(r) is a convex set in X for any r in R. To build

intuition for our result, consider firstly the case of a differentiable and quasiconcave

function f defined on an open interval J of R with the following additional property:

f ′(x∗) = 0 implies that x∗ is in argmaxx∈Jf(x). This is a mild regularity assumption

on a quasiconcave function and is always satisfied if f is concave. With this condition

on f , it easy to see that g �I f if the following holds: f ′(x) (≥) > 0 ⇒ g′(x) (≥) > 0.

It turns out that this result can be extended to a multidimensional setting. We

denote the set of variables {1, 2, ..., l} by L. For any x∗ in X and K ⊂ L, we may

define the set XK(x∗) = {xK ∈ R|K| : (xK , x∗−K) ∈ X}. The quasiconcave function

f : X → R is said to be well-behaved if it is differentiable and obeys the following

condition: if
∂f

∂xi

(x) = 0

for all i in K ⊂ L, then x∗K is in argmaxxK∈XK(x∗)f(xK , x∗−K). In other words, at any

point x∗, if the first order conditions are satisfied for some subset K of the variables,
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then f when considered as a function of those variables alone, with the other variables

fixed at x∗−K , is maximized at x∗K . Note that this condition holds if f is concave, and

holds also for any quasiconcave function f which is a differentiably strictly increasing

transformation of a concave function.6

Proposition 4: Suppose that X is a convex and open sublattice of (Rl,≥) and

that the function f : (X,≥) → R is a well-behaved quasiconcave function. Then the

differentiable function g : (X,≥) → R I-dominates f if at any point x,

∂f

∂xi

(x) (≥) > 0 =⇒ ∂g

∂xi

(x) (≥) > 0. (5)

Proof: Assume that x′′ ≥ x′ and f(x′′) ≥ f(x) for all x in [x′, x′′]. Suppose that

I-dominance is violated. There are two possible violations: either (a) g(x′′) > g(x′)

or (b) f(x′′) > f(x′) but g(x′′) = g(x′). Consider case (a). Since g is differentiable,

the set argmaxx∈[x′,x′′]g(x) is nonempty, so choose x∗ in this set. We denote by K the

set {i ∈ L : x′′i > x∗i }; hence for i not in K, x′′i = x∗i . We claim that ∂f(x∗)/∂xi = 0

for i in K. Firstly, notice that ∂f(x∗)/∂xi ≤ 0 for i in K, because if for some j in

K we have ∂f(x∗)/∂xj > 0 then f is strictly locally increasing in direction j at the

point x∗. By (5), g must also be strictly increasing in direction j at this point. Thus

there is x∗∗ in [x∗, x′′] with g(x∗∗) > g(x∗), which contradicts the assumption that x∗

is in argmaxx∈[x′,x′′]g(x). Suppose now, that for some j in K, ∂f(x∗)/∂xj < 0. In this

case, there is some point x̃ in the chord joining x∗ and x′′ such that f(x∗) > f(x̃′);

on the other hand, f(x′′) ≥ f(x∗) by assumption. Thus f is not quasiconcave, which

is a contradiction.

Since ∂f(x∗)/∂xi = 0 for i in K, we know that x∗K is in A = argmaxxK∈XK(x∗)f(xK , x∗−K).

The set XK(x∗) contains x′′K and thus x′′K is also in A. Indeed, by the quasiconcavity

of f , any point x in the chord is also in A. Thus for any point x on this chord, we

6Formally, if f̃ is concave and h : R → R satisfies h′ > 0 then f = h ◦ f̃ is a well-behaved

quasiconcave function.
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have ∂f(x)/∂xi = 0 for i in K. This implies that ∂g(x)/∂xi ≥ 0 for i in K. Thus

g(x′′) ≥ g(x∗), contradicting our initial assumption that g(x∗) > g(x′′).

We turn now to case (b). Suppose that x′ is not in A = argmaxx∈[x′,x′′]g(x). Then

there is an element x∗ in A such that g(x∗) > g(x′′). The proof then proceeds as in

case (a). On the other hand, suppose that x′ is in A. Then proceeding as we do in case

(a), we conclude that ∂f(x′)/∂xi = 0 for i in K, where K is the set {i ∈ L : x′′i > x′i}.

