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Abstract

Given two sets of random variables, how can one determine whether the former variables are

more interdependent than the latter? This question is of major importance to economists, for

example, in comparing how various policies affect systemic risk or income inequality. Moreover,

correlation is ill-suited to this task as it is typically not justified by any economic objective.

Economists’ interest in interdependence often stems from complementarities (or substi-

tutabilities) in the environment they analyze. This paper studies interdependence using su-

permodular objective functions: these functions treat their variables as complements, and their

expectation increases as the realizations of the variables become more aligned.

The supermodular ordering has a linear structure, which we exploit to obtain tractable char-

acterizations and methods for comparing multivariate distributions, and extend when objective

functions are also monotonic or symmetric. We also provide sufficient conditions for comparing

random variables generated by common and idiosyncratic shocks or by heterogeneous lotteries,

and illustrate our methods with several applications.
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1 Introduction

The interdependence of random variables is of central interest to economists: it determines the

macroeconomic consequences of firm-level shocks, the solvency of insurance companies protecting

large numbers of households, and the price of financial derivatives, like CDOs, whose payoffs depend

on the return of many assets. Interdependence also affects welfare measures based on multiple

indicators like health, education and income, and the assessment of inequality in populations subject

to individual income risk. Furthermore, we show that comparisons of the quality of noisy matching

procedures and of preference alignment among members of a search committee can also be framed

as comparisons of the interdependence of random variables.

Despite its prevalence as a statistical measure, correlation is inadequate to capture interdepen-

dence in economic settings, outside of Gaussian distributions or quadratic objective functions, just

as variance is an inadequate measure of risk outside of similarly restrictive settings. Moreover,

correlation-based rankings can be reversed depending on how data is aggregated, as Section 2 illus-

trates. At the opposite extreme, rankings of interdependence based on affiliation and association

are too demanding and often impracticable, as explained in Genest and Verret (2002) and in our

earlier work (Meyer and Strulovici (2012)). Copulas do not resolve the problem, either: while they

extract information about the interdependence of random variables, one still must choose a method

for comparing them.

This paper studies an ordering of interdependence based on supermodular objective functions.

These functions are commonly used to capture complementarity, a concept closely related to in-

terdependence.1 In fact, economists’ interest in interdependence often stems from the presence of

complementarities in the problems they analyze. Supermodular objective functions are pervasive in

economic analysis, from production functions in manufacturing systems and in matching contexts

to deprivation and welfare functions in the assessment of inequality. As we will illustrate, these

functions are also used to measure aggregate losses in finance and actuarial science and to estimate

parameters in econometrics (such as OLS).

The link between interdependence and supermodularity is easily seen for the case of two vari-

ables. A function w is supermodular if w(x′, y′) + w(x, y) ≥ w(x, y′) + w(x′, y) whenever x′ > x

and y′ > y. Hence, for a supermodular function, the effect of increasing two arguments to-

gether exceeds the sum of the effects of increasing each argument separately: w(x′, y′)−w(x, y) ≥
1See, e.g., Milgrom and Roberts (1990, 1995) in the context of manufacturing. In a recent application, Dziewulski

and Quah (2014) develop a test for the supermodularity of production functions. Their analysis builds on two

characterizations of “greater interdependence” from the present paper.
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(w(x′, y) − w(x, y)) + (w(x, y′) − w(x, y)). If w is supermodular, its expectation E[w(X,Y )] in-

creases as X and Y become more interdependent in the following sense: the probability that both

variables are high or both low is increased while the probability of one being high and the other

low is decreased so as to keep the marginal distributions of X and Y unchanged.

Given two multivariate distributions with the same number of variables and finite support,

we will say that one distribution dominates another according to the supermodular ordering if

the expectation of all supermodular functions is higher under the former distribution than under

the latter. The central question of this paper is the following: given two distributions, how can

one test whether they are ranked according to this ordering? We develop several methods for

addressing this question, and we also provide sufficient conditions in two environments, variables

generated by common and idiosyncratic shocks and variables generated by heterogeneous lotteries,

for distributions to be ranked according to the ordering.

The supermodular ordering has a special linear structure which makes the analysis tractable.

In particular, Theorem 1 shows that a distribution is supermodularly dominated by another if

and only if one can go from the former to the latter by a sequence of two-dimensional elementary

transformations that increase the probability of homogeneous outcomes and reduce the probability

of heterogeneous ones for the two corresponding variables, with each transformation affecting the

probabilities of only four adjacent points (a “square”) in the support of the distributions. This result

holds regardless of the number of dimensions of the original distributions. Moreover, this charac-

terization is minimal: any proper subset of these elementary transformations fails to characterize

the supermodular ordering (Proposition 2). This property is important for numerical applications,

as will be explained below.

The linear structure is also helpful for comparing the interdependence of empirical distributions.

Given two distributions with the same support, we provide an algorithm to test for the existence

of a sequence of elementary transformations taking one distribution to the other. Theorem 1

implies that supermodular dominance holds if and only if such a sequence exists. The algorithm

is formulated as a linear program similar to the ones used to find a solution to Afriat inequalities

and, in operations research, to the auxiliary linear programs used to check the feasibility of a given

linear program.

To compare many pairs of distributions instead of just one, the previous method is inadequate:

it would require solving one linear program for each pair. Fortunately, the supermodular ordering

over any given support can more simply be characterized by a list of inequalities, using the double

description method invented by Motzkin et al. (1953). It then suffices to test, for any pair of

3



distributions, whether the difference between these distributions (seen as vectors in an appropriate

space) satisfies all these inequalities. The double description method has been turned into a concrete

algorithm (Avis and Fukuda (1982)) and is now available in standard computer languages including

C and Matlab. Appendix G provides the code of our algorithm and its numerical output for an

example with four binary random variables.

In applied work, data is aggregated into brackets which are to a large extent arbitrary. For

example, income may be described by brackets of 1000 dollars and life expectancy by brackets of

5 years. Theorem 1 implies that the supermodular ordering, unlike correlation, is robust to any

coarsening of the support and to any monotonic transformation of coordinates. For example, if a

joint distribution of income and life expectancy supermodularly dominates another when income is

compiled in brackets of 1000 dollars and life expectancy in brackets of 5 years, then supermodular

dominance continues to hold if brackets of 5,000 dollars and 10 years are used. It also holds if the

coarsening is uneven, for example if income brackets become wider near the top of the distribution.2

In applications such as welfare economics or production, objective functions are not only su-

permodular but also increasing in their arguments. To characterize the increasing supermodular

ordering, we show in Theorem 2 that the comparison of two distributions can be decomposed into

two steps: First, compare marginals according to first-order stochastic dominance. Then, compare

the joint distributions, normalized to ensure identical marginals, according to the supermodular

ordering.

When objective functions are symmetric – welfare economics is again a good example, with

symmetry capturing a form of anonymity across citizens – we show that this adds no complication

to the analysis: two distributions are ranked according to the symmetric supermodular ordering if

and only if the symmetrized versions of the distributions are ranked according to the supermodular

ordering.

A major source of interdependence, for economists, is the presence of common shocks. Mixtures

of conditionally independent random variables (“mixture distributions”) are widely used to study

environments with both common and idiosyncratic shocks. In finance and insurance contexts,

mixture distributions are used to model positively dependent risks in a portfolio (Cousin and

Laurent (2008)). In macroeconomics, the relative importance of aggregate vs. sectoral shocks

affects variation and covariation of output levels (Foerster et al. (2011)). Intuitively, the more

2Uneven coarsenings of data are common and clearly relevant: since the exact thousand-dollar value of an income

above a million dollars, say, is unimportant, violations of interdependence rankings based on such detail seem equally

unimportant.
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“important” the common shock in a mixture distribution relative to idiosyncratic shocks, the more

“interdependent” the random variables should be. We study two questions: First, how can “greater

relative importance” of the common shock be formalized? Second, how can greater interdependence

be assessed? Our Theorem 3 answers both questions. We use the supermodular ordering to compare

interdependence, and we present easily checkable sufficient conditions on the structure of mixture

distributions for two such distributions to be comparable according to the supermodular ordering.

Our sufficient conditions provide a novel non-parametric ordering of the relative importance of

common vs. idiosyncratic shocks for mixture distributions.

Surprisingly, the argument used to compare mixture distributions can also be used in a com-

pletely different analytical environment, to compare distributions generated by lotteries, and yields

similar sufficient conditions. We consider the class of n-dimensional random vectors representing n

independent lotteries and focus on the case where the objective function defined on the outcomes

of these lotteries is symmetric, as with an ex post welfare function. Theorem 4 provides sufficient

conditions for symmetric supermodular dominance for random vectors within this class. These

conditions capture the idea that one set of lotteries is less heterogeneous than another, holding

fixed the average of the lotteries.

Several papers have studied the supermodular ordering before. For the special case of bivariate

distributions, Levy and Paroush (1974), Epstein and Tanny (1980), and Tchen (1980) have shown

that the supermodular ordering is equivalent to the combination of upper- and lower-“orthant”

dominance, and the latter two papers characterized the ordering in terms of a broad set of elemen-

tary transformations.3 (Our minimal set of elementary transformations is a strict subset.) With

three or more dimensions, the supermodular ordering has been shown to be strictly stronger than

the combination of upper- and lower-orthant dominance (Joe (1990), Müller and Scarsini (2000),

and Meyer and Strulovici (2012)). Rüschendorf (1980, 1983, 2004) considers some other notions

of interdependence which also reduce to the supermodular ordering in the bivariate case. Promis-

low and Young (2005) study the cone of supermodular functions on lattices but do not provide

any characterization like ours. Giovagnoli and Wynn (2008) mention (without proof) a charac-

terization result based on transformations involving more than two dimensions and non-adjacent

points. In work subsequent to ours, and acknowledged as such, Müller (2013) contains a similar

characterization.4

3We say that a random vector (Y1, . . . , Yn) dominates (X1, . . . , Xn) according to upper-orthant (respectively, lower-

orthant) dominance if for all (z1, . . . , zn), P (Yi ≥ zi∀i) ≥ P (Xi ≥ zi∀i) (respectively, P (Yi ≤ zi∀i) ≥ P (Xi ≤ zi∀i)).
4Müller (2013) notes that “The study of mass transfer principles as described above has recently found increasing

interest in the economics literature in the context of comparing multivariate risks, see, e.g., [109, 318, 334]. Indeed,
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Our elementary transformations are also reminiscent of Rothschild and Stiglitz’s (1970) mean-

preserving spreads. Indeed, our transformations may be described as “marginal-preserving align-

ments”. While the structure of our theorem characterizing the supermodular ordering in terms of

marginal-preserving alignments parallels the structure of Rothschild and Stiglitz’s theorem for the

univariate convex ordering, there is an important difference: our set of elementary transformations

is minimal, whereas theirs is not.5

Section 5 applies the supermodular ordering to study the comparison of ex post inequality; the

impact of preference alignment among the members of a search committee on equilibrium search;

the effect of the configuration of banking networks on systemic risk; multidimensional measures

of welfare; the richness of datasets for prediction and parameter estimation; and the efficiency of

matching mechanisms in the presence of frictions.

2 Setting and Characterization Results

For any fixed n, we consider distributions over a finite, n-dimensional lattice L constructed as

follows. The ith variable takes values in a totally ordered set (Li,≤i) with mi < ∞ elements. L

is defined as the Cartesian product ×iLi, endowed with the usual partial order: x ≤ y if and only

if xi ≤i yi for all i ∈ N ≡ {1, . . . , n}. Each Li is order-isomorphic to a finite subset of R and the

reader may without loss think of L as a (possibly uneven) finite lattice built on a hyperrectangle of

Rn. For any x ∈ L, let x+ ei denote the element y of L, whenever it exists, such that yj = xj for

all j ∈ N \ {i} and yi is the smallest element of Li greater than but not equal to xi. For example,

if L = {0, 1}2, (0, 0) + e1 = (1, 0) and (1, 0) + e2 = (0, 0) + e1 + e2 = (1, 1).

Vectorial structure. Labeling arbitrarily the d =
∏n
i=1mi elements (or “nodes”) of L, one

may view each real-valued function defined on L as a vector of Rd, where each coordinate is the

value of the function evaluated at a specific node of L. In particular, a multivariate distribution

whose support is contained in L may be represented as an element of the unit simplex ∆d of Rd.

the basic principle that is used in this paper has already been used in [318, 334] for the special cases of supermod-

ular ordering and inframodular ordering.” Here, ‘318’ refers to a 2011 version of the present paper entitled “The

Supermodular Stochastic Ordering.”
5For the support {0, 1, 2, 3}, consider the mean-preserving spread (MPS) which adds probability mass ε to outcomes

0 and 3 and removes mass ε from outcomes 1 and 2. This MPS can be decomposed into the sum of two MPSs, the

first (resp., second) of which adds mass ε to outcomes 0 and 2 (resp., 1 and 3) and removes mass 2ε from outcome 1

(resp., 2). For this support, these two MPSs constitute a minimal set.
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Orderings of distributions. For any function w : L → R and distribution f ∈ ∆d, the

expected value of w given f is the scalar product of w with f , seen as vectors of Rd:

E[w|f ] =
∑
x∈L

w(x)f(x) = w · f.

To any class W of functions on L corresponds an ordering of multivariate distributions:

f ≺W g ⇐⇒ ∀w ∈ W, E[w|f ] ≤ E[w|g]. (1)

We will be particularly interested in the orderings generated by supermodular, increasing super-

modular, and symmetric supermodular objective functions.

Supermodular functions and elementary transformations. For any x, y ∈ L, let x∧y and

x∨y respectively denote the component-wise minimum (or “meet”) and component-wise maximum

(or “join”) of x and y.6 A function w is supermodular (on L) if w(x∧ y) +w(x∨ y) ≥ w(x) +w(y)

for all x, y ∈ L, and submodular if −w is supermodular. Let S denote the set of supermodular

functions. The supermodular ordering (denoted ≺SPM ) is the ordering defined by (1) for the

class S. For random vectors X and Y with distributions f and g and cumulative distributions

F and G, respectively, we will use the expressions X ≺SPM Y , f ≺SPM g, and F ≺SPM G

interchangeably.

To characterize the supermodular ordering, we introduce a class of elementary transformations

capturing “increasing interdependence”. For any x ∈ L such that x + ei + ej ∈ L, let txi,j denote

the function defined on L by

txi,j(x) = txi,j(x+ ei + ej) = 1, txi,j(x+ ei) = txi,j(x+ ej) = −1, (2)

and txi,j(y) = 0 for all other y ∈ L. We call txi,j an elementary transformation on L, and let T

denote the set of all elementary transformations.

If distributions f and g are such that g = f+αtxi,j for some α ≥ 0, then we say that g is obtained

from f by an elementary transformation with weight α. The α-weighted elementary transformation

raises the probability of nodes x and x+ ei + ej by the common amount α, reduces the probability

of nodes x+ ei and x+ ej by the same amount, and leaves unchanged the probability of all other

nodes in L. Intuitively, such transformations increase the degree of interdependence of a multi-

variate distribution, as for some pair of components i and j, they make jointly high and jointly

low realizations more likely, while making realizations where one component is high and the other

6Explicitly, (x ∧ y)i = min{xi, yi} and (x ∨ y)i = max{xi, yi} for all i ∈ N .
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low less likely. Furthermore, they raise interdependence without altering the marginal distribu-

tion of any component. Thus, our elementary transformations could alternatively be described as

“marginal-preserving alignments”.

To illustrate, consider the 3×3 lattice L = {0, 1, 2}2. There are four elementary transformations,

corresponding to x = (0, 0), (1, 0), (0, 1), and (1, 1). For the 2× 2× 2 lattice L = {0, 1}3, there are

six elementary transformations, one corresponding to each face of the unit cube. Note that each

elementary transformation affects only two of the n dimensions (as illustrated by the example of

L = {0, 1}3), and it affects values only at four adjacent points in the lattice, x, x+ ei, x+ ej , and

x+ ei + ej (as illustrated by L = {0, 1, 2}2).7

Theorem 1 f ≺SPM g if and only if there exist nonnegative coefficients {αt}t∈T such that, with

f , g, and t seen as vectors of Rd,

g = f +
∑
t∈T

αtt. (3)

Since any elementary transformation t ∈ T leaves the marginal distributions unchanged, The-

orem 1 implies that f and g must have identical marginal distributions whenever f ≺SPM g. In

addition, the theorem also implies that distributions that are comparable according to the super-

modular ordering are essentially characterized by their covariance matrix, in the following sense.

Proposition 1 Given random vectors X and Y with distributions f and g, respectively, if f ≺SPM
g and, for all i 6= j, Cov(Xi, Xj) = Cov(Yi, Yj), then f = g, that is, X and Y are identically

distributed.

For many applications, the choice of a particular support is somewhat arbitrary. For example,

when comparing multivariate empirical distributions of attributes such as income, health, and

education (see Section 5.4), the distributions depend on the way the data for each attribute has been

aggregated into discrete categories. One very appealing property of the supermodular ordering, that

follows directly from Theorem 1, is that it is robust to coarsening of the support (aggregation),

as well as to any weakly monotonic transformation of coordinates.8 To see this, suppose that

7Our marginal-preserving alignments are broadly analogous to Rothschild and Stiglitz’s (1970) mean-preserving

spreads. However, as defined by Rothschild and Stiglitz, a mean-preserving spread can alter the probabilities of four

arbitrarily distant points. With a discrete support, the analog to our restriction that elementary transformations

affect only two dimensions and adjacent points would be the restriction that mean-preserving spreads affect the

probabilities of only three adjacent points.
8In contrast, the ranking of bivariate distributions according to the linear correlation coefficient is not robust to

weakly monotonic transformations of coordinates and, a fortiori, not robust to coarsening of the support. To see
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each point (x1, . . . , xn) ∈ L is transformed to (r1(x1), . . . , rn(xn)), for some set of nondecreasing

functions {ri}i, and denote the transformed support by Lr. In the special case where all {ri}i are

strictly increasing, there is a one-to-one mapping between elementary transformations on L and

elementary transformations on Lr; if instead x and x + ei (or x and x + ej) are transformed into

the same point in Lr, then the transformation txi,j is mapped into the zero function on Lr. Hence,

it follows from Theorem 1 that for {ri}i nondecreasing, (X1, . . . , Xn) ≺SPM (Y1, . . . , Yn) implies

(r1(X1), . . . , rn(Xn)) ≺SPM (r1(Y1), . . . , rn(Yn)). Moreover, for {ri}i strictly increasing, the reverse

implication holds as well.9

2.1 Comparing Empirical Distributions

Two aspects of our approach greatly facilitate the use of Theorem 1 to determine, given a pair

of distributions f and g, whether f ≺SPM g. The first is our restriction to a finite support L.10

The second is our restriction that elementary transformations, defined in (2), affect only two of

the n dimensions and affect values at only adjacent points in the lattice. These two restrictions

make it straightforward, either manually or algorithmically, to list the entire set T of elementary

transformations on any given L. In fact, our set of elementary transformations is minimal, in the

following sense:

Proposition 2 All elements of T are extreme rays of the convex cone C(T ) generated by T .

This proposition says that we are working with the smallest set of elementary transformations

for which the characterization provided by Theorem 1 is valid. For the special case of bivariate

distributions, this result provides (see the Appendix) a very simple constructive proof of Theorem 1,

uniquely identifying, for f and g such that f ≺SPM g, the nonnegative coefficients {αt}t∈T in the

decomposition g− f =
∑

t∈T αtt. Proposition 2 is also very useful for the two methods we develop

below for comparing multivariate empirical distributions.

