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Abstract

How do successive, forward-looking agents experiment with interdependent and endogenous

technologies? In this paper, trying a radically new technology not only is informative of the

value of similar technologies, but also reduces the cost of experimenting with them, in effect

expanding the space of affordable technologies. Successful radical experimentation has mixed ef-

fects: it improves the immediate outlook for further experimentation but decreases the value and

the marginal value of experimentation in a longer term, resulting in less ambitious ‘incremental’

experimentation and in a reduced size of radical experimentation. Incremental experimentation

lowers the option value of similar technologies, which may spur a new wave of radical exper-

imentation. However, experimentation eventually stagnates for all parameters of the model.

JEL Codes: C73, D83, O3

1 Introduction

From the ubiquitous use of transistors and integrated circuits in the electronics industry to the

exploitation of chromatography and DNA sequencing in medical research, contemporary firms may

be seen as building on the innovation of their predecessors: discoveries that took place decades or

years ago are integrated and combined by engineers and scientists to serve as a stepping stone for

new innovation (Baumol, Litan, and Schramm 2007). This process has a number of features best

described as a sequence of experimentations by successive agents. Learning occurs through two

channels: the transmission of information across generations of agents, and the experimentation

that each agent performs during his lifespan.

This type of experimentation cannot be framed as a standard multi-armed bandit problem.

Firstly, the “arms,” or technologies, have interdependent values. For example, the emergence
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of a new drug offers a test not only for the value of that drug, but also for the value of drugs

based on similar chemical compounds or on the same treatment strategy, as illustrated by the

treatment of various cancers.1 Secondly, technologies that seemed prohibitively costly to explore

decades ago are now within reach. The domain of affordable technologies is thus expanding over

time, and this happens through particular innovations which are “radical,” i.e., going beyond the

mere combination of previous innovations. Radical innovations require substantive investments

which lay the foundation for subsequent “incremental” improvements.2 Finally, to analyze the

long-run dynamics and potential stagnation of experimentation, a satisfactory model must allow

technological and payoff sets which cannot be exhausted in finite time, which means that these sets

must be unbounded.

Formulating a tractable model of interdependent and unbounded technologies and payoffs which

captures an option value of experimentation is challenging. In particular, it is well-known that

the standard bandit model increases substantially in complexity once arms become correlated.

The classic index result of Gittins (1979) no longer holds. As we will see, experimentation with

interdependent technologies has the implication that experimentation with one technology affects

the option value of experimenting with other related technologies.

This paper provides a novel framework which addresses these issues. At each period, a new

forward-looking firm, or agent, is born and lives for two periods.3 The agent observes the technolo-

gies chosen by previous agents and their outcome. In our model, technologies lie on the positive

real half-line and their associated (but unknown) outcomes are drawn according to the path of a

Brownian motion. Technologies are thus interdependent: by trying a technology z between two

known technologies x and y, an agent reduces the variance and updates the expected value of

all technologies between x and y. This feature of the model allows us to capture “incremental”

experimentation as a convex combination of explored technologies.

The agent can alternatively choose to perform radical experimentation, such as developing an

entirely new treatment to cure a disease, or a new procedure to produce a good, such as nuclear

power for commercial use in the sixties and seventies.4 This possibility is represented by the

1For example, Novartis initially developed Afinitor to treat renal cell carcinoma. Due to Afinitor’s success,

scientists at Novartis believed the drug could be used to treat other types of cancer. They began testing for breast

cancer and later received approval. See “The CEO of Novartis: On Growing After a Patent Cliff ” in the Harvard

Business Review (December 2012).
2A natural example is the birth of the internet, which may be traced back to the “radical” thinking of J.C.R.

Licklider, a scientist at the Advanced Research Projects Agency, who first conceived the idea of a network of computers

which led to the creation of ARPANET. See Ruttan (2006, p. 116).
3The option value of experimentation, which drives incentives to experiment, would not arise with myopic or

one-period agents. We consider agents living for more than two periods in Section 7.
4Worldwide nuclear capacity grew from 1 gigawatt to 100 gigawatts in these two decades. The number of active

reactors grew similarly during that period. See the annual publication of “Nuclear Power Reactors in the World”
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choice of technologies which lie beyond the rightmost known technology x. These technologies

have a variance which increases linearly in the distance from x thus generating a higher option

value of experimentation compared to incremental experimentation. Such radical experimentation,

however, entails a specific cost of fundamental research, which increases with the novelty, or size,

of experimentation.

The main research questions addressed here concern the type and size of experimentation as it

unfolds over time: Does successful experimentation encourage further radical experimentation, or

does it spur a wave of less ambitious, incremental experimentation? How does the size of radical

experimentation depend on past outcomes? Does radical experimentation persist in the long-run?

Or does it converge to a well-defined technological standard, despite the unboundedness of the

technological and payoff spaces?

These questions may be tractably studied thanks to the Brownian model, which captures a

continuum of correlated (deterministic) bandits with unbounded payoffs. The Markovian structure

of Brownian motion allows us to establish a value for each interval between previously tried tech-

nologies, instead of the classic approach of assigning a value for each individual technology. We

develop new techniques to establish properties of this value and use them to characterize the short

and long run dynamics of experimentation.

Successful past experimentation turns out to have two opposite effects on subsequent experi-

mentation. Firstly, past successes reduce not only the value of radical experimentation, but also

its marginal value. Intuitively, if past technologies provide high utility, there is little immediate

need to experiment further. More precisely, it becomes less likely that these technologies will be

surpassed by radical experimentation. Likewise, the added benefit from performing more radical

experimentation decreases with past successes, as those successes reduce the probability that the

option value created by this experimentation will be exercised. Formally, the value of radical ex-

perimentation is submodular in experimentation size and the value of past technologies. Secondly,

however, a failed radical experimentation reduces the prospects of building on the corresponding

technology. Suppose that in a given field what was the most promising and groundbreaking ap-

proach turns out to be a disappointment. Such a failure can create much pessimism about further

new research in that area and result in less ambitious or ’fundamental’ research.

The combination of these two effects creates a complex dynamic of experimentation: Highly

successful radical experimentation immediately begets further radical experimentation. However,

should that new attempt be less successful, the initial success becomes a drag on radical experi-

mentation: it reduces the likelihood of further radical experimentation, and the size of such exper-

imentation.

published by the International Atomic Energy Agency.
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The dynamics of experimentation may be more fully described as follows. When incremental

experimentation takes place, its informational option value decreases. This makes radical ex-

perimentation more attractive and may spur a succession of radical experimentations. As new

technologies become available, however, the option value of incremental experimentation gets re-

plenished, making it more attractive, and radical experimentation gives again way to incremental

experimentation, generating a cycle of sort between the two types of experimentation.

Eventually, experimentation stagnates with probability one, for all specifications of the model.

The intuition may be summarized as follows: Suppose that recent radical experimentation has

been extremely disappointing relative to known technologies, which must eventually happen for

any path. Then, because such radical experimentation serves as the basis of further radical experi-

mentation, agents prefer to stay within the confines of incremental experimentation. Therefore, an

informational cascade of sort arises, in which no agent accepts to bear the cost of radical experi-

mentation, and the outlook for further radical experimentation is henceforth frozen at a negative

level. Thereafter, only incremental experimentation occurs, and technological knowledge converges

to a well-defined limit. Establishing this convergence is particularly challenging because both the

set of technologies and the range of their payoffs are unbounded – as they should be in any model

investigating whether radical experimentation is sustainable in the long run.

This work draws on several strands of literatures, concerned with experimentation, social learn-

ing, and innovation. The literature on multi-armed bandits and strategic experimentation typically

considers a fixed set of independent arms. Here, in contrast, technologies are modeled as a contin-

uum of “arms” with interdependent payoffs and varying costs. Moreover, the cost of experimenting

with a given technology depends on the technologies that have been tried in the past. These features

are new, to our knowledge, in the experimentation literature.5

Our baseline model focuses on a succession of agents living for two periods. This assumption

is made for several reasons. Firstly, it makes the model tractable. It is well-known, and is easy

to show, that when arms are correlated the optimal experimentation policy does not follow a

Gittins-like index policy. An example of this is provided in Appendix E. Secondly, the structure

of the model brings it closer to the social learning literature which, since Banerjee (1992) and

Bikhchandani, Hirshleifer, and Welch (1992), has been an important source of inspiration to study

learning dynamics, and has served as the main paradigm to analyze knowledge accumulation by

successive agents from the adoption of new technologies to cultural change. These models examine

the asymptotic efficiency and fragility of social learning under restrictive assumptions (myopic

agents, exogenous signals, stationary and limited choice sets), however, which make them ill-suited

5Callander (2011) and Jovanovic and Rob (1990) also consider Brownian uncertainty, but their agents are myopic.

The relation to those papers is detailed below.
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to study important knowledge accumulation processes, such as technological innovation.6 It also

makes social learning models unsuitable to study whether radical experimentation is self-sustainable

in the long run or requires external intervention, a question that has received longstanding interest

from economists and policymakers alike.7

Our model builds on Callander (2011), who uses Brownian motion to model the uncertainty of

policy values. In that model, however, agents are myopic and their goal is to find a zero of some

Brownian path. In particular, there is no uncertainty about the value of the optimal policy. The

combination of forward-looking agents and uncertainty in the value of the optimal policy creates

arguably richer dynamics. Experimentation cycles and stagnation, absent from Callander (2011),

are central features of our analysis.

Jovanovic and Rob (1990) consider a countable infinity of research dimensions, each modeled as

an independently distributed standard Brownian path over a fixed interval. Interpreting each new

dimension as a separate technology, it is unclear why the outcomes of these technologies should

be completely independent of one another. In reality, even radical breakthroughs build on existing

technologies. It is also counterintuitive, in that model, that a breakthrough cannot be followed up

by a further push in the same direction. Lining up technologies on a single dimension allows us

to investigate the consequences of path dependence, which is an important empirical phenomenon

in the history of innovation. The independent dimensions assumption also makes impossible to

study how the size of radical experimentation is affected by past successes, a key aspect of our

analysis. The mechanisms underlying experimentation (or innovation) cycles are also different: In

Jovanovic and Rob, agents continue to pursue radical experimentation after disappointing outcomes

from previous radical experimentation, owing to the independence of Brownian processes driving

each new technology. Here, by contrast, successful radical experimentation begets more radical

experimentation because path dependence affects agent’s beliefs.

Both Callander (2011) and Jovanovic and Rob (1990) restrict attention to myopic agents. The

option value of experimentation, at the heart of the experimentation literature and of the present

paper, is thus absent from those works. Jovanovic and Rob circumvent this issue by allowing the

agent to learn, at some fixed cost, the value of a new “technique,” and then decide whether to try

the new technique or use an old one. By disentangling information acquisition from technological

choice, that model restores some learning from otherwise myopic agents. In many applications,

technological choices require irreversible investments so that search and experimentation cannot be

thus disentangled.

Finally, our model provides a stark prediction for long-run experimentation, with the emergence

6Mueller-Frank and Pai (2013) study social learning when agents’ signals are costly and endogenously acquired.
7See, e.g., Griliches (1992), Hall (1996), Gordon (2012). Recent press coverage includes Slywotsky (2009), Zakaria

(2011). Policymakers’ interest was highlighted by President Obama’s State of the Union Address in 2011.
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of a technological standard after finitely many cycles of radical and incremental experimentation.

The analysis establishes that experimentation and beliefs converge to a well-defined limit despite

the fact that both the technological and payoff spaces are non compact. Showing this result is

challenging. One technical contribution of the paper is to extend to unbounded sets (both for

the domain of technologies and the range of their payoffs) the techniques developed by Easley

and Kiefer (1988) to show the existence of a well-defined limit for agents’ beliefs resulting from

experimentation.

After describing the baseline model in Section 2, we analyze incentives for radical experimen-

tation and introduce the value of radical experimentation in Section 3 and discuss incremental

experimentation and the challenges presented by the correlation across technology payoffs in Sec-

tion 4. Section 5 investigates the dynamics of social experimentation, including experimentation

cycles and long-run stagnation. The social inefficiency of this stagnation is discussed in Section 6.

Section 7 discusses how the insights developed in the baseline model can be generalized to agents

living for more than two periods. Section 8 compares our mechanism of stagnation with those that

have been presented in the literature on growth and discusses ways in which the baseline model

could be modified to break our stagnation result. All the proofs are in the Appendix, which also

contains an extension to the case in which the cost of radical experimentation depends on the

outcome of past experimentation, and a discussion of patent policy.

2 A Model of Social Experimentation

An agent is born in each period t ∈ N = {0, 1, . . . , }, who lives for two periods, “young” and “old.”

The agent is risk neutral and chooses at each period a technology x in the technological space

[0,∞). The payoff B(x) of technology x is initially unknown, except at the origin where B(0) = 0.8

A young agent inherits from the contemporary old agent the knowledge of all technologies and

payoffs that have previously been tried. This information transmission is assumed to be costless

and non-strategic and is the only interaction across those agents.9 The history Ht at time t consists

of all technology-payoff pairs that have been experienced in the past. We let B̄t denote the highest

payoff among explored technologies, x̂t denote the rightmost explored technology, i.e., the current

frontier of the explored domain, with associated payoff B̂t ≡ B(x̂t), and Gt ≡ B̄t−B̂t ≥ 0 denote the

difference, or gap, between the payoffs of the best explored technology and the frontier technology.

8The function B(·) could represent utils instead of payoffs, as long as agents are expected-utility maximizers. One

could also consider the larger domain R. Radical experimentation would then have “left” and “right” components.
9The older generation is not affected by the choice of the younger one and has therefore no incentive to manipulate

the transmission. It could benefit from selling the information. We discuss patents in Appendix F. In Niehaus (2011),

intergenerational information transmission is costly, and altruistic older generations weight this cost of transmission

with the potential benefit for the younger generation.
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The payoff function B is distributed as a Brownian motion with drift κ and volatility σ > 0.10

The analysis assumes that κ = 0, which avoids complications with old-agent experimentation.11

The payoff of a technology x > x̂t has a normal distribution with mean B̂t and variance σ2(x− x̂t).
Technologies to the right of x̂t thus have the same expected payoff, and a variance that increases

with their distance from x̂t.

A technology x lying in some bounded interval [xl, xr] with known endpoint payoffs B(xl) and

B(xr) has a normally distributed payoff with mean

B(xl) +
B(xr)−B(xl)

xr − xl
(x− xl), (1)

and variance
(x− xl)(xr − x)

xr − xl
σ2. (2)

The expected payoff of a technology increases linearly from the endpoint technology with the worst

payoff to the one with the highest payoff. The variance, instead, increases as one moves away

from either endpoint, and is maximized at the midpoint of the interval. Owing to the Markovian

structure of Brownian motion, observing the payoff of a technology in any given interval affects

only the distribution of technologies lying in that interval.

Incremental vs. Radical Experimentation

The literature on growth and technological change has taken numerous approaches to define

incremental and radical experimentation, which include informational and payoff components. The

spatial structure of the model provides a natural way to dissociate those concepts. Incremental

experimentation refers, in period t, to a technological choice x ∈ [0, x̂t]. This type of experimentation

can be interpreted as a convex combination of, or marginal changes to old technologies. It involves

technologies that are less risky to develop but also with more limited potential for success. Radical

experimentation refers to a technology lying beyond the frontier x̂t. Radical experimentation is

unbounded in its possibilities and it is characterized by higher variance which could lead to very

successful technologies as well as complete failures.

Costs of Experimentation. Radical experimentation incurs a cost that depends on how far

that technology lies from the current frontier. This cost represents the large initial investments

that characterize fundamental research, together with its high uncertainty. In summary, the cost

of experimentation is equal to c(x − x̂), where c is twice continuously differentiable, increasing,

10More precisely, uncertainty is modeled with a filtered probability space (Ω,F ,P) satisfying the usual regularity

conditions (see, e.g., Karatzas and Shreve 1991) and whose outcomes are identified with the paths of a Brownian

motion.
11The case of an arbitrary drift is analyzed in the online appendix and does not overturn the stagnation theorem

obtained with a zero drift.

7



convex, and such that i) c(y) = 0 for y ≤ 0 and ii) either c′(0) > 0 or c′′(0) > 0.12 Incremental

experimentation is assumed to be cheaper than radical experimentation and for simplicity we

assume that it is costless. This assumption is, among others, justified by Romer (1990, p. 72):

“Once the cost of creating a new set of instructions has been incurred, the instructions can be used

over and over again at no additional cost. Developing new and better technologies is equivalent

to incurring a fixed cost. This property is taken to be the defining characteristic of technology.”

The qualitative results of the paper are robust to the introduction of a positive cost, provided

that either i) exploitation of old technologies incurs the same cost, or ii) the cost of incremental

experimentation vanishes as experimentation becomes arbitrarily close to known technologies.

This cost asymmetry is required to distinguish between incremental and radical experimenta-

tion, which is an important feature of the process of innovation in reality. The formulation also

captures the idea that radical experimentation creates a positive payoff externality on future gen-

erations, in addition to an informational externality, because all technologies between the old and

new frontiers become cheaper to explore after the initial investment has been made.

Each agent maximizes his total expected payoff, discounting his second period payoff by a factor

δ ∈ (0, 1]. An old agent has no value for information and thus always chooses the best explored

technology (with zero drift, the expected payoff of any radical experimentation is equal to the payoff

at the frontier). A young agent solves the optimization problem

U(Ht) = sup
x∈[0,∞)

EHt
[
B(x)− c(x− x̂t) + δmax{B(x), B̄t}

]
. (3)

3 Radical Experimentation

Incentives for radical experimentation are captured by the value of radical experimentation,

V R(Ht), which represents the highest lifetime payoff a ‘young’ agent can get when his first-period

choice is restricted to radical experimentation, in excess of the payoff guaranteed by exploita-

tion, B̄t. With this restriction on his first-period choice, a young agent’s value function is equal

to (1 + δ)
[
B̄t + V R(Ht)

]
.

