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Abstract

This paper identifies two notions of substitutes for auction and equilibrium analysis. Weak substitutes,
the usual price-theory notion, guarantees monotonicity of tâtonnement processes and convergence of clock
auctions to a pseudo-equilibrium, but only strong substitutes, which treats each unit traded as a distinct good
with its own price, guarantees that every pseudo-equilibrium is a Walrasian equilibrium, that the Vickrey
outcome is in the core, and that the “law of aggregate demand” is satisfied. When goods are divisible, weak
substitutes along with concavity guarantees all of the above properties, except for the law of aggregate
demand.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: D44; C62
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1. Introduction

Recent years have seen the growing use of simultaneous clock auctions for substitute goods
like electrical power, natural gas, and certain agricultural contracts. The first step in creating
such an auction is to define categories of goods that are to be regarded as homogeneous, even if
they are not perfectly uniform. These may include goods available at different but nearby times
and places or with different but similar specifications. Once categories of goods are defined, the
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standard definition of substitutes can be applied: roughly, two categories of goods are demand-
side substitutes if increasing the price of one does not reduce the demand for the other.

It can turn out, however, that changes in the inclusiveness of a product definition affects
whether the goods are substitutes according to the standard definition. It is convenient to say
that goods are weak substitutes when the substitutes condition is satisfied for a given classifica-
tion of the goods and strong substitutes when each item is regarded as distinct, potentially having
its own price. Even in ordinary-looking problems, these two notions of substitutes have very dif-
ferent implications for the analysis of auctions and competitive equilibrium. It can even happen
that identical goods fail to be substitutes for one another according to the standard definition.

We illustrate the possibilities with some simple examples. Consider a firm producing an output
whose price is normalized to one. Suppose that the firm’s output f (x, y) is a function of two types
of discrete inputs x ∈ {0,1} and y ∈ {0,1,2} according to

f (x, y) = min(10x + 3y,4 + y),

which we tabulate below:

f y = 0 y = 1 y = 2
x = 0 0 3 6
x = 1 4 5 6

The firm chooses x and y to maximize f (x, y) − rx − wy. In this example, because f is sub-
modular, the two inputs are substitutes, that is, when comparing any two price vectors p and p′
for which the firm’s optimum is unique, if p � p′ and pi = p′

i , then the demand for good i is
weakly higher at prices p.

Next, consider an alternative formulation in which the two units of input y are treated as
distinct. Let y = y1 + y2 and suppose y1, y2 ∈ {0,1}. In this formulation, the prices are also
potentially distinct, so the firm maximizes f (x, y1 + y2) − rx − w1y1 − w2y2. It is as if we had
distinguished blue and red versions of the input, where the color is devoid of any consequences
for production. It is easy to check that if the input prices are (r,w1,w2) = (1.5,1.5,1.5), then
the firm’s unique profit-maximizing input vector is (0,1,1), but if (r,w1,w2) = (1.5,1.5,2.5),
then the profit-maximizing choice is (1,0,0). This demonstrates that an increase in the price of
input y2 reduces the demand for input y1: different units of the same type of good may fail to be
substitutes.

Examples of this sort are hardly rare. For instance, an airline that is acquiring landing slots at a
hub airport may wish to have some number N of slots, for illustration N = 2, within a particular
period, say from 2:00 pm to 2:15 pm or from 3:00 pm to 3:15 pm, so that passengers traveling
on the same continuing flight can be scheduled to arrive at that flight at about the same time.
Landing slots in the two time periods are weak substitutes if when slots at 2–2:15 are expensive,
the airline will substitute slots at 3–3:15. Slots within a given time period, however, need not be
substitutes. As in our example, the airline may demand both or neither. As in our example, this
can happen even with diminishing returns to additional slots in the same time period. Because
clock auctions have been proposed for just this sort of application, it is important to investigate
how these auctions perform in settings where slots are weak substitutes but not strong substitutes.

Despite the practical significance of the weak substitutes condition for applications like land-
ing slots, previous studies of ascending clock auctions, which have focused exclusively on the
strong substitutes condition. Ausubel [1, p. 617] mentions that his clock auction design, which
applies when goods are distinct and substitutes, can also be applied when there are multiple
units of each good, without inquiring about whether the meaning of the substitutes condition
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may change.2 Gul and Stacchetti [5] restrict their auction design to nonidentical goods, in effect
assuming strong substitutes.

One important difference between the weak and strong substitutes arises when studying the
existence of market-clearing prices. Using models in which goods are priced individually, Gul
and Stacchetti [5] and Milgrom [12] display monotonic auction processes that converge to exact
or approximate market-clearing prices.3 In those formulations, substitutes means strong substi-
tutes: the equilibrium existence results do not extend to the case of weak substitutes.

To illustrate the problem using our example, suppose that good y is treated as a single class
and that the available supply for the two classes of goods is given by the vector (1,2). Suppose
that firm 1 has production function f as before, and that there is a second firm with production
function g(x, y) = 1x=1 + 4 × 1y�1 (thus, firm 2 has zero marginal value from getting a second
unit of good y). At the unique efficient allocation, firm 2 uses one unit of y and firm 1 uses one
unit of each good. To induce firm 2 to make its efficient choice, the price of input x must be
px � 1, but in that event, there is no price py at which firm 1 demands (1,1): market clearing
prices do not exist. Such failure is related to a “hole” in firm 1’s demand. Despite concavity of
firm 1’s valuation, there exist price vectors such as p = (2,2) for which its demand correspon-
dence projected on good y includes 0 and 2, but not 1. When such holes are absent, we say that
firm 1’s valuation satisfies the consecutive integer property. We will show that this property plus
concavity is one of several alternatives that precisely differentiate weak and strong substitutes
and imply the existence of a market clearing price.

In our example, if the supply vector is anything else besides (1,2), then not only does a
market clearing price vector exist, but more is true. First, the set of market clearing price vectors
is a sublattice. Second, a continuous tâtonnement or clock auction process beginning with low
prices converges monotonically upward to the minimum market clearing price vector. A similar
process beginning with high prices converges monotonically downward to the maximum market
clearing price vector. Similar conclusions have been derived in the past using strong substitutes,
but not for the weak substitutes of this example.

How does the clock auction perform when there are no market clearing prices? Suppose that
firms 1 and 2 have the same valuations as above, and supply is still (1,2) so that no clearing price
exists. We initially set the input price vector at some low positive prices (ε, ε). At those prices
there is strict excess demand for good y until py increases above 1. There is strict excess demand
for good x until px reaches 1. At px = 1, firm 2 is indifferent between 0 and 1 unit of x so x is
not necessarily in excess supply any more. For px = 1, firm 1 becomes indifferent between one
unit of x and two units of y when py reaches 1.5. For (px,py) = (1,1.5), aggregate demand
consists of the four bundles (1,1), (2,1), (0,3) and (1,3), which contain supply (1,2) in their
convex hull. We call the corresponding price pair a pseudo-equilibrium price vector and argue
below that such prices are significant for both equilibrium theory and auction design.4

2 Bikhchandani and Mamer [3, p. 391] make a similar point: “In case there are multiple units of some objects, one can
expand the commodity space by treating each unit of an object as a different commodity. It may be verified that market
clearing prices exist in the original economy with multiple units per object if and only if market clearing prices exist in
the new economy with one unit per object. Moreover, the sets of market allocations supported by equilibrium prices in
the two economies (which may be empty sets) are identical, except for relabelling.”

3 These analyses are descendants of the Kelso and Crawford [7] analysis of strict core allocations in a labor market.
4 See Definition 11. We will also find that the set of pseudo-equilibria coincides with the equilibrium set when the

latter is nonempty. In practice, pseudo-equilibria represent the closest one can come to full market clearing. As in the
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Examples like the preceding one are also potentially significant for the design of activity rules
in auctions. These are rules that typically prevent a bidder from increasing its total demand for
all products as prices increase.5 In our example, at prices (px,py) = (0.5,1.5), firm 1 demands
(1,0) while at prices (px,py) = (1.5,1.5), firm 1 demands (0,2). Suppose these two price vec-
tors represent successive prices in an ascending auction; the firm’s total demand rises from 1 unit
to 2 units. Hatfield and Milgrom [6] had shown that the strong substitutes property implies that,
for a profit-maximizing firm, the sum of the quantities of goods demanded does not increase as
prices rise, a result they called the law of aggregate demand. Only When that property is satis-
fied is it true that standard activity never interfere straightforward reporting of demands, so it is
significant that the property is implied by strong substitutes but not by weak substitutes.

These examples herald general results, which are the subject of this paper. Section 2 defines
weak-substitute valuations and strong-substitute valuations. Section 3 gives a useful character-
ization of these properties of valuations in terms of the firm’s dual profit function. Section 4
further studies the relationship between the two concepts of substitutes and other properties of
demand.

Section 5 treats the implications of weak and strong substitutes for aggregate demand. We
show that the strong substitutes condition is sufficient and necessary (in a quantified sense) for
the robust existence of market-clearing prices and for Vickrey payoffs to be in the core. The
weak substitutes condition implies that the set of pseudo-equilibrium price vectors is a nonempty
sublattice and that this set coincides exactly with the set of equilibrium prices whenever any
equilibrium exists.

Section 6 presents our analysis of clock auctions when bidders have weak-substitute valua-
tions. We first introduce a continuous-time model and show that weak substitutes is necessary and
sufficient for the monotonicity of a certain continuous tâtonnement-like clock auction and implies
that a continuous descending or ascending clock auctions terminates at a pseudo-equilibrium. We
then show how the analysis can be applied to the case in which prices follow small bid increments
and bidders only need to announce one optimal bundle, rather than their entire indifference set
of optimal bundles.

Section 7 analyzes the case of divisible goods and compares it the discrete case. We find that
the law of aggregate demand and its variants, which were necessary in the discrete case for such
important conclusions as that competitive equilibrium exists and that the Vickrey outcome is in
the core, are entirely dispensable in the continuous case. Section 8 concludes.

2. Definitions

Consider an economy with K goods, in which good k is available in Nk units. Let X =
Πk∈K{0,1, . . . ,Nk} and X̃ = Πk∈K{0,1}Nk represent the space of possible bundles of the ex-
change economy in its multi-unit and binary formulations. The multi-unit formulation only
considers the aggregate quantity of each good, while the binary formulation treats each unit
of each good as a distinct good available in binary (0 or 1) amount. To any bundle of the binary
formulation, we can associate a bundle in the multi-unit formulation. This correspondence ϕ is

example, small supply adjustments can sometimes be sufficient to convert a pseudo-equilibrium to a real equilibrium,
and real sellers are sometimes willing and able to adjust supply to accomplish just that.

5 An exception is the revealed-preference activity rule of Ausubel and Milgrom [2].
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defined formally as xk = ϕk(x̃) = ∑Nk

j=1 x̃kj , i.e. by counting all items in the binary vector x̃

corresponding to good k.

Definition 1 (Multi-unit valuation). A multi-unit valuation v is a mapping from X into R.

Definition 2 (Binary valuation). A binary valuation ṽ is a mapping from X̃ into R.

The binary valuation ṽ corresponds to the multi-unit valuation v, if for every x̃, ṽ(x̃) =
v(ϕ(x̃)). We denote by V the space of multi-unit valuations and Ṽ the space of corresponding
binary valuations. Corresponding binary valuation treat all units of any given good symmetri-
cally, and hence Ṽ is strictly included in the set of all binary valuations. Similarly, let P = RK+
and P̃ = Πk∈KRNk+ denote the respective price spaces of the multi-unit and binary economies.
The first price space permits only linear prices for each category of goods, while the second al-
lows nonlinear prices for each class of goods. With nonlinear prices, an agent who buys x units
of some good will buy the x cheapest ones. Consequently, the marginal price faced by such agent
is weakly increasing. Throughout the paper, we assume that agents have quasi-linear utilities.

Assumption 1 (Quasi-linearity). The utility of an agent with multi-unit valuation v acquiring
a bundle x at price p is u(x,p) = v(x) − px. Similarly, the utility of an agent with binary
valuation ṽ acquiring a bundle x̃ at price p̃ is ũ(x̃, p̃) = ṽ(x̃) − p̃x̃.

