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Abstract

This paper studies how renegotiation and information persistence shape long-term contracts

in principal-agent relationships. Truthful contracts that are renegotiation-proof, according to a

concept tailored to account for persistence in the agent’s type, are characterized by their sen-

sitivity to the reports of the agent. The sensitivity of the optimal renegotiation-proof contract

is increasing in information persistence and in the discount rate of the agent, and causes im-

miserization. Renegotiation-proof contracts are self-correcting off the equilibrium path. These

results still hold when the agent is also subject to moral hazard. In that case, a lower cost of

effort of the agent can reduce the payoff of the principal by increasing the severity of the agency

problem.

1 Introduction

Financial bailouts, mortgage regulations, monetary and fiscal policies, and corporate pay cuts dur-

ing recessions are instances in which regulators, firms, and other economic agents have the possibility

to renegotiate implicit or explicit formal contracts in reaction to their economic environment. In

these environments, the types of the agents (income, skills, output) are often privately observed

and correlated over time.
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Despite its importance in economics, renegotiation has resisted numerous formalization attempts

by theorists into a single, universally accepted concept. Even in the simpler context of repeated

games, where no exogenous state exists, no consensus has emerged about the right concept of

renegotiation. For example, internal consistency compares only the continuation payoffs of a given

equilibrium, providing a conceptual lower bound for what renegotiation should, intuitively, entail.1

At the extreme opposite, concepts such as strong renegotiation proofness (Farrell and Maskin, 1989)

require comparisons across all possible equilibria, and are so strong that they may eliminate all

equilibria. Other concepts amount to a fixed point problem determining the set of equilibria that

are renegotiation proof (for example the “social norms” by Asheim (1991)). Such concepts lead to

problems of existence and multiplicity for the set of renegotiation-proof contracts.

These problems would seem to become even more severe in environments, pervasive in economics,

where agents are subject to persistent and privately observed shocks. In that case, however, a

strengthening of internal consistency can prove powerful enough to drastically reduce the set of

renegotiation-proof contracts and yield clear predictions about their properties. The idea is to

compare continuation payoffs of a given equilibrium not only across histories leading to the same

state, but also across histories leading to distinct states, thereby obtaining a concept of state

consistency. If the state affects the set of feasible payoffs, as in the case of Markovian cash flows

generated by an agent, one cannot directly compare continuation equilibria following distinct states.

However, one may be able to transform a continuation equilibrium starting from a given state into

a continuation equilibrium starting from a different state, and compare the continuation payoffs of

transformations leading to the same state. State consistency is weaker than strong renegotiation

proofness, and provides a natural way to construct social norms for stochastic games.

This paper has two related objectives. The first one is to study the properties of renegotiation-

proof contracts when the agent has private persistent information. The second one is to explore

the concept of state consistency and illustrate it in a contracting environment.

The agent generates mean-reverting cash-flows whose evolution depends on the agent’s effort and

on exogenous shocks. Both efforts and cash flows are privately observed by the agent. The agent

continually reports and transfers cash flows to the principal, possibly lying and diverting some of

the cash flows. When the agent has exponential utility and effort cost, a natural class of contract

transformations emerges, which creates a rich and well structured class of challengers to the contin-

uation contract, at any time. Given any incentive compatible contract, the challengers are entirely

constructed from continuations of the initial contract and transformations thereof. Renegotiation-
1The concept is due to Bernheim and Ray (1989). A closely related concept is that of “weak renegotiation

proofness,” introduced by Farrell and Maskin (1989). Despite its apparent innocuity, the concept has been criticized

by Asheim (1991) and Abreu and Pearce (1991) for the time invariance that it implicitly assumes.
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proofness means that the continuation contracts do weakly better than their challengers. The

concept proves so powerful in this context that it reduces the set of renegotiation-proof contracts

to a single-parameter family, which is easily analyzed.

The paper characterizes the set of all truthful, state-consistent contracts, and the optimal con-

tract among those, assuming that the agent has exponential utility and effort cost functions. Any

renegotiation-proof contract is characterized by a single “sensitivity” parameter, which determines

the agent’s incentive to truthfully report his cash flows and his incentive for effort. For any such

contract, all contractual variables have exact formulas as a function of the sensitivity parameter

and the continuation utility of the agent. The sensitivity parameter describes how the agent’s

continuation utility varies with his reports, and can take any value between 0 and the coefficient of

absolute risk aversion of the agent.

For those contracts, the agent wants to report cash-flows truthfully not only on the equilibrium

path, but also after any possible deviation. Even if, at time zero, the principal has a mistaken belief

about the initial cash-flow, it is strictly optimal for the agent to immediately correct this mistake.2

The optimal contract is obtained by maximizing a closed-form objective function with respect to

the sensitivity parameter, which makes it easy to study its properties. As a result of risk-aversion,

the agent’s continuation utility under the optimal contract exhibits immiserization: almost surely,

it becomes arbitrarily negative as time elapses. This extends results obtained for the case of full

commitment when the agent has a strictly concave utility function.3

The sensitivity of the optimal contract is increasing in the persistence of the agent’s information.

One intuition for this result is that persistence increases the importance of the current report, as

it makes that report more relevant for the future, and thus the contract should be more sensitive

to this information.

The optimal sensitivity is also increasing with the discount rate of the agent: the less patient the

agent is, and the more sensitive the contract is to the reports. Intuitively, a more impatient agent

is more tempted by short-term deviations, and needs stronger incentives to take his future utility

into account. Since effort is also determined by the sensitivity of the contract, this leads to a

counter-intuitive result: the higher the discount rate of the agent, and the more effort he puts in

equilibrium.

Furthermore, the sensitivity of the optimal contract is decreasing in the magnitude of exogenous
2Such feature is interesting for example if the agent is a newly-arrived CEO who discovers, upon taking the job,

that the financial situation of his firm is worse than what outsiders think. In such case, the contracts studied here

give the agent the incentive to correctly book a nonrecurring loss on the firm’s accounts.
3See Thomas and Worrall (1990).
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shocks: risk-aversion makes it more costly for the principal to provide a given level of promised

utility, when fluctuations are wider. A lower sensitivity parameter, in turn, reduces the principal’s

ability to elicit high effort from the agent and increases his incentive to underreport cash flows,

other things equal, which always results in a lower payoff for the principal.

Because the agent’s information is persistent, the combined presence of moral hazard and adverse

selection cannot be reduced to a pure moral hazard or to a pure adverse selection problem (in

contrast to what earlier literature has pointed out for the i.i.d. case). In particular, reducing the

agent’s cost of effort can arbitrarily reduce the principal’s second-best payoff, even though it always

improves the principal’s first-best payoff. The intuition may be explained as follows. With lower

effort cost, the agent arbitrarily increases his promised utility, for any fixed positive sensitivity

parameter, by putting more effort. Although such effort increases the principal’s cash flows, the

increase in promised utility is more costly to the principal, due to the concavity of the agent’s

utility. To offset this problem, the principal optimally reduces the sensitivity of the contract. This,

however, reduces his ability to induce truthful reporting from the agent. The only way the principal

can do that is by also reducing the agent’s marginal value of lying, which, in turn, can only be

obtained by an providing arbitrarily large utility flow.4 As a result, a principal who could invest

initially to reduce the effort cost of the agent may optimally choose to forgo this option: even if

productivity improvements can be made at little or no cost, such improvements can reduce the

principal’s second-best payoff.

Absent full commitment, it is well known that the revelation principle need not hold (see in par-

ticular Bester and Strausz, 2001): the agent may mix between reporting his true type and another

type. This paper characterizes truthful (or separating) renegotiation-proof contracts, and the op-

timal such contract. A priori, the optimal renegotiation-proof contract may involve pooling: i.e.,

the principal may prefer a contract where he does not learn how the cash-flows of the agent evolve.

However, as discussed in Section 7, the principal has an incentive to elicit information from the

agent, and cannot commit not to do so. In contrast to the setting analyzed by Laffont and Ti-

role (1988), the principal can repeatedly propose new contracts, and potentially learn, gradually,

the type of the agent. Renegotiation harms the principal not only because it affects the agent’s

ex ante incentives but also, potentially, by reducing the principal’s ability not to learn about the

agent’s type.

Reporting incentives are linear for any arbitrary contract, which implies that the agent is either

indifferent between telling the truth and lying, or wishes to lie at maximal (infinite) rate, either

upwards or downwards. This makes it necessary to model jumps in the agent’s reports. A contract
4See Section 5.2 and, in particular, Equation (14).
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must specify how such jumps affect promised utility. For the renegotiation-proof contracts studied

here, this contractual relation is naturally pinned down by the sensitivity parameter characterizing

each of these contracts. The agent’s incentives are characterized by a Hamilton-Jacobi-Bellman

equation with an impulse response component, which provides a new (in the contracting literature,

to the author’s knowledge) and simple way to deal with the possibility of unbounded drift of the

reporting process. Using this technique, it is possible to derive the agent’s value function not only

on the equilibrium path, but also after any possible deviation. This value is a very simple function

of the agent’s promised utility, of the current gap between reported and actual cash flows, and of

the sensitivity parameter.

The paper proposes a way to analyze renegotiation in stochastic games and contracting environ-

ments with persistent types.5 It builds on concepts of renegotiation-proofness introduced for re-

peated games by Bernheim and Ray (1989) and Farrell and Maskin (1989).6 Gromb (1994) studies

a binary-state dynamic model of debt contracts, and compares continuation payoffs across the two

states, in a way that is similar to the approach taken in this paper. Like all the papers mentioned

so far, the concept of renegotiation in this paper is set theoretic: agents move a new equilibrium

(or contract) when it is Pareto optimal to do so. Recent work in the context of repeated games has

explored another approach where the bargaining game between agents at each period is explicitly

modeled.7

The paper also builds on the literature on dynamic contracting with persistent private information

initiated by Fernandes and Phelan (2000).8 In addition to the employer-employee interpretation,

the paper can be interpreted as an insurance model or an optimal taxation model where the agent

reports income and gets subsidized or taxed according to his reports.9 Renegotiation may take

the form of a change in regulation that the social planner cannot commit not to perform, in the

tradition of Kydland and Prescott (1977). The presence of moral hazard and persistent information
5Laffont and Tirole (1988,1990) Dewatripont (1989), and Fudenberg and Tirole (1990) study renegotiation in finite

period models. Battaglini (2007) studies renegotiation with a persistent type, and finds that separating contracts

are optimal for a large class of parameter values. His model has two periods and is therefore not subject to the

conceptual problems arising in repeated games and stochastic games with an infinite horizon. While conceptually

simpler, renegotiation in finite horizon and discrete time also raises difficulty. For example, Benôıt and Krishna (1993)

show that the shape of renegotiation-proof contracts can largely depend on the number of periods.
6See also Pearce (1987), Asheim (1991), Abreu and Pearce (1991), Abreu et al. (1993), and the discussion of

Section 9.
7Recent work includes Kranz and Ohlendorf (2010) and Miller and Watson (2011) and is closer to the relational

contract literature.
8The recursive approach, which plays a major role in the renegotiation concept studied here, dates back to Green

(1987), Spear and Srivastava (1987), and Thomas and Worrall (1990), who introduce the use of promised utility as

a state variable.
9See Golosov et al. (2003), Golosov and Tsivinsky (2006), and Farhi and Werning (2010).
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combines ingredients of the literature on career concerns with contracts, as studied by Gibbons and

Murphy (1990). In the model studied here, putting a higher effort today raises all future cash

flows (as if the agent were investing in skills), but reduces the transfers payments to the agent,

other things equal. Garrett and Pavan (2010a, 2010b) study managerial compensation contracts

with full commitment, when the type of the manager is persistent. Many features of the model

in this paper are based on Williams (2011), who focuses on full commitment and a pure reporting

problem.10 Another kind of contracting with persistent private information concerns delegated

experimentation as analyzed by Bergemann and Hege (2005), Hörner and Samuelson (2010), and

Garfagnini (2010). In these papers, the agent’s effort intensity to learn about the value of an

action is privately observed, and may result in the principal and the agent having different beliefs

about that value, hence the private information of the agent. A similar problem arises in DeMarzo

and Sannikov (2011), where both the principal and the agent can learn the agent’s skill, but the

agent privately observes his effort. Sannikov (2011) considers a moral hazard problem where the

agent’s action have long-term consequences, as in the present paper. None of these papers considers

renegotiation.