But this implies that x′K is in argmaxxK∈XK(x′)f(xK , x
′′
−K). Note that x′′K is also in

XK(x′); this contradicts the assumption that f(x′′) > f(x′). QED

Comparative Statics using IDO

Proposition 5: Suppose that f and g are real-valued functions defined on the

poset (X,≥) and g �I f . If x′ is in argmaxx∈Xf(x) and x′′ is in argmaxx∈Xg(x) with

x′′ ≤ x′, then x′ in argmaxx∈Xg(x) and x′′ in argmaxx∈Xf(x).

In the case when the optimal choice is unique, Proposition 5 says that as the

objective function changes from f to g, the optimal choice cannot fall. When the

poset is a subset of Rl with the product order, Proposition 5 guarantees that it is

impossible for the optimal value of every variable to fall. However, it does not exclude

the possibility that the optimal value of some variable will fall. To exclude the latter

case will require additional assumptions on the objective functions.

Proof of Proposition 5: Since x′ is in argmaxx∈Xf(x), f(x′) ≥ f(x) for all x

in [x′′, x′]. Since g �I f , we have g(x′) ≥ g(x) for all x in [x′′, x′]. In particular,

g(x′) ≥ g(x′′), so x′ is also in argmaxx∈Xg(x). To show that x′′ is in argmaxx∈Xf(x),

we assume to the contrary that f(x′) > f(x′′). Then g �I f implies that g(x′) > g(x′′),

contradicting our assumption that x′′ is in argmaxx∈Xg(x). QED

If we wish to have a conclusion that is stronger than Proposition 5, we will need

to make additional assumptions on the objective function. Let (X,≥) be a lattice.

The function f : (X,≥) → R is said to be supermodular if

f(x ∨ y)− f(y) ≥ f(x)− f(x ∧ y) for all x and y in X. (6)
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If X is an open set and f is C2, then supermodularity (with respect to the product

order) is guaranteed if ∂2f/∂xi∂xj ≥ 0 for i 6= j. Supermodularity is not an ordinal

property; its ordinal analog (due to Milgrom and Shannon (1994)) is quasisupermod-

ularity, which requires the following property on f : for any x and y in X,

f(x) ≥ (>) f(x ∧ y) =⇒ f(x ∨ y) ≥ (>) f(y). (7)

Given what we have done so far, it is natural to generalize the notion of quasisuper-

modularity in the following way: the function f is I-quasisupermodular if for any x

and y such that f(x) ≥ f(x′) for all x′ in [x ∧ y, x], we have (7).

Quasisupermodularity can be thought of as a type of single crossing property

which holds ‘within’ the function f . The same is true of I-quasisupermodularity,

except that I-dominance replaces the single crossing property. To be precise, let X be

an open and convex sublattice of Rl and consider a real-valued function f defined on

X. Then f is quasisupermodular (I-quasisupermodular) if and only if the following

property holds: for any subset K of L = {1, 2, ..., l}, the restricted function f(·, x̄−K)

SCP-dominates (I-dominates) f(·, x̂−K) whenever x̄−K ≥ x̂−K (with the domain of

these functions being any interval in R|K| over which both functions are defined).

This means that the results we have developed to check for I-dominance, Proposi-

tions 3 and 4, can also be used to check for I-supermodularity. Our next result gives a

sufficient condition for I-supermodularity and follows immediately from Proposition

4.

Proposition 6: Let X be an open and convex sublattice of (Rl,≥) and f : (X,≥

) → R a well-behaved quasiconcave function. Then f is I-quasisupermodular if for

any k in L,
∂f

∂xk

(x̄) ≥ (>) 0 =⇒ ∂f

∂xk

(x̃) ≥ (>) 0,

where x̃k = x̄k and x̃i ≥ x̄i for i 6= k.