Given a binary valuation ṽ and a price vector p̃ ∈ P̃ , define the demand of the agent at price
p̃ by D̃(p̃) = arg max

x̃∈X̃ {ṽ(x̃) − p̃x̃}.
Similarly, we define the multi-unit demand D of an agent with valuation v as D(p) =

arg maxx∈X {v(x) − px}.
With quasi-linear preferences, there is no distinction to be made between gross and net sub-

stitutes, so we drop the modifier and make the following definitions.

Definition 3 (Strong-substitute valuation). A multi-unit valuation v is a strong-substitute valua-
tion if its binary form ṽ satisfies the binary substitutes property: for any prices p̃ and q̃ in P̃ such
that p̃ � q̃ , and x ∈ D̃(p̃), there exists a bundle x̃′ ∈ D̃(q̃) such that x̃′

kj � x̃kj for all (k, j) such
that p̃kj = q̃kj .

Definition 4 (Weak-substitute valuation). A multi-unit valuation v is a weak-substitute valuation
if it satisfies the multi-unit substitutes property: for all prices p and q in P such that p � q and
x ∈ D(p), there exists a bundle x′ ∈ D(q) such that x′

k � xk for all k in K = {κ ∈ K: pκ = qκ}.

The strong substitutes condition is at least weakly more restrictive than the weak substi-
tutes condition, because the latter applies only for linear prices while the former applies also
for nonlinear prices. Moreover, the weak substitutes condition only compares units of distinct
goods, while the strong substitutes condition requires that units of the same good be substitutes.
Section 1 illustrates that the two conditions are not equivalent. In particular, weak-substitute val-
uations can violate the law of aggregate demand, but strong substitute valuations cannot. An even
simpler illustration of the difference is the case of multiple units of a single good. In that case,
the weak substitutes condition is vacuous, while strong substitutes imposes concavity, as shown
by Theorem 9.
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3. Duality results

To any multi-unit valuation v we associate the dual profit function π : P → R such that
π(p) = maxx∈X {u(x,p) = v(x) − px}. Similarly, to any binary valuation ṽ we associate the
dual profit function π̃(p̃) = max

x̃∈X̃ {ũ(x̃, p̃) = ṽ(x̃) − p̃x̃}.

Definition 5 (Multi-unit concavity). A multi-unit valuation is concave if it can be extended to a
concave function on RK .

Theorem 1. Let v be a multi-unit valuation and π be its dual profit function. Then, for all x ∈ X ,
v(x) � minp∈P {π(p) + px}. Moreover, v is concave if and only if

v(x) = min
p∈P

{
π(p) + px

}
for all x ∈ X . (1)

Proof. The first claim follows from the definition of π . The second claim is proved by applying
the separating-hyperplane theorem. �

Ausubel’s and Milgrom’s dual characterization of strong substitute valuations extends
straightforwardly to the cases treated here.

Theorem 2. v is a weak-substitute valuation if and only if π is submodular, and this holds if
and only if the dual profit function π̃ of the corresponding binary form ṽ = φ(v) is submodular
on the restricted domain where goods of the same type have equal prices. In addition, v is a
strong-substitute valuation if and only if the dual profit function π̃ of its binary form ṽ = φ(v) is
submodular.

Proof. The proofs of the two statements follow the proof of Theorem 10 in Ausubel and Mil-
grom [2]. �

The preceding theorem relies on the idea that one can characterize weak substitutes by fo-
cusing on the subset PL of the price space in the binary formulation P̃ in which goods of the
same type have the same price. This subset is isomorphic to the set P of linear prices used in
the multi-unit economy. The weak-substitute property then corresponds to the requirement that
the dual profit function is submodular on PL, while the strong-substitute property requires sub-
modularity on the whole price space. An immediate consequence of this alternative formulation
is the following:

Theorem 3. Any strong-substitute valuation is also a weak-substitute valuation.

The converse is not true. For example, suppose there is only one type of good, so that every
valuation v is a weak-substitute valuation. Let v(0) = 0, v(1) = 1 and v(2) = 3 and suppose
prices are (p1,p2) = (1.4,1.4), at which both units are demanded. Increasing p1 to 1.7 would
reduce demand to 0, thus violating the strong-substitute property. The same example establishes
that a multi-unit valuation can be submodular even when the related binary valuation is not.

We have seen than weak-substitute valuations need not be submodular. The following result
shows that adding the requirement that v is concave does yield submodularity.
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Theorem 4. Any concave weak-substitute valuation is submodular.

Proof. From Theorem 1 v(x) = minp∈P {π(p) + px} = maxp{−π(p) − px}. From Theorem 2,
π is submodular. Therefore, v is the maximum over p of a function that is supermodular in p

and −x, which implies that v is supermodular in −x or, equivalently, submodular in x. �
Theorem 5. Let ṽ be a strong-substitute valuation. Then ṽ(x̃) = min

p̃∈P̃ {π̃(p̃) + p̃x̃}.

Proof. Given x̃, define p̃ as p̃a = 0 if x̃a = 1 and p̃a = ∞ if x̃a = 0. Clearly, x̃ ∈ D̃(p̃). The rest
of the proof is identical to the proof of Theorem 1. �

Underlying Theorem 4 is the fact that concavity allows v to be expressed by formula (1). As
Theorem 5 shows, concavity is not required in the binary form to obtain that equation. Com-
bining this observation with the same argument as in the proof of Theorem 4, provides a direct
explanation of why strong substitutes valuations are submodular.

4. Relations between concepts of substitutes

Gul and Stacchetti [4] introduced the single-improvement property for binary valuations,
which requires that if some vector x is not demanded at price vector p, then there is a vec-
tor y that is strictly preferred to x and entails increasing the demand for at most one good and
decreasing the demand for at most one other good, as follows.

Definition 6 (Binary single-improvement property). A binary valuation ṽ satisfies the single-
improvement property if for any price vector p̃ and x̃ /∈ D̃(p̃), there exists ỹ such that u(ỹ, p̃) >

u(x̃, p̃), ‖(ỹ − x̃)+‖1 � 1, and ‖(x̃ − ỹ)+‖1 � 1.

Gul and Stacchetti also showed that this single-improvement property is equivalent to the
strong substitutes property:

Theorem 6 (Gul and Stacchetti). A monotonic valuation is a strong-substitute valuation if and
only if it satisfies the binary single-improvement property.

We now extend these results to multi-unit economies.

Definition 7 (Multi-unit single-improvement property). A valuation v satisfies the multi-unit
single-improvement property if for any p and x /∈ D(p), there exists x′ such that u(x′,p) >

u(x,p), ‖(x′ − x)+‖1 � 1, and6 ‖(x − x′)+‖1 � 1.

The only difference in the definitions of binary and multi-unit single-improvement properties
resides in the price domain where the property has to hold.

Throughout the paper, we will denote by ek the vector of RK whose kth component equals
one and whose other components equal zero.

6 Here the norm is defined on RK , whereas it was defined on R
∑

k Nk in the binary setting.
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Theorem 7. If v satisfies the multi-unit single-improvement property then it is a weak-substitute
valuation.

Proof. Suppose by contradiction that the weak-substitute property is violated: there exist p, k,
a small positive constant ε, and a bundle x such that x ∈ D(p) and for all y ∈ D(p + εek), there
exists j �= k such that yj < xj . Set p̂ = p + εek . We have x /∈ D(p̂) and yk < xk for all y ∈ D(p̂)

(since D(p) clearly contains bundles with strictly less than xk units of good k). Therefore x is
only dominated by bundles y that have strictly less units of at least two goods, implying that
‖(x − y)+‖1 � 2, which violates the single-improvement property. �

The converse in not true. In the first example of Section 1, the valuation is submodular in
a two-good economy, thus satisfies the weak substitutes property. However, for r = 0.2 and
w = 0.3, the bundle (1,0) is only dominated by the bundle (0,2), which violates the single-
improvement property. Let ∧ and ∨ respectively denote the “meet” and “join” operators for the
lattice structure induced by the usual order on X .

Definition 8 (Multi-unit submodularity). A multi-unit valuation v is submodular if for any vectors
x and x′ of X , v(x) + v(x′) � v(x ∧ x′) + v(x ∨ x′).

The next theorem contains a key result for the existence of Walrasian equilibria in multi-unit
economies. The proof uses Gul and Stacchetti’s characterization theorem (Theorem 6) and thus
requires monotonicity of v. Throughout the rest of the paper, we assume that v is nondecreasing.

Assumption 2. Agent valuations are nondecreasing.

Theorem 8. If v is a strong-substitute valuation, then any bundle x is optimal at some linear
price.

Proof. Let x be any bundle, and x̃ be a binary representation of this bundle. From Theorem 5,
we have

v(x) = ṽ(x̃) = min
p̃

{
π̃(p̃) + p̃x̃

}
. (2)

Since v is a strong substitutes valuation, π̃ is submodular, so the objective in (2) is submodular.
By a theorem of Topkis [17], the set M of minimizers of a submodular function is a sublattice and,
since the objective is continuous, the sublattice is closed. Therefore, it has a largest element p̃.
We will first show that for any good k consumed in positive amount (i.e. xk � 1), p̃ki = p̃kj

whenever x̃ki = x̃kj = 1. That is, the restriction to good k of p̃ must be linear for the xk cheapest
units of that good. We will then show that this price linearity can be extended to the entire supply
of good k without affecting optimality of the bundle.

To show the first claim, suppose by contradiction that p̃ki �= p̃kj for some units i, j of some
good k such that x̃ki = x̃kj = 1. Then the price vector p̃′ equal to p̃ except for units i and j of
good k, where p̃ki and p̃kj are swapped, is also a minimizer of (2). Therefore p̃ ∨ p̃′ > p̃ is also
in M , which contradicts maximality of p̃. We have thus shown that p̃ is linear on the “support”
of x̃: for each good k there exists a price pk such that p̃ki = pk for all i such that x̃ki = 1.
Obviously, p̃kl = +∞ whenever x̃kl = 0, so the p̃ is not linear on the whole supply. To prove the
theorem, therefore, we need to show that price linearity can be extended to those units of good k

that are not consumed.
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We now prove that x is optimal for the linear price vector p = (pk)k∈K , where pk = +∞
when xk = 0, pk = 0 when xk = Nk , and pk is defined as above when 1 � xk � Nk − 1. That is,
we can impose p̃kl = pk for all units, including those for which x̃kl = 0, and preserve optimality
of x.

To show this, we first observe that for any good k such that xk ∈ {1,Nk − 1}, the firm must be
indifferent, at p̃, between x and some bundle yk such that yk

k < xk , otherwise it would be possible
to increase pk , which would contradict maximality of p̃. We can choose yk so that it is optimal
if we slightly increase the price of some particular unit of good k. Since ṽ is a strong substitute
valuation, we can choose y such that yk

k = xk −1, and yk
j � xj for all j . Since p̃kl = +∞ outside

of the support of x̃, we necessarily have yk
j = xj for j �= k. This shows that yk = x − ek . Such

indifference bundles exist for all goods k such that 1 � xk � Nk − 1.
Now, for all goods such that xk ∈ [1,Nk − 1], reset all unit prices outside the support of x̃

from +∞ to pk . This change does not affect optimality of x among bundles z such that z � x,
and it does not affect indifference between x and the bundles yk . For any good k, consider
the bundle zk = x + ek . Since ṽ is submodular, Theorem 11 implies that v is component-wise
concave (see p. 222). Therefore, v(zk) − v(x) � v(x) − v(yk) = pk , which implies that zk is
weakly dominated by x. Now for two goods k �= j such that xk � 1 and xj < Nj , consider the
bundle zkj = x − ek + ej . We claim that z is also weakly dominated by x. To see this, we use the
following lemma, whose proof is in Appendix A.7

Lemma 1. If v is a strong-substitute valuation, k and j are two goods and x is a bundle such
that xk � Nk − 1 and xj � Nj − 2, then v(x + ek + ej ) − v(x + ek) � v(x + 2ej ) − v(x + ej ).