The paper is organized as follows. Section 2 presents the contractual setting of the paper. Section 3

introduces state consistency, a new concept of renegotiation-proofness for stochastic games, which is

applied here to a contracting environment. Section 4 characterizes state-consistent contracts in the

principal-agent setting. Section 5 establishes several comparative statics: i) The sensitivity of the

optimal contract is increasing with persistence and the discount rate, and decreases with the noise

volatility; ii) The optimal renegotiation-proof contract always exhibits immiserization: the agent’s

promised utility drifts to minus infinity almost surely; iii) Increasing (at not cost) the productivity

of the agent can reduce the principal’s payoff. Section 6 shows that all state-consistent contracts

are incentive compatible, even off the equilibrium path (i.e., the agent has a strict incentive to

correct any misreport that occurred earlier). Section 7 considers the possibility issue of pooling

contracts. Section 8 considers the case where the agent has a permanent outside option, and shows

how the analysis of renegotiation-proofness is affected by this new constraint. Section 9 discusses

other concepts of renegotiation and extensions of the model. Proofs omitted from the main text
10Zhang (2008) also proposes a continuous-time model with persistent information and a binary type. Discrete-time

models of contracting with persistent information include Tchistyi (2006), who considers a pure cash-flow diversion

problem with binary cash flows, and Kapicka (2006) who follows a first-order approach. Fukushima and Waki (2009)

propose a numerical analysis for a setting with persistent private information. Doepke and Townsend (2006) introduce

a numerical method to analyze the optimal contract with moral hazard and adverse selection. In Doepke and

Townsend (2006), income at any given period only depends on the agent’s action at the previous period, and hence

does not exhibit the type of direct persistence studied in this and other cited papers. All these papers assume full

commitment.
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are in the Appendix.

2 Setting

An agent generates some cash flow Xt at time t, governed by the dynamic equation

dXt = [(ξ − λXt) +At] dt+ σdBt, (1)

where At ∈ R is the agent’s effort at time t and B is the standard Brownian motion. The cash

flow has a mean reversion component, with speed λ and long run average ξ/λ. A low (high) mean-

reversion speed λ results in high (low) persistence of the cash flows and, hence, of the agent’s private

information. Precisely, λ is the rate at which the impact of current cash-flow level on future cash

flows decays over time.

The agent incurs a cost φ(a) to produce effort a, where φ is increasing and convex. In the compu-

tations to follow, φ will be exponential: φ(a) = φ̄ exp(χa). If χ is infinite, the agent chooses At = 0

for any incentive level, because the cost of effort is flat on (−∞, 0) and infinite on (0,+∞). The

problem thus reduces to a pure cash flow diversion model. Much of the analysis and the intuition

can be obtained from just looking at that case, and the reader may wish to set At and φ(At)

identically to 0 and focus on the pure cash flow diversion model for a first reading of the paper.11

The Brownian Motion B is the exogenous source uncertainty in the model. There is a fixed a

probability space (Ω,F , P ) satisfying the usual conditions, such that each outcome ω is identified

with a path realization for B.12

The agent reports and transfers to the principal a cash flow Yt such that

dYt = dXt + Ltdt = [(ξ − λXt) +At + Lt] dt+ σdBt. (2)

Lt is the rate at which the agent “lies” about the true increment dXt of the cash-flow.13

11Beyond obvious realism, there are several reasons to consider moral hazard in addition to the reporting problem.

First, the interaction between the two agency problems yields some surprising results, as explored in Section 5.

Second, moral hazard takes a particularly relevant form: the agent’s current actions have a long-term impact, which

is closely related to persistence of agent’s type. Third, all the results obtained in the pure cash-flow diversion case

still hold when moral hazard is added, which shows their robustness.
12Section 4.1 introduces randomization across contracts. In that case, the probability space must be enlarged to

account for this other source of uncertainty.
13Such lie may be unbounded. Section 6 allows the agent to report jumps in his cash flows, and propose a natural

extension of the contract to this case. One may put constraints on the lies of the agents, for example by requiring

that Yt ≤ Xt. The contracts derived here obviously remain incentive compatible in the presence of such constraints,

and their form is unaffected by that.

7



The gap Gt = Yt −Xt between the reported and actual cash flows Yt and Xt satisfies

Gt =
∫ t

0
Lsds.

The principal provides a consumption process Ct to the agent. A contract is a consumption process

C adapted to the filtration generated by the report process Y .14

Whenever a recursive formulation of the contract is used with the agent’s promised utility as one

component of the state, a contract must also stipulate an effort process Ā adapted to Y . That

effort is used to compute i) the drift of the agent’s continuation utility, and ii) the “innovation”

(or “surprise”) in the agent’s reported cash-flow increment, compared to the expected increment,

as described by Equation (3).

The principal observes only the reports {Yt}, but the initial cash-flow is publicly known:15 Y0 = X0.

The agent’s strategy consists of a lying process L and an effort process A adapted to the agent’s

information X.16

Given a contract, the agent maximizes his expected utility. The resulting value function is

V0 = sup
L,A

{
E

[∫ ∞
0

e−rt (u(Ct +Xt − Yt)− φ(At)) dt
]}

,

where u is a strictly concave utility function. Computations to follow focus on the case where u

is exponential: u(c) = − exp(θc) for some risk-aversion coefficient θ. The set of promised utility is

then W = (−∞, 0).

A contract (C, Ā) is incentive compatible given (w, y) if it is optimal for the agent to report and

transfer truthfully the real cash-flow process X and to implement the stipulated action Ā, given

that the initial cash flow is y, and if the resulting expected lifetime utility for the agent is w.

For simplicity, the effort process will sometimes be dropped from the definition: a contract C is

incentive compatible given (w, y) if it is optimal for the agent to report and transfer truthfully the

real-cash flow process X, given that the initial cash flow is equal to y, and that this, along with the

action process optimally chosen by the agent, yields an expected lifetime utility of w to the agent.

The agent immediately consumes the sum of the consumption Ct provided by the principal and of

the difference Xt − Yt between real and transferred cash flows. (The possibility of private savings

is discussed in Section 9, and does not affect the results.)
14Section 7 allows the principal to use public randomization, in addition to the reports, to determine consumption.
15As mentioned earlier, this will turn out not to matter for renegotiation-proof contracts, because the agent finds

strictly optimal to correct any previous reporting mistake.
16X determines Y , given the agent’s reporting strategy.
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The principal’s expected payoff is

Π(C) = E

[∫ ∞
0

e−rt(Yt − Ct)dt
]
.

The contract must initially provide the agent with some minimal expected promised utility w:

V0 ≥ w.

As is often assumed in the literature on dynamic contracting, the agent loses his outside option

after time zero, and is fully committed to the contract.17 Similarly, the principal is at all times

fully committed to providing the agent with his promised utility, although he may propose at any

time new contracts that preserve the agent’s promised utility.

Persistence of private information creates a complex strategic environment. For example, if the

agent has lied even for a short period before time t, he has affected the report history Y t = {Ys}s≤t.
He has therefore affected his future consumption flow C and his future incentives to report the truth.

Hidden actions add to this complexity: current effort affects immediate cash-flows but also future

ones, owing to their persistence, and hence the entire consumption process and the distribution of

all future states.

From the Martingale Representation Theorem,18 the promised utility of the agent satisfies

dWt = (rWt − u(Ct + Yt −Xt) + φ(Āt))dt+ σStdB̃t, (3)

for some process St adapted to the filtration of the principal, and where B̃t is a Brownian motion

under the probability measure where the agent reports truthfully and chooses the prescribed effort

Āt, i.e.,

dB̃t =
dYt − (ξ − λYt)dt− Ātdt

σ
=
λ(Yt −Xt) +At − Āt + Ltdt+ σdBt

σ
.

The sensitivity St describes how promised utility varies with reports from the agent, and is chosen

by the principal in the recursive formulation of the problem.19

The agent’s problem is to solve

V0 = sup
L,A

E

[∫ ∞
0

e−rt (u(Ct + Yt −Xt)− φ(At)) dt
]
,

17The case where the agent keeps his outside option throughout the lifetime of the contract is discussed in detail

in Section 8.
18See, e.g., Karatzas and Shreve (1991)
19This representation may be compared to the discrete time, where the principal would have to specify changes in

promised utility for each possible report of the agent. Continuous time linearizes the problem, and the derivative St,

a single number, completely describes how reported cash-flow increments affect the agent’s promised utility.
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subject to (1), (2), and (3).

If the agent misreports his cash-flow increment dXt at time t, he affects two things: the change

of his promised utility, which is sensitive to the report dYt by a factor St, and the change of the

principal’s future consumption C. Indeed, for a given promised utility, the principal must provide

higher payments to the agent, other things equal, if he thinks that the cash-flow is lower. The

former channel gives an incentive for the agent to make high reports, while the second channel

gives him an incentive to report a lower cash-flow. For the contract to be incentive compatible,

these two incentives must balance each other.

3 Concepts of Renegotiation

In the context of repeated games, an equilibrium is said to be weakly renegotiation-proof (WRP)

(Farrell and Maskin, 1989), or internally consistent (Bernheim and Ray, 1989), if there are no two

histories such that the continuation payoffs after the first history Pareto dominate those following

the second history.20

Applied to stochastic games, internal consistency has a natural extension: say that an equilibrium

is weakly renegotiation-proof, or internally consistent, if there are no two histories leading to the

same state, such that the continuation payoffs following the first history Pareto dominate those

following the second history. This extension does not make comparisons across states, and has

therefore limited power. In particular, it implies that the players’ payoffs are Markovian, but not

necessarily that the equilibrium itself is Markovian.21

In the present setting, the “state” is the current cash-flow generated by the agent. Since we are

analyzing a contracting rather than an equilibrium problem, we will take the state to also include

the continuation utility of the agent, and a contract will be said to be internally consistent if there

are no two histories leading to the same underlying state (cash flow and promised utility) such that

the principal gets a strictly higher continuation payoff after the first history than after the second

one.22,23

20Although apparently benign and well accepted in the literature, these concepts have been criticized by

Asheim (1991), Abreu and Pearce (1991) and Abreu et al. (1993).
21To guarantee that any equilibrium is Markovian, stronger assumptions are needed, as discussed in Section 4.
22If the agent is indifferent between an old and a new contract, he is assumed to accept the new contract. The

principal can always give an infinitesimal share of the gain to the agent to convince him to switch.
23This extension of internal consistency, which was also made by Bergemann and Hege (2005), immediately implies

that the principal’s payoff, after any history, only depends on the current state (w, y). Showing that the contractual

variables themselves are Markov is more difficult, and need not a priori be true. See Section 4.1.
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To see how internal consistency may be strengthened to analyze stochastic games, it is useful to

think about its rationale. Internal consistency presumes that, after observing the second history, the

principal is able to recognize that he could use the continuation contract following the first history

and achieve a higher payoff.24 This cognitive ability should extend to other natural comparisons,

as illustrated next.