Comparing two distributions

this, for L = {l,m, h}2, where l < m < h, let (Y1, Y2) have distribution g, where g(l,m) = g(m, l) = g(h, h) = 1
3
, and

let (X1, X2) have distribution f , where f(l, l) = f(m,h) = f(h,m) = 1
3
. Then corr(Y1, Y2) > (<) corr(X1, X2) if

(l+h)
2

> (<)m. This in turn implies that if L is coarsened by combining the realizations l and m in each dimension,

then corr(Y1, Y2) > corr(X1, X2), while if instead m and h are combined, then corr(Y1, Y2) < corr(X1, X2).
9An alternative proof of the first implication uses the fact that for w(x1, . . . , xn) supermodular and {ri}i nonde-

creasing, w(r1(x1), . . . , rn(xn)) is also supermodular. See Shaked and Shanthikumar (1997, Theorem 2.2).
10Theorem 5 (Section 6.1) may also be used, in conjunction with Theorem 1, to compare distributions on a

continuous support using our techniques, as long as the distributions have a continuous density.
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From Theorem 1, f ≺SPM g if and only if there exist nonnegative coefficients {αt}t∈T such

that g − f =
∑

t∈T αtt. For a given pair of distributions f and g, we can formulate the problem of

determining whether such a set of coefficients exists as a linear programming problem. Let T = |T |

denote the number of elementary transformations on L, and let E denote the d× T -matrix whose

columns are the d-dimensional vectors consisting of all elementary transformations of L. Theorem 1

can be re-expressed as follows: f ≺SPM g if and only if there exists α ∈ RT nonnegative such that

Eα = g − f . Let δ+ denote the vector of Rd whose ith component equals |(g − f)i| and E+ denote

the matrix whose ith row, denoted E+
i , satisfies E+

i = (−1)εiEi, where εi = 1 if (g − f)i < 0 and 0

otherwise. The condition Eα = g−f can be re-expressed as E+α = δ+. Now consider the following

linear program:11

min
(α,β)∈RT×Rd

d∑
i=1

βi subject to E+α+ β = δ+, α ≥ 0, β ≥ 0. (4)

Proposition 3 The linear program (4) always has an optimal solution. f ≺SPM g if and only if

the optimum value is zero, and in that case g = f +
∑

t∈T α
∗
t t, where (α∗, β∗ = 0) is any solution

of (4).

Characterization of the supermodular ordering via inequalities

To compare many distributions, for example as part of a larger optimization problem, it is

convenient to generate once and for all, for a given support, an explicit characterization of the

supermodular ordering. Given any finite support L, we present a method for generating such a

representation in the form of a finite list of inequalities that are satisfied by the vector g− f if and

only if f ≺SPM g.

Recall that, by definition, f ≺SPM g if g − f makes a nonnegative scalar product with all

supermodular functions on L, seen as vectors of Rd. This condition can be reduced to a finite set

of linear inequalities by exploiting the geometric properties of S. S is a convex cone such that w is

supermodular (i.e., belongs to S) if and only if it makes a nonnegative scalar product with each of

the T elementary transformations on L as defined by (2). In matrix form, S = {w ∈ Rd : Aw ≥ 0},

where A = E′ is the T × d matrix whose rows consist of all elementary transformations. Since

Aw ≥ 0 describes a finite set of linear inequalities, S is a polyhedral cone, and A is called the

representation matrix of S. The Minkowski-Weyl Theorem (Ziegler, 1997) states that a cone is

polyhedral if and only if it has a finite number of extreme rays. In our context, this theorem

11This corresponds to the auxiliary program for the determination of a basic feasible solution described in Bertsimas

and Tsitsiklis (1997, Section 3).
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implies that to any T × d representation matrix A corresponds a generating matrix R, with d rows

and a finite number of columns, such that

Aw ≥ 0 ⇐⇒ w = Rλ for some vector λ ≥ 0.

The columns of the matrix R are the finite set of extreme rays of the cone S. The stochastic

supermodular ordering is thus entirely determined by the extreme rays of S, in that

E[w|f ] ≤ E[w|g] ∀w ∈ S ⇐⇒ R′(g − f) ≥ 0.

The Minkowski-Weyl Theorem thus proves the existence, for any finite support L, of a finite list of

inequalities, one corresponding to each extreme ray of S, that entirely characterize the supermodular

ordering on L.

How can we determine the extreme rays of the cone of supermodular functions? The double

description method, conceived by Motzkin et al. (1953) and implemented by Fukuda and Prodon

(1996) and Fukuda (2004), provides an algorithm to go back and forth between the descriptions

of a polyhedral cone in terms of its representation matrix A and its generating matrix R. In our

context, the representation matrix A, determined by the set of elementary transformations defined

by (2), is straightforward to compute and generate in a program, for any support L. By applying

Fukuda’s implementation of the double description method, we have developed an algorithm that

provides, given any L, the list of inequalities, one corresponding to each extreme supermodular

function, that characterize the supermodular ordering on L. We have computed these inequalities

for a range of problems that are intractable by hand. In the Online Appendix, we provide the code

for our algorithm and, for illustration, the set of inequalities that it yields when L = {0, 1}4.

The fact that our set of elementary transformations is minimal has the practical benefit of greatly

simplifying the complexity of our algorithm. The complexity can be further reduced by aggregating

data into coarser categories (coarsening the support), and as discussed above, aggregation of data

(coarsening) preserves the supermodular ordering. Thus, with an appropriate degree of coarsening,

the double description method can be used to achieve a tractable comparison of distributions

according to the supermodular ordering.

2.2 The Increasing Supermodular Ordering

In many economic settings, we want to compare multivariate distributions not just with respect to

interdependence but also with respect to the levels of the random variables. A function w on L is

increasing if for any x ∈ L and i such that x + ei ∈ L, w(x + ei) ≥ w(x). Let I denote the set of
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increasing functions on L. For any x ∈ L and i such that x + ei ∈ L, let τxi denote the function

on L such that τxi (x) = −1, τxi (x+ ei) = 1, and τxi vanishes everywhere else. Let U denote the set

of all such functions.12 It is easy to check that w belongs to I if and only if w · τ ≥ 0 for all τ ∈ U .

First-order stochastic dominance for distributions on L is defined by

f ≺FOSD g ⇐⇒ w · f ≤ w · g ∀w ∈ I. (5)

It is easy to adapt the proof of Theorem 1 to show that f ≺FOSD g if and only if there exist

nonnegative coefficients {βτ}τ∈U such that

g = f +
∑
τ∈U

βττ. (6)

The increasing supermodular ordering (denoted ≺ISPM ) is defined as follows:

f ≺ISPM g ⇐⇒ w · f ≤ w · g ∀w ∈ S ∩ I.

In contrast to f ≺SPM g, f ≺ISPM g does not imply that f and g have identical marginals.

Rather, f ≺ISPM g implies that each marginal distribution of f is dominated by the corresponding

marginal distribution of g according to first-order stochastic dominance: this can be seen by taking,

for each i ∈ N and each ki ∈ Li, w(z) = I{zi≥ki}, which is both increasing and supermodular.

Theorem 2 below demonstrates that comparison of two distributions according to the increas-

ing supermodular ordering can be decomposed into a two-step comparison, first comparing the

marginals according to first-order stochastic dominance and then comparing the joint distribu-

tions, after correcting to ensure identical marginals, according to supermodular dominance.

To simplify notation, assume that Li = {0, 1, . . . ,mi − 1} (as explained just before Section 2.1,

this labeling of values is without loss of generality). Given two distributions f and g with δ ≡ g−f ,

define the function γ on L, to correct for differences in the marginals of f and g, as follows. Let

γ(z) vanish everywhere except on the set L0 of z’s that have at most one positive component. For

any i ∈ N and k ∈ {1, 2, . . . ,mi−1}, denote by kei the element of L0 with ith component equal to

k, and let

γ(kei) = Pr(Yi = k)− Pr(Xi = k) =
∑
z:zi=k

δ(z). (7)

12Note that each transformation in U affects only one of the n dimensions and affects values only at two adjacent

points in the lattice. This narrow definition parallels our narrow definition of “marginal-preserving alignments” in

(2) and has analogous advantages.
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Finally, let γ(0, 0, . . . , 0) be such that
∑

z∈L0 γ(z) = 0. Since
∑

z∈L δ(z) =
∑

z∈L(g(z)− f(z)) = 0,

it follows from (7) that for all i and k, including k = 0,∑
z:zi=k

γ(z) =
∑
z:zi=k

δ(z). (8)

Equation (8) ensures that f + γ has the same marginal distributions as g, so f + γ and g can

potentially be compared according to ≺SPM .13 At the same time, γ contains all the information

needed to determine whether the marginals of g first-order stochastically dominate the marginals

of f .

Theorem 2 The following statements are equivalent:

1) f ≺ISPM g.

2) There exist nonnegative coefficients {αt}t∈T , {βτ}τ∈U such that

a) γ =
∑

τ∈U βττ , and

b) g = f + γ +
∑

t∈T αtt.

3) For each i, the ith marginal distribution of f is dominated by the ith marginal distribution of

g according to first-order stochastic dominance, and for all supermodular w, w ·(f+γ) ≤ w ·g.

It follows from Theorem 2 that when comparisons are restricted to distributions with identical

marginals, the increasing supermodular ordering and the supermodular ordering are equivalent.

2.3 The Symmetric Supermodular Ordering

Symmetric objective functions play an important role in many economic applications. For example,

if the objective function is an ex post welfare function, imposing symmetry amounts to assuming

ex post anonymity across individuals. In finance and insurance contexts, losses may be evaluated

according to a convex function of the total loss across all assets or all insurance policies. Any convex

function of the sum of losses is both symmetric and supermodular in the individual losses. The

symmetric supermodular ordering, characterized in this section, will be used in the applications

developed in Sections 4, 5.1, and 5.3.

A lattice L = ×ni=1Li is symmetric if Li = Lj for all i 6= j. A real-valued function f on a

symmetric lattice L is symmetric on L if f(x) = f(σ(x)) for all x ∈ L and permutations σ.

13Strictly speaking, we are assessing whether for all supermodular w, w · g ≥ w · (f + γ); this way of expressing

greater interdependence in g than in f + γ is valid whether or not all elements of the vector f + γ lie in [0, 1].
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Given two distributions g and f on a symmetric lattice L, g dominates f according to the

symmetric supermodular ordering, written f ≺SSPM g, if and only if w · f ≤ w · g for all

symmetric supermodular functions w on L. For any function f defined on a symmetric lattice L,

the symmetrized version of f , denoted fsymm, is defined by

fsymm(x) =
1

n!

∑
σ∈Σ(n)

f(σ(x)), (9)

where Σ(n) is the set of all permutations of N . If w is a supermodular function, then wsymm is

supermodular. The following result, proved in Meyer and Strulovici (2012, Section 2.3), shows that

one can characterize the symmetric supermodular ordering in terms of the supermodular order

applied to symmetrized distributions.

Proposition 4 Given distributions f, g defined on a symmetric lattice, f ≺SSPM g if and only if

fsymm ≺SPM gsymm.

To go further, we simplify notation once again by relabeling the points in the support so that

L = {0, 1, . . . ,m − 1}n. For x ∈ L and k ∈ {1, . . . ,m − 1}, define c̄k(x) =
∑n

i=1 I{xi≥k} and

c̄(x) = (c̄1(x), . . . , c̄m−1(x)). c̄k(x) counts the number of components of x that are at least as large

as k, and c̄(x) is the “cumulative count vector” corresponding to x. The vector c̄(x) lies in L̃m−1, an

(m− 1)-dimensional subset of {0, 1, . . . , n}m−1. Since all permutations of x ∈ L correspond to the

same vector c̄(x), it follows that w is symmetric if and only if it can be written as w(x) = φ(c̄(x)),

for some φ defined on L̃m−1.

The result below shows that for any number of dimensions n, the symmetric supermodular

ordering of random vectors X and Y on L is equivalent to an ordering of the derived random

vectors c̄(X) and c̄(Y ) on L̃m−1. To state the result, we need the following definition. A function

φ on L̃m−1 is componentwise convex if for any y ∈ L̃m−1 and k = {1, 2, . . . ,m − 1} such that

y + 2ek ∈ L̃m−1, φ(y) + φ(y + 2ek) ≥ 2φ(y + ek).

Proposition 5 For random vectors X and Y distributed on L = {0, 1, . . . ,m− 1}n, X ≺SSPM Y

if and only if Eφ(c̄(X)) ≤ Eφ(c̄(Y )) for all supermodular and componentwise convex functions φ

defined on L̃m−1. In the special case where m = 2, X ≺SSPM Y if and only if Eφ(
∑n

i=1 I{Xi=1}) ≤

Eφ(
∑n

i=1 I{Yi=1}) for all convex functions φ defined on {0, 1, . . . , n}.

In the special case m = 2, each component of the random vectors X and Y has a binary support

{0, 1}. In this case, whatever the dimension of X and Y , Proposition 5 shows that comparison of X

and Y according to the symmetric supermodular ordering reduces to comparison of
∑n

i=1 I{Xi=1}

14



and
∑n

i=1 I{Yi=1} according to the well-understood univariate convex ordering, which is equivalent

to the ordering of greater riskiness studied by Rothschild and Stiglitz (1970).

More generally, Proposition 5 is useful because, even as the dimension n of the underlying

random vectors X and Y increases, the dimension of the derived random vectors c̄(X) and c̄(Y )

remains fixed at m− 1. We will use this proposition in Section 5.3, where we apply the symmetric

supermodular ordering to compare systemic risk for different networks of financial linkages across

banks.

3 Aggregate and Idiosyncratic Shocks

In economics, particularly macroeconomics and finance, the interdependence of random variables

often arises from the presence of aggregate shocks or common factors. This section focuses on

mixture distributions, representing random vectors generated by both aggregate and idiosyncratic

shocks, and provides non-parametric sufficient conditions for one such random vector to display

more interdependence, in the sense of the supermodular ordering, than another. The following

example will help to motivate our analysis.

Example 1 Let the random vector X be such that Xr = θ + εr, where θ and {εr}r∈N are all

independent and have binomial distributions B(ηθ, p) and B(ηε, p), respectively, with p ∈ (0, 1)

and ηε = η − ηθ. An increase in ηθ raises each pairwise covariance Cov(Xr, Xs) while leaving the

marginal distribution of each Xr unchanged at B(η, p). Theorem 3 below can be used to show

(Appendix D) that raising the importance of the common shock θ by increasing ηθ makes the

random variables (X1, . . . , Xn) more supermodularly dependent.. In addition, if we set ηθ = λθ/p,

ηε = λε/p and let p go to zero while holding λθ and λε fixed, the limiting distributions of θ and

{εr}r∈N are Poisson with parameters λθ and λε, respectively. Hence this example also implies that

for Poisson distributed random variables Xr = θ+εr, when λθ increases, holding λθ+λε (and hence

the marginal distribution of each Xr) fixed, (X1, . . . , Xn) become more supermodularly dependent.

A similar result was known for Xr = θ+εr when θ and {εr} are normally distributed: increasing

the variance of θ, while leaving the variance of each Xr unchanged, makes the random vector X

more supermodularly dependent.14 This result can also be recovered from our example, using the

fact that normal distributions may be obtained as the limit of binomial distributions. However, even

14This follows from Müller and Scarsini’s (2000) result that for random vectors Y and Z with multivariate normal

distributions, the condition Cov(Yr, Ys) ≤ Cov(Zr, Zs) for all r 6= s, coupled with identical marginal distributions,

implies that Y ≺SPM Z.
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with the additive structure Xr = θ+εr, for arbitrary distributions an increase in each Cov(Xr, Xs)

does not generally make X more supermodularly dependent.15

The process generating a random vector as a mixture distribution can be decomposed into two

steps: first, the realization of the “aggregate” shock selects, for each component of the random

vector, one distribution out of many possible ones; second, for each component, independently, an

outcome is drawn from the distribution randomly selected.16 We consider all mixture distributions,

with the restriction that the outcomes of each step can take finitely many values and the mixture

weights (in the distribution of the aggregate shock) are rational. With this restriction, we can

represent any random vector with a mixture distribution in the following manner.

To each variable Xr, r ∈ N , is associated a q × mr row-stochastic matrix A(r), where each

row of A(r) represents a probability distribution for the variable Xr on some finite support with

mr values. The vector (X1, . . . , Xn) is constructed as follows. First, a row index i ∈ {1, . . . , q}

is drawn randomly, according to a uniform distribution over the q possible values. This step

represents the realization of the aggregate shock.17 Then, each variable Xr is independently drawn

from the distribution described by the ith row of A(r). This step represents the realization of

the idiosyncratic shocks. The unconditional marginal distribution of each Xr is described by the

(equally-weighted) average of the rows of A(r). Without loss of generality, we take the support of

each random variable Xr to be {1, . . . ,mr}.

For the representation of mixture distributions described above, greater importance of the

aggregate shock relative to the idiosyncratic shocks should correspond, for each matrix A(r), to

the rows being more different from one another, holding the average of the rows of each A(r), and

hence the unconditional distribution of each Xr, fixed.

The following terminology and notation will be useful to formalize this idea. For any q × m

matrix A, the entries of the (upper) cumulative-sum matrix Ā of A are defined by Āi,j =
∑m

k=j Ai,k.

Thus, Āi,j is decreasing in j. If A is row-stochastic, the first column of Ā has all entries equal to 1.

Clearly, there is a one-to-one mapping between row-stochastic matrices and their cumulative-sum

equivalents.

A row-stochastic matrix A is stochastically ordered if for each k, Āi,k is weakly increasing in

15See the example in Section B of the Appendix.
16In the statistics literature, the distributions described below are often referred to as unidimensional latent variable

models (Holland and Rosenbaum, 1986).
17The analysis can easily be extended to accommodate non-uniform distributions of the aggregate shock, by ap-

propriate replications of the rows of the matrix, as long as these distributions have finite supports and rational

weights.
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i. This is equivalent to the condition that for all i ∈ {2, . . . , q}, the ith row of A dominates the

(i−1)th row in the sense of first-order stochastic dominance, so that higher-index aggregate shocks

are more likely to yield high outcomes for the variable X generated by A. Given a row-stochastic

matrix A, the stochastically-ordered version of Ā, denoted Āso, is the stochastically-ordered matrix

obtained from Ā by reordering each of its columns from the smallest to the largest element. If A

is itself stochastically ordered, then Āso = Ā, and in this case we will use the expressions “A is

stochastically ordered” and “Ā is stochastically ordered” interchangeably.

Our ordering of matrices builds upon Hardy, Littlewood, and Polya’s (1934, 1952) definition of

majorization, which formalizes greater dispersion in the elements of a vector.

Definition 1 A vector a majorizes a vector b of identical dimension if i) the sums of the elements

of a and b are equal, and ii) for all k, the sum of the k largest entries of a is weakly greater than

the sum of the k largest entries of b .

We now present our ordering of matrices, which we term “cumulative column majorization”,

that formalizes the idea that the rows of a matrix A are “more different” from one another than

the rows of B (holding the average of the rows fixed).

Definition 2 Given two row-stochastic matrices A and B of dimension q × m, A dominates B

according to the cumulative column majorization criterion, denoted A �CCM B, if for all

k ≤ m, the kth column vector of Ā majorizes the kth column vector of B̄. Equivalently, A �CCM B

if for for all l ≤ q and k ≤ m,
∑q

i=l Ā
so
i,k ≥

∑q
i=l B̄

so
i,k, with equality holding for l = 1, for all k ≤ m.

Note that the definition of A �CCM B requires that Ā and B̄ have equal column sums. Hence,

if random variable X is generated by matrix A and random variable Y by B, A �CCM B implies

that the unconditional distributions of X and Y are identical.

The main result of this section is the following theorem, providing sufficient conditions for

random vectors X and Y with mixture distributions to be ranked according to the supermodular

ordering.