Consider a history Ht, with maximum explored payoff B̄t, frontier payoff B̂t, and gap Gt =

B̄t − B̂t. Proposition 1 provides a useful representation for the value of radical experimentation.

Proposition 1 (Value of Radical Experimentation) (i) There exists a function F∞ : R+ →
R+ such that

V R(Ht) = F∞(Gt)−Gt. (4)

12In an extension (Appendix D), c is allowed to also depend on B̄t, thus capturing the idea that current technologies

affect the cost of further radical experimentation.
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(ii) The value of radical experimentation is decreasing in the gap Gt. (iii) If V R(Ht) is negative in

some period t, radical experimentation is abandoned forever after.

Proposition 1 shows that the value of radical experimentation depends on history only through

the gap Gt: distinct histories inducing the same gap yield identical incentives for radical experi-

mentation. In particular, the payoff level of the best explored technology does not matter per se.

Accordingly, the value of radical experimentation at time t will be denoted more simply by V R(Gt).

The incentives for radical experimentation are driven by the probability of finding a new tech-

nology whose payoff exceeds B̄t. Since the payoff distribution of new technologies is pinned down by

the payoff at the frontier, B̂t, a higher gap reduces the probability of this event. The monotonicity

property (ii) implies the stagnation result contained in (iii): By definition, the value of radical

experimentation is negative if and only if exploiting the best known technology strictly dominates

radical experimentation. Therefore, if the value of radical experimentation becomes negative, it

can never be positive again, because B̂t is frozen, while B̄t can only increase. The proposition thus

has consequences for the sustainability (or lack thereof) of radical experimentation in the long run,

which are exploited in later sections.

The next result characterizes the optimal size of radical experimentation, and shows that the

marginal value and the size of radical experimentation are both decreasing in the highest known

payoff, B̄t.

Let xR(Ht) denote the technology chosen when radical experimentation takes place and yRt (Ht) =

xR(Ht)− x̂t denote the optimal size of radical experimentation.13 Also let φ(·) denote the density

function of the standard normal distribution.

Proposition 2 (Radical Experimentation) Suppose that radical experimentation is optimal.

Then, (i) the optimal size yRt solves

δσ

2
√
y
φ

(
Gt
σ
√
y

)
︸ ︷︷ ︸
Marginal Benefit

= c′(y).︸ ︷︷ ︸
Marginal Cost

(5)

(ii) yRt is strictly increasing in σ and δ. (iii) If Gt = 0, then yRt is indeed strictly positive. (iv) If

Gt > 0 and yRt > 0, then yRt is strictly decreasing in Gt. (v) Finally, there exists a cutoff G̃ > 0

above which V R(G) < 0.

To get some intuition for Proposition 2, recall that radical experimentations have an expected

payoff of B̂t, regardless of their size. A larger size provides a higher variance, and thus an increased

probability of exceeding B̄t. With a zero gap, the marginal benefit of radical experimentation

13There may exist several optima, although such case happens with zero probability. In such knife-edge cases, the

comparative statics in the proposition still apply in the sense of the strong set order of lattice theory.
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Figure 1: Marginal benefit of radical experimentation for a discount factor δ = 0.8 and volatility

σ = 3.

(left-hand side of (5)) is then arbitrarily large close to the frontier (see Figure 1). As the size of

radical experimentation increases, the volatility of the payoff, σ
√
x− x̂t, increases at a decreasing

rate, and the marginal benefit of radical experimentation converges to zero. Since the marginal

cost is increasing, the optimal size of radical experimentation is therefore positive and well-defined.

The situation is quite different when the gap is positive, because the marginal benefit of radical

experimentation now converges to zero for radical experimentations close to the frontier. Close to

the frontier, a radical experimentation is accompanied by an inadequately low increase in volatility,

and virtually no impact on the expected payoff of the agent when he becomes old. The “outside”

option, B̄t, is thus strictly preferred to small radical experimentations. The marginal benefit of

radical experimentation is single peaked: it is initially pushed up by the increase in the probability

of discovering a payoff above the current outside option B̄t, which is given by 1 − Φ
(

Gt
σ
√
x−x̂t

)
,

where Φ denotes the distribution function of a standard normal distribution. When the size of

radical experimentation reaches
G2
t

σ2 , the marginal benefit starts to decrease, as the probability of

obtaining a payoff greater than B̄t converges to 1
2 . Figure 1 illustrates the marginal benefit of

radical experimentation for different sizes of the gap.

Because volatility is the agent’s only hope of improving the best technology, a higher volatility

has a positive effect on the incentives to innovate. Similarly, a higher discount factor increases the

incentives to innovate. By contrast, an increase in the gap reduces the marginal benefit of radical

experimentation, because it reduces the probability of surpassing the current outside option. To

maintain that probability, an agent must increase the size of radical experimentation, so as to
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increase payoff volatility.

Finally, if radical experimentation is disappointing enough, so that the gap exceeds some thresh-

old G̃, then the value of radical experimentation is negative. This, combined with Proposition 1,

implies that radical experimentation is abandoned forever.

4 Incremental Experimentation

Analyzing incremental experimentation presents a particular challenge, owing to the correlation

across payoff technologies. Experimenting with a new technology reveals information not only about

that technology, but also about nearby technologies. Our strategy is to partition the technology

space into ‘units’, separated by previously tried technologies. The partition consists of the finitely

many bounded intervals whose endpoints have been explored and whose interior points have not, and

of the unbounded interval [x̂t,∞). A unit is defined by any such interval, along with the values of its

endpoint payoffs. The distribution of payoffs within a given unit is described by a Brownian bridge:

it is the distribution of Brownian motion on some interval with known end values.14 In particular,

it is conditionally independent of the payoff of all observed technology-payoff pairs outside of the

unit. Thus, units have the appealing property that experimentation with a technology lying inside

a unit changes only the payoff distribution of technologies that belong to that same unit.

The optimization problem of a young agent can be decomposed in two steps: First, choose

one of the finitely many units corresponding to history Ht. Second, choose which technology to

pick within that unit. The advantage of this decomposition is that the value of each unit may

be characterized according to a simple index, described by Proposition 3. The index determines

the value of experimentation of the unit, which forms a key block in the analysis of the interplay

between radical and incremental experimentation performed in the next section.

For any bounded unit u, let BL (BH) denote the smaller (larger) of the two endpoint payoffs,

L the width of the underlying interval, and D = BH − BL ≥ 0 the difference between endpoint

payoffs. These variables clearly depend on the unit they are attached to, but the reference to u is

omitted when there is no ambiguity. The unbounded unit at time t is denoted u∞, again omitting

the reference to t when there is no ambiguity, which has already been analyzed in the previous

section. Figure 2 represents an experimentation history up to t = 3.

Proposition 3 To each bounded unit u corresponds a value of experimentation, V (u, B̄t), with the

following properties:

(i) It is optimal for the young agent to choose a technology within the unit (bounded or unbounded)

that has the highest value of experimentation.

14See Billingsley (1968, p. 64) for an introduction to Brownian bridges.
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Figure 2: History of units after three periods.

(ii) There exists a function F : R2
+ → [1,∞) such that the value of experimentation of a bounded

unit can be written as

V (u, B̄t) = (BL − B̄t) +D F

(√
L

D
,
B̄t −BL

D

)
. (6)

(iii) If BH < B̄t, then V (u, B̄t) is increasing in L, BL and BH .

Moreover, it is strictly optimal, within a bounded unit, to choose a technology closer to the endpoint

with the higher payoff.15

The value of experimentation of a unit u is similar to the value of radical experimentation. The

only difference is that a young agent’s choice in the first period is now restricted to a technology

within u, instead of [x̂t,+∞). With this restriction, a young agent’s value function may be written

as (1 + δ)
[
B̄t + V (u, B̄t)

]
.

Some units may have a negative value of experimentation. Choosing from those units is always

suboptimal: receiving the best explored payoff B̄t in both periods dominates such choices. The

next proposition shows a stronger result: the value of experimentation of a unit is nonincreasing in

B̄t. Because B̄t is nondecreasing over time, this implies that once a unit gets a negative value of

experimentation, it is abandoned forever.

Proposition 4 (Value Monotonicity) For any bounded unit u, V (u, B̄t) is strictly decreasing

in B̄t. If, at any time, V (u, B̄t) < 0, no technology in u is ever chosen after time t.

15As a consequence, it is optimal to choose the midpoint of a unit whose endpoints have the same payoff.
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This monotonicity property is shown in two steps. Consider, first, a unit u that does not contain

the best explored technology, and suppose that the payoff of that technology is increased from

B̄t to B̄′t > B̄t. The increase has no effect on the payoff distribution of technologies inside u,

but it reduces the probability that any technology in u beats the best explored technology. This,

intuitively, reduces the value of experimenting in that unit, implying that V (u, B̄′t) < V (u, B̄t).

Now, consider a unit u whose endpoints include the best explored technology. For such a unit, a

higher value of B̄t increases, linearly, the expected payoff of all technologies inside the unit. The

variance of payoffs within that unit is unaffected (this is a standard property of Brownian bridge),

however, so exploitation with the best explored technology is relatively more appealing than before

the increase, which again reduces the value of experimentation.16

A common issue in experimentation and social learning models is whether, and with what

probability, agents converge in finite time to some specific action. The next result shows that

exploitation – choosing a known technology – is strictly suboptimal, which implies that a new unit

is created at each period and, hence, that the partitioning in units of the technology space becomes

strictly finer over time.

Proposition 5 (Exploitation) If u contains the best explored technology, then V (u, B̄t) > 0.

This proposition implies that choosing B̄t for both periods is strictly dominated by choosing another

technology included in a unit u whose endpoint payoffs include B̄t. Intuitively, a slight departure

from the best explored technology reduces the expected payoff of the agent, but it also creates an

option value that dominates that reduction, because volatility increments of Brownian motion (of

order
√
dt) dominate expectation increments (of order dt). By the same argument, exploitation

would remain suboptimal even if incremental experimentation were costly, as long as the cost

of incremental experimentation goes smoothly to zero as one gets closer to known technologies.

This property is convenient for the analysis: it implies that one does not need to separate pure

exploitation from experimentation. In substance, however, one should note that there is very little

difference, in this model, between pure exploitation and a very small amount of experimentation:

the payoffs and amount of information are very similar in both cases, with very high probability.

To distinguish between incremental and radical experimentations, define the value of incre-

mental experimentation, V I(Ht), as the maximum value of experimentation over all bounded

16A starker intuition for this result can be obtained by appealing to the theory of large deviations (see, Dembo and

Zeitouni 1998). As B̄t gets arbitrarily large, the payoff distribution inside the unit u looks closer to a straight line,

joining the low-payoff extremity xl to the best technology xr with payoff B̄t: (B(x)− B(xl))/(B̄t − B(xl))→B̄t→∞

BL + (B̄t − BL)(x − xl)/(xr − xl) a.s., where BL is the payoff at xl. As B̄t gets arbitrarily large, therefore, the

probability that any given technology x in u surpasses B̄t, converges to zero. Exploitation of xr remains suboptimal

for all values of B̄t, however, as guaranteed by Proposition 5.

13



units. Given the concept of unit, the value of radical experimentation can be alternatively defined

as the value of experimentation of the unbounded unit: V R(Ht) = V (u∞(Ht), B̄t).
From Proposition 3, an agent prefers radical over incremental experimentation if and only if

the value of radical experimentation exceeds the value of incremental experimentation.

5 The Dynamics of Social Experimentation

In this model, social experimentation takes the form of experimentation cycles, characterized in

this section, in which radical experimentation is followed by incremental experimentation. Radical

experimentation generates a positive externality on all future generations by expanding the frontier

of explored technologies and, hence, the set of incremental experimentations.

The set [0, x̂t] of technologies that are convex combinations of previously explored ones will

be referred to as the active domain. While incremental experimentation refines knowledge about

technologies in the active domain, it is characterized by more predictable outcomes and lacks upside

potential. As the learning value of incremental experimentation goes down, radical experimentation

becomes attractive again, provided that the value of radical experimentation remains positive. Fol-

lowing a highly successful radical experimentation, the best explored technology lies at the frontier.

In that case, further radical experimentation is equally likely to outperform or underperform the

payoff of the current frontier, and a wave of radical experimentations can occur. This and other

results are formalized in Proposition 6.

Proposition 6 (Radical versus Incremental Experimentation) Consider a history Ht for

which V R(Gt) > 0. Then, experimentation has the following properties:

1. The probability that radical experimentation occurs at time t or at some future date is strictly

positive, regardless of the value of incremental experimentation.

2. Suppose that Gt = 0.17 If radical experimentation takes place at time t, there exist (history-

dependent) cutoffs bRt and bIt such that, letting B̂t+1 and ut denote the payoff resulting from

that radical experimentation and, respectively, the newly created unit (based on the interval

between old and new boundaries),

i) radical experimentation is optimal at time t+ 1 if and only if B̂t+1 > bRt , and

ii) if incremental experimentation is optimal at time t+1, it takes place in the newly created

unit ut if and only if B̂t+1 > bIt .

17In the Appendix, we analyze both the case in which Gt = 0 and Gt > 0. Here, however, we restrict attention to

a zero gap for expositional clarity.
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Thus, highly successful radical experimentation begets more radical experimentation, while

moderately successful experimentation is followed by incremental experimentation.18 To appreciate

the subtlety of i), one may observe that a high payoff increases both the value of incremental

experimentation in the new unit and the value of radical experimentation. Why does the latter

dominate the former? Intuitively, the conditional payoff distribution on the newly created unit

is, for very high payoff realizations, roughly a straight line, with very low variance.19 This means

that technologies in the new unit have a lower expectation than the frontier technology, and a

low variance. By contrast, radical experimentation has the same expectation as the value of the

frontier technology, and a variance that is independent of that level, which makes it more attractive.

Whether incremental experimentation occurs within the newly created unit, however, depends on

whether or not the outcome of radical experimentation performed at time t, B̂t+1, exceeds the

critical threshold bIt . Otherwise, incremental experimentation, when optimal, will take place in the

old domain.

The previous results may be summarized as follows: From Proposition 5, we know that ex-

ploitation is never optimal. Thus, any wave of incremental experimentations reduces the width

of units in the active domain. This, all else equal, reduces the value of experimentation in the

active domain, by Proposition 3. The value of incremental experimentation may then decrease to

the point of triggering a new round of radical experimentation, which continues until it leads to

a disappointing payoff, triggering a new wave of incremental experimentations to explore further

the units created within the new frontier, giving rise to alternating cycles between radical and

incremental experimentation.

Because the technological domain is unbounded, it is a priori possible that agents indefinitely

expand the boundary of the active domain as time goes by. Such qualitative property of the

model would correspond to unlimited radical experimentation, and to a never-ending succession

of radical and incremental experimentation cycles. By contrast, without radical experimentation,

technology and knowledge converge to finite levels. Our next result shows that unlimited radical

experimentation never occurs. This result persists even when radical experimentation entails an

arbitrarily positive drift, as long as the optimal policy is well-defined.20

Theorem 1 Radical experimentation ends in finite time with probability one. After radical exper-

imentation has ended, the value of incremental experimentation converges to zero almost surely.

Thus, only incremental experimentation persists along the equilibrium path. As the value of

18These qualitative features of the experimentation process clearly remain valid with a positive gap.
19This result is well-known in the literature on large deviations, see e.g., Dembo and Zeitouni (1998). See also

Footnote 16.
20This result is shown in Section B of the online appendix.
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additional experimentation goes to zero, we observe the emergence of a technological standard in

the limit. This is because all limiting technologies (when more than one limit technology exists)

must be payoff-equivalent almost surely.21

A key step for understanding and proving Theorem 1 is to establish comparative statics for the

incentives of radical experimentation, which we performed in Section 3. The rest of the argument

applies ideas from the experimentation literature to analyze our spatial model of technological

space.

Proposition 2 hints at the reason why radical experimentation cannot be sustained in the long

run: for high gaps, the optimal size of radical experimentation drops, which reduces volatility

and, hence, the value of radical experimentation, just when volatility is most needed to make

radical experimentation attractive. That proposition alone, however, does not imply that radical

experimentation terminates in finite time, because the technologies observed in equilibrium are

chosen endogenously. To prove stagnation, a key step is to show that, if the value of radical

experimentation were positive at all times, the frontier would keep expanding in steps that are

bounded below away from zero.22 Intuitively, the size of radical experimentation is decreasing in

the gap and we know from Proposition 2 that a high enough gap ends radical experimentation

forever. For radical experimentation to continue, therefore, the size of the radical experimentation

must be bounded below. However, radical experimentation will eventually hit a region of the

technology space where the frontier payoff is so disappointing that the resulting gap exceeds the

critical cutoff G̃ identified in Proposition 2.

Figure 3 shows a simulated path for the technology payoff function B, along with the equilibrium

experimentation dynamics for two cost specifications. The figure highlights several interesting

features of our model. Experimentation cycles arise endogenously along the equilibrium path.

Both the length and the number of cycles is path dependent. In particular, it is not necessarily

the case that a lower cost of radical experimentation leads to more radical experimentation. The

figure shows that radical experimentation may indeed end sooner when experimentation is cheaper.

Cheaper experimentation leads to a larger size of radical experimentation when the gap is zero

but this larger size may lead an agent to explore an unattractive part of the technology space

which is exactly what happens in the simulation. In general, a wave of radical experimentations

can go on for several periods before radical experimentation ends forever. Eventually, the search

for a better technology begins to cluster around a technology discovered by a previous generation,

21This result bears some resemblance to the informational cascades analyzed in the social learning literature,

especially according to the definition provided by Lee (1993) for the case of a continuum of actions. As we already

mentioned in the introduction, the mechanism is different here, because the amount of information is endogenously

acquired by each generation.
22See Lemma 2.
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Figure 3: Dynamics of experimentation: δ = 1, c(y) = y2

2β . The payoff function is the realized path

of a Brownian motion with zero drift and volatility σ = 3.

yielding the endogenous-information equivalent of an informational cascade. Society converges to a

suboptimal technology, which is largely path dependent: a single experiment at, say, x = 10 would

completely change the dynamics of the search process when radical experimentation is cheaper,

shifting experimentation towards a different part of the technological space which would uncover

better technologies.