Suppose that we are given an incentive-compatible contract C = {Ct}t≥0 yielding a promised

utility w1 to the agent and a payoff π1 to the principal and, for simplicity, that the agent has linear

utility: u(c) = c. The contract obtained by translating consumption from the initial contract to

C̃t = Ct+ r(w2−w1) provides utility w2 to the agent. Let π2 denote the payoff of the new contract

for the principal. Now suppose that, starting from the contract C, the agent reaches some history

at which his promised utility is Wt = w2 and the continuation for the principal is equal to Πt < π2.

In such scenario, the principal can reason that, by replacing the continuation contract by C̃, reset

from time 0, he will achieve the strictly higher payoff π2, and provide the same utility w2 to the

agent. Such comparison enlarges the class of challengers to a given continuation contract, by adding

transformations of the initial contract that make it compatible with another state (here, a different

level of continuation utility).

Such comparison can be motivated in different ways. Firstly, provided that the transformation is

simple enough, it is realistic to assume that the principal can indeed come up with such comparison.

Secondly, the kind of challengers obtained through such transformations is a subset of the class

of challengers obtained by stronger existing concepts of renegotiation. Consider, in particular,

Farrell and Maskin’s concept of strong renegotiation proofness, adapted to the present contracting

environment. A WRP is strongly renegotiation-proof (SRP) if there is no history after which the

principal’s continuation payoff can be strictly improved by the continuation payoff of another WRP

contract. Clearly, an SRP contract must withstand the sort of comparisons described here.

Thirdly, the type of comparisons established in the present paper can be seen as a way to generate

a social norm for renegotiation-proof contracts, as studied by Asheim (1991).25 A social norm N is,

by definition, a set of equilibria. N is said to be internally stable if any two equilibria belonging to

the social norm are not Pareto ranked, and to be externally stable if any equilibrium that is not part

of the social norm and that dominates (for some continuation) an equilibrium of the social norm

is dominated (for some continuation) by an equilibrium in the social norm. This paper provides a

way to construct “social norms” (in a contractual environment, but the idea could be applied to

more general stochastic games) by including in the social norm all transformations of any contract
24Of course, such change could affect the agent’s incentives to report truthfully ex ante. Eventually, the goal is to

characterize contracts that are both renegotiation-proof and incentive compatible.
25A related concept is studied by Abreu et al. (1993)
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that already belongs to the norm.

This suggests the following definition. Suppose that, starting from any contract C that is incentive

compatible given (w1, y), there is an operation G that “transforms” this contract into another

contract C̃ = Gw2,w1(C) that is incentive compatible given (w2, y) (in the previous example, the

transformation was to translate the consumption process). The contract C is consistent from w1

to w2 if the payoff π̃2 achieved by C̃ is not strictly greater than the continuation payoff achieved

under C after any history such that Wt = w2 and Yt = y. If that condition did not held, the

principal could obtain a higher payoff by proposing contract C̃, after the relevant history, instead

of the continuation contract initially specified.

The operation should be reversible in the following sense: if, starting from the transformed con-

tract C̃ = Gw2,w1(C), one applies a similar operation Gw1,w2(C̃) to get a contract that is incentive

compatible given (w1, y), the resulting contract should have the same payoff as the initial contract

C. We will say that G is a transformation group operating on the set of contracts.26

The transformation group constructed in this paper involves two layers of challengers. First, we will

show that drift linearity of the cash-flow implies that if a contract is IC given (w, y), then the same

contract, seen as a functional of the underlying Brownian Motion (describing exogenous shocks)

inferred from the reports is also IC given (w, y′) for any y′. Renegotiation-proofness with respect

to such transformation is closely related to the following property: the consumption provided

to the agent is, at each time, only a function of his promised utility, not of the cash flow that he

generates (reported cash flow affects the promised utility of the agent, and through this channel, his

consumption). Second, exponential utility implies that if a contract is IC given (w, y), translating

the consumption process by an appropriately chosen constant results in a contract that is IC given

(w′, y) for any given w′. Incorporating such transformation in the group will imply a functional

relation between consumption and promised utility, for any renegotiation-proof contract. Taken

together, these properties define a transformation group G whose elements G(w2,y2),(w1,y1) are indexed

by pairs of initial state (w1, y1) and final state (w2, y2).

The transformation group thus has a further interpretation. Because each additional layer of

challengers generated by the transformation group narrows the set of renegotiation-proof contracts

and, therefore, increases the set of properties that they have, the present analysis may be seen as

an axiomatization of the properties of a contract, based on renegotiation-proofness: linearity of the

cash flow drift implies cash-flow independence of consumption, while exponential utility implies
26Although not necessary for the results, the transformations studied in the paper are also compatible in the

following sense: (Gw3,w2 ◦ Gw2,w1) (C) = Gw3,w1(C). G is usually not a group in the algebraic sense, because the

composition Gw3,w2 ◦ Gw1,w0 only needs to be defined when w2 = w1. However, for the group constructed in the next

section, the composition is easily defined when w2 6= w1.
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that flow utility is proportional to promised utility.

For now, we return to the definition of renegotiation-proofness based on general transformation

groups. For any incentive-compatible contract C, let Π(C) denote the principal’s payoff under that

contract.

Definition 1 A contract C that is incentive compatible given (w, y) is state-consistent relative to G
(or, simply, renegotiation-proof) if, after any history leading up to any state (w̃, ỹ) and continuation

contract C̃,

Π(C̃) ≥ Π(G(w̃,ỹ),(w,y)(C)),

and, reciprocally,

Π(C) ≥ Π(G(w,y),(w̃,ỹ)(C̃)).

This definition requires not only that continuation payoffs must sustain the comparison with trans-

formations of the initial contract, but also the reverse: the initial contract must sustain the com-

parison with transformations of the continuation contracts consistent with the initial state.

The transformation group G is monotone if, for any two contracts C,C ′ that are incentive compatible

given (w, y), and yield principal payoffs Π(C) ≤ (<)Π(C ′), and any other state (w̃, ỹ), the payoffs

of the transformed contracts C̃ = G(w̃,ỹ),(w,y)(C) and C̃ ′ = G(w̃,ỹ),(w,y)(C ′) satisfy Π(C̃) ≤ (<)Π(C̃ ′).

Proposition 1 Suppose that G is monotone and let C denote any contract that is incentive com-

patible for some state (w, y) and state-consistent with respect to G. Then, after any finite history

ending with state (w̃, ỹ), the continuation payoff for the principal is equal to his initial payoff under

the contract G(w̃,ỹ),(w,y)(C).

In principle, there may be several transformations groups to consider. The next result shows

that, for a contract to be renegotiation-proof with respect to several monotone transformation

groups, these groups must, taken individually, yield the same concept of renegotiation-proofness.

Consider two monotone transformation groups G and G̃. Given a contract C that is IC given

(w, y), suppose that there is a state (w′, y′) for which the groups yield different payoffs: Π(C ′) =

Π(G(w′,y′),(w,y)(C)) > Π(G̃(w′,y′),(w,y)(C)) = Π(C̃ ′). Applying the transformations again from (w′, y′)

to (w, y) and using monotonicity, we get

Π(G̃(w,y),(w′,y′) ◦ G(w′,y′),(w,y)(C)) > Π(C).

Therefore, C is dominated by a simple composition of elements in the two groups. In such case,

we will say that C is unstable with respect to (G, G̃), otherwise, C is called stable. Intuitively,

13



instability implies that the ability to consider transformations that yield different payoffs after a

given history prevents the existence of a renegotiation-proof contract.

Proposition 2 (Concept Equivalence for Stable Contracts) Let G and G̃ be two mono-

tone transformation groups, and C be a contract that is incentive compatible given some state (w, y)

and stable with respect to G and G̃. Then, C is renegotiation-proof with respect to G if and only

if it is renegotiation-proof with respect to G̃. Moreover, the principal’s payoffs for the G and G̃
transformations of C to any state (w′, y′) are identical.

4 Characterization of State-Consistent Contracts

In this section, state consistency is exploited, first, to characterize the principal’s payoff as a function

of the state, for any renegotiation-proof contract. This payoff characterization is then used to derive

properties of contractual variables, for any such contract.

Focusing on renegotiation-proof equilibria can simplify the analysis of environments with persistent

private information. Intuitively, the possibility of renegotiating equilibria prevents complicated

forms of history dependence on the equilibrium path. For example, punishment phases become

unavailable if it is commonly known that such phases will be renegotiated upon. This observation,

commonly made in the context of repeated games, takes a particular strength for stochastic games

with incomplete information, because it destroys the credibility of “threat keeping constraints” or

“marginal promised utility.”27

The relation between payoffs and contractual variables is more subtle than it would appear a priori.

In particular, while weak renegotiation proofness trivially implies that the principal’s continuation

payoff can only depend on the current states (agent’s promised utility and cash flow), it does not

immediately imply that the contractual variables themselves (consumption, sensitivity, effort) are

also Markovian. Indeed, there could a priori exist multiple contracts that yield the same Markovian

payoff to the principal, and the principal may credibly exploit these various continuation contracts

to affect the agent’s ex ante incentives. Section 4.2 shows how to address this concern, by exploiting

the payoff formula derived in Section 4.1.

4.1 Payoffs

As observed in the previous section, the principal’s continuation payoff for any internally consistent

(and, a fortiori, state consistent) contract only depends, at any time, on the current state (w, y).
27See Fernandes and Phelan (2000) and Williams (2011).

14



Let Π(w, y) denote the principal’s payoff.

4.1.1 Comparing Contracts Across Cash-Flows Levels

Starting with initial conditions (w, y, x), the agent’s value for a given strategy (L,A) is

V (w, y, x, L,A) = E

[∫ ∞
0

e−rt (u(Ct −Gt)− φ(At)) dt
]

(4)

subject to (1), (2),

dWt = (rWt − u(Ct) + φ(Āt))dt+ St(Ltdt+Atdt+ λGt + σdBt),

dGt = Ltdt

and the initial conditions W0 = w and Y0 = y, X0 = x, G0 = y − x.

The principal’s expected payoff is

Π(w, y) = Ew,y

[∫ ∞
0

e−rt(Yt − Ct)dt
]
.

Suppose that the contract C is incentive compatible given (w, y), with Ct = C(Ys : s ≤ t) for some

functional C.

Starting from a different cash-flow level ŷ, and given a report process Ŷt, suppose that the principal

pays the consumption process Ĉt = C(Ỹs : s ≤ t), where Ỹ is constructed as follows: Ỹ0 = y, and

dỸt = dŶt − (ξ − λŶt)dt+ (ξ − λỸt)dt.

The intuition for this construction is as follows. First, the principal reconstructs the reports Ỹ that

the agent would have made, had he started from y instead of ŷ, under the same realization of the

Brownian path that generated report history Ŷ , assuming that the agent is truthful and follows

the action process A. Second, the principal provides the consumption that he would have provided

under the contract C, had the agent started from y instead of ŷ and made the report Ỹ .