Applying Lemma 1 to the bundle x − ej − ek yields v(x) − v(yj ) � v(zkj ) − v(yk), which
implies, along with v(x) = v(yj ) + pj = v(yk) + pk , that v(x) − pk � v(zkj ) − pj . Thus, x

weakly dominates z. This shows that x̃ has no single improvement. From Theorem 6, ṽ satisfies
the single-improvement property. Therefore, x̃ must be optimal at the linear price p̃ such that
p̃kl = pk for all l ∈ {1, . . . ,Nk}. Equivalently, the bundle x is optimal at price p = (pk), which
concludes the proof. �

We can now state the properties of strong-substitute valuations in linear-pricing economies.

Theorem 9. Suppose that v is a strong-substitute valuation. Then it satisfies the following prop-
erties:

[Concavity] v is concave.
[Weak-substitute property.] For any p ∈ P , k ∈ K, ε > 0, and x ∈ D(p), there exists x′ ∈

D(p + εek) such that x′
j � xj for all j �= k.

[Law of aggregate demand.] For any p ∈ P , k ∈ K, ε > 0, and x ∈ D(p), there exists x′ ∈
D(p + εek) such that ‖x′‖1 � ‖x‖1.

[Consecutive-integer property.] For any p ∈ P and k ∈ K, the set Dk(p) = {zk: z ∈ D(p)}
consists of consecutive integers.

7 As can be easily checked, the proof of Lemma 1 is independent of the proof of the present theorem.
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Proof. Theorem 3 implies that v satisfies the weak-substitute property, and Hatfield and Mil-
grom [6] show that v must satisfy the law of aggregate demand. Therefore, it remains to show
that v is concave and satisfies the consecutive-integer property.

We first show that v is concave. Theorem 8 implies that for any x there exists p such
that π(p) = v(x) − px, where π is the dual profit function defined in Section 3. From the
first part of Theorem 1, v(x) � minp π(p) + px. Combining the two equations above yields
v(x) = minp π(p) + px for all x. Applying the second part of Theorem 1 then proves that v is
concave.8

Last, we show the consecutive-integer property. Suppose by contradiction that there exist p, k,
and two bundles x and y in D(p) such that xk � yk + 2 and z ∈ D(p) ⇒ zk /∈ (yk, xk). Consider
the binary price vector p̃ that is linear and equal to pj for all good j �= k, and that equals pk

for the first xk units of good k and +∞ for the remaining units of good k. Clearly, there exist
binary forms x̃ and ỹ of x and y that belong to D̃(p̃), and there is no bundle z̃ in D̃(p̃) such that
zk ∈ (yk, xk). If the price of one unit of good k is slightly increased, the demand for good k thus
falls directly below zk , implying that the demand of another unit of good k, whose price had not
increased, has strictly decreased, which violates the strong-substitute property for ṽ. �

The consecutive-integer property is not implied by concavity of v. For example, in a (multi-
unit) two-good economy, concavity is compatible with the demand set D(p) = {(1,0), (0,2)}.
However, this demand set violates the consecutive-integer property: the set D2(p) = {0,2} does
not consist of consecutive integers. The consecutive-integer property rules out valuations caus-
ing a sudden decrease in the consumption of a good (independently of the consumption of other
goods). For example, there are no prices at which the firm is indifferent between bundles con-
taining, say, 5 and 10 units of a good, but strictly prefers these bundles to any bundle containing
between 6 and 9 units of that good. In that sense, there are no “holes” in the demand set with
respect to any good. In terms of demand, the property implies a progressive reaction to price
movements: as the price of a good increases, the optimal demand of that good decreases unit by
unit. By contrast, concavity is not required for the law of aggregate demand.

Theorem 10. If v is a weak-substitute valuation that satisfies the consecutive-integer property,
then it satisfies the law of aggregate demand.

Proof. See Appendix A. �
The weak-substitute property and the law of aggregate demand do not imply the consecutive-

integer property. For example, in an economy with one good available in two units, consider the
nonconcave valuation v(0) = 0, v(1) = 1, and v(2) = 4. v is trivially a substitutes valuation, and
satisfies the law of aggregate demand. However, at price p = 2, the demand set is {0,2}, which
violates the consecutive-integer property. This is also an example of a weak-substitute valuation
that is not concave.

To obtain sharp results, we consider the concept of component-wise concavity, which is
weaker than concavity and entails diminishing marginal returns in each component separately.

Definition 9 (Component-wise concavity). A multi-unit valuation v is component-wise concave
if for all x and k, v(xk + 1, x−k) − v(x) � v(xk + 2, x−k) − v(xk + 1, x−k).

8 As can be easily verified, the proof of Theorem 1 is independent of the present proof.
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Theorem 11. A multi-unit valuation v is submodular and component-wise concave if and only if
its binary form ṽ = φ(v) is submodular.

Proof. By a theorem of Topkis [17], it is sufficient to consider binary bundles x and y that differ
in just two components. If the two components represent the same good, then submodularity
of the binary form is the same as component-wise concavity. If the two components represent
different goods, then submodularity of the binary form is implied by submodularity of the multi-
unit form (and conversely). �

The last three properties listed in Theorem 9 describe the demands corresponding to a strong-
substitute valuation in linear-pricing economies. Even though strong-substitute valuations are
defined by their demands in response to nonlinear prices, the identified properties turn out to be
sufficient to characterize strong substitutes. That is the essential content of Theorem 12 below.

Before proving this theorem, we state a new “minimax” result, in which one of the choice
set is a lattice and the other choice set consists of nonlinear prices. The proof of this result is in
Appendix A.

If x is a multi-unit bundle and p̃ is a nonlinear price vector, let (p̃, x) denote the cost of
acquiring bundle x under p̃. That is,

(p̃, x) =
∑
k∈K

xk∑
i=1

p̃k(i),

where p̃k(i) is the price of the ith cheapest unit of good k.

Proposition 1 (Minimax). Suppose that v is a concave weak-substitute valuation satisfying the
consecutive-integer property, and let p̃ be a nonlinear price vector. Then,

max
x

min
p

{
π(p) + px − (p̃, x)

} = min
p

max
x

{
π(p) + px − (p̃, x)

}
.

Theorem 12. Let v be a multi-unit valuation. The following properties are equivalent.

(i) v is a strong-substitute valuation.
(ii) v is a concave weak-substitute valuation, and satisfies the consecutive-integer property.

Proof. We know from Theorem 9 that (i) implies (ii). We now show that (ii) implies (i). From
Theorem 2, it is enough to show that π̃ is submodular. Consider any nonlinear price vector p̃.
We have

π̃(p̃) = max
x̃

{
ṽ(x̃) − p̃x̃

} = max
x

{
v(x) − (p̃, x)

}
.

Since v is concave, Theorem 1 implies that

π̃(p̃) = max
x

{
min

p

{
π(p) + px

} − (p̃, x)
}

= max
x

{
min

p

{
π(p) + px − (p̃, x)

}}
.

From Proposition 1, the max and min operators can be swapped:

π̃(p̃) = min
{

max
{
π(p) + px − (p̃, x)

}} = min
{
π(p) + max

{
px − (p̃, x)

}}
.

p x p x
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As can be easily verified, the inner maximum equals

∑
k∈K

Nk∑
i=1

(pk − p̃ki)+.

Therefore,

π̃ (p̃) = min
p

{
π(p) +

∑
k∈K

Nk∑
i=1

(pk − p̃ki)+

}
.

Since v is a weak-substitute valuation, π is submodular by Theorem 2. Moreover, the function
(x, y) → (x − y)+ is submodular as a convex function of the difference x − y. Therefore, π̃(p̃)

is the minimum over p of an objective function that is submodular in p and p̃, which shows that
it is submodular in p̃.9 �

It turns out that, given concavity and the weak-substitute property, the law of aggregate de-
mand is equivalent to the consecutive integer property. Some of the main results above are
combined and extended in the following theorem.

Theorem 13 (Equivalence of substitute concepts). Let v be a multi-unit valuation. The following
statements are equivalent.

(i) v satisfies the binary single-improvement property.
(ii) v is a strong-substitute valuation.

(iii) v is a concave weak-substitute valuation and satisfies the consecutive-integer property.
(iv) v is a concave weak-substitute valuation and satisfies the law of aggregate demand.
(v) v is concave and satisfies the multi-unit single-improvement property.

Proof. (i) ⇔ (ii) is Gul and Stacchetti’s theorem (see Theorem 6). (ii) ⇔ (iii) is a restatement
of Theorem 12. Theorem 10 shows that (iii) implies (iv). For the converse, the weak-substitute
property implies10 for all p that any edge E of D(p) has direction ei or ei −αej for some goods
i, j . In the first case, concavity implies that all integral bundles on the edge belong to the demand.
In the second case, α = 1. Otherwise, slightly modifying the price would reduce demand to that
edge, and increasing pi if α > 1 or pj if α < 1 would violate the law of aggregate demand.
This, along with concavity, implies that the consecutive-integer property holds along all edges,
and thus for D(p). (i)–(iv) implies (v): (i) clearly implies the multi-unit single-improvement
property, and (iii) implies concavity. We conclude by showing that (v) implies (iii). We already
know from Theorem 7 that if v satisfies (v), then it is a weak-substitute valuation. Therefore,
there only remains to show that v satisfies the consecutive-integer property. Suppose it does not.
There exists a price vector p, a good k, and a unit number d such that Dk = {zk: z ∈ D(p)} is
split by d : the sets D−

k = Dk ∩ [0, d − 1] and D+
k = Dk ∩ [d + 1,Nk] are disjoint and cover Dk .

Now slightly increase pk . The new demand set D′ is such that D′
k ⊂ D−

k . Pick any bundle y that
is optimal under the new price within the set {x ∈ X : xk � d}. Then yk > d , because pk has only
been slightly increased and any bundle with d units of good k was strictly dominated by D+

k .

9 See Topkis [16].
10 See the proof of Proposition 1.
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At the new price, y is dominated but cannot be strictly improved upon with reducing the amount
of good k by at least two units, which violates the single-improvement property. �

The multi-unit single-improvement property alone is not equivalent to strong substitutes. For
example, in an economy with two goods available in two units, consider the valuation v defined
by v(x) = ‖x‖1 − .1r(x), where r(x) equals 1 if x contains exactly one unit of each good, and
0 otherwise. The valuation is not concave, and therefore cannot be a strong-substitute valuation.
However, one can easily verify that v satisfies the multi-unit single-improvement property.

5. Aggregate demand and equilibrium analysis

Our first theorem relates the set of equilibrium prices for the weak substitutes case to the
solution of a certain dual minimization problem. For any (multi-unit) bundle x, let P (x) denote
the set of price vectors such that x ∈ D(p).

Theorem 14. If v is a weak-substitute valuation, then for all x, P (x) is either the empty set or
the complete sublattice of P given by P (x) = arg min{π(p) + px}.

Proof. Fix x ∈ X . From Theorem 5, v(x) � minp{π(p) + px}. Suppose that the inequality is
strict. Then v(x) − px < π(p) for all p, so P (x) is the empty set. Now suppose that v(x) =
minp{π(p)+px}. Then, for all p ∈ arg min{π(p)+px}, v(x)−px = π(p), so x ∈ D(p). Con-
versely, if x ∈ D(p̄) for some price p̄, then arg min{π(p)+px} = v(x) = π(p̄)+ p̄x. Therefore,
P (x) = arg min{π(p) + px}. From Theorem 2, π(p) is submodular. Therefore P (x) is the set
of minimizers of a submodular function over a sublattice P ; hence, it is a sublattice of P . Com-
pleteness is obtained by a standard limit argument. �

In the binary formulation, all bundles can be achieved through nonlinear pricing, by setting
some unit prices to zero and others to infinity. Therefore, Theorem 14 takes a simpler form. For
any binary bundle x̃, let P̃ (x̃) denote the set of price vectors such that x̃ ∈ D̃(p̃).