The final result of this section is a comparative statics theorem that strengthens
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the conclusion of Proposition 5, by imposing stronger assumptions on the objective

function. The result gives conditions under which argmaxx∈Xg(x) is ‘higher’ than

argmaxx∈Xf(x). The notion of ‘higher’ when comparing sets is formalized through

the strong set order; the set S ′′ dominates S ′ in the strong set order (denoted by

S ′′ ≥ S ′) if for any x′ in S ′ and x′′ in S ′′, the supremum x′ ∨ x′′ is in S ′′ and the

infimum x′ ∧ x′′ is in S ′. Note that x′ ∨ x′′ ≥ x′ and x′ ∧ x′′ ≤ x′′; thus the following

is true: if S ′′ and S ′ are nonempty and S ′′ ≥ S ′, then for any x∗ in S ′ there is x∗∗ in

S ′′ such that x∗∗ ≥ x∗ and for any x∗∗ in S ′′ there is x∗ in S ′ such that x∗∗ ≥ x∗. So

it does make intuitive sense for us to say that S ′′ is ‘higher’ than (or has ‘increased’

from S ′ if S ′′ ≥ S ′.

Theorem 1: Suppose that f and g are real-valued functions defined on the lattice

(X,≥) and that g �I f . Then if either f or g are I-quasisupermodular, we obtain

argmaxx∈Jg(x) ≥ argmaxx∈Jf(x), (8)

where J is an interval and sublattice of X. In particular (8) holds if J = X.

It is instructive to compare this theorem with Theorem 4 in Milgrom and Shannon

(1994), in which they obtain (8) under a different set of assumptions. Compared

to Milgrom and Shannon’s result, Theorem 1 imposes weaker assumptions on the

objective functions; instead of quasisupermodularity of the objective function, we

assume I-quasisupermodularity and instead of requiring that g dominates f by the

single crossing property, we assume I-dominance. On the other hand, the stronger

assumptions made in Milgrom and Shannon’s theorem guarantee (8) whenever J is a

sublattice while, in our theorem, J must also be an interval.

Proof of Theorem 1: We shall prove the case where g is I-quasisupermodular; the

other case is similar and we shall omit it. Suppose x′ is in argmaxx∈Jf(x) and y is

in argmaxx∈Jg(x). We first show that x′ ∨ y is in argmaxx∈Jg(x). If not, we have

g(x′ ∨ y) < g(y). Given that g is I-quasisupermodular, there must be z in [x′ ∧ y, x′]

such that g(z) > g(x′). However, this is impossible: since x′ maximizes f in J , we
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have f(x′) ≥ f(x) for all x in [z, x′] ⊂ J , and with g I-dominating f , we obtain

g(x′) ≥ g(z).

We also need to show that x′ ∧ y is in argmaxx∈Jf(x). If not, f(x′) > f(x′ ∧ y).

Since x′ is in argmaxx∈Jf(x), we also f(x′) ≥ f(z) for all z in [x′, x′ ∧ y] ⊂ J . By

I-dominance, we have g(x′) > g(x′ ∧ y) and g(x′) ≥ g(z′) for all z in [x′ ∧ y, x′]. Note

that g is I-quasisupermodular, thus g(x′ ∨ y) > g(y), contradicting the assumption

that y maximizes g. QED

2. The Stochastic Optimal Stopping Problem

Our objective in this section is to develop a comparative statics result for stochastic

optimal stopping problems, analogous to the one we have already established for the

deterministic optimal stopping problem (Example 2 in QS07).

Let {xt} be a (possibly time-heterogeneous) diffusion process adapted to some

filtration F = {Ft} on the probability space (Ω, P ). An agent with the instantaneous

payoff function u : (x, t) → u(x, t) ∈ R solves the following optimal stopping problem:

maximize E

[∫ τ̂

0

α(s)u(x(s), s)ds

]
subject to τ̂ ∈ T , (9)

where T denotes the set of stopping times adapted to F and taking values in the

(possibly infinite) time interval T = [0, t̄]. E denotes the expectation operator and we

assume that the discount function α : T → R is deterministic and strictly positive. We

assume throughout that E[(
∫ t̄

0
α(s)u(x(s), s)ds)2] is finite, which guarantees that all

expectations (including conditional expectations) are well-defined, and that Fubini’s

Theorem can be used.