This construction yields an incentive compatible contract given (w, ŷ), as shown in the Appendix.

If (L,A) was an optimal strategy for the agent, starting from y, it must also be optimal given the

new contract.

Proposition 3 Suppose that the contract process Ct = C(Ys : s ≤ t) along with the prescribed effort

process At is incentive compatible given (w, y). Then, the reconstructed process Ĉt = C(Ỹs : s ≤ t)

along with the same prescribed effort process A is incentive compatible given (w, ŷ).
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The contract Ĉ is called the (w, ŷ)-transform of C and denoted G(w,ŷ),(w,y)(C).

The processes C and Ĉ have the same distribution. Therefore, the principal has the same expected

consumption cost under these two contracts. The only difference for the principal, then, is the

expectation Υ of the discounted cash-flow stream transferred to him by the agent. Thus,

Υ(w, y) = E

∫ ∞
0

e−rtYtdt.

If the contract is truthful, Yt = Xt as given by (26). Therefore,

Υ(w, y) =
∫ ∞

0
e−rt

(
e−λty + E

[∫ t

0
eλ(s−t)(As + ξ)ds

])
dt.

After simplification,

Υ(w, y) =
y

r + λ
+

ξ

r(r + λ)
+
∫ ∞

0
e−rt

αt
r + λ

dt, (5)

where

αt = E[At].

4.1.2 Comparing Contracts Across Promised-Utility Levels

From now on, the agent is assumed to have the utility function u(c) = − exp(−θc) and the cost

function φ(a) = φ̄ exp(χa). In particular, utility is always negative.

Suppose that, starting from initial conditions (w0, y), the contract C is incentive compatible and

induces the effort process A. That is, letting v(L,A|C) denote the agent’s expected utility when

he follows strategy L,A and given contract C,

v(0, A|C) = w0 ≥ v(L′, A′|C)

for all (L′, A′). Now consider another promised utility level w1 = βw0 for β ∈ (0,∞) and the initial

state (w1, x). Define a new contract (Ĉ, Â) as follows

Ĉt = Ct −
log(β)
θ

Ât = At +
log(β)
χ

Proposition 4 (C,A) is incentive compatible and provides expected utility w0 if and only if (Ĉ, Â)

is incentive compatible and provides expected utility w1.

Proof. For any L̂′, Â′, let L′ = L̂′ and A′ = Â′ − log(β)/χ. Then,

v(L̂′, Â′|Ĉ) = βv(L′, A′|C) ≤ βv(0, A|C) = βw0 = w1,
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with the inequality being tight if L̂′ = 0 and Â′ = Â. �

The contract Ĉ is called the (w1, y)-version of C.

Let Π(C,A) denote the expected payoff for the principal when the agent receives the consumption

process C and follows effort process A, and let Π(w, y) denote the value function of the principal

starting from state (w, y). The previous analysis shows that28

Π(w1, y) =
log(β)
r

(
1
θ

+
1

χ(r + λ)

)
+ Π(w0, y).

The previous analysis yields the following result.

Proposition 5 To any contract C that is incentive compatible given (w, y) corresponds another

contract C ′ that is incentive compatible give (w′, y′), called the (w′, y′)-version of C.

The principal’s payoffs across versions satisfy the following relation:

Π(w′, y′) =
(y′ − y)
r + λ

+
log(w′/w)

r

(
1
θ

+
1

χ(r + λ)

)
+ Π(w, y). (6)

4.1.3 Transformation Group and Payoffs

Combined together, Sections 4.1.1 and 4.1.2 define a class of transformations G(w̃,ỹ),(w,y) which, to

any contract C that is incentive compatible given (w, y), associates a contract C̃ = G(w̃,ỹ),(w,y)(C)

that is incentive compatible given (w̃, ỹ).

The transformations are clearly monotone. Therefore, state consistency implies the following rela-

tionships for the principal’s payoff function, as a consequence of Proposition 1.29 The relation is

expressed with respect to some reference state, chosen to be (−1, 0).

Proposition 6 The group G constructed in Sections 4.1.1 and 4.1.2 preserves incentive compati-

bility and is monotone. For any state-consistent contract, and any time t,

Π(Wt, Yt) =
Yt

r + λ
+

log(−Wt)
r

(
1
θ

+
1

χ(r + λ)

)
+ Π(−1, 0).

28The effort taken at any time has a decaying effect on future cash flows, with decaying rate λ, discounted at rate r.

This explains the factor (r + λ) in the denominator.
29As mentioned in Section 4.1, Proposition 6 has been established without assuming Markov contractual variables,

and is thus independent from the analysis of Section 4.1.
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4.2 Contractual Variables

To pin down the contractual variables c, a, and s, one proceeds as in Section 4.1. State consistency

extends the set of feasible challengers that the principal may consider after any possible history,

which may be exploited to show that the contractual variables must take a very specific form.

4.2.1 Contractual Variables are Markov

First, one can show that the contractual variables themselves ar Markov: they only depend on (w, y).

The principal can choose two variables at each time: the consumption rate c provided to the agent,

and the sensitivity s of the promised utility to reported cash-flow. For a given internally consistent

contract C and states (w, y), let K(w, y) = {(Ct(ω), St(ω)) : (t, ω) ∈ R+×Ω,Wt(ω) = w, Yt(ω) = y}
denote the set of consumption and sensitivity levels that may arise, under contract C, after some

history leading to state (w, y). The goal is to show that these sets are in fact singletons, so that the

consumption and sensitivity chosen by the principal indeed only depend on w and on y. Allowing

the principal to randomize across two continuation contracts convexifies the set K(w, y).30,31 Weak

renegotiation proofness implies that the principal is free to choose his current actions optimally

within K(w, y), which is captured by the Hamilton-Jacobi-Bellman equation32

0 = sup
(c,s)∈K(w,y)

{y − c− rΠ(w, y) + Πw(w, y) (rw − u(c) + φ(a(s))) + Πy((ξ − λy) + a(s))

+
1
2

Πwws
2σ2 + Πwysσ +

1
2

Πyyσ
2

}
, (7)

where a(s) is the effort level optimally chosen by the agent, and is given by the first-order condition

φ′(a(s)) = s.33 The objective is strictly concave in c and in s, provided that i) Πw and Πww are

negative (i.e., the principal’s payoff is decreasing in the agent’s promised utility, other things equal,

and strictly concave in the agent’s promised utility), Πy is positive (i.e., the principal’s payoff is

increasing in the current cash-flow, keeping promised utility constant), and ii) u is strictly concave,

φ(a(s)) is weakly concave in s, and a(s) is weakly convex in s. The latter set of conditions is
30The agent chooses his report and action, at each instant t, before observing the outcome of the randomization.
31The randomization adds a new source of potential uncertainty, only for the present argument: The randomization

does not arise on the equilibrium path.
32Bergemann and Hege (2005, Theorem 3) also exploit the Bellman equation to show that any weakly renegotiation-

proof contract must be Markov. That paper does not address the possibility of multiple maximizers of the Bellman

equation, for any given state.
33The argument for pinning down the effort level given the sensitivity parameter s is similar to Sannikov (2008,

Proposition 2), which does not assume a Markovian structure. In the present setting, effort also has an indirect

impact on reported cash flows and rewards, but this impact is identical to the impact of a lie, and must vanish for

any truthful contract, as illustrated by Equation 16 for the Markovian case.
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satisfied if φ is exponential and Proposition 6 independently shows that the first set of conditions

is always satisfied for state-consistent contracts with exponential utility and cost functions.

Strict concavity of the objective function and convexity of the domain S(w, y) imply that the

maximizing pair c(w, y), s(w, y) is unique, which shows that the contractual variables are Markov

(and, therefore, that the set K(w, y) had to be a singleton).

As a result, the agent faces a standard optimal control problem where the variables are the public,

contractual state variables w and y, and the actual cash-flow x that is privately observed by the

agent.

4.2.2 Functional Form of Contractual Variables

Consider some state-consistent contract C that is incentive compatible given some arbitrary con-

ditions (w0, y0). For any outcome ω and time t, let Ct(ω) denote the continuation contract of C at

time t as outcome ω unfolds. For any (w̃, ỹ), let

ΓC(w̃, ỹ) = {Ct(ω) : (t, ω) ∈ [0,∞)× Ω s.t. (Wt, Yt) = (w̃, ỹ)}

denote the set of all continuation contracts generated by C after any history leading up to state

(w̃, ỹ). Let also

C(w, y) = ∪(w̃,ỹ)∈W×R

{
G(w,y),(w̃,ỹ)(C̃) : C̃ ∈ ΓC(w̃, ỹ)

}
denote the set of all contracts that are (w, y)-versions of continuation contracts of C. The set

C(w, y) defines the class of all challengers that the principal can consider, after any history leading

up to state (w, y), to replace the current continuation contract. That set is larger than the one

corresponding to internal consistency, where only the continuation contracts starting from the same

state can be compared.

Finally, let I(w, y) = {(C̃0, S̃0) : C̃ ∈ C(w, y)}. I(w, y) is the set of initial consumption-sensitivity

pairs for all contracts that are incentive compatible given (w, y) and generated from some contin-

uation contract of C.

After any such history the principal can choose, among the pairs in I(w, y), one that maximizes

his payoff, as captured by the principal’s HJB equation.

0 = sup
(c,s)∈I(w,y)

{y − c− rΠ(w, y) + Πw(w, y) (rw − u(c) + φ(a(s))) + Πy((ξ − λy) + a(s))

+
1
2

Πwws
2σ2 + Πwysσ +

1
2

Πyyσ
2

}
, (8)
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where φ′(a(s)) = s. Let (c̄, ȳ) denote the optimum for (w, y), which is unique, since the functional

form of Proposition 6 and the fact that φ(a) = φ̄ exp(χa) imply strict concavity of the objective. It

is easy to see that for any (w̃, ỹ), the pair (c̃, s̃) = (c̄− log(−β)/θ, s̄β), where β = w̃/w, belongs to

I(w̃, ỹ), and vice versa. Given the functional form of Π, this implies that (c̄, s̄) solves (8) at (w, y)

if and only if (c̃, s̃) solves it at (w̃, ỹ), as is easily checked. This establishes the following result.

Proposition 7 Any state-consistent contract has the form

Ct = c1 −
log(−Wt)

θ

At = a1 +
log(−Wt)

χ

St = −Wts̄

for all t, where c1, a1 and s̄ are the consumption, effort, and sensitivity provided at time 0 by the

version of the contract starting with promised utility −1 and any cash-flow level.

Therefore, the principal’s problem reduces to an optimization with respect to variables c1, a1, and

s̄. Incentive compatibility constraints imposes a relationship between these three variables, which

we express in terms of utility and cost of effort. Let u1 = u(c1) and φ1 = φ(a1). The following

result is shown in Section 6.

Proposition 8 A renegotiation-proof contract is incentive compatible if and only if

φ1(s̄) =
s̄

χ
, (9)

and

u1(s̄) = − s̄(χλ+ s̄)
χ(θ − s̄)

, (10)

It remains for the principal to optimize his payoff with respect to s̄.