6 Stagnation and Social Inefficiency

Our stagnation result points to a general inefficiency problem with social experimentation. Radical

experimentation generates two positive externalities on future generations, by increasing knowledge

and by expanding the active domain. If these externalities were taken into account by current

generations, wouldn’t they systematically push radical experimentation beyond the equilibrium

level characterized in earlier sections? We formalize this question by introducing an infinitely-lived

social planner who discounts payoffs with a discount factor δS < 1.

Comparing the equilibrium dynamics of experimentation with the social optimum raises several

difficulties. Firstly, it is well-known that optimal experimentation with an infinitely lived agent and

correlated technologies cannot be characterized by the arm-specific index policies that Gittins and

Jones (1974) have identified for the standard multi-armed bandit problem with independent arms.23

This is intuitive: trying a new technology teaches something about surrounding technologies and

23See Appendix E for an example.
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affects the set of units.24 Secondly, any comparison between equilibrium and efficient experimenta-

tion has to be of a probabilistic nature. Indeed, it is easy to construct specific Brownian paths for

which equilibrium experimentation will last longer than the social optimum, by assigning an im-

plausibly low payoff to the first technology tried by the social planner and, repeatedly high payoffs

for the radical experimentations arising in equilibrium. The resulting histories are consistent with

possible Brownian paths, and clearly result in equilibrium radical experimentations lasting longer

than what is prescribed by the efficient policy. Thirdly, it is not clear how the social planner should

discount, if at all, future generations.

We circumvent all those difficulties by considering a limiting result as δS goes to 1, i.e., when

the social planner becomes infinitely patient. Let x̂FB(δS) denote the frontier at which a social

planner with discount factor δS stops radical experimentation. Despite our inability to characterize

the social optimum notwithstanding, we can prove the following result.

Theorem 2 As δS goes to 1, Prob
(
limδS→1 x̂

FB(δS) = +∞
)

= 1.

Theorem 2 implies, as a corollary, that equilibrium experimentation is with high probability

inefficiently low compared to the social optimum.

7 Beyond Two-Period Agents

Our earlier focus on two-period agents allowed us to tractably analyze experimentation with inter-

dependent technologies and emphasize how past experimentation affects the option value of new

technologies. This section discusses whether the insights developed in the baseline model extend to

agents living for more periods. In particular, does stagnation still occur in this case? Longer-lived

agents have stronger incentives to experiment, in a sense that we will quantify, and the possible

effects of early experimentation on future periods are more complex than with two-period agents.

To maintain tractability, we mainly focus on a modification of the baseline in which agents live for

three periods and each generation is born in the last (third) period of the previous generation.

To avoid confusion, we will refer to an agent in his first period as newly born, while an agent

in his second and third period will be referred to as young or old, respectively, as in the baseline

model. Given a discount factor δ > 0, period index T = 0, 1, 2 and history Ht, let U I(Ht;T ) and

UR(Ht;T ) denote the value functions of an agent with 2 − T periods left in the future when his

time-t choice is restricted to incremental and radical experimentation, respectively. Recalling the

24Readers may wonder whether units, which are conditionally independent, can be characterized by Gittins-like

indices. We have explored this possibility and concluded that this was highly unlikely: an index of the kind that we

obtained for two-period lived agents does not seem to exist for infinitely lived agents.
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convention that c(y) = 0 for any y ≤ 0, we have

U I(Ht;T ) ≡ sup
{xt+s}2−Ts=0

EHt

[
B(xt) +

2−T∑
s=1

δs (B(xt+s)− c(xt+s − x̂t+s))

]
, (7)

s.t. xt ∈ [0, x̂t], xt+s ∈ R+, s = 1, ..., 2− T

and

UR(Ht;T ) ≡ sup
{xt+s}2−Ts=0

EHt

[
B(xt)− c(xt − x̂t) +

2−T∑
s=1

δs (B(xt+s)− c(xt+s − x̂t+s))

]
. (8)

s.t. xt ≥ x̂t, xt+s ∈ R+, s = 1, ..., 2− T

The values of incremental and radical experimentation are defined as in the baseline model by

comparing the agent’s restricted value function to what he would get by exploiting the best known

technology at all periods:

VI(Ht;T ) ≡ U I(Ht;T )−
2−T∑
s=0

δsB̄t, and VR(Ht;T ) ≡ UR(Ht;T )−
2−T∑
s=0

δsB̄t. (9)

From this simple normalization, it follows that the agent prefers incremental over radical experi-

mentation at history Ht if and only if VI(Ht;T ) ≥ VR(Ht;T ).

The cases T = 1 and T = 2 correspond to the young and old agents already analyzed in our

baseline model. We now consider the case T = 0 of a newly born agent. The value of radical

experimentation can be written recursively as25

VR(Ht; 0) = sup
xt≥x̂t

EHt
[
B(xt)− c(xt − x̂t)− B̄t + δmax{VI(Ht+1; 1),VR(Ht+1; 1)}

+δ(1 + δ)
(
max{B̄t, B(xt)} − B̄t

)]
. (10)

The main challenge is to characterize the marginal value of radical experimentation for a newly

born agent, since it is this value which, compared with the marginal cost, determines the size of

radical experimentation. This marginal value turns out to be significantly more complicated with

three periods, not least because radical experimentation in the first period can now create new

incentives for radical experimentation in the second period of a 3-period agent. This effect was

absent with two periods because the agent was already old after performing a radical experiment.

Radical experimentation by a newly born agent affects both the value of radical experimentation

and the value of incremental experimentation in the agent’s second (young) period. First, it creates

a new unit which becomes available for incremental experimentation when the agent is young.

Second, a radical experiment also affects the size of the gap in the following period. It is for example

25A similar recursive expression holds for the value of incremental experimentation.
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possible that the size of the gap when the agent is young is smaller than when the same agent was

newly born due to a successful radical experiment. Thus, the value of radical experimentation

for a young agent may be increased, compared to the first period, as an outcome of first period

experimentation.

Nonetheless, a newly born agent has a stronger incentive to perform radical experimentation

than a young agent, all else equal.26

Proposition 7 For any history Ht of tried technologies and corresponding outcomes, an agent’s

value of radical experimentation is decreasing in his age: VR(Ht; 0) ≥ VR(Ht; 1) ≥ VR(Ht; 2) =

−Gt.

While intuitive, this result is challenging to establish due to the various implications of radical

experimentation by a newly-born agent.

The interplay between radical and incremental experimentation is also more complex, and the

value of radical experimentation for a newly-born agent is no longer simply determined by the gap

B̄t−B̂t. Nevertheless, an increase in the highest-known payoff, which increases the gap, still reduces

the value of radical experimentation, all else equal. Moreover, if the value of radical experimentation

becomes negative, then all future generations still discard radical experimentation.

Proposition 8 (i) The value of radical experimentation for a newly born agent is decreasing in

the size of the highest known payoff, B̄, all else equal. (ii) If the value of radical experimentation

is negative at some time t, radical experimentation is abandoned by all current and future agents.

The optimal radical experiment, xR,0t (Ht), for a newly born agent now solves the first-order

condition

δ(1 + δ)σ

2
√
x− x̂t

φ

(
Gt

σ
√
x− x̂t

)
+ δ

dEHt
[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
dx

= c′(x− x̂t), (11)

which generalizes equation (5). The first term of (11) is the immediate benefit of a bolder radical

experimentation on the probability of exceeding the current best payoff B̄t, through a higher vari-

ance. This effect is stronger than in the baseline model because the benefit of the current radical

experiment extends over a longer horizon. The second term of (11) represents the intertemporal

benefit of bolder radical experimentation, and was absent from the baseline model. It captures the

positive effect that a radical experiment today generates on the experimentation opportunities of

the agent one period ahead. While the intertemporal marginal benefit boosts incentives to perform

radical experimentation for a newly born agent, its effect can be showed to be uniformly bounded

above. This observation is used to show the existence of a gap threshold above which radical

experimentation becomes suboptimal.

26For the results presented in this section, we assume that the value functions are differentiable.
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Proposition 9 (i) If Gt = 0, then yR,0(Ht) > 0. (ii) There exists a value of the gap Ĝ such that

VR(Ht; 0) < 0 whenever Gt > Ĝ.

Just like radical experimentation, incremental experimentation becomes harder to characterize

with longer-lived agents. The two-period equation (6) does not have a simple equivalent with three

periods. Some insights developed of the baseline do extend to a longer life-span. For example,

exploitation is suboptimal for a newly born agent, just as it was suboptimal for a young agent.

Moreover, there still is a positive probability that radical experimentation occurs at or after any

history where the value of radical experimentation is positive (Proposition 6.1 in the baseline

model).

New issues also arise. For example, successful radical experimentation by a newly born agent

replenishes the value of further radical experimentation, but the same agent, when young, may

prefer to switch to an incremental experiment in the newly created unit. In addition, the short-

run dynamics of experimentation are now affected by the life cycle of new generations: each new

generation brings in higher incentives to experiment radically due to an exogenously longer life-span

compared to the aging previous generation.

Despite this additional complexity, it is possible to prove that stagnation surely arises in the

long run.

Theorem 3 Consider the extended model with three-period-lived agents. Radical experimentation

ends in finite time with probability one.

In summary, the trade-off between radical and incremental experimentation is more complex than

in the case of two-period agents, but the long run dynamics look the same. While the size of the gap

needed to induce a negative option value of radical experimentation may be larger with a longer

life-span, past successful incremental experimentation or disastrous radical experimentation will

eventually extinguish any incentive to perform radical experimentation due to the path-dependence

of the process of experimentation.

Generations overlapping for more than one period

Suppose now that new generations are born when the previous generation is still young. Possi-

ble strategic effects are free riding and encouragement effects. Free riding might occur because an

agent can avoid radical experimentation in the hope that some other agent will incur the cost of

expanding the current frontier. Radical experimentation pursued by one agent may, however, also

encourage other agents to pursue more radical experimentation when previous experimentation led

to the discovery of an attractive technology. Nevertheless, the long-run dynamics of experimenta-

tion would still be affected by large failures at the frontier which should cause the end of radical
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experimentation once the gap exceeds a critical level. The short-run dynamics of social experimen-

tation will instead be affected by free-riding and encouragement effects. While clearly beyond the

scope of this paper, these effects could in principle be investigated through the way in which they

affect the option values of radical and incremental experimentation.27

In our framework, new strategic issues would also arise, beyond free-riding and encouragement

effects. Consider the experimentation game between a young agent and a newly born agent. Sup-

pose that the newly born agent experiments radically. From the point of view of the young agent,

a smaller radical experiment is less valuable than what it would be in the absence of the other

agent’s radical experiment. This is due to two factors. First, an additional radical experiment

involves a duplication of costs. Second, a larger radical experiment has a larger option value of

experimentation. Therefore, the young agent may prefer to experiment incrementally this period

and use the information generated by the other agent when old. Similarly, a radical experiment by

the young agent may also reduce the option value of radical experimentation for the newly born

agent even if such an agent might have performed a larger radical experiment had he been the only

active agent. Thus, a multiplicity of equilibria may follow.

8 Discussion

8.1 Experimentation Dynamics: An Example

The history of fuel efficiency illustrates both socially inefficient experimentation and the negative

relationship between past successes and incentives for radical experimentation. After the oil crisis of

the 1970s, fuel efficiency for passenger vehicles doubled within ten years, but it has stayed roughly at

the same level for nearly 20 years.28 Past successful efforts to increase fuel efficiency have channeled

further investments toward improvements of the same technologies, instead of pushing the search

for new radical technologies. There is, however, a broad agreement that radical experimentation

is required to significantly increase fuel efficiency, which is close to its theoretical upper bound

under current technologies. While the myopic benefits associated with the exploration of radical

technologies may be low compared to the presumably high development costs, the unquestionable

27With infinitely-lived agents, some of these effects have been studied by Bolton and Harris (1999), Keller, Rady,

and Cripps (2005), and Keller and Rady (2010). Akcigit and Liu (2013) identifies another interesting aspect of

strategic experimentation, where agents hide their research failures, resulting in inefficient replication of unsuccessful

research. The limitation of those models is that they focus exclusively on two-arm settings with independent arms.

While we restrict attention to forward-looking but non-strategic behavior, we complement the literature by enriching

the action space to encompass a continuum of technologies with interdependent and unbounded payoffs.
28See the report “History of Fuel Economy: One Decade of Innovation, Two Decades of Inaction” by the PEW

Environment Group, available online at http://www.pewenvironment.org.
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large social value that such technologies could generate suggests a fitting illustration of inefficient

stagnation.

8.2 Breaking Stagnation

The mechanism behind our stagnation result is simple: as radical experiments with uncertain

and unbounded payoffs expand the technological frontier, the frontier must at some point get so

unattractive relative to the best known technology that no agent wishes to experiment beyond it.

This evolution captures Gordon (2012)’s view that radical innovations eventually get stuck as future

generations become unwilling to make the necessary investments to further push the technological

frontier. It is the willingness of each generation to undertake bold experimentation that fades away

over time, not the possibility to innovate radically.

There are two approaches to break the stagnation result: by increasing the new generation’s

value of radical experimentation, or by decreasing the cost of radical experimentation. Consider,

first, the cost reductions. A natural extension is to allow the cost of radical experimentation to

depend on known technologies: incremental innovations are helpful to produce more radical ones.

In Appendix D, we analyze a setting in which the cost of radical experimentation is decreasing in

the value of the best known technology. As long as this cost remains strictly positive and convex,

however, we show that stagnation still arises with probability 1. The result persists if we add a

positive fixed cost for incremental experimentation, which could a priori help by making radical

experimentation more attractive relatively to incremental experimentation.

A more radical extension of the model would feature population growth as in Kortum (1998)

or capital accumulation, as in standard growth models (Acemoglu 2008). The cost of any given

radical experimentation would then decrease in per capita terms or become small relative to the

capital available. These features would make it more affordable for later generations to increase the

size of radical experimentation, perhaps to the point at which an unattractive technology at the

frontier becomes irrelevant relative to much bolder innovations. This approach would likely suffice

to break stagnation as long as the population or capital available grows in each period regardless

of the technological choices made by current generations.

Turning to the value of experimentation, we analyze in the online appendix (Section B), a

variation of the model in which the Brownian path has an arbitrary positive drift.29 Intuitively,

this drift captures the idea that even when the frontier technology is disappointing, the outlook of

moving beyond the frontier gets increasingly better with the size of this move. However, we show

29We require that the marginal cost of radical experimentation exceeds this drift as the size the of experimentation

becomes arbitrarily large. Without this assumption, the optimal size of radical experimentation may be infinite and

the problem is not well defined.
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that this channel does not work: stagnation still arises with probability one.

Our model assumes that radical experimentations are building on the current frontier. In reality,

there are often multiple directions to follow for radical experimentation, and if the frontier along

one direction is not promising, one can always experiment along another direction. With finitely

many directions, however, this extension of the model would not help: one would still reach with

probability 1 a point at which all directions look unappealing.30

Another approach is to consider a fully multidimensional technological space, instead of just

multiple one-dimensional technological spaces. A natural modeling choice here would be to use

a Brownian sheet, which is a multidimensional extension of Brownian motion (see, Revuz and

Yor 1999).31 In such a model, each previously tried technology would be informative about the

payoff distribution of the new technology. This feature is perhaps realistic, since even remotely

connected technologies may be helpful to each other. But this would also significantly complicate

the analysis by breaking the Markov property which was instrumental in analyzing the “units”

developed in this paper.

In modeling a single decision at each period, we followed the multi-armed bandit and social

learning literatures where agents must choose a single bandit or action at each time. A slight

modification of this paradigm (but not anodyne for our stagnation result, as discussed above) is to

follow Jovanovic and Rob (1990) by allowing the agent to peek at new technologies before deciding

which one to choose. This possibility may be unrealistic when projects have large fixed costs.

For example, the only way to really learn the value of a large particle collider is to build one.

Alternatively, agents may be allowed to split their resources between multiple technologies. For

example, the current generation could exploit a known technology to guarantee enough immediate

consumption but also invest some of its resources in a more radical experiment. If utility from

consumption is concave and the generation is sufficiently long-lived, patient, or altruistic towards

future generations, such a model would deliver more radical experimentation. However, this alone

would likely not suffice to overturn our stagnation result: agents with a fixed lifespan would always

reach a period at which the technology at the frontier is so poor as to deter them from making the

radical investment.

In our model, generations do not directly interact with one another. With longer lived genera-

tions and transfers across them, patents would present another potential channel to foster radical

experimentation. If, in particular, older generations are allowed to patent the technologies devel-

30Jovanovic and Rob (1990) consider a setting with infinitely many such dimensions. Even in their setting, however,

stagnation would obtain if agents were not allowed to “peek” at the values of new technologies before choosing their

technology.
31Brownian sheets have multiple indices. They are not equivalent to n dimensional Brownian motions, and indeed

are much more complex mathematical objects.
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oped when they were young, this may push young generations to make their own experiment, either

to avoid paying licensing fees or in the hope of receiving licensing fees in later periods. These mech-

anisms are discussed in Section F of the appendix, but they have well-known limits. In particular,

the perspective of future experimentation can also reduce today’s incentives to experiment, as new

technologies quickly become obsolete. The process of creative destruction can be detrimental to

radical experimentation through direct and equilibrium effects, as shown by Aghion and Howitt

(1992), and also lead to stagnation.