Before proceeding with the analysis, we state the following lemma.

Lemma 3: Let τ and τ̂ denote two stopping times, and consider the events

A =

{
ω ∈ Ω : τ̂ ≤ τ and E

[∫ τ

τ̂

α(s)u(x(s), s)ds|Fτ̂

]
< 0

}
and

B =

{
ω ∈ Ω : τ̂ ≥ τ and E

[∫ τ

τ̂

α(s)u(x(s), s)ds|Fτ̂

]
> 0

}
.
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If τ solves (9), then P (A) = P (B) = 0.

Proof: Let Aε = {ω ∈ Ω : τ̂ ≤ τ and E
[∫ τ

τ̂
α(s)u(x(s), s)ds|Fτ̂

]
≤ −ε} for ε > 0.

If we prove that P (Aε) = 0 for all ε, continuity of P and monotonicity of Aε will

imply that P (A) = P (∩Aε) = 0. Suppose on the contrary that P (Aε) > 0 for some

ε > 0, and let τ ∗ = τ̂1ω∈Aε + τ1ω/∈Aε . Since Aε is Fτ̂ measurable, τ ∗ is a stopping

time. Moreover, letting g(s) = α(s)u(x(s), s) and Ac
ε = Ω \ Aε,

E
[∫ τ∗

0
α(s)u(x(s), s)ds

]
= P (Ac

ε)E
[∫ τ∗

0
g(s)ds|Ac

ε

]
+ P (Aε)E

[∫ τ∗

0
g(s)ds|Aε

]
= P (Ac

ε)E
[∫ τ

0
g(s)ds|Ac

ε

]
+ P (Aε)E

[∫ τ∗

0
g(s)ds|Aε

]
≥ P (Ac

ε)E
[∫ τ

0
g(s)ds|Ac

ε

]
+ P (Aε)(E

[∫ τ

0
g(s)ds|Aε

]
+ ε)

= E
[∫ τ

0
g(s)ds

]
+ P (Aε)ε,

which contradicts optimality of τ . The second inequality is proved similarly. QED

We define the function v : R+ → R by

v(s) = E[u(x(s), s)1s<τ ] ; (10)

v(s) represents the expected payoff rate at time s, where the payoff is zero in the event

that s ≥ τ . Denoting W (α) = E
[∫ τ

0
α(s)u(x(s), s)ds

]
, Fubini’s theorem implies that

W (α) =

∫ t̄

0

α(s)v(s)ds. (11)

Our first result is a simple consequence of the fact that, at every point in time,

the expected payoff of an optimizing agent looking forward must be non-negative.

Lemma 4: For all t in [0, t̄),
∫ t̄

t
α(s)v(s)ds ≥ 0.

Proof: By definition of v,∫ t̄

t

α(s)v(s)ds = E

[∫ t̄

t

α(s)u(x(s), s)1s<τds

]

= E

[
E

[∫ t̄

t

α(s)u(x(s), s)1s<τ1t<τds|Ft

]]

= E

[
E

[∫ τ

t

α(s)u(x(s), s)ds|Ft

]
1t<τ

]
.

13



Optimality of τ and Lemma 3 imply that the inner expectation is almost surely non-

negative if t < τ . Therefore, the random variable E[
∫ t̄

t
α(s)u(x(s), s)1s<τds|Ft]1t<τ is

always nonnegative, and so is its expectation. QED

Lemma 4 leads to the following result.

Theorem 2: Let τ and τ ′ be solutions to the optimal stopping problem (9) when

the discount function is α and β respectively. If β(s)/α(s) is increasing in s, then

τ ∨ τ ′ is also an optimal stopping time for the discount function β.

Proof: Consider any diffusion path ω, and t < τ(ω). It is enough to show that

E

[∫ τ

t

β(s)u(x(s), s)|Ft

]
≥ 0

as it implies that waiting until τ is at least weakly better than stopping immediately.