Let κ = θ
χ(r+λ) > 0,

Proposition 9 The optimal contract is determined by choosing s̄ so as to maximize the principal’s

expected payoff34

1
θr

[
κ log(φ1(s̄)) + log(−u1(s̄)) +

κ+ 1
r

(
r + u1(s̄)− φ1(s̄)− 1

2
σ2s̄2

)
+A(κ,w, φ̄, y, ξ)

]
, (11)

where

A(κ,w, φ̄, y, ξ) = (κ+ 1) log(−w)− κ log(φ̄) + (κχ)(ry + ξ).
34The last two terms of the objective are independent from s̄ and, therefore, have no impact on the maximization.
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5 Comparative Statics

5.1 Persistence

The first result is to show that the sensitivity of the contract, s̄ is increasing in the persistence of

the agent’s type.

Proposition 10 The optimal sensitivity s̄ is decreasing in λ.

One possible intuition is that with more persistence, current report have more bearings about future

cash flows. When we shut down the moral hazard component of the model (setting At identically

equal to zero or, equivalently, letting χ go to infinity), the proof is straightforward. The objective

of the principal in that case is to maximize, removing terms and factors that do not influence the

optimal s̄,

log(−u1(s̄)) +
1
r

(
r + u1(s̄)− 1

2
σ2s̄2

)
,

where

u1(s̄) =
−s̄λ
θ − s̄

.

The function u1 is submodular in (s̄, λ), as is easily checked by computing the cross derivative.

Therefore, the second term is submodular. The logarithmic term breaks up into separate functions

of s̄ and λ, and is therefore modular in (s̄, λ). Submodularity of the objective implies that s̄

is decreasing in λ (see Topkis 1978). The intuition here can be back traced to the incentive

compatibility condition (18), specialized to the case where φ1 = 0:

s̄ =
θ(−u1)
λ− u1

.

A lower λ (higher persistence) implies a higher sensitivity s̄.

The intuition and proof for the general case with moral hazard is more involved.35

To isolate the impact of persistence, one may want to change ξ so as to keep the cash flows’s long

term average, ξ/λ, constant. However, changes ξ has no impact on the optimal level of s̄, as may

be seen from 11.
35Formally, the objective function is of the form f(s, λ) + (κ(λ) + 1)g(s, λ), where f and g are submodular in (s, λ),

f is increasing in s, g is decreasing in s, and κ is decreasing in λ. Increasing λ yields a lower marginal value of s for f

and g. However, it also decreases the weight of g relative to f which makes higher values of s more attractive, since

f is increasing in s. Showing that the overall effect is to decreasing the optimal value of s is left for the appendix.
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5.2 Immiserization

From Proposition 9, one may easily show that the drift of promised utility is negative, for the case

of pure reporting (effort is set to 0, shutting down the moral hazard component). In that case,

Equation (11) reduces to

max
s̄

log(−u1(s̄)) +
1
r

(
r + u1(s̄)− 1

2
σ2s̄2

)
+ (κ+ 1) log(−w), (12)

or equivalently,

max
u1

log(−u1) +
1
r

(
r + u1 −

1
2
σ2s̄(u1)2

)
+ (κ+ 1) log(−w), (13)

where

s̄(u1) =
θ(−u1)
λ− u1

.

If the volatility σ were equal to zero (no private information), or if λ were infinite (no persistence),

the final, quadratic term in (13) would vanish, and u1 would, at the optimum, be equal −r, implying

that the drift of Wt is equal to zero. This would amount to pure consumption smoothing: given

concavity of the agent’s utility function, the cheapest way to give him a promised utility of w is

through a constant consumption flow of rw, which keeps Wt constant (or, where σ is nonzero,

implies that Wt is a martingale). In general however, the principal also needs to mitigate the

agent’s incentive to misreport the cash-flow. That incentive is by captured by the term

vy = E

[∫ ∞
0

e−(r+λ)tu′(Ct)dt
]
. (14)

Therefore, this incentive to misreport is lower, other things equal, if u′ is lower. Since u is con-

cave, this means that providing more consumption has the additional benefit, other things equal,

of reducing marginal utility and, therefore, the agent’s incentive to misreport. Providing more con-

sumption today, compared to pure consumption smoothing, results in a negative drift for promised

utility and, therefore, in immiserization.

Mathematically, the first-order condition of (13) includes the term s̄(u1)s̄′(u1). The sensitivity

s̄(u1) is decreasing in u1, as may easily be checked. This implies that the optimal u1 is strictly

greater than −r. Therefore, the drift of Wt, which equals Wt(r + u1), is negative (and does not

vanish), since Wt is negative.

The result also holds in the presence of moral hazard, as shown in the Appendix.

Proposition 11 (Immiserization) For all parameters (r, λ, ξ, θ, χ, φ̄), the continuation utility Wt

of the agent at the optimal renegotiation-proof contract has a strictly negative drift.
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5.3 Changes in Effort Cost

This section shows that an arbitrarily flat cost function for the effort of the agent may hurt the

principal.

Recall the first-order condition for effort

φ′(a(w)) = s̄(−w) =
φ(a(w))

χ
.

When the effort cost parameter χ goes to zero, it becomes arbitrarily cheap for the agent to

undertake any effort level.36 If s̄ is strictly positive, this means that as χ goes to zero, the agent

makes an arbitrarily large effort, which is very costly to the principal, as it results in arbitrarily

large log utility (i.e., Wt gets arbitrarily close to zero). To avoid this situation, the principal has

to reduce the sensitivity s̄ to a level arbitrarily close to zero. However, this reduces his ability to

ensure truthtelling, the other channel through which the agent can deviate.

To keep inducing truthtelling, the principal has to reduce the magnitude of, vy, the marginal

benefit from lying. By an argument similar to the one used for the immiserization result (see

Equation (14)), this can only be done by providing more immediate utility to the agent. Owing

to agent’s decreasing marginal utility, this gets arbitrarily costly to the principal. As a result,

promised utility dives at a rate arbitrarily close to the discount rate r, and there is no consumption

smoothing.

The principal also receives arbitrarily large cash flows from the agent’s effort, which may offset the

amount of consumption that he must provide to the agent. However, if the agent’s initial promised

utility is high enough, the cost exceeds the benefits, and the principal’s payoff gets arbitrarily

negative.37

Let Π(χ) denote the principal’s expected payoff under the optimal state-consistent contract. The

following result is proved in the Appendix.

Proposition 12 For all parameters (r, λ, ξ, θ, φ̄), if w > −1/r, Π(χ) diverges to −∞ as χ goes to

zero. If w < −1/r, Π(χ) diverges to +∞ as χ goes to zero.

The comparative statics with respect to the scaling parameter φ̄ are straightforward. From (11),

a higher scaling parameter for the cost function does not affect the optimal sensitivity s̄, and

reduces the principal’s objective only through the last term. This suggests that what matters most

Proposition 12 is the curvature of the cost function rather than its scale: a flatter cost functions
36More precisely, the cost function becomes flat: the marginal cost of effort converges everywhere to zero.
37As χ goes to zero, the immiserization effect becomes muted, as shown at the end of the proof of Proposition 12.
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makes all actions more similar from the agent’s viewpoint, whereas a homogeneous increase or

decrease of the cost functions does not affect the agent’s preferences across actions (indeed, the

agent’s optimal effort cost φ(s̄) = s̄/χ is independent from φ̄).

5.4 Impact of Noise and Discount Rate

In contrast to the previous result, it is always in the principal’s interest to reduce the noise, or

volatility, of the agent’s output, and the optimal sensitivity coefficient is decreasing in volatility.

Proposition 13 The optimal sensitivity s̄ is decreasing in σ.

Proof. The objective 11 is submodular in σ and s̄. The result follows from Topkis (1978).

Perhaps more surprisingly, the sensitivity is decreasing in the patience of the players, as shown in

the Appendix.

Proposition 14 The optimal sensitivity s̄ is increasing in r.

One possible intuition for this result is that reports have more importance, other things equal if

the players care more about the future: because the persistence of the agent’s type is perceived as

more important in that case.

6 Necessary and Sufficient Conditions for Incentive Compatibility

Beyond its obvious importance for the present analysis, the proof for verifying incentive compatibil-

ity of renegotiation-proof contracts is interesting for several reasons. First, it illustrates a strategy,

potentially useful in other problems, to deal with an unbounded reporting domain by expending the

strategy space of the agent. Second, this extension provides a way to think about private savings

(see Section 9). Third, it clarifies why Ponzi schemes (of two kinds: always overreporting or always

underreporting) are not sustainable in the present setting.

For the renegotiation-proof contracts constructed in Section 4, the promised utility of the agent

evolves as

dWt = (r + u1 − φ1)Wtdt+ s(Wt)(dGt +Atdt+ λGtdt+ σdBt), (15)

and the agent consumes c(Wt)−Gt, where Gt = Yt−Xt. Therefore, the agent only cares about Xt

and Yt through their difference Gt. The agent’s optimization problem is therefore reduced to

v(w, g) = sup
L,A

E

[∫ ∞
0

e−rt (u(c(Wt)−Gt)− φ(At)) dt
]
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subject to dGt = Ltdt, G0 = g, and (15). The HJB equation for this problem is

0 = sup
l,a
{u(c(w)− g)− φ(a)− rv(w, g)

+vw (rw − u(c(w)) + φ(a(w)) + s(w)(a− a(w) + l + λg)) + vgl +
1
2

(s(w))2σ2vww

}
, (16)

where u(·), φ(·), a(·), c(·) and s(·) have the forms given in Section 4.

It is easy to show by applying the same controls starting from different values of w that the value

function has the form v(w, g) = wf(g) for some function f to determine. Incentive compatibility

obtains if one finds a solution f such that f(0) = 1, meaning that when the gap is zero, the

promised utility is exactly w. With this form, the first-order condition38 with respect to a yields

φ(a) = f(g)s(w)
χ , so the Bellman equation becomes, after simplification and dividing throughout by

(−w),

0 = sup
`

{
u1 exp(θg) + f(g)(−u1 + s̄(`+

1
χ

(log f(g)) + λg))− f ′(g)`
}
. (17)

A priori, the function f defining the value function need not be everywhere differentiable, but it

is a viscosity solution of (17). Moreover, v(w, g) is clearly decreasing in the gap g, which implies

that f is increasing. This implies that f is left and right differentiable at 0. Incentive compatibility

implies that, for g = 0, it is optimal for the agent not to increase the gap above zero, so that

s̄− fr(0) ≤ 0

and it is optimal not to decrease it below zero, so that

s̄− fl(0) ≥ 0

Therefore, incentive compatibility implies that fl(0) ≤ s̄ ≤ fr(0). Now suppose that one of these

inequalities is strict, for example, s̄ < fr(0). This implies that there exists a right neighborhood

of 0, such that for g ∈ (0, η) it is strictly optimal for the agent to reduce the gap to zero, at an

infinitely negative rate. If the agent lies at an arbitrarily large rate −K between times t and t+ ε,

his promised utility satisfies, ignoring second-order effects, the dynamic equation

dWt = s̄(−Wt)(−K)dt.

This yields Wt+ε = exp(Ks̄ε)Wt, and results in a gap change Gt+ε = Gt − Kε. Therefore, the

change in the value function must satisfy, for g ∈ [0, η), f(g) = exp(s̄g)f(0). Since f(0) = 1 for an

incentive compatible contract, this implies that

fr(0) = s̄,

38Since the objective is strictly concave in a and the domain of a is open, the first-order condition pins down the

unique optimum.
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which contradicts our assumption that s̄ < fr(0). Thus, necessarily, fr(0) = s̄. By a similar

argument, fl(0) = s̄. In conclusion, f is differentiable at 0, and thus the value function v(w, x, y) of

the agent is differentiable with respect to x and to y whenever x = y. In the Appendix (Lemma 1),

this differentiability is used in an envelope argument to show that, necessarily,

s̄ = f ′(0) = vx(w, x, x) = −vy(w, x, x) =
∫ ∞

0
e−(r+λ)tu′(Ct +Xt − Yt)dt.