Theorem 3 Let (A(1), . . . , A(n)) and (B(1), . . . , B(n)) be two sets of row-stochastic matrices gen-

erating the random vectors (X1, . . . , Xn) and (Y1, . . . , Yn), respectively, with for each r ∈ N , A(r)

and B(r) having dimension q×mr. Suppose that, i) for each r ∈ N , A(r) is stochastically ordered,

and ii) for each r ∈ N , A(r) �CCM B(r). Then (X1, . . . , Xn) �SPM (Y1, . . . , Yn).
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We have examples showing that the theorem does not hold if we drop either condition i) or

ii).18 We conjecture that Theorem 3 can be extended to the case where the aggregate shock or the

random vectors have continuous supports.19

The condition that for each r, A(r) �CCM B(r) says that the realization of the aggregate shock

is relatively more informative about what the realizations of {Xr}r∈N will be than about what the

realizations of {Yr}r∈N will be. In the special case where the matrices A(r) and B(r) are both

stochastically ordered, A(r) �CCM B(r) reduces to

q∑
i=l

mr∑
j=k

Ai,j(r) =

q∑
i=l

Āi,k(r) ≥
q∑
i=l

B̄i,k(r) =

q∑
i=l

mr∑
j=k

Bi,j(r) ∀l ≥ 2, k ≥ 2, (10)

coupled with the condition that A(r) and B(r) have matching column sums. Since higher values of i

correspond to higher realizations of the aggregate shock and higher values of j to higher realizations

of Xr, the condition in (10) can be read as saying that the matrix A(r) dominates B(r) in the sense

of “upper-orthant dominance”.20

Example 2 Consider the n-dimensional random vectors X, Y , Z, and V with symmetric mixture

distributions on support L = {1, 2, 3}n, generated by the 2×3 matrices A, B, C, andD, respectively:

A =

 1
2

1
2 0

0 1
2

1
2

 B =

 1
2

1
4

1
4

0 3
4

1
4

 C =

 1
4

3
4 0

1
4

1
4

1
2

 D =

 0 1 0

1
2 0 1

2


18Jogdeo (1978) showed that for any stochastically ordered row-stochastic matrices {A(r)}, the distribution of

(X1, . . . , Xn) generated from them displays association, a widely-used dependence concept defined in Esary, Proschan,

and Walkup (1967). It follows from this and Theorem 2 of Meyer and Strulovici (2012) that the distribution of

(X1, . . . , Xn) dominates its independent counterpart (the independent distribution with identical marginals to X)

according to the supermodular ordering. This result corresponds to the special case of Theorem 3 where for each r,

the matrix B(r) consists of q identical rows.
19If sequences of random vectors {Xs} and {Ys} satisfy Xs �SPM Ys for all s and respectively converge in law

to X and Y , then X �SPM Y . To handle, say, an aggregate shock that was uniformly distributed on [0, 1], the

strategy would be to construct sequences of matrices {A(r)s} and {B(r)s}, representing finer and finer discrete

uniform distributions of the aggregate shock, and to apply Theorem 3 to the sequences of random vectors {Xs} and

{Ys} generated by these matrices. For the continuous analogues of the matrices A(r) and B(r), it is straightforward

to define the continuous analogue of condition i) in Theorem 3, and the definition of cumulative column majorization

can be replaced with a notion of cumulative column Lorenz dominance. One would then need to show that given

these conditions on the continuous analogues of A(r) and B(r), each pair of discretizations A(r)s and B(r)s satisfies

the conditions of Theorem 3.
20Comparisons of row-stochastic matrices underlie Athey and Levin’s (2001) analysis of the informativeness of

signal structures, Dardanoni’s (1993) ordering of mobility, and Andreoli and Zoli’s (2014) comparisons of segregation

and discrimination. All of these papers, however, require both of the matrices being compared to be stochastically

ordered, whereas in our work, the dominated matrix need not be.
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The rows of each matrix have the same arithmetic average, (1
4

1
2

1
4), which represents the common

marginal distribution of each Xr, Yr, Zr, and Vr. A, B, and C are stochastically ordered, so in

each, the first (second) row unambiguously corresponds to a low (high) realization of the aggregate

shock. D, however, is not stochastically ordered. It is easily checked that A �CCM B, A �CCM C,

and A �CCM D. These conditions formally capture the fact that in A, the distribution of the

variables conditional on the low (high) realization of the aggregate shock is more concentrated on

low (high) values, compared to any of B, C, and D. Hence Theorem 3 implies that for any n,

(X1, . . . , Xn) dominates (Y1, . . . , Yn), (Z1, . . . , Zn), and (V1, . . . , Vn) according to �SPM .21

Theorem 3 has potential applications in several areas of economics. In finance and insurance

contexts, the supermodular ordering is useful for comparing the degree of dependence among asset

returns or insurance claims in a portfolio.22 In contrast to the approach taken by Epstein and

Tanny (1980) and Patton (2009), who compare only bivariate distributions, we can, by focusing

on mixture distributions, compare interdependence according to the supermodular ordering for

portfolios with any number of distinct components. Mixture distributions are increasingly used

by financial economists to model positively dependent risks in a portfolio, but our theorem yields

supermodular dominance results for a wider class of such distributions than previous analyses (e.g.

Cousin and Laurent, 2008). Macroeconomists seeking to understand the sources of variation in

aggregate production are naturally interested in the interdependence of output levels across sectors.

Hennessy and Lapan (2003) have in fact proposed using the supermodular ordering to make such

comparisons of “systematic risk”. In the spirit of our mixture distribution analysis, Foerster,

Sarte, and Watson (2011) have empirically explored how the relative importance of aggregate vs.

sectoral shocks affects the covariation of output levels across sectors and hence the volatility of

overall output. In a similar spirit, theoretical analyses of coordination games have used mixture

distributions to examine how changes in the degree of interdependence in agents’ information

sources affect the volatility of aggregate behavior (Myatt and Wallace, 2012). Theorem 3 provides

21For symmetric mixture distributions generated from two-row matrices and for any n ≥ 2, we can show that the

pair of conditions in Theorem 3 are necessary as well as sufficient for X �SPM Y . Example 2 illustrates this result.

B and C cannot be ranked according to �CCM , so it follows from the necessity of the �CCM condition that Y and Z

cannot be ranked according to �SPM . In fact, because the third column of C̄ majorizes (strictly) the third column

of B̄, we can deduce that for w(x) = I{x1≥3,x2≥3}, Ew(Z) > Ew(Y ), and because the second column of B̄ majorizes

(strictly) the second column of C̄, we can deduce that for w(x) = I{x1≥2,x2≥2}, Ew(Y ) > Ew(Z). Moreover, even

though D �CCM B, because D is not stochastically ordered, it follows that V does not supermodularly dominate Y ;

this can be checked by taking w(x) = I{x1≥3,x2≥2}.
22See Müller and Stoyan (2002) and Denuit, Dhaene, Goovaerts, and Kaas (2005).
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a flexible method for generating or modeling distributions that are comparable according to the

supermodular ordering, by changing the relative importance of aggregate and idiosyncratic shocks.

4 Comparing Lotteries

Let (X1, . . . , Xn) ∈ {0, 1}n (resp., (Y1, . . . , Yn) ∈ {0, 1}n) denote the outcomes of n independent

Bernoulli trials, where the probability of success (outcome=1) on trial i is ai (resp., bi). If
∑n

i=1 ai =∑n
i=1 bi, so the expected number of successes is the same for the random vector X as for Y , what

can be said about the relative variability of the distributions of
∑n

i=1 I{Xi=1} and
∑n

i=1 I{Yi=1}?

Using the univariate convex ordering as a measure of variability, Karlin and Novikoff (1963) showed

that if (a1, . . . , an) majorizes (b1, . . . , bn), then Eφ(
∑n

i=1 I{Xi=1}) ≤ Eφ(
∑n

i=1 I{Yi=1}) for all convex

functions φ defined on {0, 1, . . . , n}.

To develop an intuition for why a less dispersed vector of success probabilities generates greater

variability of the total number of successes, consider the case where n = 2, (a1, a2) = (1, 0), and

(b1, b2) = (3
4 ,

1
4). Then

∑n
i=1 I{Xi=1} = 1 with probability 1, while

∑n
i=1 I{Yi=1} takes the values

{0, 1, 2} with probabilities { 3
16 ,

5
8 ,

3
16}.

Propositions 4 and 5, combined with Karlin and Novikoff’s result, imply that if (a1, . . . , an)

majorizes (b1, . . . , bn), then i) (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn) and ii) the symmetrized version of

the distribution of X is dominated by the symmetrized version of the distribution of Y according

to the supermodular ordering.

In what follows, let X ′ = (X ′1, . . . , X
′
n) denote the random vector whose distribution matches

the symmetrized distribution of the random vector X, and define Y ′ similarly. In the example

above, the distribution of (X ′1, X
′
2) places probability 1

2 on (1, 0) and (0, 1), while that of (Y ′1 , Y
′

2)

places probability 5
16 on (1, 0) and (0, 1) and probability 3

16 on (1, 1) and (0, 0). These two joint

distributions have identical (uniform) marginals on {0, 1}. Clearly, (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2), since

the distribution of Y ′ is obtained from that of X ′ by an elementary transformation of size 3
16 .

Moreover, whereas the distribution of (Y ′1 , Y
′

2) displays some negative dependence, the distribution

of (X ′1, X
′
2) displays perfect negative dependence. Finally, note that had we started with a uniform

vector of success probabilities for the independent trials (i.e., (1
2 ,

1
2)), then the resulting multivariate

outcome distribution would have been symmetric, so even after symmetrization it would have

displayed independence.

The example illustrates that lower dispersion in the vector of success probabilities corresponds

not only to higher variability of the total number of successes, but also to symmetric supermodular
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dominance of the n-dimensional outcome distribution. Furthermore, when an independent distribu-

tion on {0, 1}n with unequal marginals is symmetrized, the symmetrized version displays negative

interdependence, and is more negatively interdependent the more different from one another are

the marginals of the original, independent distribution.

This section focuses on multivariate distributions representing the outcome of n independent

lotteries with an arbitrary finite support, exploring the connections between lower dispersion in

the (marginal) distributions of the independent lotteries, the symmetric supermodular ordering on

the joint distribution of lottery outcomes, and the degree of negative interdependence in the sym-

metrized versions of these joint distributions. Given two sets of n independent lotteries, Theorem 4

provides sufficient conditions for their outcome distributions to be comparable according to the

symmetric supermodular ordering, or equivalently, for the degree of negative interdependence of

the symmetrized versions of their outcome distributions to be comparable according to the super-

modular ordering. We show below how Theorem 4 can be used to compare different production

designs in the presence of complementarity among tasks and in Section 5.1 how it can be used to

compare ex post inequality of reward schemes under uncertainty.

We consider random vectors (X1, . . . , Xn) and (Y1, . . . , Yn) generated by n×m row-stochastic

matrices A and B, respectively, as follows: the ith row of A (resp. B) represents the marginal

distribution of Xi (resp. Yi) on support {1, . . . ,m}, and the {Xi} (resp. {Yi}) are independent.23

Just as above we compared sets of n independent Bernoulli trials with the same average success

probability, here we compare sets of n independent lotteries with the same average distribution

over the m prizes. This constraint translates into the requirement that for each j, the jth column

of A has the same sum as the jth column of B.

Denote by (X ′1, . . . , X
′
n) and (Y ′1 , . . . , Y

′
n) the random vectors whose distributions match the

symmetrized distributions of (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. The common marginal

distribution of the {X ′i} is the average of the rows of matrix A. Hence, requiring that the matrices

being compared have matching column sums implies that the common marginal distribution of the

{X ′i} is identical to that of the {Y ′i }.

In the Bernoulli example above, dispersion of the n-vector of success probabilities was captured

by majorization. For n lotteries with m-point supports, represented by the n rows of a matrix,

our cumulative column majorization ordering defined in Section 3 formalizes the notion of greater

dispersion in the lotteries, holding their average fixed.

23The choice of support {1, . . . ,m} for eachXi and Yi is without loss of generality, since the symmetric supermodular

ordering is invariant to monotonic coordinate changes that preserve the symmetry of the lattice.
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Theorem 4 below provides sufficient conditions for two sets of independent lotteries to be com-

parable according to the symmetric supermodular ordering. These sufficient conditions are very

closely related to the sufficient conditions for supermodular dominance of mixture distributions

identified in Theorem 3, and the techniques for proving these theorems are likewise very similar.

Theorem 4 Let A and B be n × m row-stochastic matrices generating the independent random

vectors (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. Let (X ′1, . . . , X
′
n) and (Y ′1 , . . . , Y

′
n) have distri-

butions matching the symmetrized distributions of (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. Sup-

pose that i) A is stochastically ordered, and ii) A �CCM B. Then (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn)

and (X ′1, . . . , X
′
n) ≺SPM (Y ′1 , . . . , Y

′
n).

As with Theorem 3, we have examples showing that Theorem 4 does not hold if we drop either

condition i) or ii).24

As a first application of Theorem 4 (a second is developed in Section 5.1), we revisit Bond and

Gomes’s (2009) multi-task principal-agent model. Suppose that each row i of A andB represents the

distribution of performance, over m possible levels, on one of n tasks, and that performance levels

are independently distributed across tasks. The production function is symmetric and supermodular

in the performance levels on the different tasks, reflecting interchangeability and complementarity

among tasks. A manager must choose how to allocate resources across the different tasks, thereby

shifting the distributions of performance, subject to a constraint on the average distribution over

all tasks. Theorem 4 identifies conditions under which expected production is higher in one setting

than the other for all symmetric supermodular production functions.

Bond and Gomes focus on binary outcomes for each task (m = 2). An agent chooses a level

ei ∈ [e, e] of effort for each task i, incurring a total effort cost
∑n

i=1 ei. The probability of success

on task i equals ei, and the principal’s benefit is assumed to be a convex function of the number

of successes, so it is a symmetric supermodular function of the vector of binary task outcomes.

For a given
∑n

i=1 ei, Bond and Gomes show that the socially efficient allocation of this total effort

involves equal effort on all tasks. However, the optimal contract rewarding the agent as a function

of the number of successes may well induce the agent to exert minimal effort e on a subset of tasks

and maximal effort e on the remainder. In this case, given the total effort exerted, the agent’s effort

24Hu and Yang (2004, Theorem 3.4) showed that for any stochastically ordered row-stochastic matrix A, the

symmetrized version of the distribution of X displays negative association (a concept of negative dependence defined

in Joag-Dev and Proschan (1983)), which in turn implies that this symmetrized version is supermodularly dominated

by its independent counterpart (the independent symmetric distribution with identical marginals). This latter result

corresponds to the special case of Theorem 4 where the rows of the matrix B are all identical.
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allocation actually minimizes expected social surplus. Theorem 4 implies these conclusions about

the best and worst allocations from a social perspective.25

More generally, Theorem 4 allows us to examine, for arbitrary m and n, the existence, in the

sense of the symmetric supermodular ordering, of a best and worst set of independent lotteries,

holding fixed the average distribution over the prizes. Because the symmetric supermodular or-

dering is a partial ordering, one should not generally expect the existence of a best and a worst

distribution. However, Proposition 11 (in the Appendix) shows that for the class of distributions

considered here, a best and a worst set of lotteries do indeed exist.

5 Applications

5.1 Welfare and Ex Post Inequality

When individual outcomes are uncertain, members of a group may be concerned, ex ante, about ex

post inequality.26 As argued by Meyer and Mookherjee (1987), an aversion (on the part of a group

or a social planner) to ex post inequality can be formalized by adopting an ex post welfare function

that is symmetric and supermodular in the realized utilities of the individuals. Consider a specific

illustration. Intuitively, when groups dislike ex post inequality, tournament reward schemes, which

distribute a fixed set of rewards among individuals, one to each person, should be particularly

unappealing. This suggests that tournaments should be dominated, in the sense of the symmetric

supermodular ordering, by reward schemes that provide each individual with the same marginal

distribution over rewards but determine rewards independently. Meyer and Mookherjee (1987)

proved this conjecture, but only for the special case of a symmetric tournament (one in which each

25The effort allocation determines an n × 2 row-stochastic matrix, the second column of which is the vector of

success probabilities, and holding the total effort fixed corresponds to fixing the column sums of the matrix. With

two columns, any row-stochastic matrix can be converted into a stochastically ordered one by reordering rows (an

operation which will have no effect on the expected value of a symmetric objective function). Therefore, with

m = 2, Theorem 4 implies that, holding total effort fixed, if the vector of success probabilities from one effort

allocation majorizes the vector from another, then the former allocation generates lower expected social surplus, for

all symmetric supermodular benefit functions. (Bond and Gomes’s conclusions also follow from Karlin and Novikoff’s

(1963) result for Bernoulli trials, discussed above). The final step is to observe that a vector of equal success

probabilities is majorized by all vectors with the same total; and one in which all probabilities are either minimal or

maximal (e or e) majorizes all vectors with the same total.
26See Meyer and Mookherjee, 1987; Meyer, 1990; Ben-Porath et al, 1997; Gajdos and Maurin, 2004; Hopkins and

Kornienko, 2010; Chew and Sagi, 2012; and Grant et al, 2012. This concern is distinct from concerns about the mean

and riskiness of rewards.

23



individual has an equal chance of winning each of the rewards), and their method of proof was

laborious. Theorem 4 can be applied to generalize this result to tournaments that are arbitrarily

asymmetric across individuals.

With n individuals and n distinct prizes, a “tournament” reward scheme allocates each of the

prizes to exactly one individual, and it is fully described by the probability it assigns to each of the n!

possible prize allocations. For welfare computations, a tournament may be summarized by a matrix

B that is bistochastic (both its columns and its rows sum to 1), where the ith row of B describes

individual i’s marginal distribution over the n prizes. The more asymmetric the tournament is,

the more disparate are the rows of the corresponding matrix B. Given any tournament, consider

the associated reward scheme giving each individual the same marginal distribution as in the

tournament, but which determines individual rewards independently. For any tournament, however

asymmetric, Theorem 4 implies that expected ex post welfare under the tournament is less than or

equal to expected ex post welfare under the independent joint distribution of rewards sharing the

same set of marginals, for all symmetric and supermodular ex post welfare functions.27

Proposition 6 For any number n of individuals, given any tournament, the joint distribution of

prizes under the tournament is dominated, according to the symmetric supermodular ordering, by

the independent joint distribution sharing the same set of marginals.

5.2 Search in Committees

There are many contexts where it is of interest to assess the degree of alignment in the preferences or

information of members of decision-making groups.28 Modeling consensus-building in committees,

27For a symmetric tournament, the joint distribution of rewards is dominated according to the supermodular

ordering by the independent joint distribution sharing the same set of marginals. To see why, when analyzing

tournaments that are arbitrarily asymmetric, we need to impose symmetry of the ex post welfare function, consider

the following tournament with n = 3: with probability 1
2
, prizes h, m, and l, where h > m > l, are allocated to

individuals 1, 2, and 3, respectively, and with probability 1
2
, h, m, and l are allocated to individuals 3, 1, and 2,

respectively. In this tournament, the rewards to 1 and 2 are positively dependent, even though the rewards to 1 and

3 (as well as the rewards to 2 and 3) are negatively dependent. The positive dependence of the rewards to 1 and 2

implies that the tournament reward distribution is not supermodularly dominated by the corresponding independent

distribution. When we impose symmetry of the ex post welfare function, in addition to supermodularity, we are

comparing the “average” degree of negative interdependence across the whole set of individuals. Equivalently, as

Proposition 4 showed, we are comparing the interdependence of the symmetrized versions of the tournament reward

distribution and of the independent joint distribution with the same marginals.
28See Boland and Proschan (1988) and Baldiga and Green (2013) on alignment of preferences, and Prat (2002) and

Gendron-Saulnier and Gordon (2014) on alignment of information.
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Caillaud and Tirole (2007) study how the degree of interdependence of members’ ex ante uncertain

payoffs from a proposal affects the proposer’s persuasion strategy. In a model of search and voting,

Moldovanu and Shi (2013) examine how the degree of alignment in committee members’ prefer-

ences affects equilibrium search and welfare. Both papers focus on the unanimity rule and impose

restrictions on the payoff distributions: in Caillaud and Tirole, payoffs are binary, while Moldovanu

and Shi focus on a single-parameter family of payoff functions. Here, we use the supermodular

ordering as a non-parametric, n-dimensional ordering of interdependence in preferences and adapt

and generalize Moldovanu and Shi’s analysis of search and voting.