Theorem 15. If ṽ is a binary valuation satisfying the strong substitutes, then P̃ (x̃) is a complete,
nonempty lattice for all x̃ ∈ X̃ .

Proof. For any bundle x̃, there exists a price p̃ such that x̃ ∈ D̃(p̃). Therefore, P̃ (x̃) is nonempty.
The rest of the proof is similar to the proof of Theorem 14. �

Existing results by Gul and Stacchetti and by Milgrom assert necessary conditions for the ex-
istence of Walrasian equilibrium in the binary formulation. These results assume that individual
valuations are drawn from a set that includes all unit-demand valuations (Gul and Stacchetti),
which are defined next, or all additive valuations (Milgrom).11 They establish that if the set of
valuations includes any that are not strong substitutes, then there is a profile of valuations to be
drawn from the set such that no competitive equilibrium exists.

These results are inapplicable in our multi-unit context, because they allow preferences to
vary among identical items and the constructions used in those papers hinge on that freedom.

11 An additive valuation is a valuation with the property that the value of any set is equal to the sum of the values of the
singletons in the set.
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The next theorem extends the earlier results by showing that the conclusions remain true when
one imposes the restriction that units of the same good are interchangeable.

Definition 10. A unit-demand valuation is such that for all price p and x ∈ D(p), ‖x‖1 � 1.

Let N = ∑
k Nk denote the total number of units in the economy.

Theorem 16. Consider a multi-unit endowment X and a firm having a concave, weak-substitute
valuation v1 on X that is not a strong-substitute valuation. Then there exist I firms, I � N , with
unit-demand valuations {vi}i∈I , such that the economy E = (X , v1, . . . , vI+1) has no Walrasian
equilibrium.

Proof. See Appendix A. �
Since preferences are assumed to be quasi-linear, one can conveniently analyze equilibrium

prices and allocations in terms of the solutions to certain optimization problems. With that
objective in mind, consider an economy consisting of n firms with valuations {vi}1�i�n. The
valuations vi are defined for {x ∈ NK : xk � Nk ∀k ∈ K}. It is convenient to extend the domain of
vi by setting v(x) = v(x ∧ (N1, . . . ,NK)) for all x in NK , where ∧ denotes the “meet” operator
for the lattice structure induced by the usual order. We now define the market-valuation v of the
economy by

v(x) = max
{∑

vi(xi):
∑

xi = x and xi ∈ NK
}

and the market dual profit function of the economy by π(p) = maxx∈NK {v(x) − px}. The func-
tion π is convex, as can be checked easily.

Theorem 17. For all p ∈ P , π(p) = ∑
1�i�n πi(p).

Proof.

π(p) = max
x

{
max

{∑
i

vi(xi):
∑

i

xi = x

}
− px

}

= max
x1,...,xn

∑
i

{
vi(xi) − pxi

}
=

∑
i

πi(xi),

which concludes the proof. �
Theorem 17 cannot be extended to nonlinear prices. To see this we observe, for example,

that the cheapest unit of a given good can only be allocated to a single firm when computing the
market dual profit function, whereas it is included in all individual dual profit functions involving
at least one unit of this good. It is thus easy to construct examples where the market dual profit
function is strictly lower than the sum of individual dual profit functions, the latter allowing each
firm to use the cheapest units.
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Corollary 1. If all firms have weak-substitute valuations, then the market valuation v is also a
weak-substitute valuation.

Proof. If individual firms have weak substitute valuations, Theorem 2 implies that individual
profit functions are submodular. By Theorem 17, the market dual profit function is therefore a
sum of submodular functions, and so itself submodular. Theorem 2 then allows us to conclude
that v is a substitute valuation. �
Definition 11. A price vector p is a pseudo-equilibrium price of the economy with endowment
x̄ if p ∈ arg min{π(p) + px̄}.

Section 6 uses the following characterization of pseudo-equilibrium prices.

Proposition 2. p is a pseudo-equilibrium price if and only if the supply vector x̄ is in the convex
hull Co(D(p)) of D(p).

Proof. By definition p minimizes the convex function f :p → π(p)+px̄. Therefore, 0 is in the
subdifferential of f at p.12 That is, 0 ∈ ∂π(p) + x̄. The extreme points of −∂π(p) are bundles
that are demanded at price p. Moreover, −D(p) ⊂ ∂π(p). Therefore −Co(D(p)) = ∂π(p).
Combining these results yields x̄ ∈ Co(D(p)). �

Let P (x̄) denote the set of pseudo-equilibrium prices.

Proposition 3. If all firms have weak-substitute valuations, then P (x̄) is a complete sublattice
of P .

Proof. Individual weak-substitute valuations imply that πi is submodular for all i by Theorem 2.
Therefore, π is submodular. The proof is then identical to the proof of Theorem 14. �
Theorem 18. The economy with endowment x̄ has a Walrasian equilibrium if and only if v(x̄) =
minp{π(p) + px̄}. Moreover, if the economy with endowment x̄ has a Walrasian equilibrium,
then the set of Walrasian equilibrium prices is exactly the set P(x̄) of pseudo-equilibrium prices.

Proof. Theorem 1 implies that v(x̄) � minp{π(x) + px̄}. Suppose that v(x̄) = π(p) + px for
some p. Let x̄i denote the bundle received by firm i for some fixed allocation maximizing the
objective in the definition of v. For all i, vi(x̄i)−px̄i � πi(p). Summing these inequalities yields
v(x̄) � π(p)−px̄. By assumption, the last inequality holds as an equality, which can only occur
if vi(x̄i) − px̄i = π(p) for all i, implying that (p, x̄1, . . . , x̄n) is a Walrasian equilibrium. To
prove the second claim, suppose that ({x̄i}1�i�n,p) is a Walrasian equilibrium. Then, vi(x̄i) =
πi(p) + px̄i for all i. Summing these equalities yields v(x̄) = π(p) + px̄, which implies that
v(x̄) = minp{π(p) + px̄} (since the minimum is always above v(x̄)). It is clear from the first
part of the proof that if the economy has a Walrasian equilibrium, the set of Walrasian prices is
exactly the set of pseudo-equilibrium prices. �
12 See for example Rockafellar [14].
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Theorem 18 shows that whenever a Walrasian equilibrium exists, the concepts of pseudo-
equilibrium and equilibrium coincide. In binary economies, where nonlinear pricing is available,
the question of the existence of a Walrasian equilibrium have been solved by Gul and Stac-
chetti [4] and Milgrom [12], who both show that equilibrium exists in the binary formulation
when goods are strong substitutes and establish the two partial converses described above.

For the multi-unit formulation, we have already established the partial converse in Theo-
rem 16. We now consider the other direction: we prove that strong substitutes implies the
existence of a Walrasian equilibrium with linear pricing. This result is then used to prove the
stronger theorem that strong-substitute valuations are closed under aggregation: if all valuations
satisfy strong-substitutes, then so does the market valuation.

Theorem 19 (Linear-pricing Walrasian equilibrium). In a multi-unit exchange economy with
individual strong-substitute valuations, there exists a Walrasian equilibrium with linear prices.

Proof. Considering the binary form of the economy, Gul and Stacchetti [4, Corollary 1] have
shown that the set of (nonlinear pricing) Walrasian equilibria is a complete lattice. In particular,
it has smallest and largest elements. We now prove that these two elements consist of linear
prices, which proves the result. Suppose by contradiction that the largest element p̃ is such that
p̃ki �= p̃kj for some units i, j of some good k. Then the price vector p̃′ equal to p̃ except for units
i and j of good k, where p̃ki and p̃kj are swapped, is also a Walrasian equilibrium. Therefore
p̃ ∨ p̃′ > p̃ is also a Walrasian equilibrium, which contradicts maximality of p̃. Linearity of the
smallest element is proved similarly. �
Corollary 2 (Concavity of aggregate demand). In a multi-unit exchange economy with individual
strong-substitute valuations, the market valuation is concave.

Proof. Denote by x the total endowment of the economy, and n the number of firms. We show
that for all y such that 0 � y � x, there exists a linear price vector p such that y is in the demand
set of the market valuation. From Theorem 19, we already know that the result is true if y = x.
Thus suppose that y < x. Consider an additional firm with valuation vn+1(z) = Kz ∧ (x − y),
where K is a large constant, greater than the total value of other firms for the whole endowment x.
One can easily check that vn+1 is an assignment valuation, and therefore a strong-substitute
valuation (see Hatfield and Milgrom [6]). Applying Theorem 19 to the economy with (n + 1)

firms, there exists a Walrasian equilibrium with linear price vector p. At this price, the additional
firm obtains the bundle x − y since its marginal utility dominates all other firms’ for any unit up
to this bundle, and vanishes beyond this bundle. This implies that the remaining firms ask for y at
price p, or equivalently, that y belongs to the demand set of n firms’ market valuation at price p.
Concavity is then obtained as in the proof of Theorem 9. �
Theorem 20 (Aggregation). If individual firms have strong-substitutes valuations, then the mar-
ket valuation v is a strong-substitute valuation.

Proof. Let {vi}1�i�n denote the family of individual valuations and v denote the market valu-
ation, defined by v(x) = max{∑i vi(xi):

∑
xi = x, xi ∈ N}. From Theorem 12, we will prove

the result if we show that v is a concave weak-substitute valuation that satisfies the consecutive-
integer property. Corollary 2 states that v is concave. From Corollary 1, v is a weak-substitute
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valuation. It thus remains to show that v satisfies the consecutive-integer property. For any
price p, the demand set of v is the solution of

max
x

{
v(x) − px

} = max
x

{
max

{∑
i

vi(xi):
∑

i

xi = x

}
− px

}
=

∑
i

max
xi

vi(xi) − pxi.

Therefore, D(p) = ∑
i Di(p). In particular, the projection of D on the kth coordinate satisfies

Dk = ∑
i Di,k . The sets Di,k consist of consecutive integers by Theorem 9, implying that Dk

also consists of consecutive integers. �
Finally, we examine the connections between strong-substitute valuations and the structure of

the core of the associated cooperative game. The setting considered in this section is the same as
Ausubel and Milgrom [2], but with the multi-unit formulation replacing their binary formulation.
We first recall the definitions of coalitional value functions, the core, and Vickrey payoffs.

Suppose that, in addition to bidders, there exists a single owner (labeled “0”) of all units of all
goods, who has zero utility for her endowment.

Definition 12. The coalitional value function of a set S of bidders is defined by w(S) =
max{∑i∈S vi(xi):

∑
xi ∈ X } if 0 ∈ S, and w(S) = 0 otherwise.

Denote L the set consisting of all bidders and the owner of the goods.

Definition 13. The core of the economy is the set

Core(L,w) =
{
π ∈ RL+: w(L) =

∑
l∈L

πl,w(S) �
∑
l∈S

πl for all S ⊂ L

}
.

Definition 14. The Vickrey payoff vector is given by π̄l = w(L) − w(L \ l) for l ∈ L \ 0, and
π̄0 = w(L) − ∑

l∈L\0 π̄l .

Ausubel and Milgrom [2] show that this is the payoff at the dominant-strategy solution of the
generalized Vickrey auction.

Definition 15. The coalitional value function w is bidder-submodular if for all l ∈ L \ 0 and sets
S and S′ such that 0 ∈ S ⊂ S′, w(S) − w(S \ l) � w(S′) − w(S′ \ l).

Theorem 21. Suppose that there are at least 2 + maxk Nk bidders. If any bidder has a concave,
weak-substitute valuation that is not a strong-substitute valuation, then there exist linear or unit-
demand valuations for remaining bidders such that the coalitional value function is not bidder-
submodular and the Vickrey payoff vector is not in the core.

Proof. See Appendix A. �
Although related to a theorem by Ausubel and Milgrom [2], Theorem 21 is different because

it requires a counter-example where bidders treat all units of any given good identically (counter
examples where two units of the same good have different values for a bidder are not allowed).
The converse result, which states that strong substitutes are sufficient for the Vickrey payoffs to
be in the core, is true. For that direction, the arguments provided by Ausubel and Milgrom go
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through because the arguments do not hinge on intra-good symmetry, as checked by the following
proof.