Simple computations, also in the appendix (Lemma 2), imply that

s̄ =
θ(−u1)

λ− u1 + φ1
∈ (0, θ). (18)

Notice that s̄ < θ for all u1 < 0, λ > 0 and φ1 ≥ 0. Intuitively, if s̄ were higher than θ, the

agent would want to exaggerate the cash-flow in order to artificially increase his promised utility.

The cost of earning actually less than what is reported to the principal affect the utility by a rate

θ, which would be dominated by the increase in promised utility as measured by the sensitivity

parameter s̄. Incentive compatibility rules this case out.

Therefore, we have established that (10) and (9) are necessary for incentive compatibility. From

now one, we assume that these relations hold, and establish sufficiency.

The objective (17) is linear in `, which has unbounded domain. If the contract is not truthful, the

agent therefore wants to lie at an infinite rate. To accommodate for this, the agent is now allowed

to report jumps in the cash flows. This expands the reporting domain of the agent.

Let Wt+(∆L) denote the promised utility of the agent after he reports a jump ∆L in the cash flow

at time t. For contracts with a fixed sensitivity parameter, as considered here, a natural closure of

the contract is to stipulate that

Wt+(∆L) = exp(−s̄∆L)Wt. (19)

To see this, notice that if the agent lies at an arbitrarily large rate K between times t and t + ε,

his promised utility satisfies, ignoring second-order effects, the dynamic equation

dWt = s̄(−Wt)Kdt.

This yields Wt+ε = exp(−Ks̄ε)Wt, and results in a gap change Gt+ε = Gt + Kε. Combining the

last two equations yields Wt+ε = exp(−s̄(Gt+ε −Gt))Wt, which explains (19).

Report jumps amount to impulse controls on the part of the agent (see for example, Øksendal and

Sulem (2004)). The HJB equation (17) becomes
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0 = max
{

sup
`∈R

{
u1 exp(θg) + f(g)(−u1 + s̄(`+

1
χ

(log f(g)) + λg))− f ′(g)`
}
,

sup
∆L∈R\{0}

{exp(−s̄∆L)f(g + ∆L)− f(g)}

}
. (20)

The function f(g) = exp(s̄g) solves the equation. Indeed, with that value for f , the second term

of the equation is always equal to zero. Therefore, it suffices to show that

sup
`

{
u1 exp(θg) + exp(s̄g)

(
−u1 + s̄

(
`+

1
χ

(s̄g) + λg

))
− s̄ exp(s̄g)`

}
≤ 0 (21)

for all g. That term is independent of `, and reduces to

u1 exp(θg) + exp(s̄g)
(
−u1 + s̄

(
1
χ

(s̄g) + λg

))
Convexity of the exponential function implies that, for all g 6= 0,

exp(θg) > exp(s̄g) + exp(s̄g)(θ − s̄)g.

Since u1 < 0, (21) will be satisfied if

exp(s̄g)
(
u1(θ − s̄)g + s̄

(
1
χ

(s̄g) + λg

))
≤ 0.

The second factor is zero, from (10), which concludes the proof.

An optimal control associated with the Bellman equation is to set ∆L = −g if g 6= 0 and ∆L = 0

otherwise, and ` always equal to zero. It is optimal for the agent to i) always report truthfully if

he has been truthful in the past, and ii) immediately correct any existing gap between real and

reported cash flows. It means, in particular, that if the principal did not know the initial cash

flow, the contract is still incentive compatible. This optimal control is essentially unique. Indeed,

between two impulse controls, the first term of the Bellman equation must equal zero, which only

holds for g = 0.

Ponzi Schemes

We also need to check that cannot gain by over-reporting forever or under-reporting forever. We

argue here informally (to be completed). Over-reporting by a large amount and over a long period

can never benefit the agent. Indeed, high reports get rewarded by a promised utility increase at

rate s̄, but reduce the net transfers to the agent which reduce his utility by a rate θ > s̄. Thus,

neglecting second-order effects, large and durable over-reports cost too much consumption to the

agent relative to the reward they generate.
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Underreporting does not work either, due to the mean reversion of the cash flow process. If the

agent makes very negative reports, the principal believes that the current cash flow is very low, and

hence that the drift is very high, due to mean reversion. Therefore, further negative news become

more and more “surprising” by the principal, and are accordingly punished by an increasingly large

drop in the continuation utility. Simple computations show that, in such case, the promised utility

of the agent diverges to −∞ in finite time: negative Ponzi schemes are not sustainable.

7 Renegotiation and Separating Contracts

Previous sections have focused on separating contracts. It is well known that, with renegotiation,

the revelation principle need not apply.

To understand the impact of renegotiation on contracting, it is useful to consider the striking,

extreme case where the cost of effort of the agent goes to zero. In that case, Section 5.3 has shown

that the payoff of the principal, for any separating contract, becomes arbitrarily negative, provided

that initial promised utility is high enough.

With commitment, the principal could easily avoid this problem. For example, consider a contract

that proposes Ct = Yt + b, for some constant b. With that specification, the agent’s payoff is

independent of his reports: he always gets a total consumption (Yt + b) + (Xt − Yt) = Xt + b. The

cost to the principal is simply b/r, which is finite. By choosing b appropriately, the principal can

always achieved any given promised utility to the agent.39

Such contract is not renegotiation-proof. To illustrate, suppose that, after some time, the cash flow

Xt becomes very high and, just for now, that the principal knows it. Then, the principal could

propose the agent a low payment b1 < b in the short term, and a high payment b2 > b in the future.

Owing to mean reversion, the agent expect his cash flow to go down in the future, and given the

concavity of his utility function, may prefer this new contract. The principal can strictly improve

his payoff with this contract.

Now suppose that the principal cannot observe the cash flow. He could still propose the above

contract to the agent. If the cash flow is low, the agent will reject this contract, while if the cash-

flow is high, he will accept it. Thus, not only will the contract be renegotiated in some cases, but

the principal will in any case learn more about the agent’s type. Because the principal cannot

commit not to renegotiate, he cannot commit not to learn more about the agent’s type through
39Even with a very low cost, the payoff of the agent is always bounded, because of mean reversion: the higher the

cash flow, and the more negative the cash-flow drift, for given effort. Therefore, the cash-flows cannot grow arbitrarily

large.
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such renegotiation proposal.

One might think that the previous argument is limited in scope, i.e., that the principal may learn

something about the agent, but not the precise cash flow. Indeed, this limitation arises in the two-

period model of Laffont and Tirole (1988), where the principal does not get the chance to propose

yet another contract after partially learning the type of the agent. However, the structure of the

present model suggests otherwise. With continuous time, the principal can propose arbitrarily many

contracts in any small time interval, which potentially allows him to learn arbitrarily precisely the

cash flow.40 Moreover, the argument made above is “self similar” in the sense that no matter how

small the uncertainty is about the current cash flow, the principal could always propose a contract

of the form above but more precisely targeted to exploit a small difference in cash flow levels, that

tells him a bit more about the cash flow.

The previous discussion suggests that the principal cannot avoid learning about the agent’s type. In

a simplified version of the setting with finite horizon, discrete time, and a pure reporting problem,

Strulovici (2011) shows that, the combined assumptions of cash-flow mean reversion and concave

utility imply that the optimal renegotiation-proof contract is always separating.41

Another potential issue concerns the possibility of renegotiation off the equilibrium path. If devi-

ations were detectable, the principal could have an incentive to renegotiate the contract. In the

setting of this paper, however, all report histories may arise on the equilibrium path, since the drift

of an Itô process only affects the probability distribution of its possible sample paths, not the set

of paths that can occur.42 Therefore, the principal never realizes that the agent has gone off the

equilibrium path, and thus does not renegotiate the contract. Given this, it is optimal for the agent

to be truthful, since the contract is incentive compatible.

8 Permanent Outside Option

Suppose that the agent is allowed to leave the contract at any time and get a continuation utility

w
¯
< 0. This imposes the individual-rationality constraint Wt ≥ w

¯
at all times. How does this

new constraint affect renegotiation? The gist of the previous analysis is unchanged. First, any

internally-consistent contract has continuation payoffs that only depend on the current state (w, y).
40That feature may also arise in a model of “dialogue” where the principal and the agent alternate contract offers

and acceptance/rejection decisions. Such protocol need not lead to full type revelation, but is likely to result in more

revelation than in a two-period model, where the principal can make only two contract proposals, in effect committing

not to react to the last piece of information he gets from the agent.
41There, renegotiation-proofness is the (standard) finite-horizon concept, based on backward induction.
42This observation is, essentially, a qualitative version of Girsanov’s theorem. See, e.g., Karatzas and Shreve (1991).
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Second, comparing across cash-flow levels, the argument of Section 4.1.1 goes through, so that

contractual variables should depend only on promised utility, not on the cash-flow level. Moreover,

the principal’s payoff function should vary across cash-flow levels according to Equation (5).

However, the constraint raises a difficulty for comparing contracts across initial promised utility.

Indeed, starting for some contract C that is individually rational and incentive compatible given

(w1, y) for w1 > w
¯

, there is no guarantee that, for w2 ∈ (w
¯
, w1), the (w2, y)-version of C will

also be individually rational. Indeed, that version scales the continuation utility process Wt of

the agent by a factor w2/w1, compared to contract C, and may violate the individual rationality

constraint. Therefore, the individual rationality constraint reduces the set of challengers to any

given continuation contract, which prevents us from exploiting earlier comparisons to derive the

closed-form formulas obtained in Section 4.1.2.

Conceptually however, the problem is very similar to the unconstrained case. At one extreme, for

w far above w
¯

, the optimal state-consistent contract should be very similar to optimal contract of

the unconstrained case, and the payoff and contractual functions should be well approximated by

the closed-form functions derived for that case. At the other extreme, if w = w
¯

, the principal has

very few options to keep the agent in the relationship. Indeed, the only contracts that guarantee

that the constraint is not violated are those for which i) the sensitivity parameter of the promised

utility is exactly zero (for otherwise the promised utility of the agent might drop below w
¯

), and

ii) the drift is positive (to push Wt higher away from w
¯

), for example by providing a low utility

flow. Such extreme contractual characteristics are clearly not required for w high above w
¯

.

The cross-state comparison provides, even in the constrained case, valuable information about the

principal’s continuation payoff. Precisely, one direction of the unconstrained analysis carries over to

the constrained case, providing a whole family of inequalities comparison for the principal payoffs.

Suppose that w2 is higher than w1. In that case, the (w2, y)-version of C does satisfy individual

rationality if C did. This observation implies the following: for any individually-rational and state-

consistent contract C, let Π(w, y) denote the principal’s payoff under any continuation contract of

C following a history ending up with state (w, y).43

Proposition 15 For any states (w, y),(w′, y′) such that w′ ≥ w,

Π(w′, y′) ≥ (y′ − y)
r + λ

+
log(w′/w)

r

(
1
θ

+
1

χ(r + λ)

)
+ Π(w, y). (22)

This is intuitive: the farther away one gets from the constraint w
¯

, and the more flexibility one

has to choose consumption/effort processes achieving the given promised utility and, therefore, the
43By internal consistency, the principal’s payoff depends only on (w, y).
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higher the payoff of the principal can get relative to versions of more constrained contracts starting

with lower promised utility.