Finally, if each generation consists of multiple agents, competition may also create incentives

for experimentation. Our model has assumed that there was a single firm experimenting in each

period, and that the payoff of any given technology was exogenous. In practice, however, various

firms may compete in the use of any given technology, which may crowd out profit and increases the

costs of the relevant resources. This may spur some firms to choose different technologies, assuming

that technologies are not perfect substitutes, in order to achieve horizontal differentiation.

As this section illustrates, many interesting questions remain open for successfully incorporating

the experimentation paradigm into the innovation and growth literatures. Our paper provides one

step in this direction and a framework on which to base further research on the topic.

Appendices

A Proofs of propositions from Sections 3 and 4

Proof of Proposition 1

Given an arbitrary history H,32 the expected utility from a radical experimentation x > x̂ is

E[B(x)− c(x− x̂) + δmax{B(x), B̄}] = (1 + δ)B̂ − c(x− x̂)

+ δEmax{B(x)− B̂, B̄ − B̂}

= (1 + δ)B̂ − c(x− x̂) + δEmax{k(x), G},

where k(x) = B(x)− B̂. Recall that k(x) ∼ N (0, σ2(x− x̂)). Therefore,

Emax{k(x), G} = σ
√
x− x̂φ

(
G

σ
√
x− x̂

)
+GΦ

(
G

σ
√
x− x̂

)
. (12)

Taking the supremum over x ≥ x̂, we obtain

sup
x≥x̂

{
(1 + δ)B̂ − c(x− x̂) + δσ

√
x− x̂φ

(
G

σ
√
x− x̂

)
+ δGΦ

(
G

σ
√
x− x̂

)}
= (1 + δ)

[
B̂ + sup

y≥0

1

1 + δ

{
−c(y) + δσ

√
yφ

(
G

σ
√
y

)
+ δGΦ

(
G

σ
√
y

)}]
,

where y ≡ x− x̂. Defining

F∞(G) =
1

1 + δ
sup
y≥0

{
−c(y) + δσ

√
yφ

(
G

σ
√
y

)
+ δGΦ

(
G

σ
√
y

)}
, (13)

32We drop the time subscripts from now on to simplify the exposition.
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and V R(H) =
[
B̂ + F∞(G)

]
− B̄ = F∞(G)−G yields the formula claimed by Proposition 1.

Next, we need to evaluate the effect of an increase in the size of the gap, G, on the value of radical

experimentation V R(G) = F∞(G) − G.33 For this and other comparative statics results, we will apply

differential techniques to some value functions. These techniques can be applied because the relevant func-

tions are always left and right differentiable, a result which follows from Corollary 4 of Milgrom and Segal

(2002).34 All the comparative statics arguments to follow can be applied to the right derivative (or, in case

of a decrease of the parameter, to the left derivative). For expositional simplicity, we drop reference to the

side of the derivative.

If there exists an interior solution y∗ > 0 to (13) when G > 0, then ∂V R(G)
∂G = dF∞(G)

dG − 1 =
δ

1+δΦ
(

G
σ
√
y∗

)
−1 < 0. If there is no interior solution, then F∞(G) = δ

1+δG which gives ∂V R(G)
∂G = δ

1+δ−1 < 0.

When G = 0, V R(G) = F∞(0) and ∂V R(G)
∂G = 0.

Finally, if V R(Gt) < 0, the previous comparative statics, monotonicity of the sequence {B̄t}, and the

fact that B̂t is unaffected by incremental experimentation, imply that radical experimentation will never be

undertaken for any t′ > t, as it is always dominated by exploitation of the best explored technology. �
Proof of Proposition 2

If G = 0, the expected utility from radical experimentation of size y > 0 is equal to

E
[
B(x̂+ y)− c(y) + δmax{B(x̂+ y), B̄}

]
= (1 + δ)B̂ − c(y) + δσ

√
yφ(0),

from (13). The first-order condition yields Equation (5) with G = 0. The right-hand side of (5) is increasing

in y, while the left-hand side is strictly decreasing. The left-hand side is also unbounded around 0, and

converges to 0 as y → +∞. Therefore, there always exists a solution to Equation (5) when G = 0, and it is

unique. The second-order condition

−δσφ(0)

4y3/2
− c′′(y) < 0,

is satisfied, guaranteeing that the first-order condition characterizes maxima.

If G > 0, the expected utility from radical experimentation of size y > 0 is

(1 + δ)B̂ − c(y) + δσ
√
yφ

(
G

σ
√
y

)
+ δGΦ

(
G

σ
√
y

)
.

The first-order condition is again given by (5). Differentiating (5) with respect toG, we obtain− δG
2σy3/2φ

(
G
σ
√
y

)
,

which is strictly negative. Since the objective function in (13) is submodular in (y,G), the Strict Mono-

tonicity Theorem 1 of Edlin and Shannon (1998) implies that the optimal size of radical experimentation is

decreasing in G. Similarly, the objective function is supermodular in (y, δ) and (y, σ).

We now show the existence of a cutoff G̃ above which radical experimentation has a negative value. Let

A(y,G) ≡ δσ
2
√
yφ
(

G
σ
√
y

)
denote the marginal benefit of radical experimentation, given a gap G and a size y

of radical experimentation.35

Lemma 1 For any G > 0,

1. limy→+∞A(y,G) = limG→+∞A(y,G) = limy→0A(y,G) = limy→0
∂A(y,G)
∂y = 0;

33As explained in the main text, we adopt the convention of representing the value of radical experimentation

directly through its dependence on the gap.
34The value function may fail to be differentiable at parameter values for which there exist multiple maximizers.

At such values, however, the value function is still left and right differentiable, with the left (right) derivative being

evaluated at the maximizer that minimizes (maximizes) the derivative of the objective with respect to the parameter.

See Milgrom and Segal (2002).
35A(y,G) corresponds to the left-hand side of equation (5).
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2. ∂A(y,G)
∂G < 0.

3. A(y,G) is strictly quasi-concave in y, and maximized at G2

σ2 .

Proof. The first two limits in 1) and the sign of the derivative in 2) directly follow from the properties

of φ(·). The limit limy→0A(y,G) is computed using the fact that limy→0
1√
y e
− 1

y = limz→∞
z1/2

ez = 0. One

shows similarly that limy→0
∂A(y,G)
∂y = 0. Strict quasiconcavity of A in y comes from the fact that

∂A(y,G)

∂y
=

δσ

4y3/2

[
G2

σ2y
− 1

]
φ

(
G

σ
√
y

)
,

which is nonnegative below G2

σ2 and negative above. This also shows that G2

σ2 maximizes A(·, G). �
To establish the existence of the threshold G̃ > 0, we start by showing that y∗ = 0 is the unique maximizer

of (13), whenever G is high enough. If c′(0) > 0, Lemma 1 implies that limy→0A(y,G) = 0 < c′(0) for

any G > 0. Also by Lemma 1, ∂A(y,G)
∂G < 0, limG→+∞A(y,G) = 0, and A(y,G) ≤ A

(
G2

σ2 , G
)

= δσ2

2G φ(1).

This, combined with the properties of c, implies the existence of a large enough threshold G̃ such that

c′(y) > A(y,G) for all G > G̃ and y > 0. A similar argument applies if c′(0) = 0 and c′′(0) > 0, because

limy→0
∂A(y,G)
∂y = 0, from Lemma 1. Substituting y∗ = 0 into (13) yields F∞(G) = δG

1+δ . Therefore, the

value of radical experimentation is equal to V R(G) = − G
1+δ < 0, for G > 0. �

Proof of Proposition 3

Given that the distribution of payoffs within each unit is conditionally independent from other units, fix

an arbitrary bounded unit u. Suppose, without loss of generality, that BH = B(xr) > B(xl) = BL (the case

of an equality is obtained by taking the limit as, say, BL is increased to BH). Then, for any x ∈ [xl, xr],

B(x) ∼ N
(
BL +

BH −BL

xr − xl
(x− xl),

(x− xl)(xr − x)

xr − xl
σ2

)
,

where N (κ, σ2) denotes the distribution of a Gaussian variable with mean κ and variance σ2. Letting

a(x) = x−xl

xr−xl
,

B(x)−BL ∼ N
(
D a(x), a(x)(1− a(x))Lσ2

)
.

We also define k(x) = B(x)−BL and B̄′ = B̄ −BL to obtain an explicit formula for the expected payoff:

Emax{k(x), B̄′} = B̄′Φ

(
B̄′ −Da(x)

σ
√
a(x)(1− a(x))L

)
+Da(x)

[
1− Φ

(
B̄′ −Da(x)

σ
√
a(x)(1− a(x))L

)]

+ σ
√
a(x)(1− a(x))Lφ

(
B̄′ −Da(x)

σ
√
a(x)(1− a(x))L

)
,

where Φ and φ are the CDF and pdf of the standard normal distribution. This leads to

Eu

[
B(x) + δmax{B(x), B̄}

]
= (1 + δ)BL +Da(x) + δEmax{k(x), B̄′}

= (1 + δ)BL +D

{
a(x)

(
1 + δ − δΦ

(
B̄′

D − a(x)

σ
√
L
D

√
a(x)(1− a(x))

))

+ δσ
√
a(x)(1− a(x))

√
L

D
φ

(
B̄′

D − a(x)

σ
√
L
D

√
a(x)(1− a(x))

)

+δ
B̄′

D
Φ

(
B̄′

D − a(x)

σ
√
L
D

√
a(x)(1− a(x))

)}
. (14)
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Define q1 ≡
√
L
D , q2 ≡ B̄′

D , and

F̄ (a, q1, q2) =
1

1 + δ

{
a

(
1 + δ − δΦ

(
q2 − a

σq1

√
a(1− a)

))

+δq2Φ

(
q2 − a

σq1

√
a(1− a)

)
+ δσ

√
a(1− a)q1φ

(
q2 − a

σq1

√
a(1− a)

)}
. (15)

As the common argument of Φ and φ depends only on a(x),
√
L/D and B̄′/D, we can write

Eu

[
B(x) + δmax{B(x), B̄}

]
= (1 + δ)

{
BL +D F̄

(
a(x),

√
L

D
,
B̄′

D

)}
. (16)

Maximizing the expected payoff over x ∈ [xl, xr] yields

U(u;Ht) ≡ max
x∈[xl,xr]

Eu

[
B(x) + δmax{B(x), B̄}

]
= (1 + δ)

[
BL +D F

(√
L

D
,
B̄′

D

)]
, (17)

where

F (q1, q2) = max
a∈[0,1]

F̄ (a, q1, q2) . (18)

Letting V (u, B̄) =
[
BL +D F

(√
L
D , B̄−B

L

D

)]
− B̄ yields the characterization of the value of experimentation

for a bounded unit.

The value of experimentation of each unit, whether bounded or unbounded, corresponds to a normaliza-

tion of the agent’s value function when the domain of choice is restricted to that particular unit. Therefore,

the agent optimally chooses a technology within the unit with the highest value of experimentation.

Next, notice that

∂F̄ (a, q1, q2)

∂a
=

1

1 + δ

{
1 + δ − δΦ

(
q2 − a

σq1

√
a(1− a)

)
+
δσq1

2

1− 2a√
a(1− a)

φ

(
q2 − a

σq1

√
a(1− a)

)}

≥ 1

1 + δ
> 0,

for any a ≤ 1
2 , because the sum of the first three terms in curly brackets is weakly greater than 1 by the

property of Φ and the last term is positive if, and only if, a ≤ 1
2 . Thus, any a∗ ∈ arg maxa∈[0,1] F̄ (a, q1, q2)

must be greater than 1
2 . As a(x) = x−xl

xr−xl
, the corresponding optimal technology from a unit with interval

[xl, xr], x
∗(u, B̄), must lie in

(
xr+xl

2 , xr
]

whenever B(xl) < B(xr).

We suppose once again that the value function (18) is differentiable. The Envelope Theorem implies, for

any bounded unit u, that36

∂V (u, B̄)

∂L
=

δ

1 + δ

σ

2

√
a∗(1− a∗)

L
φ

(
B̄′ −Da∗

σ
√
a∗(1− a∗)L

)
> 0, (19)

where a∗ ∈ arg maxa∈[0,1] F̄ (a, q1, q2). Similarly, for BH 6= B̄, ∂V (u,B̄)
∂BH > 0 and ∂V (u,B̄)

∂BL > 0, as can be seen

from equations (23) and (24) in the proof of Proposition 6. �
Proof of Proposition 4

For any bounded unit u with BH < B̄ we have37

dF (q1, q2)

dB̄
=

1

D

∂F (q1, q2)

∂q2
=

δ

(1 + δ)D
Φ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)
, (20)

36An argument similar to the proof of Proposition 5, which holds independently of the present comparative statics,

shows that any optimum x∗ is always in the interior of a unit.
37Again, we omit dependence on side-derivatives. See Footnote 34 and the discussion surrounding it.
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where, as before, q1 ≡
√
L
D , q2 ≡ B̄−BL

D , and a∗ ∈ arg maxa∈[0,1] F̄ (a, q1, q2). This implies that

∂V (u, B̄)

∂B̄
=

δ

1 + δ
Φ

(
B̄ −BL −Da∗

σ
√
a∗(1− a∗)L

)
− 1 < 0.

If, instead, u contains the best explored technology, then V (u, B̄) = BL − B̄ + (B̄ − BL)F
( √

L
B̄−BL , 1

)
.

This yields ∂V (u,B̄)
∂B̄

= F
( √

L
B̄−BL , 1

)
−

√
L

B̄−BL
∂F
∂q1

( √
L

B̄−BL , 1
)
− 1, which is strictly negative from (25).

Exploitation of the best explored technology is always feasible for a young agent, and yields a payoff of

(1 + δ)B̄t. Consider a unit u such that V (u, B̄t) < 0. Then,

V (u, B̄t) < 0 ⇐⇒ U(u;Ht)
1 + δ

< B̄t ⇐⇒ U(u;Ht) < (1 + δ)B̄t,

where the second equivalence follows from (17). Therefore, choosing the best explored technology dominates

choosing any technology in u. Since B̄t is nondecreasing in t, once the value of experimentation of a unit is

negative, it remains negative. �
Proof of Proposition 5

Suppose that BH = B̄. Differentiating F̄ (a, q1, 1) with respect to a yields

(1 + δ)
∂F̄ (a, q1, 1)

∂a
=

[
1 + δ − δΦ

(
1

σq1

√
1− a
a

)]
+
δσq1

2

1− 2a√
a(1− a)

φ

(
1

σq1

√
1− a
a

)
,

which tends to −∞ as a goes to 1. Also, F̄ (0, q1, 1) ≡ lima→0 F̄ (a, q1, 1) = δ
1+δ < 1 = lima→1 F̄ (a, q1, 1) ≡

F̄ (1, q1, 1). We have thus shown that any solution to (18) lies in (0,1) whenever q1 > 0 and q2 = 1. Consider

any history Ht and unit u with B̄ as one of its endpoint payoffs. Then, D = B̄ −BL and

V (u, B̄) = BL − B̄ + (B̄ −BL)F

( √
L

B̄ −BL
, 1

)
> BL − B̄ + (B̄ −BL)F̄

(
1,

√
L

B̄ −BL
, 1

)
= BL − B̄ + (B̄ −BL) = 0,

which proves that there is always at least one bounded unit with strictly positive value of experimentation.

Thus, exploitation is strictly suboptimal. �
Proof of Proposition 6

If V R(Gt) > V I(Ht), then radical experimentation occurs with probability 1 at time t. Thus, consider a

history Ht such that V I(Ht) > V R(Gt) > 0. By continuity, there exists ε > 0 such that the value of radical

experimentation remains positive if the current gap is increased to Gt + ε. Let B(ε) denote the set of paths

of B on [0, x̂t] which are compatible with Ht and are bounded above by B̄t + ε. B(ε) occurs with positive

probability. By construction, the sequence {B̄t′}t′>t stays below B̄t + ε for any path in B(ε), which implies

that the value of incremental experimentation converges to zero over time, by Theorem 1. Thus, the value

of incremental experimentation must fall below the value of radical experimentation, which is uniformly

bounded away from zero for any path in B(ε).

Next, suppose that radical experimentation occurs at an arbitrary history Ht. Let B̂t+1 denote the

corresponding payoff of radical experimentation, and let ut denote the newly created bounded unit. For

the rest of this proof, it turns out to be more convenient to work with the auxiliary indexes Q(u, B̄) =

V (u, B̄) + B̄ = BL + D F (q1, q2) and Q(u∞, B̄) = F∞(G) + B̂ which are a simple normalization of the

value function of a young agent when his first period choice is restricted to a unit u. Thus, the young agent

experiments with a technology within the unit with the highest (auxiliary) index Q(u, B̄). In particular, we

can define the indexes for incremental and radical experimentation by

QI(Ht) = max
u∈P(Ht)

Q(u, B̄) and QR(Ht) = Q(u∞, B̄), (21)
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for any history Ht, where P(Ht) is the collection of bounded units induced by a history Ht. After radical

experimentation has taken place, the new index for incremental experimentation at the start of time t+ 1 is

QI(Ht+1) = max

 max
u∈P(Ht)

Q(u,max{B̄t, B̂t+1})︸ ︷︷ ︸
Q̄(max{B̄t,B̂t+1})

, Q(ut,max{B̄t, B̂t+1})

 .