Theorem 22. If all bidders have strong-substitute valuations, then the coalitional value function
is bidder-submodular and the vector of Vickrey payoffs is in the core.

Proof. From Ausubel and Milgrom [2, Theorem 7], it is enough to show that the coalitional
value function is bidder-submodular. By assumption, the binary form ṽi of each bidder satisfies
the substitutes property. Theorem 11 in Ausubel and Milgrom is valid for the binary formulation
and implies that the coalitional value function is bidder-submodular. This property is independent
of the formulation (binary or multi-unit). �
6. Walrasian tâtonnement and clock auctions

This section analyzes auctions where goods are available in multiple units and prices are lin-
ear. We propose a class of algorithms guaranteeing monotonic convergence of the auction to a
pseudo-equilibrium whenever bidders have weak-substitute valuations. This result extends ex-
isting analyses where bidders have the more restrictive strong-substitute valuations, as in Gul
and Stacchetti [5] and Milgrom [12]. Moreover, we show that these algorithms generically work
under the natural assumption, used in practical designs, that bidders only submit demand single-
tons, as opposed to their entire demand set.13 Combining these results with those of Section 5
shows that clock auctions always converge to a Walrasian equilibrium whenever there exists
one. For the present analysis, we define a clock auction as a price adjustment process in which
the path of prices is monotonic—either increasing or decreasing. In practice this monotonicity
and other features, especially activity rules for bidders (see Milgrom [12]), differentiate clock
auctions from a Walrasian tâtonnement. In order to understand the relation between substitute
valuations and clock auctions, it is useful to start the analysis with Walrasian tâtonnement and
only later to impose monotonicity on the process.

6.1. Continuous time and price

Our goal is to construct algorithms where (i) prices increase over time, and (ii) converge to the
smallest pseudo-equilibrium price p whenever bidders have weak-substitute valuations. Reverse
algorithms, where price decreases and converges to the largest pseudo-equilibrium price can
similarly be constructed. By definition, pseudo-equilibrium prices minimize the convex function
f : p → π(p) + x̄p where π is the market dual profit function and x̄ ∈ NK is the supply vector.
Among the general algorithms to find such minimizers are steepest-descent algorithms. At any
time, price changes are determined by the gradient of f whenever f is differentiable, and by the
vector of smallest norm of its subdifferential otherwise.14 Such algorithms amount to a particular
Walrasian tâtonnement, as they adjust prices to eliminate excess demand. For any price vector p,

13 In contrast, the Gul–Stacchetti algorithm requires that bidders report their entire demand set at each time. When
interpreted as an auction, the requirement that demand sets be reported makes their procedure different from any auction
process in current use.
14 By definition, the subdifferential ∂f (p) at p of a convex function f is the set of vectors x such that f (q) − f (p) �
x(q − p) for all q . The subdifferential is always a nonempty convex set, and coincides with f ’s gradient whenever it is
differentiable.
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we denote by z(p) the point of smallest norm in the opposite of the differential of f at p. When
f is differentiable, z corresponds to the excess (aggregate) demand D(p) − x̄. In general, z is
the vector of smallest norm in the convex hull of the set of excess demand.

Definition 16. A correspondence-based Walrasian tâtonnement (or simply “correspondence tâ-
tonnement”) is a price-setting algorithm defined by some equation15 of motion

ṗr (t) = α
(
t, p(t)

)
z
(
p(t)

)
, (3)

where α is a continuous function taking values in [α, ᾱ] for some constants16 0 < α < ᾱ.

Let L = {p: p � p and z(p) � 0} denote the set of price vectors where all goods are in excess
demand. The following theorem states that, starting any price in L, correspondence tâtonnements
are well defined (i.e. from any initial price, it generates a unique trajectory in the price space),
monotonic, and converge to the lowest pseudo-equilibrium price, p. In practice, the assumption
that p(0) is in L is satisfied when the clock auction starts at zero price, but also any “reasonably
low” prices.

Theorem 23. Correspondence tâtonnements are well defined. Suppose that bidders have weak-
substitutes valuations and that p(0) ∈ L. Then, for any correspondence tâtonnement, the follow-
ing holds: (i) p(t) ∈ L for all t , (ii) p(t) is increasing, and (iii) p(t) converges to p in finite
time.

The proof is in Appendix A. Theorem 23 implies that, when bidders have weak-substitute
valuations, any correspondence tâtonnement is an ascending clock auction and converges to
the smallest pseudo-equilibrium price. This result is of major importance for clock auctions,
because it ensures that they always converge even with the weaker notion of substitutes. Formally,
we define a correspondence (ascending) clock auction as a correspondence tâtonnement where
prices can only increase: (3) is replaced by ṗr (t) = α(t,p(t))z+(p(t)), where z+ = max{z,0} is
the componentwise maximum between the gradient z(p(t)) and 0.

Corollary 3. If bidders have weak-substitute valuations, any correspondence clock auction start-
ing from a price in L converges to the smallest pseudo-equilibrium price.

In particular, if goods are weak substitutes, ascending clock auctions will find an equilibrium
whenever there exists one. By contrast, it is easy to build examples of valuations violating weak-
substitutes such that a Walrasian equilibrium exists but ascending clock auctions fail to find it.

Our result extends Ausubel [1] in three ways. First, it searches on the space of linear prices,
while Ausubel’s algorithm specifies separate prices for each unit of the good. Second and more
importantly, it relies only on the assumption of weak substitutes, where Ausubel’s analysis re-
quires on the stronger assumption of strong substitutes. Third, it shows that the process converges
monotonically to a pseudo-equilibrium price, which always exist in this setting and which are
equilibrium prices whenever an equilibrium exists.

15 The subscript “r” denotes right derivatives. Right derivatives are necessary to allow for discontinuities in the smallest-
norm gradient z(p).
16 The lower bound α ensures that the algorithm does not stall at a suboptimal price, and the upper bound ensures that
the equation is integrable.
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6.2. Discrete time and price

In actual auctions, prices are often restricted to lie on some grid. In such setting, time can
be decomposed in rounds between which prices are adjusted from one element of the grid to
another. We now show that previous results are approximately true for fine enough price grids
and that clock auctions still work if bidders only announce one desired bundle at each round,
rather than their entire demand set. We emphasize again the importance of this last result, since
bidders do not submit their entire demand set in current practice.

A price grid is a lattice Pη = (ηN)K , where η is a small positive constant. A discrete algo-
rithm generates a sequence of prices {pt : t = 0,1, . . .} in Pη , whose evolution is determined by
excess demand at any period. Even though prices are restricted to a grid, they can follow the
exact direction of the gradient z(p), which has rational coordinates, provided the price step is
large enough. Moreover, the thinner the price grid, and the smaller the price step required to
move along that direction (Lemma 6 in Appendix A analyzes this point in detail). More impor-
tantly, the price sequence generated by a discrete algorithm may in principle diverge from the
price path generated by its continuous equivalent, because demand gradients are discontinuous
functions of price. For example, excess demand for one good can turn into excess supply if the
price for that good is slightly increased. Fortunately, Lemma 7 in Appendix A shows that such
gradient discontinuities bear no significant consequences. Formally, it shows that trajectories of
any discrete steepest-descent algorithm that start close to each other stay close to each other.
This implies that any discrete algorithm closely follows its continuous equivalent (i.e. following
the same gradient rule, but where prices evolve in continuous time). For any price p0, denote by
T (p0) = {p(t): t ∈ R+,p(0) = p0} the trajectory generated by the continuous correspondence
tâtonnement of the previous section, and let T (p0, ε) = ⋃

p∈T (p0)
B(p, ε) denote the tube17 of

radius ε around T (p0).

Theorem 24 (Discrete steepest-descent algorithm). For any ε > 0, there exist η > 0 and ᾱ > 0
such that for any grid finer than η, step size less than ᾱ, and initial price p0, the trajectory
generated by the discrete steepest descent algorithm is contained in T (p0, ε).

The proof of Theorem 24 is in Appendix A. Finally, the above analysis allows us get rid of
the assumption that bidders submit their entire demand set. Bidder valuations can be seen as
vectors of the finite-dimensional space V = Rx̄ . Say that a property of an algorithm holds for
almost all economies if it holds for all bidder valuations except for a subset of Lebesgue measure
zero in V n, where n is the number of bidders. Let us also define singleton-based algorithms in
the same way as the correspondence-based algorithms, except that bidders ask only one bundle
at each period. Concretely, this means that instead of using the vector of smallest norm in the
excess demand set, the algorithm may follow any vector of that set. The following result shows
that this information loss does not affect Theorem 24 except possibly on a set of economies with
Lebesgue measure zero. As Proposition 4 below makes clear, this set only depends on the price
grid chosen and is otherwise independent of the algorithm.

Theorem 25 (Singleton-based algorithm). Under the assumptions of Theorem 24, let p0 be any
initial price of the algorithm. The trajectory of a singleton-based steepest-descent algorithm is
contained in T (p0, ε) for almost all economies.

17 B(p, ε) is the open ball centered at p and radius ε.
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The proof is based on the following proposition.

Proposition 4. For all (v1, . . . , vn) ∈ V n, the demand correspondence p → D(p) is single-
valued almost everywhere in P with respect to the Lebesgue measure on this set.

Proof. Consider first one bidder with valuation v. For any two bundles x and x′, the subset
P(x, x′) of P defined by P(x, x′) = {p: p(x − x′) = v(x) − v(x′)}, is the intersection of a
hyperplane with the positive orthant P , and has therefore zero Lebesgue measure. Since the
number of possible bundles is finite, the set

Q =
⋃
x �=x′

P(x, x′),

which contains all prices at which the bidder’s demand is multi-valued, also has zero Lebesgue
measure. For a countable (in particular, finite) number of bidders, the set of prices where aggre-
gate demand is multi-valued is contained in Qa = ⋃

Qi , which has zero Lebesgue measure. �
Proposition 4 implies that the set of economies such that Qa ∩ Pη �= ∅ has Lebesgue measure

zero. Therefore, singleton-based and correspondence-based algorithms are identical for almost
all bidder valuations and price grids.

In practice, the auctioneer does not know bidder valuations. Theorem 25 implies that for
any belief that is absolutely continuous with respect to the Lebesgue measure, the algorithm is
arbitrarily close to the continuous, correspondence-based steepest descent algorithm of the ideal
economy. In particular, the algorithm completely ignores bidders’ indifference sets. This feature
contrasts with Gul and Stacchetti [5], whose algorithm gives much importance to indifference
sets.

7. Divisible goods

For discrete goods, we showed that strong substitutes were sufficient and in some sense nec-
essary for several major results, such as (i) the existence of a Walrasian equilibrium, (ii) the fact
that the Vickrey outcome is in the core, (iii) submodularity of the dual profit function over non-
linear prices, and (iv) the law of demand. For divisible goods we define a notion of substitutes
based on nonlinear pricing18 guaranteeing that the first three properties above hold, but failing
the law of demand and a natural generalization thereof. We also show that this notion is equiv-
alent to weak substitutes (i.e. based on linear pricing), provided that valuations are concave. En
route, we also show that concave substitute valuations are characterized by submodularity of
the dual profit function over nonlinear prices and are robust with respect to additive concave
perturbations, which extends a related notion of robustness established for complements, as in
Milgrom [11].

18 Using nonlinear prices is not identical to treating goods individually, because treating goods as distinct expands both
the domain and the range of the demand correspondence, while only the domain is changed by the switch to nonlinear
pricing.
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7.1. Definitions

Let

X =
∏
k∈K

[0,Xk]

represent the space of possible bundles of the exchange economy. Throughout the paper, we as-
sume that agents have quasi-linear utilities: the utility of an agent with valuation v acquiring a
bundle x at price p(x) is u(x,p) = v(x) − p(x). The demand function of any agent is defined
by D(p) = arg maxx∈X {v(x) − p(x)}. To emphasize the difference between the two notions of
substitutes considered for divisible goods, we call them “nonlinear substitutes” and “linear sub-
stitutes,” according to whether nonlinear pricing is allowed or not. Linear substitutes is identical
to the weak notion of substitutes used for discrete goods, while nonlinear substitutes is closer to
the stronger notion of substitutes (but see footnote 18).