We can set without loss of generality t = 0, since the problem could otherwise be

restated with the origin of time at t. We wish to show that
∫ t̄

0
β(s)v(s)ds ≥ 0 with v

as defined by (10). Lemma 4 guarantees that the hypothesis of Lemma 2 is satisfied,

so we obtain∫ t̄

0

β(s)v(s)ds =

∫ t̄

0

β(s)

α(s)
α(s)v(s)ds ≥ β(0)

α(0)

∫ t̄

0

α(s)v(s)ds = W (α) ≥ 0. (12)

. QED

As in the deterministic case, the proof of this theorem also shows that the value

W (·) of the stopping problem decreases with the interest rate or, equivalently, in-

creases with patience.

Corollary 1 (Value Monotonicity): Suppose that the discount functions α and

β satisfy α(0) = β(0) = 1. Then W (β) ≥ W (α).

Proof: By definition, W (β) is the utility achieved at an optimal stopping time

τ ′ for the discount function β. So W (β) ≥ Ex[
∫ τ

0
β(s)u(x(s), s)ds] =

∫ t̄

0
β(s)v(s)ds.

The result then follows (12). QED

Theorem 2 and Corollary 1 tell us that as the future gets discounted less, the

optimal horizon gets longer and the optimal value gets larger, independently of the
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particular diffusion process and payoff function under consideration. Suppose that

the discount functions are exponential, i.e., α(s) = exp(−ᾱs) and β(s) = exp(−β̄s),

where α and β are positive scalars. Then the ratio β(s)/α(s) is increasing in s

if β̄ < ᾱ. More generally, if we allow for a nonconstant discount rate, we have

α(s) = exp(−
∫ s

0
rα(z)dz) where the function rα is positive and deterministic. Writing

a similar expression for β(s), it is easy to check that β(s)/α(s) is increasing in s if

rα(z) > rβ(z) for all z in T = [0, t̄].

As an application of Theorem 2, consider the model of endogenous-default setting

introduced by Leland (1994) and generalized by Manso et al. (2004). Equity holders

of a firm must pay a coupon rate c(x) to debtholders, where c is nonincreasing in

some performance measure x, and receive a payout rate δ(x), with δ nondecreasing

in x.7 The performance measure {xt} is a time-homogeneous diffusion (for example,

geometric Brownian motion, or a mean-reverting) process. The shareholder problem

is thus to solve

W (x, r) = sup
τ̂∈T

Ex

[∫ τ̂

0

e−rt(δ(xt)− c(xt))dt

]
.

Given the time-homogeneous, Markov structure of the problem, and since δ − c is

nondecreasing it is easy to show that optimal default takes the form of a hitting

time τAB(r) = inf{t : xt ≤ AB(r)}; AB(r) is called the default-triggering level of the

firm, and is independent of the initial asset level x. Theorem 2 says that AB(r) is

nondecreasing in r, and Corollary 1 says that W (x, r) is nonincreasing in r. We can

check this result directly when δ(x) = δx, c(x) = c, and x is the geometric Brownian

motion with drift µ and volatility σ. In this case, standard computations (see, for

7For standard debt, c is a constant. However, in many contracts such as performance-pricing

loans or step-up bonds, c increases as some performance measure of the firm deteriorates. This

measure maybe the credit rating, or directly related to the earnings (EBITDA, price-earning ratio,

etc.) of the issuing firm. See Manso, et al. (2004) for examples. The model can easily be modified

to account for tax and bankruptcy costs.
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example, Manso et al. (2004)) show that

AB(r) =
γ(r)

γ(r) + 1

(
1− µ

r

) c

δ
,

where γ(r) = (m +
√

m2 + 2rσ2)/σ2 and m = µ− σ2/2. Since AB increases in γ and

r, and γ(r) increases in r, necessarily AB increases in r. In general, AB cannot be

computed explicitly. However, Corollary 1 ensures that monotonicity with respect

to the interest rate holds for very general asset processes and coupon and payout

profiles.