Job candidates are interviewed sequentially, without recall, by an n-person committee. The

period-t candidate has attribute vector Xt = (X1t, . . . , Xnt), where Xt is i.i.d. across periods and

has a known distribution. Committee member i’s utility equals Xit if the period-t candidate is

hired (in which case search stops), and i incurs search cost ci of evaluating attribute i for each

new candidate. We suppose initially that unanimous approval is required for a candidate to be

hired, otherwise search continues. If (Y1, . . . , Yn) ∼ g, (X1, . . . , Xn) ∼ f , and (Y1, . . . , Yn) �SPM
(X1, . . . , Xn), we will say that members’ interests are more aligned when the values of the attributes

are distributed according to g than when they are distributed according to f .

In equilibrium, each member i chooses a reservation level zi for attribute i, and the equilibrium

reservation levels (z1, . . . , zn) satisfy the n simultaneous equations

ci = E
[
(Xi − zi)I{Xj≥zj∀j}

]
, i = 1, . . . , n. (11)

Each member i equates his cost of one more search with the expected gain from one more search,

assessed relative to stopping now and obtaining zi. Since search will stop next period if and only if

all members approve the next candidate, the expected gain to member i depends on the reservation

levels of the others via the factor I{Xj≥zj∀j} multiplying (Xi − zi).

The key observation is that the gain to each member i from one more search (square brackets

in (11)) is supermodular in (X1, . . . , Xn) for all (z1, . . . , zn). To see this, rewrite this expression

as
∏n
j=1 rj(Xj , zj), where each rj(Xj , zj) is nonnegative and increasing in Xj . Supermodularity

implies that, as interests become more aligned, each member’s expected gain from one more search

increases. Since the right-hand side of (11) is decreasing in zi, a greater alignment of interests

implies that the optimal zi increases, for all z−i. It follows that if the committee is symmetric (ci = c

for all i and the distributions of attributes are symmetric across members), then a greater alignment

implies that the common equilibrium reservation value increases: members become choosier.

To examine how the impact of greater alignment of interests depends on the voting rule, suppose
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now that a candidate is hired if and only if at least m of the n members vote to stop searching.

For given (z1, . . . , zn), let K(z1, . . . , zn) = {k|Xk ≥ zk}. The equilibrium reservation levels satisfy

ci = E
[
(Xi − zi)I{|K|≥m}

]
, i = 1, . . . , n. (12)

When unanimity is required to reject a candidate (m = 1), the expression in square brackets can

be written as (Xi − zi) + |Xi − zi|I{Xj<zj∀j}, which is again supermodular in (X1, . . . , Xn), for all

(z1, . . . , zn).29 Consequently, for this alternative voting rule, the same comparative statics result

as above holds.

Proposition 7 For symmetric committees of any size, equilibrium search becomes longer as com-

mittee members’ interests become more aligned, both when the voting rule requires unanimity for

accepting a candidate and when it requires unanimity for rejecting one.

However, for intermediate voting rules, the realized gain from one more search is no longer

supermodular everywhere.30 This failure can have a bite: we have examples with three members

and the simple majority rule for which greater alignment in members’ interests results in lower

equilibrium reservation values and hence shorter search duration.

5.3 Systemic Risk and Financial Networks

Financial economists, stimulated by the financial crisis, have been developing measures of “systemic

risk”, capturing the interdependence of the components of the financial system as a whole.31

This application shows that changes in the structures of financial linkages between banks can

naturally lead to distributions of default risks that are ranked according to the symmetric super-

modular ordering. We revisit the model developed by Allen, Babus, and Carletti (2012), who

consider a particular diversification strategy of banks, asset-swapping, and examine how the pat-

tern of asset swaps affects market outcomes and welfare. We generalize a stylized version of their

29It is the sum of two supermodular functions, the second of which is supermodular because it can be written as∏n
j=1 rj(Xj , zj), where each rj(Xj , zj) is nonnegative and decreasing.
30To see why supermodularity can fail, observe that when two other committee members both switch their vote

from “no” to “yes”, this may be enough to hire a candidate such that i’s realized gain, Xi − zi, is strictly negative,

even when a switch by just one of the other two members would not be enough to get that candidate hired, in which

case i’s realized gain would be 0.
31For example, Adrian and Brunnermeier (2009) and Acharya et al (2010) develop measures of association between

negative events for an individual firm and negative events for the market. Beale et al (2011) study the interplay

between diversification at the level of the financial institution, which lowers individual risk, and increasing similarity

of institutions’ portfolios, which raises systemic risk.
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model,32 focusing on how different patterns of asset swaps (represented by different networks)

generate multivariate distributions of bank failures with different degrees of interdependence.

Consider six banks and two networks of asset swaps, the “clustered” and the “unclustered”.

Each bank i funds a project with return θi ∈ {L,H}. The projects’ returns are i.i.d. with P (θi =

H) = p. In the clustered network, banks 1,2, and 3 swap assets among themselves so that each of

them holds an identical portfolio with return Y ′i = 1
3

∑3
j=1 θj for i ≤ 3, and similarly for banks 4,5,

and 6. In the unclustered network, banks are arranged in a circle, and each bank swaps one-third

of its assets with each of its two neighbors, yielding returns X ′i = 1
3(θi−1 mod 6 + θi + θi+1 mod 6)

for all i. The marginal distribution of each bank’s return is the same in the two networks, but

the form of the interdependence of bank returns differs. In the clustered network, banks in the

same cluster have perfectly positively dependent returns, while those in different clusters have

independent returns; in the unclustered network, by contrast, the dependence between a given

bank’s return and that of its neighbors is strongly positive (but imperfect), that between its own

return and those of its neighbors’ neighbors is weakly positive, and its return is independent of

that of the remaining bank. Suppose a bank defaults (solvency status=0) if its return is less than

or equal to some level d ∈ [L,H), otherwise it is solvent (solvency status=1). Let banks’ solvency

statuses in the clustered network be described by (Y1, . . . , Y6) ∈ {0, 1}6, so Yi = I{Y ′i>d}, and in the

unclustered network by (X1, . . . , X6) ∈ {0, 1}6, so Xi = I{X′i>d}.

We compare systemic risk in the two networks by using the symmetric supermodular ordering

to compare the interdependence of the random vectors (Y1, . . . , Y6) and (X1, . . . , X6). Supermod-

ularity of the “systemic cost function” C(x1, . . . , x6) reflects the judgment that the additional cost

to the system from two bank defaults is higher than the sum of the marginal costs from each indi-

vidual default, and symmetry reflects the fact that the banks in this setting are of equal size.3334

Proposition 5 can be applied to show the following result:

32Compared to our model, Allen et al (2012) restrict attention to the case where projects are equally likely to

succeed and fail and where a bank defaults if and only if all three of the projects in its portfolio fail. Their model

involves additional features, such as different maturities of debt, through which interdependence of banks’ returns

indirectly influences welfare.
33By using a symmetric supermodular function for comparisons of expected systemic cost, we are comparing the

“average” degree of interdependence across the whole set of banks.
34Since the marginal distribution of each bank’s return, and hence of each bank’s solvency status, is the same

across the two networks, it is irrelevant whether or not we specifically restrict C(x1, . . . , x6) to be decreasing: when

comparing multivariate distributions with identical marginals, the decreasing (symmetric) supermodular ordering is

equivalent to the (symmetric) supermodular ordering. See the remark following Theorem 2.
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Proposition 8 For any probability of project success p and for any common failure threshold d for

banks, (Y1, . . . , Y6) �SSPM (X1, . . . , X6). Hence for any supermodular and symmetric systemic cost

function, expected systemic cost is higher under the clustered than under the unclustered network.

The joint distributions of solvency statuses compared in Proposition 8, which have support

{0, 1}6, are the coarsened (and translated) versions of the joint distributions of the actual bank

returns, which have support {L, 2L+H
3 , L+2H

3 , H}6. Proposition 5 can also be applied to examine

whether the distributions of actual (uncoarsened) returns under the clustered and unclustered

networks can be ranked according to �SSPM . We can show that this stronger result does not hold,

by constructing a symmetric supermodular systemic cost function defined on {L, 2L+H
3 , L+2H

3 , H}6

whose expectation is strictly higher under the unclustered network than under the clustered one.

5.4 Other Applications

Multidimensional Deprivation

The supermodular ordering is a useful tool for making comparisons of deprivation given data

on multiple attributes, such as income, health, and education.35 To compare multidimensional

deprivation between two datasets (e.g., two countries, two time periods), one popular strategy is to

aggregate across attributes to generate a deprivation measure for each individual and then sum these

measures to obtain an aggregate deprivation measure for the whole dataset. Importantly, under this

strategy, comparisons of deprivation depend upon i) whether the different dimensions are regarded

as complements or substitutes in the individual deprivation function and ii) the interdependence

in the joint distributions of attributes in the two datasets.

According to the intersection approach, an individual is deemed “multidimensionally deprived”

if, for each attribute i, his achievement xi falls below some threshold zi (see Alkire and Foster

(2011) and Atkinson (2003)). This approach implies an individual deprivation function of the form

d(x1, . . . , xn) = I{xi≤zi ∀i}, which is supermodular, since it is a lower-orthant indicator function.

Therefore, if one multidimensional distribution of achievements dominates another according to the

supermodular ordering, the aggregate level of deprivation obtained by summing this deprivation

measure over individuals is higher for the former distribution than for the latter, regardless of the

thresholds. By contrast, the union approach classifies an individual as deprived if and only if there

35See Atkinson and Bourguignon, 1982, the Symposium in Honor of Amartya Sen in the Journal of Public Eco-

nomics, Vol. 95, 2011, and the Symposium on Inequality and Risk in the Journal of Economic Theory, Vol. 147,

2012.

28



is at least one dimension i in which xi ≤ zi. The deprivation function is now submodular36 and leads

to the opposite result: higher interdependence in the multidimensional distribution of achievement

levels, in the sense of the supermodular ordering, implies lower aggregate deprivation.

In the intersection approach, there is a complementarity among the different dimensions in the

determination of individual deprivation. A natural generalization, which retains this complementar-

ity, would make individual deprivation an increasing convex function of the number of dimensions

in which xi falls below the threshold zi:

d(x1, . . . , xn) = φ

(
n∑
i=1

I{xi≤zi}

)
, (13)

where φ is increasing and convex. Similarly, a natural generalization of the union approach, which

retains the substitutability among the different dimensions, would express individual deprivation in

the form (13) where φ is increasing and concave. Our analysis easily extends to these deprivation

functions.37

Prediction and Parameter Estimation

Consider the problem of making a prediction θ̃ about the value of an unknown parameter θ, to

minimize the value of a loss function L(θ̃ − θ) that is convex and minimized at 0. The prediction

is based on some data (X1, . . . Xn), where Xi has distribution Fi(·|θ), conditional on θ. We focus,

for this illustration, on the case in which the estimator θ̃ is an affine function of the observed

variables:38 θ̃ =
∑
κiXi for some nonnegative weights {κi}i=1,...,n.

The supermodular ordering can be used to compare the richness of various datasets, holding

fixed the marginal distributions Fi(·|θ). Intuitively, a dataset is richer if it comes from independent

sources instead of closely related ones. Formally, let the datasets (X1, . . . , Xn) and (Y1, . . . , Yn)

be generated by joint distributions F (·|θ) and G(·|θ), respectively, and suppose that F (·|θ) ≺SPM
G(·|θ) for all θ. Then, since L(

∑
i κixi − θ) is supermodular in (x1, . . . , xn) for all θ, we have that

36The individual deprivation measure is d(x1, . . . , xn) = 1 − I{xi≥zi ∀i}, which is a submodular function of

(x1, . . . , xn), since the supermodular upper-orthant indicator function appears with a negative sign.
37In either case, we can regard the binary variables x′i ≡ I{xi≤zi} as coarsened versions of the original data. For

φ convex (concave), the deprivation function in (13) is a symmetric supermodular (symmetric submodular) function

of (x′1, . . . , x
′
n). Therefore, for a given vector of thresholds (z1, . . . , zn), aggregate deprivation will be lower in one

population than another, for all deprivation measures in the class in (13) with φ convex (concave), if and only

if the distribution of (x′1, . . . , x
′
n) in one population is more (less) interdependent, in the sense of the symmetric

supermodular ordering, than in the other. Proposition 5 then shows that in this context, symmetric supermodular

dominance is equivalent to univariate convex dominance for distributions of
∑n

i=1 x
′
i =

∑n
i=1 I{xi≤zi}.

38While special, affine estimators are pervasive in statistics and econometrics. If, for example, (X1, . . . , Xn) are

exchangeable and have mean θ, then θ̃ will be the sample average of those variables.
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EF [L(
∑
κiXi−θ)|θ] ≤ EG[L(

∑
κiYi−θ)|θ] for all nonnegative {κi}, for all convex L, and for all θ.

That is, for a given affine estimator θ̃, the dataset (X1, . . . , Xn) in which the observations are richer,

in the sense of being less supermodularly dependent, generates a better prediction of the unknown

parameter. From this it follows that the less supermodularly dependent dataset also generates a

better prediction when the weights {κi} can be chosen optimally according to the dataset.

Matching

The supermodular ordering is well suited for comparing the efficiency of two-sided or many-sided

matching mechanisms when the outcomes of the matching process are subject to frictions. With

production functions that are supermodular in the qualities of the different components of a match,

efficient matching is perfectly assortative, corresponding to a perfectly positively dependent joint

distribution of the random variables representing the qualities of each component. In the presence of

noisy information, costly search, or credit constraints, perfectly assortative matching will generally

not arise. In these settings, Theorem 1 and the constructive methods of Section 2.1 can be used

to assess when one matching mechanism will generate higher expected surplus than another, for

all supermodular production functions. While applications to two-sided matching problems have

received some attention,39 multi-dimensional applications remain largely unexplored.40

Decision Making

The application to committee decisions illustrated the relationship between increased inter-

dependence and the comparative statics of decisions, showing how greater alignment in agents’

preferences, as captured by supermodular dominance of the distribution of agents’ payoffs, affected

committee search and voting behavior. As another example, Gollier (2011) applies the super-

modular ordering in the bivariate case to study how the efficient discount rate in an extended

Ramsey-type model depends on the interdependence between initial consumption and the growth

rate of consumption. A more systematic exploration of the role of the supermodular ordering in the

comparative statics analysis of decisions should be a particularly fruitful area for future research.

39Fernandez and Gali (1999) use the known bivariate characterization of the supermodular ordering (Levy and

Paroush, 1974) to compare the efficiency losses from markets and tournaments as allocative mechanisms in an economy

with borrowing constraints. Meyer and Zeng (2013) employ the ordering to compare assignment mechanisms when

qualities are ex ante uncertain and different mechanisms generate and use different information. Chade and Eeckhout

(2013) study positive and negative sorting in a related environment.
40One exception is Prat (2002), but he compares only a perfectly positively dependent joint distribution with an

independent one.
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6 Discussion

6.1 Continuous Support

The supermodular ordering on a continuous support can be characterized in terms of all its discrete

coarsenings. For F,G with continuous densities on L = ×i[ai, bi], define the supermodular ordering

on L as follows: F ≺CSPM G if and only if E[w|F ] ≤ E[w|G] for all integrable supermodular

functions on L.

A finite coarsening L̃ of L is defined by a finite partitioning L̃i of each Li. The coarsened version

of F on L̃ is the distribution F̃ such that for all x̃ ∈ L̃, F̃ (x̃) is the probability that F puts on the

on the cell (hyperrectangle) defined by the Cartesian product of the x̃i’s: F̃ (x̃) = F (×ix̃i). For

any function w on L, the coarsened version w̃ of w on L̃ is the average of w over the hyperrectangle

defined by each ×ix̃i. Formally,

w̃(x̃) =

∫
×ix̃i

w(x)dx∫
×ix̃i

dx
. (14)

In light of the robustness to coarsening of the ordering ≺SPM noted in Section 2, it is not surprising

that the supermodular ordering on L is stronger than the supermodular ordering on every finite

coarsening of L. With continuous densities, the following equivalence result holds.

Theorem 5 Suppose that distributions F and G have continuous densities. F ≺CSPM G if and

only if F̃ ≺SPM G̃ on all finite coarsenings L̃ of L.

6.2 Copulas

A useful approach to examining the interdependence of random variables, which is widespread

in econometrics and finance and gaining prominence in the study of intergenerational mobility

and income dynamics, is based on the concept of a copula.41 Given any distribution function F of

n variables, with marginal distributions F1, . . . , Fn, Sklar’s theorem (1959) guarantees the existence

of a function C : [0, 1]n → [0, 1] such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (15)

41Copulas are used in statistics and econometrics to model the intertemporal dependence of time series (see for

example Joe (1997, Ch. 8), and Beare (2010)). For applications in risk management and derivative pricing, see

Embrechts (2009) and Li (2000). Bonhomme and Robin (2006) use copulas to model individual earnings trajectories,

and Chetty et al (2014) use them to examine intergenerational mobility.
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C is called the copula of F . With discrete support, the values of the copula are pinned down on

the domain L̃ ≡ {(F1(x1), . . . , Fn(xn)) : (x1, . . . , xn) ∈ L}. The copula of a discrete distribution is

therefore essentially unique.

Since Xi ∼ Fi implies that Fi(Xi) ∼ U [0, 1], the copula is a distribution function each of whose

marginal distributions is uniform on [0, 1]. By normalizing marginal distributions to be uniform,

copulas allow an exclusive focus on interdependence. Nevertheless, there remains the need to

find an appropriate way of comparing copulas. The supermodular ordering, since it is based on

complementarities in objective functions, provides an economically meaningful way to compare

interdependence in copulas.

Proposition 9 F ≺SPM G on L if and only if F and G have identical marginals and their copulas

satisfy CF ≺SPM CG on L̃.

Several works have examined whether copulas within specific parametric families with continu-

ous supports can be ranked according to the supermodular ordering.42 In contrast, the methods we

have developed in this paper for characterizing and applying the supermodular ordering allow non-

parametric comparisons of copulas. This feature makes our methods useful for comparing empirical

copulas, as well as theoretical ones.43

42Positive results have been obtained for Archimedean copulas and asymmetric extensions thereof by Wei and

Hu (2002) and for Gaussian, Student t, Clayton, and Marshall-Olkin families of copulas by Burtschell et al (2009).
43Chetty et al (2014) decompose the joint distribution of parent and child income into the copula and the marginal

distributions; this approach allows them to disentangle changes over time in relative mobility from changes in in-

equality. They coarsen the empirical copula by aggregating parent and child incomes into quintiles.
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Appendix

A Proofs for Section 2

Proof of Theorem 1 Supermodular functions are characterized by the property (Topkis, 1978) that

w ∈ S ⇐⇒ w(x+ ei + ej) + w(x) ≥ w(x+ ei) + w(x+ ej) (16)

for all i 6= j and x ∈ L such that x+ ei + ej ∈ L. Equivalently,

w ∈ S ⇐⇒ w · t ≥ 0 ∀t ∈ T . (17)

Equation (3) holds if and only if g − f belongs to the convex cone C(T ) generated by T , defined by C(T ) =

{
∑
t∈T αtt : αt ≥ 0 ∀t ∈ T }. From (17), S is the dual cone of C(T ). Since C(T ) is closed and convex, this

implies (Luenberger, 1969, p. 215) that C(T ) is the dual cone of S:

δ ∈ C(T ) ⇐⇒ w · δ ≥ 0 ∀w ∈ S.

Therefore, f ≺SPM g if and only if g − f ∈ C(T ). �

Proof of Proposition 1 Suppose that the hypotheses hold but that f 6= g. Then Theorem 1 implies that at

least one αt in (3) must be strictly positive. Let tzij denote a t ∈ T such that αt > 0. For the supermodular

function w(x) = xixj , the inequality in (16) is strict for all x, so w · tzij > 0 and thus w · g > w · f .