In line with the previous argument, one may further conjecture that, for the optimal individually-

rational renegotiation-proof contracts, the sensitivity factor is increasing in w (rather than constant

for the unconstrained case), going from 0 for w = w
¯

to the unconstrained optimum s̄ (i.e., the

maximizer of (11)), as w gets arbitrary large.

9 Discussion

9.1 Summary: Concepts of Renegotiation

This paper has introduced a new concept of renegotiation, which extends to stochastic games the

notion of internal consistency, by exploiting natural comparisons across states.44 With stochastic

games, some underlying state affects the physical environment of the players. When it is possible

to construct an equilibrium starting from a given state from another equilibrium starting from

a different state, such construction can be used to narrow down the set of renegotiation-proof

equilibria, by comparing continuation equilibria at a given state with transformations to that state

of continuation equilibria starting from other states.

This procedure can be justified in several ways.

First, the equilibria obtained through such constructions are necessarily challengers in some main-

stream notion of strong renegotiation-proofness. For example, the concept of strongly renegotiation

proof equilibria (Farrell and Maskin (1989) imposes comparisons between any continuation of the

equilibrium under consideration with the continuations of all weakly renegotiation proof equilibria,

and those necessarily include the constructions previously mentioned.

Second, these comparisons also give a particular meaning, for stochastic games, to the concept of

“social norms” studied by Asheim (1991): the comparisons across states are a natural candidate

for generating the set of equilibria that constitute a social norm, across states.

Finally, there is a cognitive interpretation of these comparisons: players may be able to recognize

that there are clear relations between the sets of feasible continuation equilibria across different

states, in the same way that they recognize, in a repeated game, whether continuation payoffs

across different histories are Pareto ranked.
44Indeed, for the case of repeated games, the concept reduces to internal consistency (or weak renegotiation-

proofness).
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More generally, the set of renegotiation-proof equilibria becomes smaller as the set of comparisons

becomes larger. In the example studied here, as we add layers of challengers, we impose more

properties on the set of renegotiation proof contracts, each layer implying particular properties of

the renegotiation-proof contracts: comparison across cash flow levels implies that consumption and

other contractual variables are independent of the current cash flows level. Similarly, comparison

across promised utilities, combined with the exponential utility and cost specifications, implies that

a translation property of the consumption process with respect to the promised utility.

It would be useful to compare the optimal state-consistent contract with the optimal contract with

full commitment. For the case of pure reporting, the optimal full commitment contract has been

studied by Williams (2011), who provides a general analysis of necessary and sufficient conditions

for optimality. For the case of exponential utility, Williams shows that if the optimal contract is

Markovian (with the states being the promised utility and the current cash flow) then it creates

no immiserization. Combined with the results of the present paper, which imply that the optimal

Markovian contract causes immiserization, Williams’s observation implies that the optimal full-

commitment contract must also depend on the marginal promised utility.45

It would also be interesting to characterize the optimal weakly renegotiation-proof contract. Here

again, the solution is unknown. As pointed out in Section 4.1, the payoff of the principal is

Markovian in that case. However, this alone does not guarantee that the contractual variables

themselves are Markovian, since the principal could in principle benefit from mixing across different

contracts that provide him with the same payoff. Even when contractual variables are Markovian,

it is unclear whether the sensitivity function (w, y) 7→ s(w, y) takes the form s(w, y) = s̄(−w) for

some constant s̄, as in the contracts that are studied in this paper. While the analysis of optimal

contracts for such settings requires a separate study, one may conjecture that some of the intuition

provided in the present paper, concerning the impact of persistence and discounting, in particular,

is likely to carry over to such environments.

9.2 Robustness and Extensions

Choice of a Production Technology One consequence of Section 5.3 is that, should the principal

choose the production technology as captured by the effort cost function φ(·), he may choose a

technology with lower productivity, even if a high-productivity technology has a comparable or

even lower cost. In contrast, Proposition 13 and Equation (11) imply that the principal’s payoff

is decreasing with the noise in the production technology, and that increased noise reduces the
45The contract derived by Williams, based on a numerical observation, belongs to the class of renegotiation-proof

contracts studied here, with u1 = −r, and is strictly dominated by the optimal renegotiation-proof contract.
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principal’s ability to reward the agent’s effort.

Reporting Constraints The contracts constructed in this paper continue to be incentive compat-

ible if the agent has constraints on cash-flow reports and transfers. For example, the agent could

be prevented from over-reporting his cash flows. Indeed, such constraints only restrict the agent’s

strategy space and, hence, the set of possible deviation. Moreover, the entire analysis goes through

for that case: the transformation group is unchanged, and the renegotiation-proof contracts have

the same functional form.

Private Savings Private savings do not offer per se an enlarged reporting space to the agent, since

he is already able to make arbitrary reports. Furthermore, using the extended reporting space and

contracts described in Section 6, where the agent can make jumps in his reports and is rewarded

or punished at rate s̄, the agent can replicate whatever change of consumption he could obtain

through private savings. To illustrate, suppose that the agent borrows an amount bt = b > 0 for

t ∈ [0, T ], and repays it by some constant annuity bt = −c for t ∈ [T,∞] such that
∫∞

0 e−rtbt = 0,

achieving a real consumption C̄t = Ct + bt, if the contract provides consumption Ct. One way to

replicate this consumption stream without saving is for the agent to report a lump sum drop in

his cash flow at time zero. For a report −∆L, the agent’s promised utility jumps downwards to

W+ = exp(s∆L)W0. The jump in consumption provided by the principal is ∆C = −s∆L/θ, from

Proposition 7. The real consumption change of the agent, however, is ∆C + ∆L = (1 − s
θ )∆L,

which is strictly positive, remembering that s < θ (see (18) and the comment later). Choosing ∆L

appropriately yields the jump b of consumption that the agent could obtain by privately borrowing.

By adjusting his lie continually, the agent can make sure to obtain the consumption stream that

he would have obtained, should he have borrowed. The repayment can be obtained similarly.

Additional Signal A natural extension would allow the principal to receive a secondary signal

about the agent’s action. The promised utility would then depend on both the agent’s report and

on that signal, allowing another the principal to use an additional instrument, the sensitivity to

that other signal. This would enlarge the set of incentive compatible contracts to a two-dimensional

set and mitigate the impact of a flatter cost function of the agent on the principal’s payoff.

10 Appendix

Proof of Proposition 1

State consistency already implies that after any history leading up to any state (w̃, ỹ) and continua-

tion contract C̃, Π(C̃) ≥ Π(G(w̃,ỹ),(w,y)(C)), for otherwise the principal could use the transformation

G(w̃,ỹ),(w,y)(C) instead of C̃. Now suppose that the inequality is strict. Monotonicity of G(w,y),(w̃,ỹ)
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implies that Π(G(w,y),(w̃,ỹ)(C̃)) > Π(G(w,y),(w̃,ỹ) ◦ G(w̃,ỹ),(w,y)(C)) = Π(C), which contradicts state

consistency of C: the principal would do better by starting from G(w,y),(w̃,ỹ)(C̃) than starting from

C, given (w, y). �

Proof of Proposition 3

We prove more generally that if a strategy (L,A) adapted to the filtration generated by the un-

derlying Brownian motion dominates another adapted strategy (L′, A′) under the initial contract,

then it also dominates it under the new contract. By construction,

E

[∫ ∞
0

e−rt
(
u

(
C(Ys : s ≤ t)−

∫ t

0
Lsds

)
− φ(At)

)
dt

]
≥ E

[∫ ∞
0

e−rt
(
u

(
C(Y ′s : s ≤ t)−

∫ t

0
L′sds

)
− φ(A′t)

)
dt

]
(23)

where

dYt =
[
Lt +At +

(
ξ − λ

(
Yt −

∫ t

0
Lsds

))]
dt+ σdBt

and

dY ′t =
[
L′t +A′t +

(
ξ − λ

(
Y ′t −

∫ t

0
L′sds

))]
dt+ σdBt

and the initial conditions Y0 = Y ′0 = y.

Now consider the initial condition ŷ. The reporting processes under strategies (L,A) and (L′, A′)

are respectively

dŶt =
[
Lt +At +

(
ξ − λ

(
Ŷt −

∫ t

0
Lsds

))]
dt+ σdBt

and

dŶ ′t =
[
L′t +A′t +

(
ξ − λ

(
Ŷ ′t −

∫ t

0
L′sds

))]
dt+ σdBt

and subject to the initial condition Ŷ0 = Ŷ ′0 = ŷ.

The reconstructed processes follow the equations

dỸt = dŶt − (ξ − λŶt)dt+ (ξ − λỸt)dt

dỸ ′t = dŶ ′t − (ξ − λŶ ′t )dt+ (ξ − λỸ ′t )dt

subject to Ỹ0 = Ỹ ′0 = y. Combining the previous equations yields

dỸt =
[
Lt +At +

(
ξ − λ

(
Ỹt −

∫ t

0
Lsds

))]
dt+ σdBt

dỸ ′t =
[
L′t +A′t +

(
ξ − λ

(
Ỹ ′t −

∫ t

0
L′sds

))]
dt+ σdBt

34



subject to the conditions Ỹ0 = Ỹ ′0 = y. The comparison between objective functions is identical

to (23), and subject to the same dynamic equations and constraints, which establishes that the

strategy (L,A) dominates (L′, A′) under the new contract as well. �

Necessary Conditions for Incentive Compatibility

Lemma 1 For any renegotiation-proof contract (c, ā, s),

vy(w, x, x) = −vx(w, x, x) = −
∫ ∞

0
e−(r+λ)tu′(Ct +Xt − Yt)dt. (24)

Proof of Lemma 1

The value function of the agent satisfies the optimization problem

v(w, y, x) = sup
L,A

E

[∫ ∞
0

e−rt (u(Ct(Ys : s ≤ t) +Xt − Yt)− φ(At)) dt
]
,

where Ct(·) is, for each t, a functional that determines the consumption provided to the agent at

time t given past reports {Ys : s ≤ t}. If the initial cash-flow is increased by ε, this affects the

distribution of future cash flows and, keeping the lying process fixed, of future reports. However,

by a change of variable, one can control the path of the report process Yt, and make it independent

from the initial cash-flow change. Recall that

dYt = [(ξ − λXt) +At + Lt]dt+ σdBt.

Making the change of variable L̄t = Lt + (ξ − λXt)− (ξ − λYt), one gets

dYt = [(ξ − λYt) +At + L̄t]dt+ σdBt. (25)

The agent’s strategy can be restated as choosing L̄, rather than L:

v(w, y, x) = sup
L̄,A

E

[∫ ∞
0

e−rt (u(Ct(Ys : s ≤ t) +Xt − Yt)− φ(At))
]
.

subject to Y0 = y, X0 = x, (25), and

dXt = (ξ − λXt)dt+At + σdBt.

dWt = (rWt − u(Ct(Ys : s ≤ t)) + φ(Āt))dt+ St
(
dYt − ((ξ − λYt) + Āt)dt

)
.