3. Applications of IDO in higher dimensions

Example 3.1. Consider a criminal who has to decide on the scale (x) of his illegal

activity, which earns him a revenue of u(x) > 0. The probability that he is caught

increases with the scale of his activity, in the form of an exponential distribution with

mean 1/θ. So the probability of him not being caught is e−x/θ, and if he is caught, his

revenue is zero, which gives him an expected revenue of u(x)e−x/θ. We also assume

that an operation of scale x incurs a cost of C(x); furthermore, he can choose θ by

paying a bribe of B(θ) to the authorities. Assume that both B and C are increasing

functions. The criminal’s overall utility function U : R2
++ → R has the form

U(x, θ) = u(x)e−x/θ − C(x)−B(θ). (13)

Suppose the revenue function changes from u to v: what conditions relating u and

v will guarantee that V �I U (where V is the overall utility function, as defined in

(13), associated with v)?

Re-writing V (x, θ) = [v(x)/u(x)] [u(x)e−x/θ] − C(x) − B(θ), and differentiating

this expression, we see that

Vx(x, θ) ≥ v(x)

u(x)
Ux(x, θ) (14)

if v(x) ≥ u(x) > 0. Subject to this condition, we can also check easily that

Vθ(x, θ) ≥ v(x)

u(x)
Uθ(x, θ). (15)
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Using Proposition 3, we see that V �I U provided α(θ, x) = v(x)/u(x) is increasing.

This last condition is equivalent to xv′(x)/v(x) ≥ xu′(x)/u(x), i.e., the elasticity of

revenue with respect to criminal activity (x) has increased. Proposition 5 then tells

us that the optimal values of x and θ cannot both fall with the change from u to v.

We may wish to go beyond this, to find conditions under which argmaxR2
++

V (x, θ) ≥

argmaxR2
++

U(x, θ). This can be obtained using Theorem 1, but it will require addi-

tional conditions on the objective functions. The next result sets out these conditions.

Proposition 7: Suppose that U and V are defined by (13). Assume also that u,

v, C and B are all differentiable, with B′(x) > 0 and C ′(x) > 0. Then

argmaxR2
++

V (x, θ) ≥ argmaxR2
++

U(x, θ)

if the following conditions hold:

(i) for all x > 0, we have u(x) > 0, v(x) > 0, and v(x)/u(x) increasing with x;

(ii) the elasticity coefficient v′(x)/v(x) is strictly decreasing and continuous in x, with

limx→0 v′(x)/v(x) = ∞ and limx→∞ v′(x)/v(x) = 0.

Proof: We define R(x, θ) = v(x)e−x/θ. Then

Rx(θ, x) =
e−x/θ

v(x)

[
v′(x)

v(x)
− 1

θ

]
.

By assumption (ii), there exists a unique x∗(θ) at which R(·, θ) is maximized and

x∗(θ) increases with θ. We define X = {(θ, x) ∈ R2
++ : x ≤ x∗(θ)}. Since v′(x)/v(x)

is decreasing in x, we have
v′(x)

v(x)
≥ 1

θ
(16)

for x in X. Since c is a strictly increasing function, the value of x that maximizes

V (·, θ) must lie in {x ∈ R+ : x ≤ x∗(θ)}. With (14) and condition (i), Proposition 3

tells us that V (·, θ) �I U(·, θ), so the value of x that maximizes U(·, θ) must also lie in

{x ∈ R+ : x ≤ x∗(θ)}. We conclude that argmaxx∈XV (x, θ) = argmaxx∈R2
++

V (x, θ)

and argmaxx∈XU(x, θ) = argmaxx∈R2
++

U(x, θ).
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We now show that for any (x, θ) in X, Vx,θ(x, θ) ≥ 0, i.e., V is supermodular in

X. The result then follows from Theorem 1, given that we have already shown that

V �I U is guaranteed by condition (i). Straightforward calculation gives us

Vxθ(x, θ) =
e−x/θ

θ2v(x)

[
x

(
v′(x)

v(x)
− 1

θ

)
+ 1

]
.

By (16), we have Vxθ(x, θ) > 0. QED

More examples will follow in later versions of this paper .
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