Therefore E(YiYj) > E(XiXj), and since any t ∈ T leaves marginal distributions unchanged, it follows that

Cov(Yi, Yj) > Cov(Xi, Xj), yielding a contradiction. �

Proof of Proposition 2 Without loss of generality, we prove the claim for the case where Li = {0, 1, . . . ,mi−
1} (other cases are treated with an obvious modification of the function w below). Consider a point x ∈ L
and a pair of dimensions i, j such that the elementary transformation t∗ ≡ tx−ei−eji,j is well-defined. Suppose

that, contrary to the claim, there exist nonnegative coefficients αs such that

t∗ =
∑

s∈T \{t∗}

αss. (18)

Define the function w on L by w(x) = ( 3
4 )2

∑
k xk and, for y 6= x, w(y) = 2

∑
k yk . It is easy to check that

w is supermodular. Moreover, w makes a strictly positive scalar product with all t ∈ T except for those of

the form tx−ek−elk,l for some dimensions k, l. Since t∗ is one of the elementary transformations of this form,

taking the scalar product of w with both sides of (18) yields

0 =
∑

s∈T \{t∗}

αs(w · s).

This equation in turn implies that αs = 0 for all transformations s ∈ T \ {t∗} except possibly those of the

form tx−ek−elk,l for some k, l. However, t∗ cannot be a positive linear combination of only transformations

of this form. To see this, observe that any s 6= t∗ of the form tx−ek−elk,l for some k, l must take value 0 at

x− ei − ej , whereas t∗ evaluated at x− ei − ej equals 1. �

Constructive proof of Theorem 1 for bivariate distributions

For bivariate distributions f and g, we will prove that f ≺SPM g implies the existence of a unique set

of nonnegative coefficients {αt}t∈T such that g − f =
∑
t∈T αtt, and we identify each αt.
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Since for each i ∈ N and each ki ∈ Li, the functions w(z) = I{zi≥ki} and w(z) = I{zi≤ki} are supermod-

ular, f ≺SPM g implies that f and g have identical marginals. Given our narrow definition of elementary

transformations in (2), for bivariate f and g with identical marginals, there is a unique representation of

g − f as
∑
t∈T αtt, where the weights αt can have arbitrary signs. To see this, note that if L has m1 ×m2

elements, then g − f is fully described by its values at (m1 − 1) × (m2 − 1) points, and there are exactly

(m1−1)× (m2−1) linearly independent elementary transformations. Let L− denote the (m1−1)× (m2−1)

points v ∈ L such that v + e1 + e2 ∈ L. Indexing the elementary transformations in T by the points in L−,

write the unique representation of g − f as
∑
x∈L− αxt

x. We now identify each αx and show that αx ≥ 0.

For v ∈ L−, define Iv as the indicator function of the lower-orthant set {z|z ≤ v}. Each such Iv is

supermodular. For each v ∈ L−,

Iv · (g − f) = Iv · (
∑
x∈L−

αxt
x) =

∑
x∈L−

αx(Iv · tx) = αv. (19)

The third equality in (19) follows since Iv · tv = 1, whereas for all x ∈ L− such that x 6= v, Iv · tx = 0. Hence

if f ≺SPM g, then g − f =
∑
x∈L− αxt

x, where for each x ∈ L−, αx = Ix · (g − f) = G(x)− F (x) ≥ 0.

It is easy to adapt this argument to provide a simple constructive proof, for bivariate distributions,

of Theorem 2 for the ordering ≺ISPM . Once again, the construction is greatly simplified by our narrow

definitions of the two types of elementary transformations, corresponding to the two orderings ≺SPM and

≺FOSD.

Proof of Proposition 3 There always exists a feasible vector (α, β), namely (α, β) = (0, δ+). Moreover, the

optimum value of program (4) is nonnegative since the feasibility constraints require that β have nonnegative

components. If f ≺SPM g, there exists α∗ ≥ 0 such that E+α∗ = δ+, so the optimum value of the program

must be zero, since that value is achieved by (α, β) = (α∗, 0). Reciprocally, if there exists (α∗, β∗) such that

the value of the program is zero, then necessarily β∗ = 0 and E+α∗ = δ+. �

Proof of Theorem 2 The equivalence of conditions 2) and 3) follows from Theorem 1, the definition of γ,

and the decomposition result in (6). It is obvious that 2) implies 1). We now show that 1) implies 3). For

any supermodular w, let

w0(z) = w(z)−
n∑
i=1

w(ziei) + (n− 1)w(0),

where ziei is the vector with ith component equal to zi and all other components equal to 0. Clearly,

w0(ziei) = 0 for all i and zi, and therefore, since γ(z) = 0 for all z 6= ziei for some i and some zi, w
0 · γ = 0.

Moreover, w0 is supermodular, since it is the sum of supermodular functions, and w0 is increasing, since for

any z ∈ L and i such that z + ei ∈ L, supermodularity of w0 yields

w0(z + ei)− w0(z) ≥ w0((zi + 1)ei)− w0(ziei) = 0.

Letting δ = g − f , g �ISPM f implies, therefore, that w0 · δ ≥ 0 and hence, since w0 · γ = 0, we have
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w0 · (δ − γ) ≥ 0. Furthermore,

(w − w0) · (δ − γ) =
∑
z∈L

[
(δ(z)− γ(z))

(
n∑
i=1

w(ziei)− (n− 1)w(0)

)]

=
∑
z∈L

[
(δ(z)− γ(z))

(
n∑
i=1

w(ziei)

)]

=

n∑
i=1

mi−1∑
k=0

( ∑
z:zi=k

(δ(z)− γ(z))

)
w(kei)

= 0,

where the second line follows since
∑
z∈L(δ(z) − γ(z)) = 0 and the final equality follows since (8) holds

for all i and all k. Thus, since w0 · (δ − γ) ≥ 0, it follows that w · (δ − γ) ≥ 0, proving the first part of

condition 3). Finally, taking, for each i ∈ N and k ∈ {1, . . . ,mi − 1}, w(z) = I{zi≥k}, g �ISPM f implies

that
∑
z:zi≥k g(z) ≥

∑
z:zi≥k f(z), proving the second part of 3). �

Proof of Proposition 5 Recall that for L = {0, 1, . . . ,m − 1}n, k ∈ {1, . . . ,m − 1}, and x ∈ L, c̄k(x) ≡∑n
i=1 I{xi≥k} and c̄(x) ≡ (c̄1(x), . . . , c̄m−1(x)). Since all permutations of x correspond to the same c̄(x), a

function w is symmetric if and only if it can be written as w(x) = φ(c̄(x)), for some φ defined on L̃m−1, the

range of c̄(x). We now show that a function w of this form is supermodular if and only if φ(·) is supermodular

and componentwise convex.44

As stated in (17), a function w is supermodular if and only if w · t ≥ 0 for every elementary transfor-

mation txi,j ∈ T , as defined in (2). For L = {0, 1, . . . ,m − 1}n, there are two distinct types of elementary

transformation txi,j , those in which for some k ∈ {1, . . . ,m− 1}, xi = xj = k− 1, and those in which xi 6= xj .

For w symmetric, w · t ≥ 0 for all t = txi,j such that xi = xj = k − 1 if and only if the corresponding

function φ defined above is componentwise convex with respect to its kth argument, c̄k(x). Moreover, for

w symmetric, w · t ≥ 0 for all t = txi,j such that xi = k − 1 and xj = l − 1, k 6= l, if and only if the

corresponding φ is supermodular with respect to c̄k(x) and c̄l(x). Applying these two results for all i, j ∈ N
and all k, l ∈ {1, . . . ,m − 1} shows that a symmetric w defined on L is supermodular if and only if the

correspoding φ defined on L̃m−1 is componentwise convex and supermodular in all its arguments. �

B Incomparability of Mixture Distributions: Example

Let Xi = θ + εi, where θ and {εi}i∈N are all independent, θ equals 2 or -2 with probability p and 1 − p,
respectively, and each εi equals 1 or -1 with probability 1− p and p, respectively. Similarly, let Yi = θ′ + ε′i,

where θ′ and {ε′i}i∈N are all independent, θ′ equals 1 or -1 with probability 1 − p and p, respectively, and

each ε′i equals 2 or -2 with probability p and 1 − p, respectively. X and Y have identical marginals, and

the common shock would seem to be more important relative to the idiosyncratic shock in the distribution

of X than in Y . Nevertheless, for any p 6= 1
2 , the distributions of Y and X cannot be ranked according to

the supermodular ordering. To see this, note that all upper-orthant and lower-orthant indicator functions

are supermodular, and observe that for p > (<) 1
2 , P (X1 ≥ 3, X2 ≥ 3) < (>)P (Y1 ≥ 3, Y2 ≥ 3) and

P (X1 ≤ −3, X2 ≤ −3) > (<)P (Y1 ≤ −3, Y2 ≤ −3).

44Functions that are both supermodular and componentwise convex have been studied by Marinacci and Montruc-

chio (2005) and by Müller and Scarsini (2012), where they are termed “ultramodular”.

35



References

Acharya, V.V., Pedersen, L.H., Philippon, T., and Richardson, M. (2010) “Measuring Systemic Risk,” N.Y.U.

W.P.

Adrian, T., and Brunnermeier, M.K. (2009) “CoVar,” Fed. Res. Bank of N.Y. Staff Report 348.

Alkire, S., and Foster, J. (2011) “Counting and Multidimensional Poverty Measurement,” J. of Public Economics,

95, 476-87.

Allen, F., Babus, A., and Carletti, E. (2012) “Asset Commonality, Debt Maturity and Systemic Risk,” J. of

Financial Economics, 104, 519-34.

Andreoli, F., and Zoli, C. (2014) “Measuring Dissimilarity,” Working Paper 23, Dept. of Economics, Univ. of

Verona.

Athey, S., and Levin, J. (2001) “The Value of Information in Monotone Decision Problems”, Working Paper,

Stanford University.

Atkinson, A. B., and Bourguignon, F. (1982) “The Comparison of Multi-Dimensioned Distributions of Economic

Status,” Review of Economic Studies, 49, 183-201.

Atkinson, A. B. (2003) “Multidimensional Deprivation: Contrasting Social Welfare and Counting Approaches,” J.

of Economic Inequality, 1, 51-65.

Avis, D., and Fukuda, K. (1982) “A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements

and Polyhedra,” Discrete and Computational Geometry, 8, 295–313.

Avis, D., and Bremner, D. (1995) “How Good Are Convex Hull Algorithms?” 11th Annual ACM Symposium on

Computational Geometry, Vancouver, B.C., 20-8.

Baldiga, K., and Green, J.R. (2013) “Assent-Maximizing Social Choice,” Social Choice and Welfare, 40, 439–60.

Beale, N., Rand, D., Battey, H., Croxson, K., May, R., and Nowak, M. (2011) “Individual versus Systemic

Risk and the Regulator’s Dilemma,” Proc. of the National Academy of Sciences, 108, 12647-52.

Beare, B. (2010) “Copulas and Temporal Dependence,” Econometrica, 78, 395–410.

Ben-Porath, E., Gilboa, I., and Schmeidler, D. (1997) “On the Measurement of Inequality under Uncertainty,”

J. of Economic Theory, 75, 194–204.

Bertsimas, D., and Tsitsiklis, J. (1997) Introduction to Linear Optimization, Athena Scientific.

Boland, P., and Proschan, F. (1988) “Multivariate Arrangement Increasing Functions with Applications in Prob-

ability and Statistics,” J. Multivariate Analysis, 25, 286–98.

Bond, P., and Gomes, A. (2009) “Multitask Principal-Agent Problems: Optimal Contracts, Fragility, and Effort

Misallocation,” J. of Economic Theory, 144, 175–211.

Bonhomme, S., and Robin, J.-M. 2006 “Modeling Individual Earnings Trajectories Using Copulas: France, 1990-

2002,” Contributions to Economic Analysis, 275, 441-78.

Burtschell, X., Gregory, J., and J.-P. Laurent (2009) “A Comparative Analysis of CDO Pricing Models under

the Factor Copula Framework,” J. of Derivatives, 16, 9-37.

Caillaud, B., and Tirole, J. (2007) “Consensus Building: How to Persuade a Group,” American Economic Review,

97, 1877–900.

Chade, H., and Eeckhout, J. (2013) “Stochastic Sorting,” Working paper, Arizona State University and University

of Pompeu Fabra.

Chetty, R., Hendren, N., Kline, P., Saez, E., and Turner, N. (2014) “Is the United States Still a Land of

Opportunity? Recent Trends in Intergenerational Mobility,” American Econ. Review, 104, 141-47.

Chew, S.H., and Sagi, J. (2012) “An Inequality Measure for Stochastic Allocations,” J. of Economic Theory, 147,

1517-44.

36



Cousin, A., and Laurent, J.-P. (2008) “Comparison Results for Exchangeable Credit Risk Portfolios,” Insurance:

Mathematics and Economics, 42, 1118–27.

Dardanoni, V. (1993) “Measuring Social Mobility,” J. of Economic Theory, 61, 372–394.

Denuit, M., Dhaene, J., Goovaerts, M.J., and Kaas, R. (2005) Actuarial Theory for Dependent Risks: Measures,

Orders, and Models, Wiley.

Dwielwulski, P., and Quah, J. (2014) “Testing for Production with Complementarities,” Oxford Dept. of Eco-

nomics Disc. Paper 722.

Embrechts, P. (2009) “Copulas: A Personal View,” J. of Risk and Insurance, 76, 639–50.

Epstein. L., and Tanny, S. (1980) “Increasing Generalized Correlation: A Definition and Some Economic Conse-

quences,” Canadian J. of Economics, 13, 6–34.

Fernandez, R., and Gali, J. (1999) “To Each According to...? Markets, Tournaments, and the Matching Problem

with Borrowing Constraints,” Review of Economic Studies, 66, 799–824.

Foerster, A.T., Sarte, P.-D. G., and Watson, M.W. (2011) “Sectoral vs. Aggregate Shocks: A Structural

Factor Analysis of Industrial Production,” J. of Political Economy, 119, 1-38.

Fukuda, K. (2004) “Frequently Asked Questions in Polyhedral Computation”, mimeo, Swiss Federal Institute of

Technology.

Fukuda, K., and Prodon, A. (1996) “Double Description Method Revisited.” In Combinatorics and Computer

Science, Lecture Notes in Computer Science, 1120, 91–111. Springer.

Gajdos, T., and Maurin, E. (2004) “Unequal Uncertainties and Uncertain Inequalities: An Axiomatic Approach,”

J. of Economic Theory, 116, 3–118.

Gendron-Saulnier, C., and Gordon, S. (2014)“Information Choice and Diversity: The Role of Strategic Com-

plementarities”, Working Paper, Dept. of Economics, Sciences Po.

Genest, C., and Verret, F. (2002) “The TP2 Ordering of Kimeldorf and Sampson has the Normal-Agreeing

Property,” Statistics and Probability Letters, 57, 387-391.

Giovagnoli, A., and Wynn, H.P. (2008) “Stochastic Orderings for Discrete Random Variables,” Statistics and

Probability Letters, 78, 28272835.

Gleser, L. (1975) “On the Distribution of the Number of Successes in Independent Trials,” Annals of Probability,

3, 182–8.

Gollier, C. (2011) “Discounting, Inequalities and Economic Convergence,” mimeo, Toulouse School of Economics.

Goldman, A. J., and Tucker, A. W. “Polyhedral Convex Cones”. In Linear inequalities and related systems, Ann.

of Mathematics Studies 38, eds. H. W. Kuhn and A. W. Tucker. Princeton Univ. Press, 19–39.

Grant, S., Kajii, A., Polak, B., and Safra, Z. (2012) “Equally-Distributed Equivalent Utility, Ex Post Egali-

tarianism and Utilitarianism,” J. of Economic Theory, 147, 1545–1571.

Hardy, G.H., Littlewood, J.E., and Polya, G. (1952) Inequalities, Cambridge: Cambridge University Press,

2nd edition (1st edition 1934).

Hennessy, D. A., and Lapan, H. E. (2003) “A Definition of ‘More Systematic Risk’ with Some Welfare Implica-

tions,” Economica, 70, 493–507.

Hoeffding, W. (1956) “On the Distribution of the Number of Successes in Independent Trials,” Annals of Mathe-

matics and Statistics, 27, 713–21.

Holland, P. W., and Rosenbaum, P. R. (1986) “Conditional Association and Unidimensionality in Monotone

Latent Variable Models,” Annals of Statistics, 14, 1523–43.

Hopkins, E., and Kornienko, T. (2010) “Which Inequality? The Inequality of Endowments versus the Inequality

of Rewards,” Amer. Econ. J.: Microeconomics, 2, 106-37.

Hu, T., and Yang, J. (2004) “Further Developments on Sufficient Conditions for Negative Dependence of Random

Variables,” Statistics and Probability Letters, 66, 369–81.

37



Joag-Dev, F., and Proschan, F. (1983) “Negative Association of Random Variables, with Applications,” Annals

of Statistics, 11, 286-95.

Joe, H. (1990) “Multivariate Concordance,” J. of Multivariate Analysis, 35, 12–30.

Joe, H. (1997) Multivariate Models and Dependence Concepts, Chapman & Hall, London.

Jogdeo, K. (1978) “On a Probability Bound of Marshall and Olkin,” Annals of Statistics, 6, 232–34.

Karlin, S., and Novikoff, A. (1963) “Generalized Convex Inequalities,” Pacific J. of Mathematics, 13, 1251–79.

Levy, H., and Paroush, J. (1974) “Toward Multivariate Efficiency Criteria,” J. of Economic Theory, 7, 129–42.

Li, D. (2000) “On Default Correlation: A Copula Function Approach,” J. of Fixed Income, 9, 43–54.

Luenberger, D. (1969) Vector Space Optimization, Wiley, New York.

Marinacci, M., and Montrucchio, L. (2005) “Ultramodular Functions,” Mathematics of Operations Research,

30, 311–332.

Meyer, M.A. (1990) “Interdependence in Multivariate Distributions: Stochastic Dominance Theorems and an Ap-

plication to the Measurement of Ex Post Inequality under Uncertainty,” Nuffield College D. P. No. 49.

Meyer, M. A., and Mookherjee, D. (1987) “Incentives, Compensation and Social Welfare,” Review of Economic

Studies, 45, 209–26.

Meyer, M.A., and Strulovici, B. (2012) “Increasing Interdependence of Multivariate Distributions,” J. of Eco-

nomic Theory, 147, 1460–89.

Meyer, M.A., and Zeng, Q.C. (2013) “Matching with Informational Frictions,” draft, Nuffield College, Oxford.

Milgrom, P., and Roberts, J. (1990) “The Economics of Modern Manufacturing: Technology, Strategy, and

Organization,” American Economic Review, 80, 511–528

Milgrom, P., and Roberts, J. (1995) “Complementarities and Fit Strategy, Structure, and Organizational Change

in Manufacturing,” Journal of Accounting and Economics, 19, 179–208.

Moldovanu, B., and Shi, X. (2013) “Specialization and Partisanship in Committee Search,” Theoretical Economics,

8, 751-774.

Motzkin, T., Raiffa, H., Thompson, G., and Thrall, R. (1953) “The Double Description Method”. In H. W.

Kuhn and A. W. Tucker eds., Contributions to the Theory of Games II, 51-73.

Müller, A. (2013) “Duality Theory and Transfers for Stochastic Order Relations”. In H. Li and X. Li eds., Stocha-

stic Orders in Reliability and Risk, Springer, 41-57.

Müller, A., and Scarsini, M. (2000) “Some Remarks on the Supermodular Order,” J. of Multivariate Analysis,

73, 107-19.

Müller, A., and Scarsini, M. (2012) “Fear of Loss, Inframodularity, and Transfers,” J. of Economic Theory, 147,

1490-500.

Müller, A., and Stoyan, D. (2002) Comparison Methods for Stochastic Models and Risks, Wiley.

Myatt, D., and Wallace, C. (2012) “Endogenous Information Acquisition in Coordination Games,” Review of

Economic Studies, 79, 340-74.

Patton, A. (2009) “Are ‘Market Neutral’ Hedge Funds Really Market Neutral?,” Review of Financial Studies, 22,

2495–530.

Prat, A. (2002) “Should a Team Be Homogenous?,” European Economic Review, 46, 1187–1207.