If the contract is incentive compatible, it is optimal to set L̄t = 0 whenever initial conditions are

such that y = x. Section 6 established that the value function is differentiable with respect to x and

y whenever x = y. An application of the Envelope Theorem (Milgrom and Segal, 2002, Theorem

1) then implies that vx(w, x, x) can be computed by evaluating the objective function at L̄t ≡ 0
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or, equivalently, under the report process Yt starting from y0 = x0. Under this approach, W , Y , C,
and Ā are independent from the initial condition x, and

vx(w, x, x) =
∫ ∞

0
e−rt

d

dx
E [u(Xt − Yt + CT (Ys : s ≤ t))] dt.

Since the distribution of {Ys}s≤t is independent from the initial condition x, the inner derivative is

equal to

E

[
u′ (Xt − Yt + Ct(Ys : s ≤ t)) dXt

dx

]
.

The process X, as defined by the dynamic equation (1), is a generalization of Ornstein-Uhlenbeck

processes, and can be explicitly integrated:

Xt = e−λtx+
∫ t

0
eλ(s−t)(As + ξ)ds+

∫ t

0
eλ(s−t)σdBs (26)

This implies that dXt
dx = e−λt and yields the formula of Lemma 1. �

Lemma 2 The following equality holds for any truthful contract:

E

∫ ∞
0

e−(r+λ)tu′(Ct)dt = (−w)
(−u1)θ

λ− u1 + φ1
.

Since u′(Ct) = −θu(Ct),

E

∫ ∞
0

e−(r+λ)tu′(Ct)dt = E

∫ ∞
0

e−(r+λ)tθu(Ct)dt = θu1

∫ ∞
0

e−(r+λ)tE[Wt]dt.

Moreover,

dWt = [rWt − u(Ct) + φ(At)]dt+ StσdBt.

With exponential utility and cost functions, u(Ct) = −Wtu1 and φ(At) = −Wtφ1. Letting ϑ(t) =

E[Wt] (ϑ(0) = w), this implies that

dϑ

dt
(t) = (r + u1 − φ1)ϑ(t),

and hence that

E[Wt] = e(r+u1−φ1)tw. (27)

Integrating this expression over time yields the result.

Proof of Proposition 9

The principal’s objective is to maximize Π(w, x) with respect to u1 and φ1. From (5), and neglecting

for now terms that are not affected by the contract choice, this is equivalent to solving

max
u1,φ1

E

∫ ∞
0

e−rt
(

αt
r + λ

− E[Ct]
)
dt
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where

αt = a1 +
E[log(−Wt)]

χ

and

E[Ct] = c1 −
E[log(−Wt)]

θ
.

Letting Zt = log(−Wt), Itô’s formula implies that

dZt = (r + u1 − φ1)dt− 1
2
σ2s̄2dt− s̄σdBt.

Therefore,

E log(−Wt) = log(−w) + (r + u1 − φ1)t− 1
2
σ2s̄2t.

The principal’s objective is to maximize

a1

r(r + λ)
− c1

r
+
(

1
χ(r + λ)

+
1
θ

)∫ ∞
0

e−rtE log(−Wt)dt.

Replacing a1, c1 and E log(−Wt) by their formulas in terms of φ1, u1, t, and the parameters of the

model, and integrating the last term proves the proposition. �

Proof of Proposition 10

Dividing (11) by κ+ 1 (which does not affect the optimal value of s̄) and ignoring terms that are

independent of s̄, it suffices to show that the function

log(s̄) +
1

κ+ 1
(log(χλ+ s̄)− log(θ − s̄)) +

1
r

(
−1

2
σ2s̄2 − s̄

θ − s̄
χλ+ θ

χ

)
is submodular in (s, λ). The cross-derivative with respect to s̄ and λ is equal to

θχ

(χ(r + λ) + θ)2

[
1

χλ+ s̄
+

1
θ − s

]
− χ

(χλ+ s̄)2

χ(r + λ)
θ + χ(r + λ)

− 1
r

θ

(θ − s)2
.

Multiplying this expression throughout by the denominators, we need to show that, for all nonneg-

ative parameters, θ, λ, r, s, χ such that s < θ the expression

A = r(θ − s̄)2χ2(r + λ)(θ + χ(r + λ)) + θ(χ(r + λ) + θ)2(χλ+ s̄)2 − r(θ + χλ)θχ(χλ+ s̄)(θ − s̄)

is nonnegative. Developing this expression with Maple yields

A = r3χ3θ2+r2χ2θ3+2θχ4rλ3+2θχ3λ3s̄+θχ2λ2s̄2+2r2χ3θ2λ+2rχ3θ2λ2+2r2χ2s̄2θ+2r2χ3s̄2λ+

θχ4λ4+θ3χ2λ2+r3χ3s̄2+θ3s̄2+2θ2χ3λ3+2rχ2θ2s̄λ+3rχ3θs̄λ2+4rχ2s̄2λθ+rχ3s̄2λ2+2θ3χλs̄+3θ2χrs̄2

+ 4θ2χ2λ2s̄+ 2θ2χλs̄2 + θχ4r2λ2 − θ3χrs̄− 2r2χ2θ2s̄− 2r3χ3θs̄− 2r2χ3θs̄λ. (28)
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Therefore, it suffices to show that the last four terms, which are negative, are dominated by the

positive terms. The last negative term is dominated by 2r2χ3s̄2λ+2r2χ3θ2λ: the difference is equal

to 2r2χ3λ(θ2 + s̄2 − θs̄), which is positive. We now focus on all the terms not containing λ. Let,

for the rest of this proof only, x = s̄/(rχ) and y = θ/(rχ), so that 0 ≤ x ≤ y. The sum of all the

terms that do not contain λ can be reexpressed, after division by (rχ)5, as

3x2y2 + y3x2 + x2 + 2x2y + y2 + y3 − xy3 − 2y2x− 2xy, (29)

or

y3(1− x)2 + xy(1− y)2 + (y − x)2 + xy(3yx+ 2x− 1).

The last (and only problematic) term is positive if 3x2 + 2x− 1 ≥ 0 or, equivalently, if x ≥ 1/3. It

is also positive if y ≥ 1/(3x). There remains to examine the case in which x < 1/3 and y < 1. We

can reexpress (29) as

y3(1− x)2 + (y − x)(y − x− 2xy) + xy(y2 + 3xy).

The second term and only problematic term, call it B, is positive if y − 2xy > x. Since x < 1/3,

we have y − 2xy > 1
3y. Therefore, B is positive if y ≥ 3x. Suppose instead that y < 3x. We can

rewrite (29) as

(x− y)2 + y(x− y)2 + x2y + y3x2 + 3x2y2 − xy3. (30)

Since y < 1 and y < 3x, we have xy3 < xy2 < 3yx2. The expression 3x2y2 + x2y − xy3 is therefore

positive if 3x2y2 ≥ 2x2y, or if y ≥ 2/3. Suppose instead that y < 2/3. In that case, we have

xy3 < 2
3xy

2 < 2yx2. The expression 3x2y2 +x2y−xy3 is thus positive if 3x2y2 ≥ x2y, or if y ≥ 1/3.

This leads us to the final case where y < 1/3. We now have xy3 < 1
3xy

2 < yx2. The expression

x2y − xy3 is therefore positive. This shows that, for all parameter values, the modified objective

function is submodular in (s̄, λ), and concludes the proof of the proposition. �

Proof of Proposition 11

Let x = φ1 − u1. It suffices to show that, for s̄ maximizing (11), x < r. From the expressions of

φ1(s̄) and u1(s̄),

φ(x) =
θ̄x

θ̄ + λ+ x

where θ̄ = θ/χ, and

u(x) = − x(λ+ x)
θ̄ + λ+ x

The objective can therefore be expressed in terms of x. Its derivative with respect to x is

(κ+ 1)
1
x
− (κ+ 1)

1
θ̄ + λ+ x

+
1

λ+ x
− κ+ 1

r

(
1 + σ2χ2φ(x)φ′(x)

)
.
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Suppose that x ≥ r. Then, using that κ = θ̄/(r + λ) it is easy to show that

−(κ+ 1)
1

θ̄ + λ+ x
+

1
λ+ x

≤ 0.

Since also φ′(x) > 0, the derivative is negative for x ≥ r, showing that the optimum is achieved for

x < r.46 �

Proof of Proposition 12

Recall from Proposition 9 that

Π(χ) = κ log(φ1(s̄))+log(−u1(s̄))+
κ+ 1
r

(
r + u1(s̄)− φ1(s̄)− 1

2
σ2s̄2

)
+(κ+1) log(−w)−κ log(φ̄),

(31)

where φ1(s̄) = s̄/χ, κ(χ) = θ
χ(r+λ) , u1(s̄) = −s̄(χλ+ s̄)/(χ(θ − s̄)), and s̄(χ) ∈ [0, θ].

As χ goes to zero, κ is of order 1/χ and, after neglecting second-order terms and terms independent

from s̄, the objective equals

κ log s̄+
κ

r

(
−s̄θ

χ(θ − s̄)
− 1

2
σ2s̄2

)
.

The maximum can only be attained for s̄ arbitrarily small, otherwise the second term would be

of order (1/χ2) (taking into account the factor κ), arbitrarily negative, and dominate all other

terms. Precisely, s̄ must be at most of order χ. Let s̄ = αχ + o(χ), for some α ≥ 0 to chosen by

the principal. The objective, after dropping second-order terms and terms independent from α,

becomes

κ logα+
κ

r
(−α).

Therefore, the optimum sensitivity is equal to s̄ = rχ + o(χ). This implies that φ1(χ) ∼ r and

u1(χ) ∼ −r2χ/θ. The objective is equal to

κ(χ) log (r(−w)) + o

(
1
χ

)
.

This shows that Π(χ) diverges to +∞ if w < −1/r and to −∞ if w > −1/r.47

The drift of the promised utility is equal to r + u1 − φ1. Since, φ1 ∼ r while u1(χ) ∼ −r2χ/θ, one

concludes that

lim
χ→0

r + u1(χ)− φ1(χ) = 0.

46A simpler proof is to observe that i) x(s̄) = r when σ = 0 (since perfect consumption smoothing is optimal),

ii) x(s̄) ∝ s̄/(θ − s̄) is an increasing function of s̄ (from (9) and (10)), and iii) s̄ is decreasing in σ, by submodularity

of the objective function (see Proposition 13).
47That result is illustrated numerically for parameter values r = λ = 5%, θ = 1, σ = 0.2 and χ = 0.01. In that case,

Π ∼ 686 for w = −40, while Π ∼ −2310 for w = −2. For these values of w, the payoffs respectively get arbitrarily

positive and arbitrarily negative as χ gets closer to zero.
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This shows that immiserization becomes arbitrarily slow as χ goes to zero. �

Proof of Proposition 14

The optimal value of s̄ is unchanged if one multiplies (11) by r and gets rid of the term r in the

factor (r + u1 − φ1 − 1/2σ2s̄2). The resulting objective function is equal to

rκ(r) log(φ1(s̄)) + r log(−u1(s̄)) + (κ(r) + 1)
(
u1(s̄)− φ1(s̄)− 1

2
σ2s̄2

)
.

The function r 7→ κ(r)r is increasing in r, while φ1(s̄) and u1(−s̄) are increasing in s̄. Therefore,

the first two terms of the objective are supermodular. The last term is also supermodular, because

κ(r) + 1 is decreasing in r, while u1 − φ1 − 1
2σ

2s̄2 is decreasing in s̄. The result then obtains from

an application of the comparative statics theorem for supermodular functions of Topkis (1978). �
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