Definition 17. v is a linear-substitute valuation if whenever pj � p′
j , pk = p′

k for all k �= j , and
x ∈ D(p), there exists x′ ∈ D(p′) such that x′

k � xk for all k �= j .

In the discrete case with individual item pricing, a rational consumer who buys k units of
some type of good always buys the cheapest k units. Therefore, one way to describe individual
item pricing is to specify that the cost of acquiring goods is a convex function of the number
of goods acquired from each class and is additive across classes of goods. Higher prices mean
that the marginal cost of acquiring additional units is higher. This characterization of the cost of
acquiring goods and the corresponding representation of higher prices can be applied directly to
the continuous case. That is the approach we adopt in this section.

Following the above argument, let C denote the space of componentwise convex functions
from RK+ to R that vanish at 0. An element of C contains K convex cost functions, one for each
good. We endow C with the following partial order: C � Ĉ if for all k, C′

k � Ĉ′
k , where C′

k and
Ĉ′

k are the derivatives of Ck and Ĉk , respectively.19 With this order, C is a lattice, where for any C

and Ĉ, the meet and the join satisfy, for all k and xk � 0, (C ∨ Ĉ)′k(xk) = max{C′
k(xk), Ĉ

′
k(xk)}

and (C ∧ Ĉ)′k(xk) = min{C′
k(xk), Ĉ

′
k(xk)}, respectively.20 We extend the domain of any dual

profit function π from linear prices to C and denote π̄ its extension:

π̄ (C) = max
x

{
v(x) − C(x)

}
,

where C(x) = ∑
k Ck(xk).

Definition 18. v is a nonlinear-substitute valuation if whenever Cj � Ĉj , Ck = Ĉk for all k �= j ,
and x ∈ D(C), there exists x′ ∈ D(Ĉ) such that x′

k � xk for all k �= j .

For the discrete case, we have shown that there are several properties distinguishing weak sub-
stitutes and strong substitutes, so there is scope for judgment in creating the analogue of strong

19 These derivatives exist almost everywhere and are increasing by convexity of the cost functions (by the Rademacher
theorem, see Magaril-Il’yaev and Tikhomirov [10, p. 160]). Marginal cost can be extended over the entire domain, for
example by imposing right-continuity.
20 As can be easily checked, the marginal costs of (C ∧ Ĉ)′

k
and (C ∨ Ĉ)′

k
are nondecreasing for all k, and constructed

cost functions both vanish at 0, so that C ∧ Ĉ and C ∨ Ĉ belong to C .
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substitutes in the continuous case. In place of strong substitutes, we study the concept of con-
cave, nonlinear-substitute valuations. This definition preserves properties distinguishing strong
substitutes from weak substitutes in the discrete setting, including robustness of the substitutes
property with respect to nonlinear price changes and existence of Walrasian equilibria.21 More-
over, we find below that these valuations are characterized by dual submodularity on the domain
of nonlinear prices, which was also the characterization of strong substitutes in the discrete case.
We find further that, given concavity, the linear-substitute and nonlinear-substitute properties are
equivalent. Therefore, our divisible-good extensions of the two concepts coincide in the case of
concave valuations. The next two theorems develop all of these relationships.

Theorem 26 (Dual submodularity). If v is a concave linear-substitute valuation, then π̄ is sub-
modular on C .

Proof. Convexity of π and C implies that the function (p, x) �→ π(p) + px − C(x) is concave
in x and convex in p. The minmax theorem (see e.g. Stoer and Witzgall [15]) implies that

max
x

min
p

{
π(p) + p · x − C(x)

} = min
p

max
x

{
π(p) + px − C(x)

}
.

Concavity of v implies that v(x) = minp(π(p) + px) for all x. This, along with π̄ (C)’s defini-
tion, implies that

π̄(C) = max
x

{
min

p

(
π(p) + px

) − C(x)
}
.

This and the minmax theorem then imply that

π̄(C) = min
p

{
π(p) + max

x

{
px − C(x)

}}
.

The inner maximum equals

∑
k

∞∫
0

(
pk − ck(zk)

)
+ dzk.

Therefore,

π̄(C) = min
p

{
π(p) +

∑
k

∞∫
0

(
pk − c(zk)

)
+ dzk

}
.

We now show that the function h : (p,C) → h(p,C) = ∫ ∞
0 (p − C′(z))+ dz is submodular on

R+ × C1. For q < r , h(r,C)−h(q,C) is the area of the region {(z,p): p ∈ [q, r] and C(z) � p},
which is also equal to

∫ r

q
z(p,C)dp, where z(p,C) = sup{z: C′(z) � p}. Since z(p,C) is nonin-

creasing in C for all p, so is h(r,C)−h(q,C), which proves submodularity of h in (p,C). More-
over, for any numbers p, c and d , (p − c)+ + (p − d)+ = (p − max(c, d))+ + (p − min(c, d))+,
which implies that h is modular in C. Linear substitutes implies that π is submodular in p.
Therefore, π̄ is the minimum over p ∈ P = RK+ of an objective function that is submodular on
P × C . This implies (Topkis [17]) that π is submodular on C . �
21 Another possible extension of strong substitutes would impose the law of aggregate demand. That is equivalent to
requiring that a dominant diagonal property hold for the matrix [∂xi/∂pj ] of partial derivatives of demand. Since all
important properties (except of course for the law of demand itself) hold without this quantitative restriction, we do not
follow this approach.
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Theorem 26 allows us to prove the equivalence of three candidate definitions for the divisible-
good extension of strong substitutes.

Theorem 27. Suppose that v is concave. Then the three following statements are equivalent.

(i) v is a linear-substitute valuation.
(ii) v is a nonlinear-substitute valuation.

(iii) π is submodular on C .

Proof. Clearly, (ii) implies (i). From Theorem 26, (i) implies (iii). To conclude the proof, we
show that (iii) implies (ii). We fix a direction of price increase for some good, and show that
along this direction, the demand for any other good is nondecreasing. Fix goods j �= k and a
direction of increase δ (i.e. δ is nondecreasing, vanishes at 0, and is such that C + δ is convex)
for good j . Consider the restriction

π̃ (λ,μ) = max
x

{
v(x) − C(x) − λxk − μδ(xj )

}
of π , defined22 on R+ × [0,1]. Since π is submodular, so is π̃ . π̃ is convex as the point-
wise maximum of a family of functions that are affine in (λ,μ). In particular, ∂π̃/∂λ exists
almost everywhere. By an envelope theorem23 ∂π̃/∂λ exists everywhere that demand for good k

xk(λ,μ) is a singleton and at those prices, ∂π̃/∂λ = −xk(λ,μ). Submodularity of π̃ implies that
∂π̃/∂λ(λ,μ) is nonincreasing in μ or, equivalently, that xk is nondecreasing in μ. �

Theorems 26 and 27 have an important consequence: concave nonlinear-substitute valuations
are stable under perturbation by any concave modular function. Thus comparative statics results
are robust with respect to such perturbations, as stated in the following theorem.

Theorem 28. If v is a concave nonlinear-substitute valuation, then v+f is a concave nonlinear-
substitute valuation for all f modular and concave.

Proof. Suppose that v is a concave nonlinear-substitute valuation. Then, v +f is concave when-
ever f is concave. By Theorem 27, it remains to show that v + f is a linear-substitute valuation.
Let

xf (p) = arg max
x

{
v(x) + f (x) − px

}
.

Without loss of generality, we can assume that fi(0) = 0 for all terms of f . Let C(x,p) =
px − f (x). Since f is modular and concave, C is modular and for each i, Ci is convex and
vanishes at 0. Therefore, C belongs to C . Moreover, increasing pk implies increasing Ck . Since
v is a nonlinear-substitute valuation and

xf (p) = arg max
x

{
v(x) − C(x,p)

}
,

x
f
j (p) is nondecreasing in Ck , thus in pk . �

We now turn to the consequences of the substitutes properties in settings with multiple firms.

22 The function C(x) + λxk + μδ(xj ) is convex for μ ∈ [0,1], as can be easily checked.
23 Milgrom and Segal [13, Corollary 4].
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7.2. Multiple firms: aggregation and core

We first show that both linear and concave nonlinear substitute valuations are closed under
aggregation.

Theorem 29. The class of linear-substitute valuations is closed under aggregation.

Proof. Suppose that individual firms have linear substitute valuations. Theorem 2, which also
holds for divisible goods, then implies that individual profit functions are submodular. By Theo-
rem 17, the market dual profit function is therefore a sum of submodular functions, and so itself
submodular. Applying Theorem 2 once again, we conclude that v is a linear substitute valua-
tion. �

With divisible goods, concavity is also closed under aggregation: the maximization

v(x) = max
x

∑
i

vi(xi)

subject to
∑

xi � x has a concave objective function and a convex constraint function, so v is
concave24 in the constraint bound x. This shows the following result.

Theorem 30. Concave nonlinear-substitute valuations are closed under aggregation.

Proof. The above results show that concave linear-substitute valuations are closed under aggre-
gation. This, along with Theorem 27, implies that the same is true of concave nonlinear-substitute
valuations. �

With divisible goods, concavity suffices for the existence of a Walrasian equilibrium, since
each bundle is supported by a price vector. We show that if, in addition, firms have nonlinear-
substitute valuations, then the Vickrey outcome is in the core. The setting and definitions of
coalitional value function, core, Vickrey payoff, and bidder submodularity are identical to those
of Section 5.

Theorem 31. If all bidders have concave nonlinear-substitute valuations, the Vickrey outcome is
in the core.

Proof. From Theorem 7 of Ausubel and Milgrom [2], the Vickrey outcome is in the core if the
coalitional value function is bidder submodular. Therefore, we need to show that w(S ∪ {l}) −
w(S) is nonincreasing in S. Let x ∈ RK denote the supply vector. Then,

w
(
S ∪ {l}) − w(S) = max

y�x

{
vl(x − y) + vS(y) − vS(x)

}
,

where vT (z) denote the optimal value of bundle z for coalition T (so that vT (x) = w(T ) for
all T ). Therefore, it is enough to show that vS(y) − vS(x) is nonincreasing in S or simply that
vS(z) is submodular in (−z, S). Concavity25 of vS implies that

vS(z) = min
p

{
πS(p) + pz

}
, (4)

24 See for example Luenberger [9, p. 216].
25 See discussion preceding Theorem 30.
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where πS is the dual profit function of vS and is equal to
∑

i∈S πi(p). Since π is submodular
in p, the objective in (4) is submodular in (−z, S,p). Hence, vS(z) is submodular in (−z, S), as
required. �
7.3. Law of aggregate demand

We have focused so far on monotone comparative statics of the demand function. In the dis-
crete case, strong substitutes not only implies that xj is nondecreasing in the price of other goods,
but also that

∑
j xj (p̃) is nonincreasing in p̃, which is the discrete law of aggregate demand. In

this section, we show that this property no longer holds, and thus is not necessary for Theo-
rems 26 and 31 to hold.

What is the analogue of the law of aggregate demand for divisible substitute goods? One
problem is to determine the units in which such a law might be expressed. For example, suppose
that one unit of good i represents a 10-ride train pass between two cities, while one unit of good j

is a one-way bus ticket between the same cities. One expects that, starting from prices where a
consumer chooses the train pass, a large price increase in the train pass results in the consumer
buying several bus tickets to replace the train pass, implying that the sum xi + xj increases as
pi increases, which violates the law of aggregate demand. One way to pose the problem without
units is to ask whether there exist constants ai such that

∑
i aixi be nonincreasing in prices? In

the previous example, a natural choice would be ai = 10 and aj = 1, given the relative similarity
of a train trip and a bus trip. More generally, we say that a valuation v satisfies the generalized
law of aggregate demand (GLoAD) if there exist increasing functions fi such that∑

i

fi

(
xi(C)

)
is nonincreasing in C. It satisfies the law of aggregate demand if one can take fi(xi) = xi for
all i. The GLoAD seems so much more flexible than the law of aggregate demand that one is
led to wonder whether it is satisfied by linear-substitute valuations, or at least concave nonlinear-
substitute valuations. However, the following theorem and its corollary show that the GLoAD
is equivalent to the law of aggregate demand up to a mere convex re-scaling of goods. For the
remaining of this section we assume that the cost functions are nondecreasing.26 To simplify the
exposition, let (f ◦ g)(x) = f (g1(x1), . . . , gK(xK)), for any function f and modular function g.
Clearly, f ◦ g is modular if f is also modular. Restricted to the class of increasing modular
functions, let f −1 denote the sum of component-wise inverse functions: f −1(x) = ∑

k f −1
k (xk).