We first consider how Q̄(max{B̄t, B̂t+1}) varies with B̂t+1. If B̂t+1 ≤ B̄t, Q̄(·) is unaffected by B̂t+1. If

B̂t+1 > B̄t, consider any unit u ∈ P(Ht). Then,38

∂Q(u, B̂t+1)

∂B̂t+1

=
∂

∂B̂t+1

[
BL +DF

(√
L

D
,
B̂t+1 −BL

D

)]
=
∂F

∂q2

(√
L

D
,
B̂t+1 −BL

D

)
∈
(

0,
δ

1 + δ

)
, (22)

by (20). Next, we consider the index of the new unit ut. To this end, recall that B̂t is the payoff associated

with the left endpoint of the newly created unit ut. If B̂t < B̂t+1 ≤ B̄t, then

∂Q(ut, B̄t)

∂B̂t+1

=
∂

∂B̂t+1

[
B̂t + (B̂t+1 − B̂t)F

( √
L

B̂t+1 − B̂t
,
B̄t − B̂t
B̂t+1 − B̂t

)]

=
a∗

1 + δ

[
1 + δ − δΦ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)]
> 0, (23)

where a∗ ∈ arg maxa∈[0,1] F̄ (a, q1, q2). If, instead, B̂t+1 < min{B̄t, B̂t}, then

∂Q(ut, B̄t)

∂B̂t+1

=
∂

∂B̂t+1

[
B̂t+1 + (B̂t − B̂t+1)F

( √
L

B̂t − B̂t+1

,
B̄t − B̂t+1

B̂t − B̂t+1

)]

= (1− a∗)

[
1− δ

1 + δ
Φ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)]
∈
(

0,
1

1 + δ

)
. (24)

The upper bound follows from the fact that a∗ ∈
(

1
2 , 1
)
, then

(1− a∗)

[
1− δ

1 + δ
Φ

(
q2 − a∗

σq1

√
a∗(1− a∗)

)]
≤ 1

2

[
1− δ

1 + δ

1

2

]
=

2 + δ

4(1 + δ)
<

1

1 + δ
,

for any δ ∈ [0, 1]. Finally, suppose that B̂t+1 > B̄t (≥ B̂t), then we have

∂Q(ut, B̂t+1)

∂B̂t+1

=
1

1 + δ

[
a∗(1 + δ) + δ(1− a∗)Φ

(
1

σq1

√
1− a∗
a∗

)]
∈
(

δ

1 + δ
, 1

)
. (25)

The upper bound follows from a∗ < 1, since q2 = 1 in this case, while the lower bound follows from a∗ ≥ 1
2 ,

by Proposition 3.

Below B̄t, Q̄ is flat as a function of B̂t+1, while the index of the new unit strictly increases in B̂t+1, by

(23) and (24). Above B̄t, Q̄ grows at most by δ
1+δ following an increase in B̂t+1, while the derivative of

the index of the new unit is at least δ
1+δ as shown by (25). If Q̄(B̄t) > Q(ut, B̄t)

∣∣
B̂t+1=B̄t

, the index of the

new unit is strictly below Q̄(B̄t) for any B̂t+1 < B̄t. Since, above B̄t, the lowest slope of the index of the

new unit is strictly higher than the largest slope of Q̄(·), the two indexes intersect exactly once. If instead

Q̄(B̄t) < Q(ut, B̄t)
∣∣
B̂t+1=B̄t

, the two indexes necessarily cross only once at some B̂t+1 < B̄t, but never above

38Again dropping dependence on side-derivatives, see Footnote 34.
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B̄t. We ignore the case Q̄(B̄t) = Q(ut, B̄t)
∣∣
B̂t+1=B̄t

, which occurs with zero probability. The intersection

is denoted by bIt and it is such that incremental experimentation would occur, when optimal, in the newly

created unit if and only if B̂t+1 > bIt .

We now analyze how the index of radical experimentation varies with B̂t+1, which again denotes the

new frontier payoff. With a slight abuse of notation, the index of radical experimentation at time t + 1 is

given by QRt+1(B̂t+1) = B̂t+1 + F∞(Gt+1) = B̂t+1 + F∞
(

max{B̄t − B̂t+1, 0}
)

as a function of the frontier

payoff B̂t+1. For any B̂t+1 ≥ B̄t, QRt+1(B̂t+1) = B̂t+1 + F∞(0) and
∂QR

t+1

∂B̂t+1
= 1.

Suppose instead that B̂t+1 < B̄t. From Proposition 2, there exists a threshold G̃ above which the

optimal size of radical experimentation is 0. Define B̃ by B̄t − B̃ = G̃. Then, for any B̂t+1 ≤ B̃,

QRt+1(B̂t+1) = B̂t+1+δB̄t

1+δ , because the time-t + 1 generation would prefer the frontier technology to any

radical experimentation. Thus, in this case
∂QR

t+1

∂B̂t+1
= 1

1+δ .

For B̂t+1 ∈ (B̃, B̄t), the maximizer of (13) may be interior. In that case,
∂QR

t+1

∂B̂t+1
= 1− δ

1+δΦ
(
B̄t−B̂t+1

σ
√
y∗

)
∈(

1
1+δ , 1

)
, where y∗ is the optimal size of radical experimentation following history Ht+1. Thus, the derivative

is always at least 1
1+δ .

We need to consider two cases.

Case 1 : Gt = 0. Let bIt denote the cutoff such that incremental experimentation occurs in the new unit if,

and only if, B̂t+1 ≥ bIt , whose existence we just proved. If bIt ≥ B̄t, the index of incremental experimentation

is flat for any B̂t+1 < B̄t, and

∂QIt+1

∂B̂t+1

∈


(

0, δ
1+δ

)
from (22) if B̄t ≤ B̂t+1 < bIt ,(

δ
1+δ , 1

)
from (25) if B̂t+1 ≥ bIt ,

which follows from our previous analysis. Since the slope of the index of radical experimentation is always

at least 1
1+δ ≥

δ
1+δ below bIt and 1 above bIt (as bIt ≥ B̄t), it follows that QRt+1 and QIt+1 as functions of B̂t+1

cross exactly once. Let bRt denote such intersection.

Similarly, if bIt < B̄t, the index for radical experimentation is unchanged, but

∂QIt+1

∂B̂t+1


= 0 if B̂t+1 < bIt ,

∈
(

0, 1
1+δ

)
from (24) if bIt ≤ B̂t+1 < B̄t,

∈
(

δ
1+δ , 1

)
from (25) if B̂t+1 ≥ B̄t.

A direct comparison of the slopes of the indexes shows that there exists exactly one intersection.

Case 2 : Gt > 0. If bIt ≥ B̄t, the analysis is the same as for Case 1. Thus, there exists a unique

intersection bRt .

If bIt < B̄t, the slope of the index of incremental experimentation over the range [max{bIt , Bl}, B̄t) is

given by (23), which cannot be compared with the slope of QRt+1 in an unambiguous way. Thus, we cannot

exclude the possibility of multiple intersections between the two indexes. �

B Proof of Theorem 1

Step 1: We first show that radical experimentation ends in finite time almost surely. From Proposition 2,

there exists a threshold G̃ > 0 such that radical experimentation ends after any history such that Gt ≥ G̃.

Therefore, it suffices to show that this threshold is reached almost surely.

Consider an experimentation path along which radical experimentation happens infinitely often, and

let {ϕ(t)} denote the sequence of times at which radical experimentation occurs. In particular, yRϕ(t) =

xRϕ(t) − x̂ϕ(t) > 0 for all t.
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Lemma 2 {x̂ϕ(t)} is unbounded a.s.

Proof. Suppose that x̂ϕ(t), which is increasing in t, converges to some finite limit x̃. This implies that yRϕ(t)

converges to 0. From Proposition 2, yRϕ(t) is decreasing in the gap. Therefore, there must exist a subsequence

{ψ(t)} of {ϕ(t)} such that {Gψ(t) = B̄ψ(t)−B̂ψ(t)} is increasing. Since that sequence is bounded above by G̃,

it must converge to some strictly positive limit ρ, and B̄ψ(t) converges to the limit ρ+B(x̃). For sufficiently

high t, the expected payoff from radical experimentation is approximately equal to B(x̃)+δ(ρ+B(x̃)), while

the payoff from exploitation is approximately (1 + δ)(ρ+B(x̃)). Since ρ+B(x̃) > B(x̃) by construction, an

agent will eventually strictly prefer to exploit the best explored technology yielding a payoff close to ρ+B(x̃)

over the radical experimentation corresponding to times in {ϕ(t)}, a contradiction. �
From Proposition 2, ȳ = yR(0) is an upper bound on the optimal size of radical experimentation for any

size of the gap. Therefore, |x̂ϕ(t+1) − x̂ϕ(t)| ≤ ȳ. For any s > 0 and path B, let

As(−G̃) = sup

{
x′ − x : max

x′′∈[x,x′]
{B(x′′)} < −G̃, and x < x′ < s

}
.

Lemma 3 As(−G̃) > ȳ almost surely as s→ +∞.

Proof. By the recurrence property of Brownian motion, there exists a.s. an x̃ > 0 such that B(x̃) < −G̃
and, hence, some s > 0 such that As(−G̃) > 0. The result then follows from the scaling property of Brownian

motion. �
Lemma 3 means that if radical experimentation goes far enough, with each leap size bounded above

by ȳ, the frontier is bound to “fall” into a region where its payoff is less than −G̃. Because B̄ is always

nonnegative, the gap B̄ − B̂ after such history will exceed G̃, prompting radical experimentation to stop.

Combined with Lemma 2, this guarantees that radical experimentation must stop in finite time, almost

surely.

Step 2: Belief convergence.

After radical experimentation stops, all experimentation takes place in a compact domain. The payoff

distribution over that domain is characterized by finitely many Brownian bridges, whose endpoints corre-

spond to previously explored technologies. We now establish that the beliefs resulting from the subsequent

experimentation converge to a well-defined limit. Let K = [0, x̂] denote the domain of experimentation after

radical experimentation has stopped, and µ0 denote the distribution of B on K, given the history leading up

to the end of radical experimentation. For notational simplicity, we will reset to 0 the time at which radical

experimentation has stopped.

Let Θ denote the space of continuous functions on K starting at 0. At any time t the belief µt is a

probability distribution over Θ: µt ∈ ∆(Θ). Some arguments that we need to use hold only for compact

spaces. Because of this, we will sometimes need to replace the pathsB by some bounded counterpart. For Λ >

1, we will consider any transformation T (·,Λ) of R such that i) T (·,Λ) is continuous and strictly increasing,

ii) T (x,Λ) = x for all x such that |x| < Λ− 1, and iii) limx→−∞ T (x,Λ) = −Λ and limx→+∞ T (x,Λ) = +Λ.

Such function is easily built, and is bounded by Λ.

For any Brownian path B, the transformed path bΛ : x 7→ T (B(x),Λ) is continuous and bounded by Λ,

and is homeomorphic to B. In particular, bΛ and B are observationally equivalent. Any belief µ about B

has a corresponding belief µΛ about bΛ and vice versa. Let Θ(Λ) denote the subset of Θ whose elements are

bounded in absolute value by Λ, and ∆(Λ) denote the set of distributions over Θ(Λ).

Given a sequence {xt}t≥0 of technology choices, let {µΛ
t } denote the sequence of beliefs in ∆(Λ) about the

underlying transformed path bΛ, obtained through Bayesian updating. It is well-known that this sequence is

a martingale and converges to some limit µΛ. This result follows from the Martingale Convergence Theorem,

and is proved similarly to Theorem 4 in Easley and Kiefer (1988). Translating this result in terms of B, this

shows that the sequence {µt} of beliefs about the path B also converge to some limit µ.
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For any history H leading to the belief µ, let ZΛ(µ) = sup{bΛ(xt) : xt contained in H}. As is easily

checked, ZΛ(µ) is independent of the particular history leading up to the limiting belief µ, and continuous

in µ. We can similarly let Z(µ) = max{B(xt)} = T−1(ZΛ(µ),Λ)39 where, for each Λ, T−1(·,Λ) denotes the

inverse of T (·,Λ).

Step 3: Technology Convergence and Vanishing Value of Incremental Experimentation.

The next step is to characterize the limit to which technologies converge. For any (z1, z2) ∈ R × R+,

let r(z1, z2) = z1 + δmax{z1, z2} denote the payoff of an agent if the payoff of his chosen technology when

young is z1 and the best explored payoff until then was z2. Given a technology x, payoff z, and belief µ, let

u(x, µ, z) =

∫
Θ

r(B(x), z) dµ(B),

and

uΛ(x, µ, z) =

∫
Θ

r(T (B(x),Λ), z) dµ(B).

Using the distribution µΛ implied on Θ(Λ) by µ, we have

uΛ(x, µ, z) = v(x, µΛ, z),

where we define v, for any µ̃ ∈ ∆(Λ), by

v(x, µ̃, z) =

∫
Θ(Λ)

r(bΛ(x), z) dµ̃(bΛ).

We will use the following lemma, which is proved at the end of this Appendix (Section B.1):

Lemma 4 v(x, µ, z) is continuous over K ×∆(Λ)× [−Λ,Λ].

Given a belief µ with corresponding maximum explored payoff z, a young agent solves the maximization

problem:

U(µ, z) = max
x∈K

u(x, µ, z).

The equilibrium technological path, denoted {x∗t } is such that, for each t, x∗t maximizes u(x, µt, zt). We

now derive properties for the long-run technologies arising in equilibrium. Given a sequence of technologies

{xt}∞t=0, let M({xt}) be the set of its limit points.

Proposition 10 For any history H, limiting belief µ, and x ∈ M({x∗t }), x ∈ argmaxx′∈K u(x′, µ, Z(µ))

and B(x) = Z(µ).

Proof. Let {x∗tk} denote a subsequence converging to x. By construction,

u(x∗tk , µtk , Z(µtk)) ≥ u(x′, µtk , Z(µtk)), (26)

for any x′ ∈ K. Because Lemma 4 applies only to bounded payoffs, we cannot directly take the limit in the

previous inequality. Instead we will approximate it by its equivalent when the payoffs are bounded by Λ for

Λ arbitrarily large. Let Ω(Λ) = {B ∈ Θ : maxx∈K |B(x)| > Λ− 1}. We have for any x, µ̂, z

|u(x, µ̂, z)− uΛ(x, µ̂, z)| ≤
∫

Θ

|r(B(x), z)− r(T (B(x),Λ), z)|dµ̂(B) ≤ 2

∫
Ω(Λ)

|r(B(x), z)|dµ̂(B). (27)

We now show that the right-hand side converges to zero as Λ goes to infinity, uniformly on the domain

K × ∪t{µt} × [0, Z(µ)]. For all x ∈ K and z ∈ [0, Z(µ)], |r(B(x), z)| ≤ (1 + δ)(Z(µ) + maxx∈K |B(x)|).
Therefore, the right-hand side of (27) is bounded above by40

2(1 + δ)

∫
Ω(Λ)

(
Z(µ) + max

x∈K
B(x)−min

x∈K
B(x)

)
dµ̂(B).

39This maximum is also well defined, because B is continuous on the compact domain K.
40The inequality relies on the fact that, since B(0) = 0, maxx∈K B(x) ≥ 0 and minx∈K B(x) ≤ 0.
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We will show that

sup
µt:t≥0

∫
Ω(Λ)

(
Z(µ) + max

x∈K
B(x)−min

x∈K
B(x)

)
dµt(B),

converges to zero as Λ goes to infinity. For this, it suffices to show the convergence for

sup
µt:t≥0

∫
Ω(Λ)

(
max
x∈K

B(x)

)
dµt(B),

since the other two terms can be treated similarly.41 We will establish a stronger result, whose proof is in

Appendix B.2. Let P(K) denote the set of all finite partitions of K and, for each Π ∈ P(K) and Z̄ ≥ 0, let

µZ̄Π denote the probability measure over Θ corresponding to Brownian bridges with endpoints at consecutive

elements of Π and endpoint values identically equal to Z̄.

Lemma 5 For any constant Z̄ ≥ 0,

lim
Λ→+∞

{
sup

Π∈P(K)

{∫
Ω(Λ)

(
max
x∈K

B(x)

)
dµZ̄Π(B)

}}
= 0.

For each µt, maxx∈K B(x) is clearly dominated, in the sense of first-order stochastic dominance, by the same

maximum under the distribution µΠ, whose partition corresponds to the units of µt, and whose endpoints

are equal to Z(µ), which is greater than Z(µt).
42 Applying Lemma 5 to Z̄ = Z(µ) thus proves the desired

uniform convergence.

This implies that there exists, for any ε > 0, a positive threshold Λ(ε) such that |uΛ(x, µt, z) −
u(x, µt, z)| < ε for all (x, t, z) ∈ K × N × [0, Z(µ)] and Λ > Λ(ε). Therefore, (26) implies that, for a

sequence converging to x, we have

uΛ(x∗tk , µtk , Z(µtk)) ≥ u(x∗tk , µtk , Z(µtk))− ε
≥ u(x′, µtk , Z(µtk))− ε
≥ uΛ(x′, µtk , Z(µtk))− 2ε.

Taking the limit as Λ goes to infinity, and using Lemma 4, we obtain that

u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ))− 2ε.

Since ε was arbitrary, this proves that u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ)). Proposition 5 also implies that

u(xtk , µtk , Z(µtk)) > (1 + δ)Z(µtk), which shows that U(µ,Z(µ)) = u(x, µ, Z(µ)) ≥ (1 + δ)Z(µ). More-

over, B(x) ≤ Z(µ), since Z(µ) = supt{B(xt)}, B is continuous, and x is a limit point of {xt}, and

u(x, µ, Z(µ)) = B(x) + δZ(µ) ≤ (1 + δ)Z(µ), where the equality holds because B(x) is known given µ.

Therefore, U(µ,Z(µ)) = (1 + δ)Z(µ). In particular, B(x) = Z(µ). �
Proposition 10 and its proof also show that the value of incremental experimentation converges to zero

over time: for any x, u(x, µt, Z(µt))− (1 + δ)Z(µt) becomes nonpositive.