Promislow, S.D., and Young, V.R. (2005) “Supermodular Functions on Finite Lattices,” Order, 22, 389413.
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Online Appendix

C Proof of Theorem 3

Suppose first that X and Y have symmetric mixture distributions: A(r) and B(r) have dimension q ×m
and do not depend on r. Denote by Ā (resp. B̄) the common cumulative-sum matrix generating the Xr’s

(resp. the Yr’s). Then we seek to show that for all supermodular w,

Ew(X1, . . . , Xn) =
1

q

q∑
i=1

E[w(X1, . . . , Xn)|Āi,•) ≥
1

q

q∑
i=1

E[w(Y1, . . . , Yn)|B̄i,•) = Ew(Y1, . . . , Yn), (20)

where Āi,• (resp. B̄i,•) denotes the ith row of Ā (resp. B̄).

Let p̄ ≡ (p̄1, . . . , p̄m) denote an arbitrary upper-cumulative vector corresponding to a discrete distribution

on support {1, . . . ,m}. We have p̄1 = 1 and p̄k−1 ≥ p̄k for all k. For any supermodular function w on Rn,

define w̄(p̄) by

w̄(p̄) = E[w(X1, X2, . . . , Xn)|p̄].

Using this definition, (20) can be rewritten as

Ew(X1, . . . , Xn) =
1

q

q∑
i=1

w̄(Āi,•) ≥
1

q

q∑
i=1

w̄(B̄i,•) = Ew(Y1, . . . , Yn). (21)

The function w̄ is defined on a convex lattice of Rm and inherits several properties from the supermodularity

of w, as shown in the next lemma.45 A function h(x1, . . . , xj , . . . , xm) is componentwise convex if, when

considered as a function of just xj , it is convex for each j, for all values of the other m− 1 arguments.

Lemma 1 If w is supermodular, w̄ is supermodular and componentwise convex.

Proof. Changing any component p̄k of p̄ affects all of the Xi’s and hence has a complicated effect on w̄. It

is useful to consider, as an intermediate step, a setting where each of the independent variables Xi has its

own upper-cumulative distribution vector p̄i, so p̄ir = P (Xi ≥ r), r ∈ {1, . . . ,m}. Define

ŵ(p̄1, . . . , p̄n) = E[w(X1, . . . , Xn)|p̄1, . . . , p̄n]. (22)

Lemma 2 For any supermodular w, ŵ(p̄1, . . . , p̄n) has the following properties:

∂2ŵ

∂p̄ir∂p̄
i
s

= 0 for all i ∈ N and r, s ∈ {1, . . . ,m},

∂2ŵ

∂p̄ir∂p̄
j
s

≥ 0 for all i 6= j ∈ N and r, s ∈ {1, . . . ,m}.

Proof. The first part of the lemma is standard, and comes from the linearity of the objective with respect

to the probability distribution, which holds also in terms of the cumulative distribution vector. The second

part comes from supermodularity of w. As is easily checked, we have,46 we have

∂ŵ

∂p̄ir
= E[w(X−i, r)− w(X−i, r − 1)],

45The domain of w̄ is a simplex and is clearly convex. Moreover, the inequalities p̄1 ≥ p̄2 ≥ · · · p̄m reduce to

pairwise inequalities of the form p̄i ≥ p̄j , and define a lattice, as is well known (Topkis, 1968, 1978).
46Changing p̄ir, keeping pis constant for s 6= r, only affects the marginal probabilities of Xi being equal to r and

r − 1, increasing the former and decreasing the latter in equal proportions.
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and, applying the same transformation to the (difference) function w(x−i, r)− w(x−i, r − 1),

∂2ŵ

∂p̄ir∂p̄
j
s

= E[w(X−(i,j), r, s) + w(X−(i,j), r − 1, s− 1)− w(X−(i,j), r − 1, s)− w(X−(i,j), r, s− 1)],

which is nonnegative, by supermodularity of w. �

To conclude the proof of Lemma 1, observe that w̄(p̄) = ŵ(p̄, . . . , p̄). Second-order derivatives of w̄

involve only second-order derivatives of ŵ. Lemma 2 then yields the result. �

Now suppose that the aggregate shock takes only two possible values, so both the matrices Ā and B̄

have only two rows (q = 2). The following lemma shows how Lemma 1, in conjunction with stochastic

ordering of A and A �CCM B, ensures that (21) holds. With q = 2, condition i) in Lemma 3 implies that

A is stochastically ordered, and conditions ii) and iii) are equivalent to A �CCM B. (For all row-stochastic

matrices, the first column of the corresponding cumulative-sum matrix has all entries equal to 1.)

Lemma 3 Suppose that q = 2 and that there exists a nonnegative vector ε such that for all k ∈ {2, . . . ,m},
i) Ā2,k ≥ Ā1,k + εk; ii) B̄1,k = Ā1,k + εk; and iii) B̄2,k = Ā2,k − εk. Then (X1, . . . , Xn) �SPM (Y1, . . . , Yn).

Proof. The function w̄ is polynomial in p̄ and hence twice differentiable. Moreover, by Lemma 1, it is su-

permodular and componentwise convex, which implies that all of its second-order derivatives are everywhere

nonnegative on its domain. Letting p̄ (resp. π̄) denote the first (resp. second) row of Ā, we need to show

that for any m-vectors p̄, π̄, and ε ≥ 0 such that p̄+ ε ≤ π̄ and ε1 = 0, the following inequality holds:

w̄(p̄) + w̄(π̄) ≥ w̄(p̄+ ε) + w̄(π̄ − ε). (23)

Equivalently, we need to show that

w̄(p̄+ ε)− w̄(p̄) =

∫ 1

0

m∑
k=2

w̄k(p̄+ αε)εkdα ≤
∫ 1

0

m∑
k=2

w̄k(π̄ − ε+ αε)εkdα = w̄(π̄)− w̄(π̄ − ε),

where w̄k denotes the kth partial derivative of w̄. Let δ = π̄ − ε− p̄ ≥ 0. For each k ∈ {2, . . . ,m},

w̄k(π̄ − ε+ αε)− w̄k(p̄+ αε) =

∫ 1

0

m∑
k̃=2

w̄kk̃(p̄+ αε+ βδ)δk̃dβ ≥ 0, (24)

where the inequality holds since, by Lemma 1, all second-order derivatives of w̄ are nonnegative. Summing

these inequalities over k from 2 to m and integrating with respect to α from 0 to 1 then yields the result.�

Starting from the stochastically ordered matrix Ā, the matrix B̄ described in Lemma 3 is obtained by a

simple transformation that shifts a small amount of weight from the stochastically dominant row (row 2) to

the dominated row (row 1), in (possibly) every column except the first. Such a transformation clearly makes

the rows of the cumulative-sum matrix more similar, while keeping the column sums fixed, thus reducing the

importance of the aggregate shock while leaving the unconditional distribution of each variable unchanged.

To complete the proof, we show that given any A and B such that A is stochastically ordered and

A �CCM B, Ā can be converted into B̄ through a sequence of simple transformations of the form in

Lemma 3, affecting only two of the q rows. We first prove the claim when B is stochastically ordered (Step

1) and then extend the argument to the general case (Step 2). From (20), the unconditional expectation of

any objective function w is the average of the q possible expected values of w, conditional on the realization

of the aggregate shock, i.e., the average of the q possible values of w̄, as in (21). Therefore, given Lemma 1,
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for any supermodular w, each simple transformation in the sequence reduces the average value of w̄ and

hence reduces the expected value of w.

Since Ā and B̄ are the cumulative-sum equivalents of the q ×m row-stochastic matrices A and B, Āi,k

and B̄i,k lie in [0, 1] and are weakly decreasing in k. Moreover, for any cumulative-sum matrix, the first

column has all entries equal to 1, so we will henceforth ignore the first column of all such matrices. A

stochastically ordered means that Āi,k is weakly increasing in i. A �CCM B means that for each k, the

column vector Ā•,k majorizes the column vector B̄•,k. Below, we sometimes abuse notation slightly and use

the expression Ā �CCM B̄ to mean the same thing as A �CCM B.

C.1 Step 1: Analysis when B is stochastically ordered

When B is stochastically ordered, B̄i,k is weakly increasing in i. We first consider the case in which B̄ has

strictly monotonic entries across row and column indices (ignoring, as noted, above, the first column), so

χ = min
i,k
{B̄i+1,k − B̄i,k, B̄i,k − B̄i,k+1} > 0.

The case where B̄ has strictly monotonic entries

The proof consists in building, by induction on k, a sequence of matrices whose first k columns are

identical to those of B̄ and such that the mixture distributions generated from them are dominated by that

generated from Ā according to the supermodular ordering. Let k denote the smallest column index such

that the kth columns Ā•,k and B̄•,k of Ā and B̄ are distinct.

Lemma 4 There exists a stochastically ordered cumulative-probability matrix C such that i) C•,k̃ = B̄•,k̃
for all k̃ ≤ k; ii) for all k, C•,k majorizes B̄•,k; and iii) the mixture distribution corresponding to C is

SPM-dominated by that corresponding to Ā.

Proof. Let C solve the optimization problem

inf
E

∑
i≥2

∑
j≥i

Ej,k

 (25)

subject to the following constraints:

1. Ei,k ∈ [0, 1] for all i, k;

2. E satisfies row monotonicity (the entries in each row of E are decreasing in the column index);

3. E is stochastically ordered (the entries of E are increasing in the row index);

4. E dominates B̄ according to the cumulative column criterion (i.e., each column of E majorizes the

corresponding column of B̄);

5. the mixture distribution corresponding to E is SPM-dominated by that corresponding to Ā;

6. E•,k̃ = B̄•,k̃ for all k̃ < k.

The set of E’s satisfying these constraints is compact (as a closed, bounded subset of a finite dimensional

space) and nonempty (since Ā belongs to it), and the objective (25) is continuous. Therefore, its minimum

is reached by some C.
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We will show that C•,k is equal to B̄•,k, which will prove the lemma. Suppose, by contradiction, that

C•,k 6= B̄•,k. Since C•,k majorizes B̄•,k and C•,k 6= B̄•,k, there must exist a row i such that47

Ci,k ≤ B̄i,k and Ci+1,k > B̄i+1,k. (26)

We will show that it is possible to increase Ci,k by a small amount ε, and decrease Ci+1,k by the same

amount and modify some other entries, in such a way that the resulting matrix D satisfies all the constraints

of the minimization problem (25). Such change only affects the i + 1 partial sum of (25), and decreases it

by an amount ε, which will yield the desired contradiction.

Let k̄ denote the largest column index such that Ci+1,k̃ = Ci+1,k for all k̃ ∈ [k, k̄],48 and let D denote

the matrix identical to C for all rows other than i and i + 1 and for all columns outside of [k, k̄], and such

that

1. Di,k̃ = Ci,k̃ + ε

2. Di+1,k̃ = Ci+1,k̃ − ε = Ci+1,k − ε

for all k̃ ∈ [k, k̄], for some small positive constant ε that we will determine later.

We first check D is row-monotonic for ε small enough. First, D inherits this property from C for all

rows other than i and i + 1. For row i, we need to check that adding ε to Ci,k does not raise it above

Ci,k−1 (if k = 1, there is nothing to check). This comes from the fact that Ci,k ≤ Ci,k−1 − χ, since

Ci,k ≤ B̄i,k ≤ B̄i,k−1 − χ = Ci,k−1 − χ. For i+ 1, we must check that reducing Ci,k̄ by some small amount

does not take it below Ci,k̄+1. This comes from the definition of k̄.49

Second, we check that D is stochastically ordered. This is clearly true for all columns outside of [k, k̄],

where D inherits this property from C. For columns k̃ ∈ [k, k̄], we use that Ci,k + ε ≤ Ci+1,k − ε for all

ε ≤ χ/2,50 which yields the inequalities

Di,k̃ ≤ Di,k = Ci,k + ε ≤ Ci+1,k − ε = Di+1,k̃.

We now show that the columns of D majorize those of B̄. It suffices to check that∑
j≥i+1

Dj,k̃ ≥
∑
j≥i+1

B̄j,k̃ (27)

for all k̃ ∈ [k, k̄]. All other majorization inequalities hold trivially since D has the same relevant partial sums

as C for columns outside of [k, k̄] and for row indices other than i+ 1. By construction, we have∑
j≥i+2

Dj,k̃ =
∑
j≥i+2

Cj,k̃ ≥
∑
j≥i+2

B̄j,k̃ (28)

For k̃ > k, we have

Di+1,k̃ = Ci+1,k − ε ≥ B̄i+1,k − ε ≥ B̄i+1,k̃

47The set I(k) = {i :
∑

j≥i Cj,k >
∑

j≥i B̄j,k} is nonempty. Let ī = max I(k). It suffices to take i = max{j < ī :

Cj,k ≤ B̄j,k}.
48Possibly, k̄ is equal to the number of columns of C.
49If k̄ equals the number of columns of C, we note that, necessarily, Ci+1,k ≥ B̄i,k + χ > 0, so we can indeed

decrease the entries of C’s (i+ 1)-row by an amount ε < χ without creating negative entries.
50Indeed, we have Ci,k ≤ Ci+1,k − χ from both inequalities of (26) and strict monotonicity of B̄.
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where the last inequality holds for ε ≤ χ. For k̃ = k, we have, for ε < Ci+1,k − B̄i+1,k (which is strictly

positive, by our choice of i, see (26)),

Di+1,k = Ci+1,k − ε ≥ B̄i+1,k

Combining this with (28) implies (27).

Finally, because rows i and i + 1 of the matrices C and D satisfy the assumptions of Lemma 3, the

mixture distribution corresponding to C SPM-dominates that corresponding to D.51 By transitivity, this

implies that the mixture distribution corresponding to Ā SPM-dominates that corresponding to D.

Therefore, D satisfies all of the constraints of the minimization problem above and, compared to C,

improves the objective by ε, thus providing the desired contradiction. �

To conclude the proof of Step 1 of Theorem 3, it suffices to apply Lemma 4 iteratively, transforming the

first column of Ā into that of B̄, then the second, until Ā is entirely converted into B̄.

The case where B̄ is not strictly monotonic

When B̄ is not strictly monotonic, we approximate Ā and B̄ by a sequence of cumulative-sum ma-

trices Ā(N), B̄(N) with the following properties: i) Ā(N), B̄(N) are strictly monotonic (and, in particular,

stochastically ordered), with minimal increase χN = 1/N , ii) Ā(N) majorizes B̄(N), and iii) Ā(N) and B̄(N)

converge, respectively, to Ā and B̄ as N → ∞. The previous analysis shows that the mixture distribution

corresponding to Ā(N) SPM-dominates that corresponding to B̄(N) for each N . Taking the limit as N goes

to infinity then shows the result.

To show that this approximating sequence exists for N large enough, we scale down the entries of Ā and

B̄ by a factor 1− (q + (m− 1))/N where q × (m− 1) are the matrix dimensions of Ā and B̄,52 and add the

matrix E(N) such that E(N)i,j = 1
N (i + (m − j)) to the scaled down matrices to obtain Ā(N) and B̄(N).

By construction, and given the hypotheses on Ā and B̄, these matrices are strictly increasing with minimal

increase 1/N and have entries less than 1. Moreover, one may easily check, for each N , each column of Ā(N)

still majorizes the corresponding column of B̄(N), since the scaling and addition operations do not affect

the ranking of those partial sums.

C.2 Step 2: Analysis when B is not stochastically ordered

Let B̄so denote the stochastically ordered version of B̄, whose kth column consists of the entries of the kth

column of B̄, ordered from the smallest to the largest. B̄so is also row monotonic. Indeed, B̄soi,k is the ith

smallest entry in the column B̄•,k. Since B̄ is row monotonic, that entry must be larger than the ith smallest

entry in the column B̄•,k+1, which is equal to B̄soi,k+1. Moreover, majorization comparisons are the same

between columns of Ā and B̄so as they were with Ā and B̄. Therefore, Ā dominates B̄so according to the

cumulative column criterion and, applying the previous analysis to Ā and B̄so, we conclude that the mixture

distribution corresponding to Ā SPM-dominates that corresponding to B̄so. It then suffices to show that

the mixture distribution corresponding to B̄so SPM-dominates that corresponding to B̄.

We convert B̄so to B̄ by a sequence of pairwise row transformations, of the form defined in Lemma 3.

To clarify the exposition of the algorithm, for each column of B̄so, we refer the cardinal values of the

51Lemma 3 concerns matrices with only two rows. However, by construction of the mixture distribution, the

objective is linearly separable in the rows of the cumulative matrix generating the distribution, and gives equal

weight to each row. Therefore, Lemma 3 applies to arbitrarily many rows, as long as only two rows are changed.
52Recall that we have excluded the first column of ones that may appear in cumulative matrices.
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ordered entries, in rows 1, 2, . . . , q, by their ordinal values 1, 2, . . . , q, and we use the same cardinal-to-ordinal

transformation to label the entries in each column of B̄.53 Starting from the last row, q, of B̄so, whose entries

are equal to q after the cardinal-to-ordinal transformation, we will move these ’q’-labeled entries upwards,

gradually, so as to position them as in B̄. We do this by a sequence of entry permutations between rows q

and i, for i starting from q−1 until i reaches 1. This will be done so that, after the step involving rows q and

i, the rows with indices strictly below q remain stochastically ordered, and the qth row continues to be row

monotonic and to stochastically dominate each of the rows with indices strictly below i. This guarantees that

the application of Lemma 3, at each step, is valid. Each transformation results in a matrix corresponding

to a mixture distribution that is SPM-dominated by the mixture distribution corresponding to the previous

matrix. By transitivity, therefore, the mixture distribution corresponding to B̄ is SPM-dominated by that

corresponding to B̄so.

Starting with rows q and q − 1, we flip entries of B̄so for each column j in which B̄q,j 6= q. The result

is that some entries in the last row of the matrix are now equal to q − 1, with the corresponding entries in

row q − 1 equal to q, for exactly those columns where B̄q,j 6= q. As a result, the q and q − 1 rows of B̄so are

no longer stochastically ordered, but both rows still (stochastically) dominate all rows with indices less than

q − 2. The next step is to flip entries between rows q and q − 2 of the new resulting matrix, for columns in

which the qth-row entry does not match qth-row entry of B̄. As a result, the qth row now (possibly) contains

entries labeled ‘q− 2’ while row q− 2 row may contain some ‘q− 1’ entries. Notice that, i) rows q, q− 1, and

q − 2 still dominate all rows with indices less than q − 3, and ii) row q − 1 dominates row q − 2. Point ii)

holds because row q − 2 inherited a ‘q − 1’ only if row q − 1 inherited a ‘q’ entry. Proceeding systematically

by decreasing, at each step, the index i of the row whose entries are swapped with those of row q, the result

after these q − 1 steps is that the qth row now has the same entries as the qth row of B̄, and that the first

q − 1 rows of the resulting matrix are still stochastically ordered.

The next stage of the algorithm leaves the new qth row untouched. In q− 2 steps analogous to the q− 1

steps in the first stage, it transforms row q − 1 into row q − 1 of B̄; it does so while preserving at each step

the stochastic ordering of the first q− 2 rows and guaranteeing that row q− 1 dominates rows with which it

has not yet been flipped. Applying this larger algorithmic loop to each row q − 1, q − 2, . . . 2, in decreasing

index order, we eventually transform B̄so into B̄ through a sequence of steps, each of which generates a

matrix corresponding to a mixture distribution that is SPM-dominated by the previous one.