For functions of one variable, these definitions coincide with the usual ones. For the next two
theorems, we assume that valuations are nondecreasing.

Theorem 32. Let v be a nondecreasing concave nonlinear-substitute valuation satisfying the
generalized law of aggregate demand for some function f , and g be an increasing, concave,
modular function. Then ṽ = v ◦ g is a nondecreasing, concave nonlinear-substitute valuation
satisfying the generalized law of aggregate demand for the modular function f̃ = f ◦ g.

Proof. Since v and g are nondecreasing concave, so is ṽ. Let C̃ be a convex price schedule,
and y(C̃) = arg max ṽ(y) − C̃(y). We wish to show that yj is nondecreasing in C̃k for j �= k,

26 This assumption is used in the proof of Theorem 32. We did not make this assumption earlier in order to prove
Theorem 28, where we consider C(x) = px − f (x) and f may be increasing.
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and that there exists an increasing modular function f̃ such that f̃ (y(C̃)) is nonincreasing in C̃.
The function γ = g−1 is increasing, convex, and modular. By assumption, there exists a modular
function f such that f (x(C)) is nondecreasing in C, where x(C) is the demand of v at the convex
price schedule C. Let C = C̃ ◦ γ . Since all components of γ and C̃ are nondecreasing convex,
so are the components of C. Increasing C̃k to C̃′

k is equivalent to increasing Ck to C′
k = C̃′

k ◦ γk .
Therefore, if j �= k, yj (C̃) = γj (xj (C)) is nondecreasing when C̃k increases. Moreover, letting
f̃ = f ◦ g, we have f̃ (y(C̃)) = f (x(C̃ ◦ γ )), which is nonincreasing in C̃. �
Corollary 4. Suppose that v is a nondecreasing, concave nonlinear-substitute valuation satis-
fying the generalized law of aggregate demand for some convex function f . Then, ṽ = v ◦ f −1

satisfies the law of aggregate demand.

Thus, the generalized law of aggregate demand corresponds to a quantitative rather than a
qualitative relaxation of the law of aggregate demand. In fact, it is possible to construct a concave
nonlinear-substitute valuation that does not satisfy any generalized law of aggregate demand. We
construct a counter-example in Appendix A, which establishes a fundamental difference between
the cases of discrete and divisible goods.

8. Conclusion

The substitutes concepts play a critical role in equilibrium theory. For discrete economies,
strong substitutes is necessary for the robust existence of equilibrium and weak substitutes drive
the monotonicity that is exploited by most clock auction algorithms. Strong substitutes is also
the condition that determines whether the Vickrey outcome is in the core. A related concept—the
law of aggregate demand—has been the informal justification for the wide adoption of activity
rules in practical auctions. Among our findings is that the law of aggregate demand is precisely
the additional property that converts a concave weak substitute valuation to a strong-substitute
valuation when goods are discrete.

Section 7 extends the analysis to divisible goods and finds some significant differences from
the discrete case. For divisible goods and concave valuations, defining strong substitutes by al-
lowing nonlinear pricing (where the discrete case allowed separate prices for each unit), we find
no difference between weak and strong substitutes. Unlike the discrete case, the law of aggregate
demand and its unit-free extensions generally fail for the continuous case, but the other implica-
tions of strong substitutes survive: there exists a Walrasian equilibrium, the Vickrey outcome is
in the core, and the dual profit function is submodular over the space of convex price schedules.
Thus, for concave valuations, the law of aggregate demand characterizes the difference between
the cases of discrete goods and divisible goods.
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Appendix A. Proofs

A.1. Section 4

Proof of Lemma 1. Consider a bundle x such that xk � Nk − 1 and xj � Nj − 2. Take any
binary representant x̃ of x, and call l and m two units of good j not in x̃, and s a unit of good k

not in x̃. Since ṽ satisfies the gross-substitute property, the triple{
ṽ(x̃ + el + em) − ṽ(x + el) − ṽ(x̃ + em), ṽ(x̃ + el + es) − ṽ(x̃ + el) − ṽ(x̃ + es),

ṽ(x̃ + em + es) − ṽ(x̃ + em) − ṽ(x̃ + es)
}

(A.1)

has at least two maximizers. Symmetry of ṽ implies that the last two arguments of that quantity
are equal, and therefore greater than or equal to the first one. That is, written in multi-unit form
v(x + ek + ej ) − v(x + ek) − v(x + ej ) � v(x + 2ej ) − 2v(x + ej) which concludes the proof
after simplification. �
Proof of Theorem 10. Suppose by contradiction that the law of aggregate demand is violated:
there exist k, p and x such that for all ε small enough, we have (i) x ∈ D(p − εek), and (ii) for
all y ∈ D(p + εek), ‖y‖1 > ‖x‖1. Clearly, for any such y, we have yk < xk . Let Dk = Dk(p),
d = minDk and d̄ = xk = maxDk . By continuity, we have (i) x ∈ D(p), (ii) there exists some
y ∈ D(p) such that yk < xk , and (iii) for all y ∈ D such that yk = d , ‖y‖1 > ‖x‖1.

For each d ∈ Dk , define g(d) = min{‖y−k‖1: yk = d and y ∈ D(p)}. Let γ : [d, d̄] → R
denote the largest convex function such that γ (d) � g(d) for all d ∈ Dk . The function γ is well
defined and piecewise affine: there exists a partition Δ = {δl}l∈� of [d, d̄] such that γ is affine on
[δl, δl+1]. Moreover, d̄ and d are elements of Δ: there exist l and l̄ such that d = δl and d̄ = δl̄ .
For l ∈ {l + 1, l̄}, denote H(l) the hyperplane containing the two (K − 2)-dimensional affine
varieties{

z ∈ RK : ‖z−k‖1 = γ (δl) and zk = δl

}
and {

z ∈ RK : ‖z−k‖1 = γ (δl−1) and zk = δl−1
}
.

There exists a unique hyperplane containing these two affine varieties, so H(l) is well defined.
Moreover, H(l) lies below D(p) and contains at least two elements z and y of D(p) such that
zk = δl and yk = δl−1.

We claim that there exists l ∈ {l + 1, l̄} such that γ (δl−1) − γ (δl) > δl − δl−1. Suppose that
the contrary holds. Then, γ (d) − γ (d̄) � d̄ − d = xk − d . But then, there exists y in D(p) such
that yk = d and ‖y−k‖1 = γ (d), implying that ‖x‖1 = xk + γ (d̄) � d + γ (d) = ‖y‖1, which
contradicts the hypothesized violation of the law of aggregate demand.

Consider an index l as in the previous paragraph, and modify p slightly so that the demand set
becomes D(p)∩H(l). The price vector can be further modified so that the remaining bundles in
the demand set are aligned on a unique straight line and, for the new price p̄, there still exist z and
y in D(p̄) such that zk > yk and ‖z‖1 < ‖y‖1. There are two cases: either there are two indices
i and j such that yi > zi and yj > zj , or there exists an index i such that yi − xi > xk − yk .
Since optimal bundles are aligned, the same properties hold for the extremities bundles of the
segment containing D(p̄), so we assume without loss of generality that z and y are these extreme
bundles. In the first case, increasing pi slightly violates the weak-substitute property, as the
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optimal quantity of good j also decreases. In the second case, the convex-demand property is
violated: the set Di(p̄) contains a hole between zi and yi . �
Proof of Proposition 1. Trivially,

max
x

min
p

{
π(p) + px − (p̃, x)

}
� min

p
max

x

{
π(p) + px − (p̃, x)

}
. (A.2)

We need to prove that the reverse inequality also holds. We fix p̃ throughout the proof. Con-
sider a price p solving minp maxx{π(p) + px − (p̃, x)}. Let N(p) = arg maxx{px − (p̃, x)}.
N(p) is a hyper-rectangle: there exist two bundles r and R with r � R such that N(p) = {z ∈
ZK : r � z � R}.

Suppose that there exists a bundle x in N(p)∩D(p). Then, the right-hand side of (A.2) equals
π(p) + px − (p̃, x) = v(x) − (p̃, x), where the last equality comes from the fact that x belongs
to D(p). Now consider any linear price vector q . We have π(q)+qx−(p̃, x) � v(x)−(p̃, x), by
definition of π(q). This last inequality implies that the left-hand side of (A.2) is actually greater
than or equal to its right-hand side. Therefore, we will have concluded the proof if we show that
N(p) ∩ D(p) is nonempty, which we now turn to.

Let Co(D(p)) and Co(N(p)) denote the convex hulls of D(p) and N(p). We first show that
Co(D(p)) ∩ Co(N(p)) has a nonempty intersection. Suppose by contradiction that Co(D(p)) ∩
Co(N(p)) = ∅. Then, since these two sets are closed and convex, the separating-hyperplane
theorem implies that there exists a direction δ and a number a such that yδ < a for y ∈ N(p) and
xδ > a for x ∈ D(p). Now modify p by an infinitesimal amount along the direction δ, yielding a
new level q = p+εδ. The objective function π(p)+maxz{pz−(p̃, z)} is affected by this change
in two ways. First, through the sensitivity of π with respect to p. Taking any x ∈ D(q) ⊂ D(p),
we have π(p) = v(x)−px and π(q) = v(x)− qx. Therefore, the change of π is −εxδ. Second,
through the sensitivity of maxz{pz − (p̃, z)} with respect to p. There exists y ∈ N(p) such that
maxz{pz − (p̃, z)} = py − (p̃, y) throughout the price change. Therefore, the effect on this term
equals εyδ. The overall change of the objective function is then ε(y − x)δ < 0, implying that q

leads to a strictly lower objective function than p, which contradicts optimality of p.
We have proved that the sets Co(D(p)) and Co(N(p)) have a nonempty intersection. We now

prove that this intersection contains a point with integer coordinates. Consider any polytope of
RK . We say that an edge (i.e. a segment joining two vertices of the polytope) is simply oriented
if either (i) it is parallel to one coordinate axis {λei : λ ∈ R} of the space or (ii) there exist two
coordinates i and j such that the edge is parallel to ei − ej . We say that a polytope is simply
oriented if all its edges are simply oriented. Last, we recall that a polytope all of whose vertices
have integer coordinates is called a lattice polytope.

Lemma 2. If a lattice polytope P is simply oriented, and H is the half space {x: xk � q}, where
k ∈ {1, . . . ,K} and q is an integer, then P ∩ H is either the empty set, or a simply oriented,
lattice polytope.