41The last term obtains by symmetry, the first term with the constant Z(µ) can in fact be incorporated in Z̄ in

the argument following Lemma 5.
42Indeed, µΠ is obtained from µt by raising to the level Z(µ) the payoff of each technology explored by time t.
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B.1 Proof of Lemma 4

Let Θ̃ = Θ(Λ) (Λ is fixed throughout, so there is no ambiguity about the underlying space). Let {(xn, µn, zn)}
be a sequence from K ×∆(Θ̃)× [−Λ,Λ] which converges to (x, µ, z) ∈ K ×∆(Θ̃)× [−Λ,Λ]. Then,

|v(xn, µn, zn)−v(x, µ, z)| =
∣∣∣∣∫

Θ̃

r(bΛ(xn), zn) dµn −
∫

Θ̃

r(bΛ(x), z) dµ

∣∣∣∣
≤
∣∣∣∣∫

Θ̃

[r(bΛ(xn), zn)− r(bΛ(xn), z)] dµn

∣∣∣∣+

∣∣∣∣∫
Θ̃

[r(bΛ(xn), z)− r(bΛ(x), z)] dµ

∣∣∣∣
+

∣∣∣∣∫
Θ̃

[r(bΛ(xn), z)− r(bΛ(x), z)] dµn

∣∣∣∣+

∣∣∣∣∫
Θ̃

r(bΛ(x), z) dµn −
∫

Θ̃

r(bΛ(xn), z) dµ

∣∣∣∣
≤ δ|zn − z|+ 2

∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµ

+

∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµn +

∣∣∣∣∫
Θ̃

r(bΛ(x), z) dµn −
∫

Θ̃

r(bΛ(x), z) dµ

∣∣∣∣ .
The last term converges to zero by weak convergence of the beliefs. We focus on the second term∫

Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµ ≤ (1 + δ)

∫
Θ̃

|bΛ(xn)− bΛ(x)| dµ,

which converges to zero by the Bounded Convergence theorem. Next,∫
Θ̃

|r(bΛ(xn), z)− r(bΛ(x), z)| dµn ≤ (1 + δ)

∫
Θ̃

|bΛ(xn)− bΛ(x)| dµn.

K is compact and every bΛ ∈ Θ̃ is continuous, hence also uniformly continuous. Fix ε > 0 and let

A

(
1

j
, ε

)
=

{
bΛ ∈ Θ̃ : ∃ λ > 1

j
s.t. |x− y| < λ =⇒ |bΛ(x)− bΛ(y)| < ε

}
.

By the previous observations, it also follows that for any bΛ ∈ Θ̃, there exists j = j(bΛ) such that bΛ ∈
A
(

1
j′ , ε

)
, ∀ j′ > j. Thus, Θ̃ =

⋃∞
j=1A

(
1
j , ε
)

.

Next, since
{
A
(

1
j , ε
)}

converges to Θ̃, it follows that for any ϑ > 0, there exists J > 0 such that

µ
(
A
(

1
j , ε
))

> 1 − ϑ
2 , ∀ j > J . Fix j̃ > J , by weak convergence of beliefs, there exists N > 0 such that∣∣∣µn (A( 1

j̃
, ε
)c)
− µ

(
A
(

1
j̃
, ε
)c)∣∣∣ < ϑ

2 , for any n > N .

Since xn → x, there exists N ′ > N such that |xn − x| < 1
j̃
, for any n > N ′. Finally, we obtain, for

n > N ′,∫
Θ̃

|bΛ(xn)− bΛ(x)| dµn =

∫
A
(

1
j̃
,ε
) |bΛ(xn)− bΛ(x)| dµn +

∫
A
(

1
j̃
,ε
)c
|bΛ(xn)− bΛ(x)| dµn

≤ sup
b∈A

(
1
j̃
,ε
) |b(xn)− b(x)|+ 2Λµn

(
A

(
1

j̃
, ε

)c)

≤ ε+ 2Λ

[∣∣∣∣µn(A(1

j̃
, ε

)c)
− µ

(
A

(
1

j̃
, ε

)c)∣∣∣∣+

∣∣∣∣µ(A(1

j̃
, ε

)c)∣∣∣∣]
≤ ε+ 2Λϑ.

Since ε and ϑ were arbitrary, this completes the proof. �
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B.2 Proof of Lemma 5

Letting Ω+(Λ) = {B : maxx∈K B(x) > Λ − 1} and Ω−(Λ) = {B : minx∈K B(x) < −(Λ − 1)}, we have

Ω(Λ) = Ω+(Λ)∪Ω−(Λ). Since Z̄ ≥ 0, maxx∈K B(x) is nonnegative for all B in the support of any µΠ ∈ P(K).

Therefore, ∫
Ω(Λ)

max
x∈K

B(x)dµΠ(B) ≤
∫

Ω+(Λ)

max
x∈K

B(x)dµΠ(B) +

∫
Ω−(Λ)

max
x∈K

B(x)dµΠ(B).

We will prove that the first term (the harder one) converges to zero as Λ→∞, uniformly in Π. The second

term can be treated similarly.

Put in the language of probability theory, we need to show that, for each Z̄ ≥ 0, the family of random

variables {XΠ = maxx∈K B(x) : B ∼ µΠ}Π∈P(K) is uniformly integrable.43 To show uniform integrability,

it suffices to prove that there exists p > 1 such that:44

sup
Π∈P(K)

E [Xp
Π] <∞.

Without loss of generality, we set Z̄ = 0 (other cases follow by translation) and K = [0, 1] (other cases follow

by the scaling property of Brownian motion). For each Π, we have

Pr(XΠ ≤ Λ) =
∏
πi∈Π

Pr(Xi ≤ Λ),

where {πi}i describes the units of the partition Π, Xi is the maximum of B over πi, and we are using the fact

that the variables {Xi}i are independently distributed. Moreover, each Xi is the maximum of a Brownian

bridge with width ηi (the width of π) and endpoints equal to 0. This implies that45

Pr(Xi ≤ Λ) = 1− e−2Λ2/η2
i .

Therefore, we can compute the density of XΠ, and obtain, for p = 2,

E[X2
Π] =

∫
R+

Λ2
∑
i

∏
j 6=i

(
1− e−2Λ2/η2

j

) e−2Λ2/η2
i

4Λ

η2
i

dΛ.

For each i, the product with respect to j is bounded by 1, implying that

E[X2
Π] ≤ 4

∑
i

∫
R+

Λ3e−2Λ2/η2
i

η2
i

dΛ.

Making, for each i, the change of variable ui = Λ/ηi, we obtain

E[X2
Π] ≤ 4

∑
i

∫
R+

ηiu
3
i e
−2u2

i dui.

Since, for any partition Π,
∑
i ηi = 1, we conclude that

sup
Π∈P(K)

E[X2
Π] ≤ C,

where C = 4
∫
R+
u3e−2u2

du <∞.

43A family {Xi}i∈I is uniformly integrable if limΛ→+∞ {supi {E[|Xi| : |Xi| > Λ]}} = 0.
44See, e.g., Durrett (1996), Exercise 4.5.1., p. 260.
45See, e.g., Durrett (1996), Exercise 7.8.1., p. 433. The formula given there is for a Brownian bridge with width

equal to 1. The general formula obtains by the scaling property of Brownian motion, which is easily shown to be

inherited by the Brownian bridge: letting {Bat }t∈[0,a] denote a Brownian bridge with endpoints 0 and a and endpoint

values equal to 0, Bat has the law of Bt − t
a
Ba, where B is the standard Brownian motion.
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C Proof of Theorem 2

We first need to define the values of incremental and radical experimentation for the social planner. Given

a discount factor δS and an arbitrary history Ht, define the following auxiliary functions:46

UFB,I(Ht; δS) ≡ sup
{xp}+∞p=t

EHt

[
B(xt) +

+∞∑
p=t+1

δp−tS (B(xp)− c(xp − x̂p))

]
, (28)

s.t. xt ∈ [0, x̂t], xp ∈ R+, p = t+ 1, ....

and

UFB,R(Ht; δS) ≡ sup
{xp}+∞p=t

EHt

[
B(xt)− c(xt − x̂t) +

+∞∑
p=t+1

δp−tS (B(xp)− c(xp − x̂p))

]
. (29)

s.t. xt ≥ x̂t, xp ∈ R+, p = t+ 1, ....

UFB,I(Ht; δS) is the value function of a social planner with discount factor δS when his time-t choice

is restricted to technologies that lie within the frontier associated with an arbitrary history Ht. Similarly,

UFB,R(Ht; δS) represents the value function when the time-t choice must be greater than or equal to the

frontier. As for the baseline model, if the social planner finds optimal to exploit the best explored technology

at an arbitrary time t, then he will stick to that technology forever. This is because no learning occurs from

exploitation so that the social planner would start t+ 1 with exactly the same beliefs that made exploitation

optimal in the previous period. Thus, despite the higher complexity of the social planner’s problem, we can

define the values of incremental and radical experimentation in a similar way to the baseline model up to

normalization:

V FB,I(Ht; δS) ≡ UFB,I(Ht; δS)− B̄t
1− δS

, and V FB,R(Ht; δS) ≡ UFB,R(Ht; δS)− B̄t
1− δS

. (30)

As the values of incremental and radical experimentation are simply an affine transformation of the value

functions of the social planner’s maximization problem (restricting the domains of his first choice within

and outside the frontier, respectively), it also follows that the social planner prefers incremental over radical

experimentation at a history Ht if, and only if, V FB,I(Ht; δS) ≥ V FB,R(Ht; δS).

We start the analysis with a technical result.

Lemma 6 There exists a sequence {G̃(δS)} with G̃(δS) → +∞ as δS → 1 such that the value of radical

experimentation for a social planner with discount factor δS is positive for any gap G ≤ G̃(δS).

Proof. Let G and x̂ denote the gap and the frontier associated with an arbitrary history H. Define a 1-step

policy as a policy such that the social planner experiments only once and then exploits forever after. Given a

history H, let V 1,R(G; δS) denote the value of radical experimentation when the social planner is restricted to

using only a 1-step policy at any history H with associated gap G.47 Clearly, V FB,R(H; δS) ≥ V 1,R(G; δS) as

a 1-step policy is a feasible policy for the social planner. The restriction to 1-step policies has the advantage

that we can explicitly write down the associated maximization problem as

V 1,R(G; δS) = sup
y≥0

{
B̂

1− δS
− c(y) +

δS
1− δS

σ
√
yφ

(
G

σ
√
y

)
+

δS
1− δS

GΦ

(
G

σ
√
y

)}
− B̄

1− δS

=
1

1− δS
sup
y≥0

{
−G− (1− δS)c(y) + δSσ

√
yφ

(
G

σ
√
y

)
+ δSGΦ

(
G

σ
√
y

)}
, (31)

46Recall the convention that c(y) = 0 for any y ≤ 0.
47When restricted to 1-step policies, the value of radical experimentation depends on the history only through the

gap as in the baseline model. This is not the case for general policies which can instead depend on the history in a

non-trivial way.
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which is equivalent to the maximization problem for an agent in our baseline model with a discount factor

equal to δS
1−δS . Note that, for δS = 1, the maximization problem reduces to,48

sup
y≥0

{
−G+ σ

√
yφ

(
G

σ
√
y

)
+GΦ

(
G

σ
√
y

)}
= +∞. (32)

Thus, V 1,R(G; 1) = +∞, for any G ≥ 0. This implies that there exists a δ̄ ∈ (0, 1) such that, for any δS ≥ δ̄,
we can find a positive number G̃(δS) such that V 1,R(G̃(δS); δS) > 0. By Proposition 1, it also follows that

V FB,R(H; δS) ≥ V 1,R(G; δS) > 0, for any G ≤ G̃(δS).

Suppose by way of contradiction that there is no sequence {G̃(δS)} with δS > δ̄ as defined in the proof

of Lemma 6 such that the sequence diverges. Take any such sequence. Then, there must exist a Ḡ > 0 such

that G̃(δS) < Ḡ along that sequence.49 This implies that there also exists G′ > Ḡ and a subsequence such

that V 1,R(G′; δS) < 0 for any δS along the subsequence. However, evaluating (32) at G = G′ implies that

V 1,R(G′; δS) will eventually be positive as δS → 1. We thus reached a contradiction. �
Fix a path of Brownian motion. Let x̂FB(δS) denote the frontier at which a social planner with discount

factor δS will stop radical experimentation. Suppose by way of contradiction that lim infδS→1 x̂
FB(δS) = x̆ <

+∞. Take a subsequence x̂FB(δS,n) such that x̂FB(δS,n) ↑ x̆ and G̃(δS,n)→ +∞ as n→ +∞.50 For x̆ < +∞
to be the case, it must be that the sup norm of the path of Brownian motion over the interval [0, x̂FB(δS,n)],

defined as supx∈[0,x̂FB(δS,n)] |B(x)|, exceeds
G̃(δS,n)

2 for any n. Suppose to the contrary that there exists n̄

such that supx∈[0,x̂FB(δS,n̄)] |B(x)| ≤ G̃(δS,n̄)
2 . By Lemma 6, the value of radical experimentation for a social

planner with discount factor δS,n̄ would be bounded away from zero over [0, x̂FB(δS,n̄)], regardless of the

history, because the associated gap can never exceed G̃(δS,n̄) over that interval. As the social planner keeps

experimenting within the fixed interval [0, x̂FB(δS,n̄)], he will eventually explore every unit that still generates

a positive value of experimentation.51 This is because the frontier stays the same during experimentation

and the payoff function over [0, x̂FB(δS,n̄)] is bounded with probability 1 by the almost sure continuity of

Brownian motion, as in the baseline model. Therefore, the value of incremental experimentation for the social

planner must eventually converge to zero and, consequently, below the value of radical experimentation. This

means that the social planner will also eventually find radical experimentation optimal, which leads to a

contradiction. Hence, it must be the case that supx∈[0,x̂FB(δS,n)] |B(x)| > G̃(δS,n)
2 for every n along the

subsequence that we are considering.

Finally, recall that G̃(δS,n) → +∞ as n → +∞ (or δS,n → 1). This implies that the path of Brownian

motion must have an infinite sup norm over the interval [0, x̆] but this cannot be the case because the a.s.

continuity of Brownian motion implies that supx∈[0,x̆] |B(x)| < +∞ with probability 1. We thus reached the

desired contradiction. Finally, we can conclude that lim infδS→1 x̂
FB(δS) = +∞ with probability 1. �

D Cost Externalities

In the baseline model, the path of experimentation affects incentives for radical experimentation through i)

the expected value of new technologies, and ii) the opportunity cost of forgoing incremental experimentation.

It is perhaps more realistic to allow radical experimentation to be directly affected by past technologies, if

those technologies are helpful as inputs to produce radical experimentations. Our model may be extended

along this direction, by assuming that the cost of radical experimentation is decreasing in the best available

48The derivative of the objective function with respect to y is σ
2
√
y
φ
(

G
σ
√
y

)
> 0.

49If necessary, we can restrict attention to a subsequence.
50Such a subsequence exists by Lemma 6.
51Even if we have not explicitly defined the value of experimentation of a unit, such a concept can be easily defined

following (28) and (30).
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technology: the cost is given by a function c(x − x̂, αB̄) for x > x̂ with α ≥ 0 (α = 0 corresponds to the

benchmark model). We assume that, for each w, the function c(·, w) satisfies the same assumptions as in

the baseline model.

Let yR(Gt, αB̄t) denote the optimal size of radical experimentation at a history Ht with associated gap

Gt, and current best payoff B̄t. The following result is established similarly to Proposition 2 and is stated

without proof.52

Proposition 11 (Comparative statics) Suppose that α > 0 and that c is submodular. Then, yR(G,αB̄)

is increasing in B̄ and in α.

Monotonicity with respect to B̄ of the optimal size of experimentation does not necessarily imply that

radical experimentation itself is fostered by a higher B̄, even if we also assume that the cost c(y, αB̄)

is decreasing in its second component. Indeed, when the gap is positive, a higher value of B̄ reduces

the cost of radical experimentation, but also reduces the value of radical experimentation, as shown by

Proposition 1. When the gap is zero, however (following successful radical experimentation), an increase in

the best available technology always stimulates radical experimentation. Therefore, this link between cost

and the best technology should result in longer waves of radical experimentation.

Monotonicity of experimentation size with respect to the gap, which was established by Proposition 2,

may fail in the presence of the cost externality studied here. Indeed, the reduction in the marginal benefit

of radical experimentation following a larger gap might be more than compensated by a decrease in the cost

and marginal cost of radical experimentation. Without the cost externality, an increase in the gap reduces

the marginal benefit while leaving the marginal cost unaffected. In that case, we already know that there is

a threshold for the gap above which an agent would always set the size of radical experimentation to zero.

The next result shows that stagnation still occurs as long as the marginal cost of radical experimentation

is bounded below away from zero as the best available technology becomes arbitrarily large. We now assume

that c is decreasing in its second component. Let c̄(y) = limB̄→+∞ c(y, αB̄) denote the lower envelope of the

cost functions {c(·, w)}.53

Theorem 4 (Stagnation) Fix α > 0, and suppose that c̄(·) is increasing in a right neighborhood of y = 0.

Then, radical experimentation ends in finite time with probability one.

Proof. Since c̄(·) is increasing in a right neighborhood of y = 0, the properties of each cost function c(·, αB̄)

then guarantee that c̄(·) is increasing everywhere. Replicating the proof of Proposition 2, one can show the

existence of a threshold G̃ > 0 above which the marginal benefit of radical experimentation is strictly less

than the marginal cost, at any y > 0, for any B̄ > 0. Thus, yR(G,αB̄) = 0 for any G > G̃, regardless of the

absolute level of B̄.

For fixed B̄, yR(0, αB̄) is still an upper bound on the size of radical experimentation for any G > 0,

because the incentives to perform radical experimentation are maximal with a zero gap. Moreover, yR(0, αB̄)

increases in B̄, because the cost function is submodular in (y, αB̄). However, the marginal cost is bounded

away from zero by the properties of the lower envelope c̄(·), which implies that there exists 0 < Λ < +∞
such that limB̄→+∞ yR(0, αB̄) < Λ. Finally, we can now repeat the same proof as in Step 1 of Theorem 1.�

Even if the long-run dynamics is the same with and without intergenerational cost externalities, the

short-run pattern of experimentation might be significantly different in the two scenarios.