Finally, we must check that each step preserves row monotonicity, that is, the property that entries in

each row are weakly decreasing in the column index. This is necessary because Lemma 3 applies only to

pairs of rows that satisfy this condition. Consider the first stage of the conversion from B̄so to B̄, which

consists of a series of pairwise transformations between the qth row of B̄so and its ith row, for i decreasing

from q − 1 to 1. Let D(i) denote the matrix that results after the step involving rows q and i, and let

D = D(1) denote the resulting matrix at the end of this entire first stage. The submatrix of D where the

last row has been removed is the stochastically ordered version of the submatrix of B̄ where the last row

has been removed. In particular, the former submatrix satisfies row monotonicity. Moreover, row j of D(i)

is identical to row j of D for j ≥ i and j 6= q, and is equal to the jth row of B̄so for j < i. All rows

j of D(i) with j < q thus satisfy row monotonicity. It remains to show that row q of D(i) also satisfies

row monotonicity. Observe that D(i)q,k is equal to the ith largest entry, B̄soi,k, of B̄so•,k if Dq,k is smaller

53For example, if the second column of B̄ has entries B̄1,2 = .3, B̄2,2 = .4, and B̄3,2 = .1, so that B̄so
1,2 = .1,

B̄so
2,2 = .3, and B̄so

3,2 = .4, then entries are converted to B̄1,2 = 2, B̄2,2 = 3, and B̄3,2 = 1, so that B̄so
1,2 = 1, B̄so

2,2 = 2,

and B̄so
3,2 = 3. If there are ties, the way ties are broken does not matter, as is clear from the algorithm.
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than B̄soi,k, and to Dq,k otherwise. Now consider any two consecutive columns k − 1 and k. We must show

that D(i)q,k−1 ≥ D(i)q,k. If D(i)q,k = Dq,k, then we use the fact that Di,k−1 ≥ Dq,k−1 ≥ Dq,k. If, instead,

D(i)q,k = B̄soi,k, then we use the fact that D(i)q,k−1 ≥ B̄soi,k−1 ≥ B̄soi,k. This demonstrates row monotonicity

of D(i), for all i ∈ {1, . . . , q− 1} and, hence, the applicability of Lemma 3 for each transformation described

in the algorithm above.

C.3 Extension of the proof to asymmetric distributions

In the general case where the random vectors X and Y have asymmetric mixture distributions, the matrices

A(r) andB(r), of dimension q×mr, vary with r. Now, using the function ŵ(p̄1, . . . , p̄n) = E[w(X1, . . . , Xn)|p̄1, . . . , p̄n]

defined in (22) in the proof of Lemma 1, we can write

Ew(X1, . . . , Xn) =
1

q

q∑
i=1

ŵ(Ā(1)i,•, . . . , Ā(n)i,•)

Ew(Y1, . . . , Yn) =
1

q

q∑
i=1

ŵ(B̄(1)i,•, . . . , B̄(n)i,•), (29)

where Ā(r)i,• denotes the ith row of Ā(r) and B̄(r)i,• the ith row of B̄(r).

For each r, let B̄(r)soi,• denote the ith row of B̄so(r), the stochastically ordered version of B̄(r). The

argument proceeds by first transforming Ā(1) into B̄(1)so, in a manner analogous to what we did for the

symmetric case in Step 1. We need to check that Lemma 3 can be applied as in Step 1. To do so, pick two

realizations, i and j, of the aggregate shock, and consider the ith and jth rows of the matrices {Ā(r)}1≤r≤n.

Using notation analogous to that used in inequality (23) in the proof of Lemma 3, and for r ≥ 2 defining

p̄(r) = Ā(r)i,• and π̄(r) = Ā(r)j,•, we must check that the following inequality holds:

ŵ(p̄, p̄(2), . . . , p̄(n)) + ŵ(π̄, π̄(2), . . . , π̄(n)) ≥ ŵ(p̄+ ε, p̄(2), . . . , p̄(n)) + ŵ(π̄ − ε, π̄(2), . . . , π̄(n)). (30)

To generalize the argument used to prove Lemma 3, we begin by writing

ŵ(p̄+ ε, p̄(2), . . . , p̄(n))− ŵ(p̄, p̄(2), . . . , p̄(n)) =

∫ 1

0

m1∑
k=2

∂ŵ

∂p̄1
k

(p̄+ αε, p̄(2), . . . , p̄(n))εkdα

ŵ(π̄, π̄(2), . . . , π̄(n))− ŵ(π̄ − ε, π̄(2), . . . , π̄(n)) =

∫ 1

0

m1∑
k=2

∂ŵ

∂p̄1
k

(π̄ − ε+ αε, π̄(2), . . . , π̄(n))εkdα.

Now let δ(1) = π̄ − ε− p̄ and δ(r) = π̄(r)− p̄(r) for r ≥ 2. Analogously to (24) in the proof of Lemma 3 we

have, for each k ∈ {2, . . . ,m1},

∂ŵ

∂p̄1
k

(π̄ − ε+ αε, π̄(2), . . . , π̄(n)) − ∂ŵ

∂p̄1
k

(p̄+ αε, p̄(2), . . . , p̄(n)) (31)

=

∫ 1

0

n∑
r=1

mr∑
k̃=2

∂2ŵ

∂p̄1
k∂p̄

r
k̃

(p̄+ αε+ βδ(1), βδ(2), . . . , βδ(n))δk̃(r)dβ

≥ 0,

where the inequality follows from the fact, as established in Lemma 2, that all cross-partial derivatives of ŵ

are nonnegative. Summing (31) over k from 2 to m1 and integrating over α then shows that (30) holds.
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Inequality (30) in turn ensures that, when we convert Ā(1) into B̄(1)so, in a manner analogous to Step

1 above, for every transformation in the sequence Lemma 3 can be applied. Therefore,

q∑
i=1

ŵ(Ā(1)i,•, Ā(2)i,•, . . . , Ā(n)i,•) ≥
q∑
i=1

ŵ(B̄(1)soi,•, Ā(2)i,•, . . . , Ā(n)i,•).

Iterating this conversion for r = 2, . . . , n, we get the chain of inequalities

q∑
i=1

ŵ(Ā(1)i,•, Ā(2)i,•, . . . , Ā(n)i,•) ≥
q∑
i=1

ŵ(B̄(1)soi,•, Ā(2)i,•, . . . , Ā(n)i,•)

≥
q∑
i=1

ŵ(B̄(1)soi,•, B̄(2)soi,•, . . . , Ā(n)i,•)

≥ · · ·

≥
q∑
i=1

ŵ(B̄(1)soi,•, B̄(2)soi,•, . . . , B̄(n)soi,•). (32)

Finally, we use the algorithm described in Section C.2 to convert B̄so(r) into B̄(r) for all r simultaneously.

Supermodularity and componentwise convexity of ŵ ensure that

q∑
i=1

ŵ(B̄(1)soi,•, B̄(2)soi,•, . . . , B̄(n)soi,•) ≥
q∑
i=1

ŵ(B̄(1)i,•, B̄(2)i,•, . . . , B̄(n)i,•).

Combining this with (32) and (29) then yields Ew(X1, . . . , Xn) ≥ Ew(Y1, . . . , Yn) for all supermodular w.

D Comparing Mixtures of Binomial Distributions

Proposition 10 Let Xr = θ + εr and Yr = v + ur for r = 1, . . . , n, where

i) θ ∼ B(ηθ, p), εr ∼ B(ηε, p), v ∼ B(ηv, p), ur ∼ B(ηu, p) for some probability parameter p ∈ (0, 1) and

positive integers ηθ, ηε, ηv, ηu such that ηθ + ηε = ηv + ηu and ηθ ≥ ηv;

ii) θ, {εr}nr=1 are independent and v, {ur}nr=1 are independent.

Then (X1, . . . , Xn) �SPM (Y1, . . . , Yn).

Step 1 The common marginal distribution of each Xr and each Yr is B(η, p), where η ≡ ηθ+ηε = ηv+ηu.

Suppose first that p is a rational number. This will allow us (in Step 2) to represent the mixture

distributions of X and Y in terms of matrices A and B with the property that each row is equally likely to

be realized.

First, though, we can associate (X1, . . . , Xn) with a (ηθ + 1) × (ηθ + ηε + 1) row-stochastic matrix C,

whose ith row corresponds to the realization θ = i of the common shock and represents the distribution of

any of the Xr’s conditional on θ = i, for r = 1, . . . , n.

Similarly, we can associate (Y1, . . . , Yn) with a (ηv + 1) × (ηv + ηu + 1) row-stochastic matrix D, with

the same number of columns as C, but fewer rows than C since ηθ ≥ ηv. Both C and D are stochastically

ordered, since an increase in the realization of θ (resp. v) shifts the distribution of each Xr (resp. Yr) upward

in the sense of first-order stochastic dominance.

Define C̄ and D̄ as the (upper) cumulative versions of C and D. One may think of each column l in C̄

as the support of a random variable Γl s.t. P (Γl = C̄il) = P (θ = i) for i = {0, . . . , ηθ}, and similarly each

column l of D̄ is the support of a random variable Ψl s.t. P (Ψl = D̄il) = P (v = i), for i = {0, . . . , ηv}.
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The key observation is that for each l, Γl dominates Ψl according to the convex ordering: Equivalently,

one can go from the distribution of Ψl to that of Γl by a sequence of mean-preserving spreads. This

is easily seen as follows. Take any value in the support of Ψl, say D̄il for some given i. This value is

equal to P (Yr ≥ l|v = i) or, equivalently, to Pr(ur ≥ l − i). By assumption, ur is the sum of ηu ≥ ηε

Bernoulli variables with parameter p. So ur ∼ εr + δr where δr is independent of εr and is the sum of

ηu − ηε Bernoulli variables with parameter p. Therefore, we can decompose P (Yr ≥ l|v = i) as the convex

combination
∑nu−nε

k=0 Pr(δr = k)Pr(vr ≥ l − i− k), where the weights Pr(δr = k) sum to 1 and the values

Pr(vr ≥ l− i−k) are entries in the lth column of C̄. This creates a mean-preserving spread of Ψl, operating

by splitting its ith value. Doing this for all i’s, we obtain a sequence of mean-preserving spreads which take

the same values as Γl. Moreover, the weight for any of these values is the same as the original probability

that Γl takes it; this can be checked by summing the probabilities of obtaining such a value over all the

mean-preserving spreads which achieve this value as part of their convex combination.

Step 2. Given that p was assumed to be rational, we can convert the matrices C̄ and D̄ into new

row-stochastic matrices Ā and B̄ of the form studied by Theorem 3, i.e., in which each row has equal

probability, by appropriate replications of rows: Given a greatest common divisor ρ (a rational number) of

all the probabilities involved, each row of C̄ can be replicated into an integer number of rows each associated

with the same value of the common shock and having probability ρ, and similarly for D̄. Moreover, possibly

using further replications, we can ensure that the resulting matrices Ā and B̄ have the same the number

of rows: this number can be taken to be the smallest multiple of ρ that is integer. (They have the same

number of columns, since this was true of C̄ and D̄.) Note that these row replications leave Ā and B̄

stochastically ordered. Observe also that the row replications do not alter the fact that the lth column of

Ā still dominates the lth column of B̄ according to the convex ordering. This last observation then implies

that A �CCM B. (This follows from the well-known fact that if random variable Z dominates W according

to the convex ordering and if one can represent, for some k, the distributions of Z and W as taking the

respective values (allowing repetitions) {Z1, . . . , Zk} and {W1, . . . ,Wk} with probability 1/k each, then the

vector (Z1, . . . , Zk) majorizes the vector (W1, . . . ,Wk).)

We have thus established that the matrices A and B, for which Ā and B̄, respectively, are the (upper)

cumulative versions, satisfy the hypotheses of Theorem 3. Hence for p rational, Theorem 3 implies that

(X1, . . . , Xn) �SPM (Y1, . . . , Yn).

Step 3. When p is irrational, a simple limit argument shows the result.

E Proofs for Section 4

Proof of Theorem 4 The proof closely parallels that of Theorem 3. The following lemma plays a role

analogous to that of Lemma 3 in the proof of Theorem 3.

Lemma 5 Suppose that n = 2 and that there exists a nonnegative vector ε such that for all k ∈ {2, . . . ,m},
i) Ā2,k ≥ Ā1,k + εk; ii) B̄1,k = Ā1,k + εk; and iii) B̄2,k = Ā2,k − εk. Then (X1, X2) ≺SSPM (Y1, Y2) and

(X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2).

Proof. Proposition 4 implies that (X1, X2) ≺SSPM (Y1, Y2) if and only if (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2). We will

prove that (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2). Conditions ii) and iii) in the statement of the lemma imply that the

column sums of B̄ match those of Ā, from which it follows that the common marginal distribution of X ′1 and

X ′2 matches the common marginal distribution of Y ′1 and Y ′2 . Epstein and Tanny (1980) have shown that
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for bivariate distributions with identical marginals, supermodular dominance is equivalent to upper-orthant

dominance. For any k, l ∈ {2, . . . ,m},

2[P (Y ′1 ≥ k, Y ′2 ≥ l) − P (X ′1 ≥ k,X ′2 ≥ l)]

= P (Y1 ≥ k, Y2 ≥ l) + P (Y1 ≥ l, Y2 ≥ k)− P (X1 ≥ k,X2 ≥ l)− P (X1 ≥ l,X2 ≥ k)

= B̄1kB̄2l + B̄2kB̄1l − Ā1kĀ2l − Ā2kĀ1l.

Substituting for B̄1k, B̄1l, B̄2k, and B̄2l using conditions ii) and iii), and then simplifying, yields

2[P (Y ′1 ≥ k, Y ′2 ≥ l)− P (X ′1 ≥ k,X ′2 ≥ l)] = εk[Ā2l − (Ā1l + εl)] + εl[Ā2k − (Ā1k + εk)]. (33)

Condition i) ensures that both of the terms in square brackets on the right-hand side of (33) are nonnegative.

Hence the distribution of (Y ′1 , Y
′
2) dominates that of (X ′1, X

′
2) according to upper-orthant dominance and

therefore also according to the supermodular ordering. �

The transformation in Lemma 5 converting the matrix Ā into B̄ shifts a small amount of weight from

the stochastically dominant row 2 to the dominated row 1, in (possibly) every column except the first. This

transformation clearly makes the independent lotteries represented by the rows of the matrix more similar

to one another, while keeping the column sums fixed. The lemma shows that this increasing similarity of

the lotteries translates into symmetric supermodular dominance of the distribution of the lottery outcomes,

or equivalently, into less negative interdependence of the symmetrized distribution of the lottery outcomes.

The proof of Theorem 4 is completed by showing that given any n × m matrices A and B such that

A is stochastically ordered and A �CCM B, Ā can be converted into B̄ through a sequence of simple

transformations of the form in Lemma 5, affecting only two of the n rows. As in the proof of Theorem 3, we

proceed in two steps, first proving the claim for the case where B is stochastically ordered (Step 1) and then

extending the argument to the case where B is not stochastically ordered (Step 2). The following lemma,

combined with Lemma 5, then ensures that each simple transformation in the sequence raises the expected

value of any symmetric and supermodular objective function.

Lemma 6 Suppose that X and Y are 2-dimensional random vectors such that X ≺SSPM Y and that Z is

a p-dimensional random vector independent of X and Y . Then for any p, the (p + 2)-dimensional random

vectors (X,Z) and (Y,Z) satisfy (X,Z) ≺SSPM (Y,Z).

Proof. We need to check that Ew(X,Z) ≤ Ew(Y, Z) for all w symmetric and supermodular. For each z in

Rp, let r(z) = Ew(X, z) and s(z) = Ew(Y, z). For each z, the function w(·, z) is symmetric and supermodular

in its two arguments. Therefore, X ≺SSPM Y implies that r(z) ≤ s(z) for all z. Since also Z is independent

of X and Y , it follows that E[w(X,Z)] = E[E[w(X,Z)|Z]] = E[r(Z)] ≤ E[s(Z)] = E[E[w(Y,Z)|Z]] =

E[w(Y, Z)]. �

Step 1: Proof that the distribution corresponding to Ā is SSPM-dominated by that corre-

sponding to B̄so. We use the proof of Section C.1. The condition that the distribution corresponding to

Ā SPM-dominates that corresponding to E is replaced by the condition that the distribution corresponding

to Ā is SSPM-dominated by that corresponding to E. The proof that the distribution generated by the

constructed matrix D SSPM-dominates that generated by C is based on Lemma 5, instead of Lemma 3.

Because each row now represents the distribution of a different random variable, and random variables are

independently distributed, Lemma 6 guarantees that the result of Lemma 5 pertaining to changes to the

distributions of variables i and i+ 1 extends to the multivariate distributions over all n random variables.
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Step 2: Proof that the distribution corresponding to B̄so is SSPM-dominated by that corre-

sponding to B̄. We use the proof of Section C.2, again replacing Lemma 3 by Lemma 5. Because each step

preserves row monotonicity, as shown in Section C.2, all rows correspond to actual probability distributions.

This ensures that once again, Lemma 6 can be applied at every step to extend the result of Lemma 5 to the

multivariate distributions over all n variables. �

Proposition 11 For any row-stochastic matrix A (B), let X (Y ) denote a random vector whose components

are independently distributed and generated by the rows of A (B). Given any m-dimensional probability vector

p, and any n, i) there exists a unique n×m row-stochastic matrix A whose jth column, for each j, sums to

npj, such that for all n×m row-stochastic matrices B with the same column sums as A, (X1, . . . , Xn) ≺SSPM
(Y1, . . . , Yn);

ii) for the n×m matrix B with all rows equal to the probability vector p and for any stochastically ordered

row-stochastic matrix A whose jth column sums to npj, (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn).

The “optimal” matrix B identified by part ii) of Proposition 11 is the one in which all of the lotteries are

identical. In the production context described above, for example, this corresponds to allocating resources

symmetrically across tasks. The “worst” matrix A identified by part i) is the one in which the stochastically

ordered lotteries described by the rows are as disparate as possible, subject to their average equaling the

vector p. The lottery represented by row i assigns positive probability either to a single outcome (i.e., it

is degenerate) or to a set of outcomes with adjacent (column) indices, and there is at most one outcome

to which the lotteries in rows i and i + 1 both assign positive probability.54 In the production context

described above, this matrix allocates resources to the various tasks as differently as is feasible, given the

overall resource constraints.55

Proof of Proposition 11

Proof of i): Assume that pj > 0 for all j ∈ {1, . . . ,m}. (If for some j, pj = 0, then all entries in the

jth column of A would necessarily equal 0.) Given the one-to-one mapping between row-stochastic matrices

and their cumulative-column equivalents, it is sufficient to prove the existence of a unique cumulative-sum

matrix Ā satisfying the claim.

Let bxc denote the largest integer below x, and for a vector v, let v′ denote its transpose. Given a

probability vector (p1, . . . , pm), define p̄k =
∑m
j=k pj . Note that p̄1 = 1 and p̄k is strictly decreasing in k.

Consider the cumulative-column matrix Ā whose first column consists of all 1’s and whose kth column has

the form (0, . . . , 0, λk, 1, . . . , 1)′, where λk ≡ np̄k − bnp̄kc ∈ [0, 1) and where the index of the row in which

λk appears is ik ≡ n− bnp̄kc. Note that since bnp̄kc is weakly decreasing in k, ik is weakly increasing in k.

54Puccetti and Rüschendorf (2015) are also interested in the best and worst distributions with respect to the

symmetric supermodular ordering, but impose a different set of restrictions than we do.
55Note that in part i) of the proposition, A yields a distribution that is dominated according to �SSPM by that

from any other matrix with matching column sums, while in part ii), B yields a distribution that is guaranteed

to dominate only those from stochastically ordered matrices with matching column sums. Let p = ( 1
4
, 1
2
, 1
4
), let

B equal the 2 × 3 matrix both of whose rows match p, and let A be the 2 × 3 matrix whose first row is ( 1
2
, 0, 1

2
)

and whose second row is (0, 1, 0). A and B have matching column sums, but A is not stochastically ordered. The

bivariate distributions generated from A and B cannot be ranked according to �SSPM : For w(z1, z2) = I{z1≥3,z2≥2}+

I{z1≥2,z2≥3}, Ew(X1, X2) = 1
2
> 1

4
= Ew(Y1, Y2), while for w(z1, z2) = I{z1≥3,z2≥3}, Ew(X1, X2) = 0 < 1

16
=

Ew(Y1, Y2).
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By construction, the kth column of Ā sums to λk + 1(bnp̄kc) = np̄k, as required. By construction also,

all entries of Ā are in [0, 1]. To confirm that Ā is a valid cumulative-column matrix, we need to confirm that

for each row, the entries are weakly decreasing in the column index k. If ik < ik+1, then this is clearly true,

since for i < ik, the entries in columns k and k + 1 are both 0, for i = ik, the entry in column k is λk while

the entry in column k is 0, for i = ik+1, the entry in column k is 1 while that in column k+ 1 is λk, and for

i > ik+1, the entries in column k and k + 1 are both 0. If, instead, ik = ik+1, then we need to check that

λk ≥ λk+1. Now given the definition of ik, ik = ik+1 implies that bnp̄kc = bnp̄k+1c, and since p̄k > p̄k+1, it

then follows from the definition of λk that λk > λk+1.