52The agent’s objective function is submodular in (y, α). When there are multiple maximizers, Proposition 11

holds in the sense of the strong set order (see footnote 13).
53The function c̄(·) is well-defined because, for each y ≥ 0, the sequence {c(y, w)} is decreasing in w and nonnegative.
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E Suboptimality of the Gittins Index Policy with Correlated Arms:

an Example

Consider a model with two arms, 1 and 2, and state space S = {s1, s2, s3}.54 In state s1 arm 1 returns

10 and arm 2 returns 5. Pulling arm 1 in state s1 sends the world into state s2, in which arm 1 continues

returning 10 and arm 2 returns 0. Pulling arm 2 in state s1 sends the world into state s3, in which the payoff

from arm 1 doubles to 20 and arm 2 continues to pay out 5. States s2 and s3 are absorbing states which

are never left. Since arm 1 returns 10 forever when pulled in state s1, it has a Gittins index of 10, and the

optimal payoff from pulling arm 1 first is 10
1−δ . Similarly, arm 2 has a Gittins index of 5. However, by pulling

arm 2 first and arm 1 from then on, the agent can obtain a payoff of 5 + 20δ
1−δ , which is strictly better than

the prescribed policy for δ sufficiently close to one.

F Patents and Radical Experimentation

One way of improving inefficiently short radical experimentation is to use patents. In our model, patents

would naturally consist of transfers between consecutive generations and would be defined by exploiting

the spatial nature of the technological space. In particular, one could assume that, whenever an agent

undertakes radical experimentation, the set of technologies that become available at no cost, due to this

radical experimentation, are patented to this agent.

Such a patent protection system can affect incentives for radical experimentation through two channels:

1. Receiving Royalty Fees Radical experimentation now brings a positive probability that the payoff

of radical experimentation will be in some intermediate range at which further radical experimentation is

suboptimal for the next generation, but incremental experimentation takes place in the new unit, as shown

by Proposition 6. When this happens, a small royalty fee just paid by the new generation increases the ex

ante incentives for radical experimentation. Perhaps counter-intuitively, though, even in the case of a flat

royalty (let alone a more complex royalty structure), the level of that royalty affects the marginal value of

radical experimentation and, therefore, the optimal size of radical experimentation. Moreover, this value

may be non-monotonic in the patent level.55

2. Avoiding Royalty Fees Precisely because an incoming generation has to pay a cost to the previous

generation in order to innovate in a newly created unit, this reduces the value of incremental experimentation

for that generation, relative to radical experimentation: the new generation is “pushed” towards further

radical experimentation.

These incentives are substitutes of each other: the more the new generation avoids royalty fees (say,

because they are fixed at high levels), and the lower the patent incentives for the old generation, and vice

versa. However, regardless of which effect dominates, royalty fees, structured in this way, would foster radical

experimentation.

54This example was proposed by Philip Marx for an assignment in Strulovici’s graduate course on dynamic methods

(2014).
55This may be explained as follows: a bolder radical experimentation has a higher variance and, for given mean,

a higher probability of reaching very high outcomes. When this happens, the next generation has a strong incentive

to use the technological domain created by this radical experimentation, which generates royalty fees for the old

generation. A higher royalty fee may therefore increase the expected marginal value of radical experimentation,

spurring radical experimentation and increasing the size of radical experimentation. However, as the royalty fee gets

arbitrarily large, the new generation prefers to forgo this opportunity and to innovate in older units, causing the

non-monotonicity.
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Section A of this online Appendix contains the omitted proofs of the results in Section 7 of

the paper about three-period agents. Appendix B extends the baseline model to the case in

which the Brownian motion has a positive drift.

We assume that differentiability holds whenever derivatives are taken. We refer to the proof

of Proposition 1 and Footnote 33 in the paper for possible ways to deal with non-differentiability.

A Three-Period Agents

We first need to formally define the values of incremental and radical experimentation for an

arbitrary agent. Given a discount factor δ and an arbitrary history Ht, define the following

auxiliary functions, for any T = 0, 1, 2:1

U I(Ht;T ) ≡ sup
{xt+s}2−T

s=0

EHt

[
B(xt) +

2−T∑
s=1

δs (B(xt+s)− c(xt+s − x̂t+s))

]
, (1)

s.t. xt ∈ [0, x̂t], xt+s ∈ R+, s = 1, ..., 2− T

and

UR(Ht;T ) ≡ sup
{xt+s}2−T

s=0

EHt

[
B(xt)− c(xt − x̂t) +

2−T∑
s=1

δs (B(xt+s)− c(xt+s − x̂t+s))

]
. (2)

s.t. xt ≥ x̂t, xt+s ∈ R+, s = 1, ..., 2− T

We can define the values of incremental and radical experimentation in a similar way to the

1Recall the convention that c(y) = 0 for any y ≤ 0.
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baseline model up to normalization:

VI(Ht;T ) ≡ U I(Ht;T )−
2−T∑
s=0

δsB̄t, and VR(Ht;T ) ≡ UR(Ht;T )−
2−T∑
s=0

δsB̄t. (3)

We focus on the problem of a newly born agent. We can write the value of radical experimentation

recursively as

VR(Ht; 0) = sup
xt≥x̂t

EHt

[
B(xt)− c(xt − x̂t)− B̄t + δmax{VI(Ht+1; 1),VR(Ht+1; 1)}

+δ(1 + δ)
(
max{B̄t, B(xt)} − B̄t

)]
. (4)

A similar recursive expression holds for the value of incremental experimentation.

Lemma A.1 characterizes an important property of the intermediate expected value of exper-

imentation, EHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
, for an arbitrary radical experiment x, which

will be useful later on.

Lemma A.1. Fix an arbitrary history Ht with associated gap Gt > 0, and a technology x ≥ x̂t.

Then,
dEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
dB̄t

<
1 + δ

2
, (5)

where B̄t denotes the highest known payoff at time t.

Proof. Let x ≥ x̂t, then

EHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
=

∫
R

max{VI(Ht ∪ {(x,B)} ; 1),VR(Ht ∪ {(x,B)} ; 1)} ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB, (6)

where ψ
(
B; B̂t, σ

2(x− x̂t)
)

is the pdf of a normal distribution with mean B̂t and variance

σ2(x− x̂t). Notice that VR(Ht ∪ {(x,B)} ; 1) = (1 + δ)V R(max{B̄t −B, 0}), by definition of the

value of radical experimentation in the baseline model. Also,

VI(Ht ∪ {(x,B)} ; 1) = (1 + δ) max
{
V I
old(Ht ∪ {(x,B)}), V I

new(Ht ∪ {(x,B)})
}
. (7)

V I
old(Ht ∪ {(x,B)}) is the value of incremental experimentation among the old units, which is

affected by the radical experiment at time t through the possible change in the size of the highest

known payoff. V I
new(Ht∪{(x,B)}) is the value of incremental experimentation of the unit created

2



by the radical experiment x, of length x− x̂t, with associated left endpoint outcome B̂t and right

endpoint outcome B.

Suppose that the gap is positive at time t, that is, Gt = B̄t − B̂t > 0, so that the technology

with the highest known payoff lies strictly within the frontier x̂t at time t. We want to consider

the effect of an increase in the highest known payoff at time t, B̄t. Differentiating with respect

to B̄t, we obtain that

dEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
dB̄t

=

∫ +∞

−∞

d
[
max{VI(Ht ∪ {(x,B)} ; 1),VR(Ht ∪ {(x,B)} ; 1)}

]
dB̄t

ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB. (8)

First, notice that an increase in B̄t weakly reduces VR(Ht ∪ {(x,B)} ; 1) for any fixed B due

to the monotonicity of the value of radical experimentation in the baseline model established in

Proposition 1. Second, let us consider the effect on the value of incremental experimentation.

Consider values of B such that B ≤ B̄t, then the value of incremental experimentation of the

old units is also decreasing in the highest known payoff from Proposition 4. Similarly, the value

of incremental experimentation of the new unit is decreasing in B̄t given that we assumed that

B̄t ≥ B. Therefore,∫ B̄t

−∞

d
[
max{VI(Ht ∪ {(x,B)} ; 1),VR(Ht ∪ {(x,B)} ; 1)}

]
dB̄t

ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB < 0. (9)

Next, suppose that B > B̄t. Now, an increase in B̄t increases the value of experimentation

of the two old units which share the technology with the highest known payoff at time t as an

endpoint by Proposition 3 because B̄t+1 = B > B̄t. The value of experimentation of the new

unit is instead unaffected given that B > B̄t renders it independent from small increases in B̄t.

The same holds for the value of radical experimentation because B > B̄t implies that Gt+1 = 0

3



and thus VR(Ht ∪ {(x,B)} ; 1) = (1 + δ)V R(0). Therefore,∫ +∞

B̄t

d
[
max{VI(Ht ∪ {(x,B)} ; 1),VR(Ht ∪ {(x,B)} ; 1)}

]
dB̄t

ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB

≤
∫ +∞

B̄t

dVI(Ht ∪ {(x,B)} ; 1)

dB̄t

ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB

=

∫ +∞

B̄t

(1 + δ)
dV I(Ht ∪ {(x,B)})

dB̄t

ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB

≤
∫ +∞

B̄t

(1 + δ) ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB

= (1 + δ)
(

1− Φ
(
B̄t; B̂t, σ

2(x− x̂t)
))

< (1 + δ)
(

1− Φ
(
B̂t; B̂t, σ

2(x− x̂t)
))

=
1 + δ

2
. (10)

The first inequality follows from the previous discussion. The second inequality instead follows

from equation (23) in the paper, because 1 is the upper bound on the derivative of the value

of experimentation of the units that contain the previous highest known payoff, B̄t, but do

not contain the current highest payoff, as B̄t < B = B̄t+1, with respect to an increase in B̄t.

Finally, the third inequality follows from the fact that B̄t > B̂t and the symmetry of the normal

distribution. Putting (9) and (10) together yields the result.

We then show that the value of radical experimentation is decreasing in an agent’s remaining

life-span.

Proposition A.1. For any arbitrary history Ht, the value of radical experimentation is (weakly)

decreasing with age, that is, VR(Ht; 0) ≥ VR(Ht; 1) ≥ VR(Ht; 2) = −Gt.

Proof. The observation that VR(Ht; 1) ≥ VR(Ht; 2) = −Gt follows from the analysis of the

baseline model. Next, we are going to show that VR(Ht; 0) ≥ VR(Ht; 1), that is, for a given

history, the value of radical experimentation is weakly higher for a newly born agent than for a

young agent. Note that

VR(Ht; 0) = sup
x≥x̂t

{
−Gt − c(x− x̂t) + δEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
+δ(1 + δ)

[
−Gt + σ

√
x− x̂φ

(
Gt

σ
√
x− x̂

)
+GΦ

(
Gt

σ
√
x− x̂

)]}
, (11)
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VR(Ht; 1) = sup
x≥x̂t

{
−c(x− x̂t) + δσ

√
x− x̂φ

(
Gt

σ
√
x− x̂

)
+ δGtΦ

(
Gt

σ
√
x− x̂

)
− (1 + δ)Gt

}
.

(12)

Then,

VR(Ht; 0)− VR(Ht; 1)

= sup
x≥x̂t

{
−δ2Gt − c(x− x̂t) + δEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
+δ(1 + δ)

[
σ
√
x− x̂φ

(
Gt

σ
√
x− x̂

)
+GtΦ

(
Gt

σ
√
x− x̂

)]}
− sup

x≥x̂t

{
−c(x− x̂t) + δσ

√
x− x̂φ

(
Gt

σ
√
x− x̂

)
+ δGtΦ

(
Gt

σ
√
x− x̂

)}
. (13)

Let x∗,1 = x∗,1(Gt) denote the optimal technology for the maximization problem associated with

the value function VR(Ht; 1), which depends only on Gt from our baseline analysis. Then,

VR(Ht; 0)− VR(Ht; 1)

≥ −δ2Gt − c(x∗,1 − x̂t) + δEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x∗,1

]
+ δ(1 + δ)

[
σ
√
x∗,1 − x̂φ

(
Gt

σ
√
x∗,1 − x̂

)
+GtΦ

(
Gt

σ
√
x∗,1 − x̂

)]
−
{
−c(x∗,1 − x̂t) + δσ

√
x∗,1 − x̂φ

(
Gt

σ
√
x∗,1 − x̂

)
+ δGtΦ

(
Gt

σ
√
x∗,1 − x̂

)}
= δEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x∗,1

]
+ δ2

[
σ
√
x∗,1 − x̂φ

(
Gt

σ
√
x∗,1 − x̂

)
+GtΦ

(
Gt

σ
√
x∗,1 − x̂

)
−Gt

]
. (14)

Let y∗,1(G) = x∗,1(G)− x̂ and define the function

F(G) = σ
√
y∗,1(G)φ

(
G

σ
√
y∗,1(G)

)
+GΦ

(
G

σ
√
y∗,1(G)

)
−G. (15)

Notice that F(0) = σ
√
y∗,1(0)φ(0) > 0, and

F ′(G) =
σ

2
√
y∗,1(G)

φ

(
G

σ
√
y∗,1(G)

)
dy∗,1(G)

dG
+ Φ

(
G

σ
√
y∗,1(G)

)
− 1 < 0, (16)
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because dy∗,1(G)
dG

< 0 by Proposition 2 in the main text. Therefore,

inf
G≥0
F(G) = lim

G↑+∞
F(G) = lim

G↑+∞
σ
√
y∗,1(G)φ

(
G

σ
√
y∗,1(G)

)
− lim

G↑+∞
G

(
1− Φ

(
G

σ
√
y∗,1(G)

))
.

(17)

The first limit in (17) equals zero due to the properties of the standard normal pdf and the fact

that y∗,1(G) ∈ [0, y∗,1(0)] for any G ≥ 0.

By applying L’Hôpital’s rule for an arbitrary y > 0, we obtain that

lim
G→+∞

G

(
1− Φ

(
G

σ
√
y

))
= lim

G→+∞

φ
(

G
σ
√
y

)
G−2

= 0. (18)

As y∗,1(G) is bounded and monotonically decreasing in G, it also follows that

0 ≤ G

(
1− Φ

(
G

σ
√
y∗,1(G)

))
≤ G

(
1− Φ

(
G

σ
√
y∗,1(0)

))
. (19)

Taking limits gives that infG≥0F(G) = 0. This shows that VR(Ht; 0)−VR(Ht; 1) ≥ 0 given that

EHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x∗,1

]
≥ EHt

[
VI(Ht+1; 1)|x∗,1

]
≥ 0, (20)

by Proposition 5. This completes the proof.

We can now show the following result which generalizes the idea that a larger gap reduces the

value of radical experimentation even for a longer life span. As in the baseline model, we also

show that a negative value of radical experimentation leads to the abandonment of that type of

experimentation.

Proposition A.2 (Value of Radical Experimentation). (i) The value of radical experi-

mentation for a newly born agent, VR(Ht; 0), is decreasing in the size of the highest known payoff,

B̄t, all else equal. (ii) If the value of radical experimentation is negative at some time t, radical

experimentation is abandoned forever after.

Proof. (i) Differentiating VR(Ht; 0) with respect to B̄t, while keeping everything else fixed, and

applying the envelope theorem gives

− 1− δ(1 + δ)

[
1− Φ

(
Gt

σ
√
x∗,0 − x̂

)]
+ δ

dEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x∗,0

]
dB̄t

, (21)
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where x∗,0 is a maximizer. Lemma A.1 implies that (21) is negative. Therefore, it follows that

the value of radical experimentation is decreasing in the size of the highest known payoff.

(ii) Fix a history Ht. Recall that VR(Ht; 1) = (1 + δ)V R(Gt) where Gt is the gap induced

by history Ht. The monotonicity of V R(G) with respect to the size of the gap G, which follows

from Proposition 1 in the main text, implies that, for any given technology x lying inside the

current frontier and any associated outcome B(x), VR(Ht; 1) ≥ VR(Ht+1; 1) where Ht+1 =

Ht ∪ {(x,B(x))} because max{B̄t, B(x)} ≥ B̄t.

Next, notice that VR(Ht; 0) < 0 implies that the newly born agent at time t will choose either

exploitation or incremental experimentation in his first period. Let x∗t denote the technology thus

chosen and let B(x∗t ) denote the associated outcome. Then, the observation made in the previous

paragraph and Proposition A.1 imply that VR(Ht+1; 1) ≤ VR(Ht; 1) ≤ VR(Ht; 0) < 0, where

Ht+1 = Ht∪{(x∗t , B(x∗t ))}. Therefore, the newly born agent will also find radical experimentation

suboptimal when young.

Finally, let us consider the incentives to perform radical experimentation of the subsequent

newly born generation at time t + 2. We know from our previous analysis that no radical

experimentation has taken place at times t and t + 1. Clearly, if exploitation has taken place

at both t and t + 1, then VR(Ht+2; 0) = VR(Ht; 0) < 0. However, incremental experimentation

might have taken place at either or even both times. As incremental experimentation weakly

increases the highest known payoff, the incentives to perform radical experimentation can only

decrease.

Next, let xR,0t (Ht) denote the technology which maximizes the value of radical experimenta-

tion for a newly born agent.

Proposition A.3. If Gt = 0, then xR,0t (Ht) > x̂t.

Proof. The first order condition of the maximization problem of a newly born agent pursuing

radical experimentation is given by

δ(1 + δ)σ

2
√
x− x̂t

φ

(
Gt

σ
√
x− x̂t

)
+ δ

dEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
dx

= c′(x− x̂t). (22)
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Assuming differentiability once again, we also have that

dEHt

[
max{VI(Ht+1; 1),VR(Ht+1; 1)}|x

]
dx

=

=

∫
R

d
[
max{VI(Ht ∪ {(x,B)} ; 1),VR(Ht ∪ {(x,B)} ; 1)}

]
dx

ψ
(
B; B̂t, σ

2(x− x̂t)
)
dB

+

∫
R

max{VI(Ht ∪ {(x,B)} ; 1),VR(Ht ∪ {(x,B)} ; 1)}
dψ
(
B; B̂t, σ

2(x− x̂t)
)

dx
dB. (23)

Fix B ∈ R and let us consider the effect of a small increase in the size of the radical experiment

on VR(Ht ∪ {(x,B)} ; 1). Such an increase has no effect on the value of radical experimentation

starting from t + 1 because the new value of radical experimentation depends only on the size

of the gap which, fixing B, is independent from x. Thus, dVR(Ht∪{(x,B)};1)
dx

= 0. Next, consider

the effect of a similar increase on the value of experimentation of the old units, such an effect is

also zero because the radical experiment at time t affects the value of experimentation of the old

units at time t+ 1 only through the outcome of the experiment, not the size of the experiment.

Therefore,
dVI

old(Ht∪{(x,B)};1)

dx
= 0. However, the size of the radical experiment at time t has a

direct effect on the value of experimentation of the newly created unit because of the increase in

its length. From the baseline model, we know that dVI
new(Ht∪{(x,B)};1)

dx
> 0. This shows that the

first integral in (23) is non-negative.

Next,

dψ
(
B; B̂t, σ

2(x− x̂t)
)

dx
=

[
−1 +

(B − B̂t)
2

σ2(x− x̂t)

]
ψ
(
B; B̂t, σ

2(x− x̂t)
)

2(x− x̂t)
. (24)

which is also positive for radical experiments close to the frontier. Therefore, when Gt = 0, the

size of radical experimentation is strictly positive given that the first term in (22) is unbounded

close to the frontier.

Proposition A.4. There exists Ȳ > 0 such that xR,0t (Ht)− x̂t < Ȳ for any history Ht.

Proof. Suppose by way of contradiction that the claim is false. Take a monotone sequence {Ȳk}
with limk→+∞ Ȳk = +∞. Then, for any k, there must exist a history Hk such that yR,0k ≡
xR,0(Hk)− x̂k > Ȳk, and without loss of generality we can also assume that the sequence {yR,0k }
is monotone increasing. From the first-order condition (22), it follows that the left-hand side

converges to +∞ along the sequence {yR,0k } by the strict convexity of the cost function, while

8



the first term on the right-hand side converges to zero. Therefore, it must also be the case that

lim
k→+∞

dEHk

[
max{VI(Hk,+1; 1),VR(Hk,+1; 1)}|x

]
dx

∣∣∣∣∣
x=xR,0(Hk)

= +∞, (25)

where Hk,+1 ≡ Hk ∪ (xR,0(Hk), B(xR,0(Hk))).

First, suppose that max{VI(Hk,+1; 1),VR(Hk,+1; 1)} = VIold(Hk,+1; 1) which is the value of

incremental experimentation over the old units. Notice that
dEHk [VI

old(Hk,+1;1)|x]
dx

∣∣∣∣
x=xR,0(Hk)

is nec-

essarily uniformly bounded because the radical experiment affects the value of incremental ex-

perimentation over the old units only through the outcome at the new frontier, not through the

size of the experiment. Thus, to complete the proof, it suffices to show that whenever experi-

mentation is either radical or incremental over the new unit, the derivative of the expectation is

still bounded above which would deliver the desired contradiction.

We can write the derivative of the expectation as

dEHt

[
max{VInew(Hk,+1; 1),VR(Hk,+1; 1)}|xR,0(Hk)

]
dx

=

=

∫
R

d
[
max{VInew(Hk ∪

{
(xR,0k , B)

}
; 1),VR(Hk ∪

{
(xR,0k , B)

}
; 1)}

]
dx

ψ
(
B; B̂k, σ

2yR,0k

)
dB

(26)

+

∫
R

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}
dψ
(
B; B̂k, σ

2yR,0k

)
dx

dB. (27)
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Let us focus on the integral (26),

∫
R

d
[
max{VInew(Hk ∪

{
(xR,0k , B)

}
; 1),VR(Hk ∪

{
(xR,0k , B)

}
; 1)}

]
dx

ψ
(
B; B̂k, σ

2yR,0k

)
dB

≤
∫
R

dVInew(Hk ∪
{

(xR,0k , B)
}

)

dx
ψ
(
B; B̂k, σ

2yR,0k

)
dB

=

∫
R
(1 + δ)

dV I
new(Hk ∪

{
(xR,0k , B)

}
; 1)

dx
ψ
(
B; B̂k, σ

2yR,0k

)
dB

≤
∫
R

δσφ(0)

4
√
yR,0k

ψ
(
B; B̂k, σ

2yR,0k

)
dB

=
δσφ(0)

4
√
yR,0k

. (28)

The first inequality follows from the discussion in the proof of Proposition A.3, while the second

inequality follows from (19) in the main text. Therefore, as k goes to +∞, the limit superior of

(26) is bounded above by 0.

Next, consider the integral (27). Let Ak ⊆ R denote the set over which
dψ(B;B̂k,σ

2yR,0
k )

dx
> 0,

that is, Ak =

{
B ∈ R : |B − B̂k| > σ

√
yR,0k

}
. Then, we can write the integral in (27) as

∫
R

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}
dψ
(
B; B̂k, σ

2yR,0k

)
dx

dB

=

∫
R\Ak

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}
dψ
(
B; B̂k, σ

2yR,0k

)
dx

dB︸ ︷︷ ︸
≤0

+

∫
Ak

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}
dψ
(
B; B̂k, σ

2yR,0k

)
dx

dB. (29)
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Then,

∫
Ak

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}
dψ
(
B; B̂k, σ

2yR,0k

)
dx

dB

= −
∫
Ak

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}
ψ
(
B; B̂k, σ

2yR,0k

)
2yR,0k

dB︸ ︷︷ ︸
≤0

+

∫
Ak

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

≤ 2

∫
A+

k

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB,

(30)

where A+
k =

{
B ∈ R : B > B̂k + σ

√
yR,0k and B − B̂k > 0

}
. The last inequality follows from

the observation that the maximum of the two values of experimentation is larger when B > B̂k,

for any k along the sequence.

Let us further partition A+
k into the two subsets A+,IN

k and A+,R
k such that

∫
A+

k

max{VInew(Hk ∪
{

(xR,0k , B)
}

; 1),VR(Hk ∪
{

(xR,0k , B)
}

; 1)}(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

=

∫
A+,IN

k

VInew(Hk ∪
{

(xR,0k , B)
}

; 1)(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

+

∫
A+,R

k

VR(Hk ∪
{

(xR,0k , B)
}

; 1)(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB. (31)
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Next, notice that, for any B ∈ A+,IN
k ,

VInew(Hk ∪
{

(xR,0k , B)
}

; 1)

= −(1 + δ)(B̄k − B̂k) + max
a∈[0,1]

(B − B̂k)a

1 + δ − δΦ

(B̄k − B̂k)− (B − B̂k)a

σ
√
a(1− a)yR,0k


+ δσ

√
a(1− a)

√
yR,0k φ

(B̄k − B̂k)− (B − B̂k)a

σ
√
a(1− a)yR,0k


+δ(B̄k − B̂k)Φ

(B̄k − B̂k)− (B − B̂k)a

σ
√
a(1− a)yR,0k

 , (32)

from (14) in the main text. Over the set A+,IN
k , an upper bound for the value of incremental

experimentation of the new unit is provided by a similar unit in which the payoffs at both

endpoints are all equal to the largest known payoff, that is, BL = BH = B̄k if B ≤ B̄k and

BL = BH = B if B > B̄k. It can be shown from the analysis of our baseline model that

the optimal technology in a bounded unit with equal payoffs at the endpoints is given by the

mid-point technology. Putting all these observations together shows that, for any B ∈ A+,IN
k ,

VInew(Hk ∪
{

(xR,0k , B)
}

; 1) ≤ σδ

2

√
yR,0k φ(0). (33)

The value of radical experimentation for a young agent is instead uniformly bounded by (1 +

12



δ)V R(0) regardless of the history. Thus,

∫
A+,IN

k

VInew(Hk ∪
{

(xR,0k , B)
}

; 1)(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

+

∫
A+,R

k

VR(Hk ∪
{

(xR,0k , B)
}

; 1)(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

≤
∫
A+,IN

k

σδ

2

√
yR,0k φ(0)(B − B̂k)

2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

+

∫
A+,R

k

(1 + δ)V R(0)(B − B̂k)
2
ψ
(
B; B̂k, σ

2yR,0k

)
2σ2(yR,0k )2

dB

≤

[
δφ(0)

4σ(yR,0k )3/2
+ (1 + δ)

V R(0)

2σ2(yR,0k )2

]∫
R
(B − B̂k)

2ψ
(
B; B̂k, σ

2yR,0k

)
dB

=

[
δφ(0)

4σ(yR,0k )3/2
+ (1 + δ)

V R(0)

2σ2(yR,0k )2

]
σ2yR,0k

=
δσφ(0)

4
√
yR,0k

+ (1 + δ)
V R(0)

2yR,0k

, (34)

where the second inequality follows from the increase in the range of integration and the non-

negativity of both integrands, while the first equality follows from the definition of variance and

the normal distribution. The expression in (34) converges to zero as k increases.

We have thus shown that the limit superior in (25) is bounded above, which gives a contra-

diction.

Proposition A.5. There exists a value of the gap Ĝ such that VR(Ht; 0) < 0 whenever Gt > Ĝ.

Proof. Let xR,0(H) denote the optimal size of radical innovation for a newly born agent at an

arbitrary history H. Taking the limit with respect to the size of the highest known payoff B̄

13



gives

lim sup
B̄→+∞

VR(H; 0) ≤ lim sup
B̄→+∞

{
−c(xR,0t (H)− x̂)

}
(35)

+ lim sup
B̄→+∞

{
−G(B̄) + δEH

[
max{VI(H+1; 1),VR(H+1; 1)}|xR,0(H)

]}
+ lim sup

B̄→+∞

{
−δ(1 + δ)G(B̄)

(
1− Φ

(
G(B̄)

σ
√
xR,0(H)− x̂

))}

+ lim sup
B̄→+∞

δ(1 + δ)σ
√
xR,0(H)− x̂φ

(
G(B̄)

σ
√
xR,0(H)− x̂

)
,

where G(B̄) = B̄ − B̂. By Proposition A.4, xR,0(H) − x̂ ∈
(
0, Ȳ

)
, for any arbitrary history

H. Therefore, the first limit in (35) is nonnegative. The second limit is −∞ given that the

expectation grows in B̄ at a rate bounded above uniformly by 1+δ
2

, by Lemma A.1, while the

third and fourth limits are both zero. Thus, there exists a large enough gap Ĝ such that the

value of radical experimentation VR(H; 0) is negative for any size of the gap above Ĝ.

Putting together all the results obtained so far allows us to replicate the same steps as in the

proof of Theorem 1 in the main text. We can thus state the following result.

Theorem A.1. Consider the extended model with three-period-lived agents. Radical experimen-

tation ends in finite time with probability one.

B Positive Drift: Optimistic Beliefs and Stagnation

Theorem 1 in the main text assumed that the drift κ which determines the expected payoff of

new technologies, was equal to zero. What happens if agents are more optimistic about κ? Could

that be enough to sustain radical experimentation in the long run?

For this problem to have a well-defined solution, we must assume that the incremental cost

of radical experimentation eventually exceeds the drift κ. Otherwise, young agents may want to

choose an infinite amount of radical experimentation. Precisely, we assume that limy→+∞ c
′(y) >

κ(1 + δ). For technical reasons, we also assume that c′′(0) > 0.

The scenario of a positive drift creates an incentive for old agents to innovate as well, as

captured by the objective function

UO,R(Ht) = max
x∈[x̂t,+∞)

EHt [B(x)− c(x− x̂t)] = B̂t + κ(x− x̂t)− c(x− x̂t). (36)
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This slightly complicates the short-run equilibrium behavior of experimentation, because agents

now learn from both old and young generations. This does not, however, change the insight of

Theorem 1.

Theorem B.1. Radical experimentation stops in finite time, almost surely.

This extension of Theorem 1 is not completely straightforward, and may be explained as

follows. The proof can be found at the end of the section.

The size of radical experimentation by the old generation, whenever it takes place, is charac-

terized by the first-order condition

κ = c′(x− x̂t). (37)

Let yO,R denote the solution to (37) and ξ = κyO,R − c(yO,R) > 0. An old agent prefers radical

experimentation over exploitation if and only if

B̂t + κyO,R − c(yO,R) ≥ B̄t, or, equivalently, if Gt ≤ ξ. (38)

When choosing the size of his experimentation, a young agent considers the effect of his

action today on his incentives tomorrow. This effect can be quantified in a perceived reduction

of the gap from Gt to Gt − ξ due to the possibility of performing radical experimentation in

the second period, which results in higher incentives to perform radical experimentation today.

However as the gap increases, ξ becomes negligible and eventually the relative benefit of radical

experimentation over exploitation falls short of the explicit cost of experimentation. Thus the

young agent will eventually opt for incremental experimentation, which is still strictly better

than exploitation.

Proof of Theorem B.1. We start by showing the existence of a threshold G̃ above which

yR(G) = 0.2 Suppose, first, that κ ≤ c′(0), so that an old agent chooses the technology with the

highest known payoff (as observed in the main text). The expected utility of a young agent from

choosing technology x > x̂ is

B̂ + κy − c(y) + δ

{
(B̂ + κy)

(
1− Φ

(
G− κy
σ
√
y

))
+ σ
√
yφ

(
G− κy
σ
√
y

)
(39)

+(G+ B̂) Φ

(
G− κy
σ
√
y

)}
(40)

= (1 + δ)[B̂ + κy]− c(y) + δ

{
(G− κy)Φ

(
G− κy
σ
√
y

)
+ σ
√
yφ

(
G− κy
σ
√
y

)}
, (41)

2We express the dependence of the optimal size of radical innovation on the gap G rather than the history H
from expositional clarity.
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where G = B̄ − B̂. The first-order condition is

κ

(
1 + δ − δΦ

(
G− κy
σ
√
y

))
+

δσ

2
√
y
φ

(
G− κy
σ
√
y

)
= c′(y). (42)

The left-hand side of (42) approaches κ as G increases and, for fixed G, the left-hand side

converges to κ(1 + δ) as y → +∞, and to κ as y → 0. Also, the left-hand side is bounded above

by

κ(1 + δ) +
δσ2φ(1)

2G
,

which converges to κ(1 + δ), as G increases. Thus, limy→+∞ c
′(y) > κ(1 + δ) (and c′′(0) > 0, if

κ = c′(0)) implies that there exists G̃ > 0 such that G > G̃ implies yR(G) = 0.

Differentiating (42) with respect to G yields

− δφ

2σ
√
y

[
κ+

G

y

]
< 0,

for all G, y > 0. This implies that yR(0) ≥ yR(G) for all G > 0. Repeating the argument used

to prove Theorem 1, we conclude that radical experimentation ends in finite time a.s.

Suppose now that κ > c′(0). An old agent experiments radically with a size equal to yO,R > 0

if and only if G ≤ ξ, as shown in the main text. We assume without loss of generality that

G > ξ, so that an old agent does not experiment today and then the expected utility today of

any x > x̂ for a young agent is simply

E[B(x)− c(x− x̂)] + δ{E[B(x) + ξ|B(x) ≥ B̄ − ξ] Prob(B(x) ≥ B̄ − ξ) + B̄ Prob(B(x) < B̄ − ξ)}

= (1 + δ)(B̂ + κy)− c(y) + δ

{
σ
√
yφ

(
G− ξ − κy

σ
√
y

)
+ ξ + (G− ξ − κy)Φ

(
G− ξ − κy

σ
√
y

)}
.

The first-order condition is

κ

[
1 + δ − δΦ

(
G− ξ − κy

σ
√
y

)]
+

δσ

2
√
y
φ

(
G− ξ − κy

σ
√
y

)
= c′(y). (43)

The right-hand side is always greater than or equal to κ. Since G − ξ > 0, the right-hand

side converges to κ as y → 0, and to κ(1 + δ) as y → +∞. Since also c′(0) < κ, there must

exist an interior solution to the first-order equation (43). When limy→+∞ c
′(y) > κ(1 + δ), the

solution is unique for high values of G because the left-hand side of (43) approaches κ pointwise

as G becomes arbitrarily large. As G increases, yR(G) approaches yO,R: the optimal size of

experimentation for a young agent converges to the optimal size for an old agent. This follows
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from the fact that the first-order condition becomes, dropping negligible terms, κ ≈ c′(y). The

maximized expected utility is approximately equal to

(1 + δ)(B̂ + ξ) + δ

[
κyO,R

(
1− Φ

(
G− ξ − κyO,R

σ
√
yO,R

))

+σ
√
yO,Rφ

(
G− ξ − κyO,R

σ
√
yO,R

)
+ (G− ξ)Φ

(
G− ξ − κyO,R

σ
√
yO,R

)]
≈ B̂ + ξ + δB̄.

Since we assumed that G > ξ, it follows that B̂ + ξ + δB̄ < (1 + δ)B̄. The only candidate for

radical experimentation gives an expected payoff which is lower than what the young agent could

get by simply exploiting. Thus, there exists G̃ > 0 such that the young agent prefers exploitation

for any gap greater than G̃.

In order to replicate the steps used to prove Theorem 1, we still need to show that there is

an upper bound on the equilibrium size of experimentation. When G > ξ, the right-hand side

of (43) is strictly decreasing in G. Thus, the unique positive solution of the first-order condition

when G = ξ provides the desired upper bound. When G ≤ ξ, the old agent is experimenting

with a fixed size yO,R (independent of the gap). Replicating the argument for κ = 0, one may

show that, on the range G ∈ [0, ξ], the value and size of radical experimentation are decreasing in

G, providing an upper bound on the size of radical experimentation for a young agent, uniform

over all histories.�
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