By construction, for each column k of Ā, the entries are weakly increasing in the row index, so Ā is

stochastically ordered. Since for each k ≥ 2, all but at most one element of column k equals 0 or 1, it is clear

that for each k, the kth column of Ā majorizes all vectors whose components lie in [0, 1] and sum to np̄k.

Furthermore, among all such vectors, the kth column of Ā is the unique vector with increasing components

which majorizes all others. Therefore, for any other cumulative-column matrix B̄ whose kth column sums

to np̄k, A �CCM B, and Ā is the unique matrix for which this statement is true. The claim in part i) then

follows from Theorem 4.

Proof of ii): Since each row of the matrix B described in part ii) is identical, every column of B̄ consists

of a vector with equal components. Thus, the kth column of B̄ is majorized by any vector whose components

lie in [0, 1] and sum to np̄k, so for any other cumulative-column matrix Ā whose kth column sums to np̄k,

we have A �CCM B. With A stochastically ordered, the claim in part ii) then follows from Theorem 4. �

F Proofs for Sections 5 and 6

Proof of Proposition 6 Given an arbitrary tournament, let it be summarized by a bistochastic matrix

B, whose ith row describes individual i’s marginal distribution over the n prizes. For any symmetric ex

post welfare function, the realized ex post welfare under the tournament is independent of the allocation of

prizes, since by assumption, each prize must be allocated to exactly one individual. Therefore, the expected

ex post welfare generated by any tournament is the same as that generated by the (degenerate) tournament

summarized by the n × n identity matrix I—in this tournament, individual i receives the prize of rank i

with probability 1. Moreover, this degenerate tournament coincides with the degenerate independent joint

distribution where individual i receives the prize of rank i with probability 1. For proving the proposition,

it is therefore sufficient to show that the independent joint distribution with marginals represented by the

rows of I is dominated according to the symmetric supermodular ordering by the independent joint distri-

bution summarized by any bistochastic matrix B. Now the identity matrix I is stochastically ordered and

clearly dominates any other bistochastic matrix according to the cumulative column majorization criterion.

Theorem 4 therefore yields the result. �

Proof of Proposition 8 Define Nc =
∑6
i=1 I{Y1=1} and Nu =

∑6
i=1 I{X1=1}: these are the total num-

ber of solvent banks in the clustered and unclustered networks, respectively. Proposition 5 implies that

(Y1, . . . , Y6) �SSPM (X1, . . . , X6) if and only if the distribution of Nc dominates that of Nu according to the

univariate convex ordering, which we will write as Nc �CX Nu. Nc �CX Nu if and only if the distribution

of Nc is derivable from that of Nu by a sequence of mean-preserving spreads.

Suppose first that the common default threshold for banks, d, satisfies d ∈ [L, 2L+H
3 ), so a bank defaults

if and only if all three projects in its portfolio fail. We will show that for each k ∈ {0, . . . , 6}, conditional on

k of the 6 projects succeeding, we have Nc �CX Nu. Since these conditional distributions are independent
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of p, the probability that any given project succeeds, it will then follow that for all p, Nc �CX Nu holds

unconditionally. For each k ∈ {0, 1, 4, 5, 6}, the conditional distributions of Nc and Nu are degenerate and

equal. Conditional on k = 3, i) Nc = 3 if all three banks whose projects fail are in the same cluster

(probability 1
10 ) and Nc = 6 otherwise; and ii) Nu = 5 if the three banks whose projects fail are adjacent

to one another in the circle (probability 3
10 ) and Nu = 6 otherwise. Hence, conditional on k = 3, the

distribution of Nc is a mean-preserving spread of that of Nu. Conditional on k = 2, i) Nc = 3 if three of the

four banks whose projects fail are in the same cluster (probability 2
5 ) and Nc = 6 otherwise; and ii) Nu takes

the values 4, 5, 6 if the two banks whose projects succeed are adjacent, separated by one bank, and opposite

one another in the circle, respectively; these three events occur with respective probabilities 2
5 ,

2
5 ,

1
5 . Thus,

conditional on k = 2, the distribution of Nc is a mean-preserving spread of that of Nu. It follows that, for

d ∈ [L, 2L+H
3 ) and any p, Nc �CX Nu holds unconditionally.

Now suppose d ∈ [L+2H
3 , H), so a bank is solvent if and only if all three projects in its portfolio succeed.

This case is the mirror image of the case where d ∈ [L, 2L+H
3 ), with “solvent” replacing “defaulting” and

6−Nc and 6−Nu replacing Nc and Nu, respectively. Hence, the arguments above immediately imply that

for all p, 6−Nc �CX 6−Nu, which is equivalent to Nc �CX Nu.

Finally, suppose d ∈ [ 2L+H
3 , L+2H

3 ), so a bank defaults if two or three of the projects in its portfolio

fail. For each k ∈ {0, 1, 3, 5, 6}, the conditional distributions of Nc and Nu are degenerate and equal.

Conditional on k = 4, the distributions of Nc and Nu for the current default threshold match, respectively,

the distributions of Nc and Nu, conditional on k = 2, for d = L. Finally, for the current default threshold

(under which project successes and failures are mirror images in terms of their effect on bank default), the

distributions of 6−Nc and 6−Nu conditional on k = 2 match, respectively, the distributions of Nc and Nu

conditional on k = 4. Hence, for d ∈ [ 2L+H
3 , L+2H

3 ) and for any p, Nc �CX Nu holds unconditionally. This

completes the proof of Proposition 8.

�

Proof of Theorem 5 For the “only if” part, choose any coarsening L̃ and supermodular function w̃ on

L̃. The function w on L defined by w(x) = w̃(x̃(x)), where x̃(x) is the hyperrectangle containing x, is also

supermodular. Therefore, E[w|G] ≥ E[w|F ]. Equivalently, E[w̃|G̃] ≥ E[w̃|F̃ ]. Since the inequality holds for

any w̃, we conclude that G̃ �SPM F̃ .

For the “if” part, consider, for any N > 1, the coarsening L(N) of L in which each Li is partitioned

into N intervals of equal length. Given any supermodular function w on L, let wN , FN , GN denote the

coarsened versions of w,F,G on L(N). We first show that wN is supermodular. For any x̃ ∈ L(N) and

dimensions i, j such that x̃+ ei + ej belongs to L(N), we must show that

wN (x̃) + wN (x̃+ ẽi + ẽj) ≥ wN (x̃+ ẽi) + wN (x̃+ ẽj). (34)

Given the equal spacing of the chosen partition, the denominator arising in (14) is the same for all x̃’s.

Therefore, (34) reduces to showing that56∫
x∈x̃

(w(x) + w(x+ di + dj)− w(x+ di)− w(x+ dj))dx ≥ 0,

where di = |Li|/N is the length of each hyperrectangle along dimension i (and similarly for dj). The

inequality holds by supermodularity of w, which proves that wN is supermodular. As a result, E[wN |GN ] ≥
56Because the distributions F and G are absolutely continuous, it is not necessary to specify in which elements of

the partition the boundaries of these elements are located.
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E[wN |FN ] for all N . It remains to show that E[wN |FN ] converges to E[w|F ] as N →∞. We have

E[wN |FN ]− E[w|F ] =
∑
x̃∈LN

∫
x∈x̃

(wN (x̃)− w(x))f(x)dx.

By construction,
∫
x∈x̃ w(x)dx =

∫
x∈x̃ wN (x̃)dx. Therefore, letting χ(x̃) denote any element of x̃,∣∣∣∣∫

x∈x̃
(wN (x̃)− w(x))f(x)

∣∣∣∣ =

∫
x∈x̃
|(wN (x̃)− w(x))(f(x)− f(χ(x̃)))|dx. (35)

Fix ε > 0. The density f of F is continuous, and hence uniformly continuous on the compact domain L.

Therefore, there exists N̄ such that for all N > N̄ , |f(x)− f(y)| < ε for all x, y of L belonging to the same

hypercube of L(N). This, combined with (35), implies that∣∣∣∣∫
x∈x̃

(wN (x̃)− w(x))f(x)

∣∣∣∣ < ε

∫
x∈x̃

(|wN (x̃)|+ |w(x)|)dx.

Integrating over L(N), we get

|E[wN |FN ]− E[w|F ]| < ε(‖w‖1 + ‖wN‖1).

It remains to show that ‖wN‖1 is bounded above, uniformly in N . This is implied by

‖wN‖1 =
∑

x̃∈L(N)

|wN (x̃)| ≤
∑

x̃∈L(N)

∫
x∈x̃
|w(x)|dx = ‖w‖1 <∞.

�

Proof of Proposition 9 Theorem 1 implies that, for two distributions F and G to be comparable according

to the supermodular ordering, they must have identical marginals: Fi = Gi for all i. This in turn implies

that the domain L̃ is the same for both copulas CF and CG. As is easily shown, L̃ = ×iL̃i, where L̃i =

{Fi(xi) : xi ∈ Li}, so L̃ is a lattice. By definition, the Fi’s are nondecreasing. Moreover, without loss of

generality, we can assume that for each i, each level xi is achieved with positive probability (otherwise, we

can simply remove that level from the support Li), hence the Fi’s are strictly increasing from Li to L̃i. Now

define X̃i ≡ Fi(Xi) and Ỹi ≡ Gi(Yi)(= Fi(Yi)). As observed in section 2, this implies that X ≺SPM Y if

and only if X̃ ≺SPM Ỹ . Finally, observe from the definition of a copula in (15) that the joint distributions

of X̃ and Ỹ on L̃ coincide, respectively, with the copulas CF and CG. This proves the result. �

G Double Description Method

G.1 Example

We describe the application of the double description method to characterize the supermodular ordering for

L = {0, 1}4. Since the lattice is four-dimensional, we represent it as the vertices of two cubes, as in Figures

1 and 2. In each figure, the left-hand (respectively, right-hand) cube represents the first three dimensions

when the fourth dimension takes the value 0 (respectively, 1). Comparing distributions g and f , we denote

the values of g(z) − f(z) for z ∈ L = {0, 1}4 with the labels on the vertices in Figure 1. The table below

lists the output of the double description method for this example. The numerical labels for the 16 vertices

themselves, one corresponding to each column of the output, are given in Figure 2. As shown in the table,
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each row of the output specifies one inequality of the form E[w|g]−E[w|f ] ≥ 0, for w one of the extreme rays

of the cone of supermodular functions on L = {0, 1}4. For example, the second row has two 1’s, corresponding

to vertices 1 and 3 (the points (1,1,1,1) and (1,0,1,1), respectively), with all the other entries 0; this row

corresponds to the supermodular function I{z1=1,z3=1,z4=1}, for which the inequality E[w|g] − E[w|f ] ≥ 0

becomes a+ b2 ≥ 0. g �SPM f if and only if the difference g− f satisfies all of the inequalities in the table.

d1 

b4 

c24 

c34 

e 

d3 

c14 

d2 

d4 c23 

b3 

b2 

b1 a 

c12 

c13 

Figure 1: Values of  g – f  on L = {0,1}4 
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Figure 2: Labels for the nodes of L = {0,1}4  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Inequalities

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 a+b1+b2+c12≥0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a+b2≥0

2 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 2a+Σbi+c34≥0

2 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2a+b1+b2+b4≥0

4 2 2 1 2 1 1 0 2 1 0 0 1 0 0 0 4a+2Σbi+c12+c13+c14+c23+c34≥0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a+b1≥0

4 2 2 1 2 1 1 0 2 0 1 0 1 0 0 0 4a+2Σbi+c12+c13+c23+c24+c34≥0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a≥0

4 2 2 0 2 1 1 0 2 1 1 0 1 0 0 0 4a+2Σbi+c13+c14+c23+c24+c34≥0

4 2 2 1 2 0 1 0 2 1 1 0 1 0 0 0 4a+2Σbi+c12+c14+c23+c24+c34≥0

4 2 2 1 2 1 0 0 2 1 1 0 1 0 0 0 4a+2Σbi+c12+c13+c14+c24+c34≥0

2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2a+b1+b2+b3≥0

4 2 2 1 2 1 1 0 2 1 1 0 0 0 0 0 4a+2Σbi+c12+c13+c14+c23+c24≥0

2 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2a+b1+b3+b4≥0

3 2 2 1 2 1 1 0 1 0 0 0 0 0 0 0 3a+2b1+2b2+2b3+b4+c12+c13+c23≥0

3 2 2 1 1 0 0 0 2 1 1 0 0 0 0 0 3a+2b1+2b2+b3+2b4+c12+c14+c24≥0

2 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 2a+b2+b3+b4≥0

2 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 2a+Σbi+c12≥0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 a+b1+b3+c13≥0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 a+b3≥0

2 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 2a+Σbi+c24≥0

2 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 2a+Σbi+c23≥0

3 2 1 0 2 1 0 0 2 1 0 0 1 0 0 0 3a+2b1+b2+2b3+2b4+c13+c14+c34≥0

2 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 2a+Σbi+c13≥0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 a+b1+b4+c14≥0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 a+b4≥0

2 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 2a+Σbi+c14≥0

3 1 2 0 2 0 1 0 2 0 1 0 1 0 0 0 3a+b1+2b2+2b3+2b4+c23+c24+c34≥0

2 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 2a+Σbi≥0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 a+b2+b3+c23≥0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 a+b2+b4+c24≥0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 a+b3+b4+c34≥0

2 1 2 1 1 0 1 0 1 0 1 0 0 0 0 0 2a+Σbi+b2+c12+c23+c24≥0

2 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 2a+Σbi+b1+c12+c13+c14≥0

2 1 1 0 2 1 1 0 1 0 0 0 1 0 0 0 2a+Σbi+b3+c13+c23+c34≥0

2 1 1 0 1 0 0 0 2 1 1 0 1 0 0 0 2a+Σbi+b4+c14+c24+c34≥0

3 2 2 1 2 1 1 0 2 1 1 0 1 0 0 0 3a+2Σbi+Σcij≥0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 a+b1+b2+b3+c12+c13+c23+d4≥0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 a+b1+b2+b4+c12+c14+c24+d3≥0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 a+b1+b3+b4+c13+c14+c34+d2≥0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 a+b2+b3+b4+c23+c24+c34+d1≥0

-3 -2 -2 -1 -2 -1 -1 0 -2 -1 -1 0 -1 0 0 1 -3a+2Σbi+Σcij+e≥0
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G.2 Complexity

Avis and Bremner (1995) show that the double description algorithm described by Motzkin et al. (1953)

has complexity O(pbd/2c) where d is the dimension of the space and p is the number of inequalities defined

by the representation matrix. Given a finite lattice L = ×ni=1Li of Rn with |Li| = mi, the dimension of

the vector space generated by associating a dimension to each node of L is d =
∏n
i=1mi. To compute the

number p of inequalities, first recall Proposition 2, which states that all of the elementary transformations

t ∈ T are extreme, so it is impossible to reduce the number of inequalities required to check supermodu-

larity by removing redundant elementary transformations. Therefore, p equals the number of elementary

transformations on L, which it is straightforward to calculate:

p =
∑

1≤i<j≤n

(mi − 1)(mj − 1)Πk/∈{i,j}mk.

Suppose, for example, that mi is exactly m for each of the n dimensions. Then

p =
n(n− 1)

2
(m− 1)2mn−2 ∼ n(n− 1)

2
mn and d = mn.

Therefore, the double description method has complexity O(exp(mn(n logm+ 2 log n))). In practice, there-

fore, the inequalities characterizing the supermodular ordering can be computed via this method only for

“small-size” problems. However, the “size” of a problem can be reduced by aggregating data into coarser

categories, and as discussed in Section 2, aggregation of data preserves the supermodular ordering. Thus,

with an appropriate degree of coarsening of categories, the double description method can be used to achieve

a tractable comparison of distributions according to the supermodular ordering.

G.3 Code for Double Description Method

Below we provide the Matlab code implementing the double description method for both the supermodular

ordering and the symmetric supermodular ordering.
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CODE FOR COMPUTING THE LIST OF INEQUALITIES THAT CHARACTERIZE THE SUPERMODULAR STOCHASTIC ORDERING. 

 

%%% THIS CODE IS BASED ON THE DUAL CONE REPRESENTATION ALGORITHM BY FUKUDA,  

%%% AND REQUIRES THE MATLAB FILE cddmex.dll 

 

%%% PART I: The function falgo(d) takes as an imput the vector of dimensions of the lattice  

%%% for which the SSO is characterized. 

%%% The output is the list of inequalities that the difference vector g-f mut satisfy,  

%%% in order to be comparable in the SSO sense 

 

 

function func = falgo(d) 

k = numel(d); 

w = ones(1,k); 

for j=2:k 

    w(j) = prod(d(1:j-1));  

end 

m = prod(d); 

A = zeros(1,m);  

i = ones(1,k); 

while sum(i) < sum(d) 

    l1 = (i-1)*w'+1; 

    for j1 = 1:k 

        for j2 = j1+1:k 

            if (d(j1)-i(j1))*(d(j2)-i(j2))>0 

                v = zeros(1,m); 

                v(l1) = 1;  

                v(l1 + w(j1)) = -1; 

                v(l1 + w(j2)) = -1; 

                v(l1 + w(j1) + w(j2)) = 1; 

                A = [A; v]; 

            end 

        end 

    end 

    l = find(d-i>0,1); 

    i(1:l-1) = 1; 

    i(l) = i(l)+1; 

 end 

A = A(2:end,:); 

size(A); 

H=struct('A',-A,'B',zeros(size(A,1),1)); 

func =cddmex('extreme',H); 

 

%%% PART II: The function fdimsym characterizes the symmetric supermodular stochastic  

%%% ordering. 

%%% It takes as inputs the number of dimensions of the lattice, and the (common) number of points  

%%% in the support along each dimension. 

 

function func = fdimsym(ndimensions,npoints) 

k = ndimensions; 

d = npoints*ones(1,k); 

w = ones(1,k); 

for j=2:k 

    w(j) = prod(d(1:j-1)); % w indicates index shift per dimension 

end 

m = prod(d); 

A = zeros(1,m);  

i = ones(1,k); 

nsym = nchoosek(ndimensions+npoints-1,npoints-1); 

T = zeros(m,nsym); 

countsym = zeros(1,nsym); 

while sum(i) <= sum(d)       

    l1 = (i-1)*w'+1;   % returns index representation from spatial representation 
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    ri = rearrange(i,npoints); 

    lexi = lexico(ri); 

    T(l1,lexi) = 1; 

    countsym(lexi) = countsym(lexi)+1; 

    for j1 = 1:k 

        for j2 = j1+1:k 

            if (d(j1)-i(j1))*(d(j2)-i(j2))>0 

                v = zeros(1,m); 

                v(l1) = 1;  

                v(l1 + w(j1)) = -1; 

                v(l1 + w(j2)) = -1; 

                v(l1 + w(j1) + w(j2)) = 1; 

                A = [A; v]; 

            end 

        end 

    end 

    if i==d 

        i(1) = i(1) + 1; 

    end 

    l = find(d-i>0,1); 

    i(1:l-1) = 1; 

    i(l) = i(l)+1; 

end 

A = A(2:end,:); 

%size(A); 

SA = A*T; 

j = 1; 

while j<size(SA,1); 

    v = SA(j,:); 

    elim = j+1; 

    while elim <= size(SA,1) 

        if SA(elim,:)==v 

            if elim == size(SA,1); 

                SA = SA(1:elim-1,:); 

            else 

                SA = SA([1:elim-1 elim+1:end],:); 

            end 

        else 

            elim = elim + 1; 

        end 

    end 

    j = j+1; 

end 

SA; 

H=struct('A',-SA,'B',zeros(size(SA,1),1)); 

Ray =cddmex('extreme',H); 

func = \{Ray.R*diag(countsym) ; Ray.lin\}; 
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