Proof. Suppose that Q = P ∩ H is nonempty. Its vertices are either vertices of P , in which
case they are integral, or new vertices belonging to H . We prove that any such vertex also has
integer coordinates. Any new vertex x is the intersection of H with an edge E of P that is not
parallel to H . In particular, there exists an integral vertex y of P such that x − y is parallel
to E. Moreover, yk �= q , since the edge is not parallel to H . The edge is either parallel to ek or
to ek − ei for some i �= k. In the first case, we have xj = yj ∈ Z for all j �= k and xk = q ∈ Z,
so x has integer coordinates. In the second case, xj = yj ∈ Z for all j /∈ {i, k}, xk = q ∈ Z, and
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xi = yi + (yk − xk) ∈ Z, so x also has integer coordinates. We now prove that the edges of Q

are simply oriented. Thus consider an edge E of Q, joining vertices x and y. If either x or y are
vertices of P , then E is either an edge of P , or the result of such an edge being cut by H . In
either case, it is simply oriented because P is simply oriented. If both x and y are new vertices,
E is the intersection of a two-dimensional face F of P with H , where F is not parallel to H .
F is defined by two linearly independent edges E′ and E′′ of P which are simply oriented, and
at least one of which contains ek . Suppose first that either E′ or E′′, say E′, is orthogonal to ek .
Then it is easy to show that E is parallel to E′′ and therefore simply oriented. Now suppose that
both E′ and E′′ have a nonzero kth component. Because they are linearly independent, there
exist i and j such that F is generated by ek − ei and ek − ej (where the signs come from the
fact that P is simply oriented). In that case, as can be easily verified, E is parallel to ei − ej , and
therefore simply oriented. �

We observe that Lemma 2 still holds if the inequality sign is reversed in the definition of H .
Co(D(p)) is a lattice polytope since D(p) consists of integral vectors. We now prove that

Co(D(p)) is simply oriented. Thus consider any edge E of Co(D(p)). There exists a vector δ

of RK such that E is included in some straight line Δ = {x0 + λδ}λ∈R. We first show that δ has
at most two nonzero components. Suppose on the contrary that δ has at least three components,
say i, j , and k. Without loss of generality assume that δi and δj are positive. Since E is a face of
Co(D(p)), there exists an infinitesimal modification of the price vector p, such that D(p) = E.
Moreover, E contains two vectors x and y such that x − y = λδ for some λ > 0. If we slightly
increase pi , x becomes suboptimal, so the optimal quantity of good j decreases, which violates
the weak-substitute property. Thus, δ has at most two nonzero components. We now prove that E

is simply oriented. If δ has only one nonzero component, the claim is trivial. Suppose that δ has
two positive components, say i and j . We show that δi = −δj . Since E has integer vertices, we
can assume that δi and δj are integers.27 If δiδj > 0, slightly increasing pi reduces the optimal
quantity of good j which violates the weak-substitute property. Thus, δi and δj have opposite
signs. Now suppose that |δi | < |δj |. This implies that for all integral vectors x and y in E,
we have |xj − yj | � 2, which violates the consecutive-integer property. Thus, δi = −δj , which
concludes the proof.

We have shown that Co(D(p)) is a simply oriented lattice polytope. Since Co(N(p)) is a
hyperrectangle of the form {x ∈ RK : a � x � b} for some integral vectors a and b, we have,
denoting H(k, q)+ = {x: xk � q} and H(k, q)− = {x: xk � q},

Co
(
D(p)

) ∩ Co
(
N(p)

) = Co
(
D(p)

) ⋂
1�k�K

(
H+(k, ak) ∩ H−(k, bk)

)
.

Iterating Lemma 2 2K times implies that Co(D(p)) ∩ Co(N(p)) is either the empty set or a
lattice polytope. Since we have already shown that this intersection is nonempty, it must contain
an integral point, which concludes the proof of Proposition 1. �
A.2. Section 5

Proof of Theorem 16. We extend part of the proof of Theorem 2 in Gul and Stacchetti [4] to a
multi-unit context. By assumption, there exist a price vector p̄, a good k, and bundles x and x′

27 See for example Korte and Vygen [8].
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such that (i) {x, x′} ∈ D(p̄), (ii) x′
k − xk � 2, and (iii) for all z in D(p̄), zk /∈ (xk, x

′
k). This

implies that at the price p = p̄ − ηek , x is only dominated by bundles z such that zk � xk + 2. In
particular, the single-improvement property is violated by x at price p. Therefore, any bundle y

that solves minz

∑
k |xk − zk| subject to u1(z,p) > u1(x,p) satisfies yk � xk + 2.

Let ρ = ∑
j (yj −xj )+. By hypothesis, ρ � 2. Let ε = u1(y,p)−u1(x,p)

2ρ
. Let I+ = {j : xj < yj },

I− = {j : xj > yj }, and I0 = {j : xj = yj }. If j ∈ I+, introduce Nj − yj firms, call them “Cj ,”
with unit-demand valuation v1(X ) + 2 for a single unit of good j . If j ∈ I+ \ {k}, introduce
yj − xj firms, call them “cj ,” with unit-demand valuation pj + ε for a single unit of good j . If
j = k, introduce yk − xk − 1 firms (“ck”) with unit-demand valuation pk + ε for a single unit
of good k. If j ∈ I−, introduce Nj − xj firms (Cj ) with unit-demand valuation v1(X ) + 1 for a
single unit of good j , and xj − yj firms (cj ) with unit-demand valuation pj for a single unit of
good j . If j ∈ I0, introduce Nj − xj firms with unit-demand v1(X )+ 1. Last, introduce a special
firm, “firm 2,” with unit-demand pk + v1(X ) + 1 for a single unit of good k.

Now suppose that there exists a Walrasian equilibrium with price vector t , and let Xi denote
the bundle of the equilibrium received by firm i. Necessarily, (X1)j � min{xj , yj } for all j , since
even if all unit-demand firms get one unit, there remain min{xj , yj } units of good j . Define a
new price vector as follows: qj = tj for j /∈ I− and qj = pj for j ∈ I−. For j ∈ I−, Nj − xj

units go to firms Cj . The remaining xj units are shared between firm 1 and firms cj , with at least
yj units for firm 1. Now, if firm 1 has none of the remaining xj − yj units, it means that tj � pj ,
and this share remains optimal when tj is increased to pj . If firm 1 has all of the remaining
units, it means that tj � pj , and this share remains optimal when tj is decreased pj . If firm 1 has
only a part of these remaining units, it means that tj is already equal to pj . Thus (X,q) is also a
Walrasian equilibrium, such that X1 � x ∧y. Moreover, all Cj get their units, so that X1 � x ∨y.
Therefore

x ∧ y � X1 � x ∨ y. (A.3)

Firm 2 necessarily gets a unit of good k ∈ I+. Therefore, X1k < yk . This, together with (A.3),
implies that

∑
k |xk − X1k| < ∑

k |xk − yk|, and thus

u(X1,p) � u(x,p). (A.4)

Suppose that there exist some goods j in I+ such that X1j > xj . This implies that qj � pj + ε,
since firms cj would otherwise want to get all the units. Combining these price inequalities
with (A.4) yields u1(X1, q) < u1(x, q), which contradicts optimality of X1 for firm 1.

Suppose instead that X1j � xj for all j . Then, all units between xj and yj for j ∈ I+ are
consumed by firms cj and by firm 2. For j �= k, this implies that cj have a positive value for
the good: qj � pj + ε. For j = k, even though firm 2 takes one units of the yk − xk available
units of k, the fact that yk � xk + 2 implies that there is also a firm ck taking one unit of good k,
which implies that qk � pk + ε. Since X1 = x on I+ and pj = qj for j /∈ I+, (A.4) implies
u1(X1, q) � u1(x, q). Since qj � pj + ε for all j ∈ I+, the value initially chosen for ε implies
that u1(x, q) < u1(y, q), and thus u1(X1, q) < u1(y, q), which contradicts optimality of the
bundle X1 for firm 1. �
Proof of Theorem 21. From A&M Theorem 7 (which allows for multiple units of goods), the
vector of Vickrey payoff vector is in the core if and only if the coalitional value function is
bidder-submodular. We show that under the assumptions of Theorem 21, there always exist bid-
der valuations such that the coalitional value function is not bidder-submodular. Suppose that
bidder 1’s valuation violates the consecutive-integer property. There exist p̂ and k such that
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Dk(p̂) does not consist of consecutive integers. Let p = p̂ + εek for ε small enough. Then there
exists x and z such that xk � zk + 2, and

v(z) − pz > v(x) − px > v(y) − py (A.5)

for all y such that yk ∈ (zk, xk). Introduce a second bidder with linear valuation v2(x) = p−kx−k ,
and xk − zk unit-demand bidders who only value good k. The total number of bidders is xk −
zk + 2 � Nk + 2 � maxk Nk + 2. From (A.5), we have

v(x) + p−k(x̄ − x)−k � v(y) + p−k(x̄ − y)−k + pk(xk − yk)

whenever xk − yk � xk − zk − 1, and

v(z) + p−k(x̄ − z)−kpk(xk − zk) > v(x) + p−k(x̄ − x)−k.

Therefore, denoting S the set consisting of bidders 1, 2 and the xk − zk − 2 unit-demand firms,
and s and t the last two unit-demand bidders, we have w(S ∪ {s}) = w(S) and w(S ∪ {s, t}) >

w(S ∪ {t}), showing that w is not bidder-submodular. �
A.3. Section 6.1

Proof of Theorem 23. The proof is based on three lemmas, proving respectively well-
definedness, monotonicity, and confinement in L.

Lemma 3 (Well-definedness). The continuous SDA algorithm is well defined.

Proof. On any region of the price space where excess demand is constant, the algorithm defines
a straight trajectory of direction z, and is thus well-defined.28 The only possible problem, thus,
is to rule out the possibility that there are infinitely many region changes in an arbitrarily small
amount of time. With the steepest-descent algorithm, the norm of z is nondecreasing in time.
Since z is constant over any region where aggregate demand is constant, and the norm of z

strictly decreases each time it changes, any region that is left is never visited again. �
Lemma 4 (Monotonicity). When bidders have weak-substitute valuations and z(0) � 0, p(·) is
nondecreasing.

Proof. Suppose by contradiction that z(t) fails to be nonnegative at some time t , and take the
smallest such time. Since z(0) � 0, t > 0. By construction, z(s) � 0 on a left neighborhood of t .
Let m = z(t), x = z(t−), and P be the opposite of the subdifferential of f at p(t). P is a convex
polytope, whose vertices are elements of the excess demand at p(t), and m is the element of
P with smallest norm. By assumption, x is nonnegative. By continuity of demand, x must also
belong to P . Let J = {k: mk < 0}. By assumption, J �= ∅. Let H be the affine hyperplane going
through (the point) m and orthogonal to (the vector) m. By assumption, P is on one side of H

and touches H at m. Let F be the largest face of P contained in H , y be any vertex of F , and
Cy = {z:

∑
J mkzk � ‖m‖2 − ∑

J c msys}. Since y − m is orthogonal to m, Cy is a cone with
vertex y. We will show that Cy contains P but not x, a contradiction.

Since y − m is orthogonal to m, we have ‖m‖2 − ∑
J c msys = ∑

J mkyk = mJ yJ , where
the components of mJ are equal to those of m on J and vanish on J c, and a similar definition

28 The scalar function α is immaterial, as long as it is bounded away from 0 and +∞.
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for yJ . By convexity of F , m = y +∑
l αlEl , where {El} is the family of direction vectors of the

edges of F emanating from y. Taking the scalar product of the previous equality with mJ yields
mmJ = yJ mJ + ∑

l αlElmJ . We now prove that ElmJ = 0 for all l. By construction of F ,

m.El = 0. (A.6)

Moreover the weak substitute property implies that El has at most two nonzero components,
and any two nonzero components are of opposite sign (see the proof of Proposition 1). If El has
one nonzero component, it must be in J c , otherwise it would violate (A.6). If it has two nonzero
components, then either they are both in J or both in J c, for otherwise (A.6) would be violated. In
any case, this implies that El.mJ = 0. Thus, mJ vJ = m2

J > 0. In particular Cy = {z:
∑

J mkzk �
m2

J }. Since the components of x are nonnegative by construction, x cannot belong to Cy .
To conclude the proof, we show that Cy contains P . By convexity of P , it is enough to show

that all edges of P emanating from y are going in the cone Cy . This will be the case if we show
that for any such edge with direction δ (away from y), we have

δmJ � 0. (A.7)

By definition of F , we have δm � 0 (i.e. any edge from y must point outwards from H ). Since
bidders have weak-substitute valuations, δ has at most two nonzero components. Suppose first
that it has exactly two components, δi and δj . If i, j are in J , then (A.7) trivially holds. If i, j

are in J c , then (A.7) is an equality. If i ∈ J and j ∈ J c , then δm � 0 and the fact that δiδj < 0
(by weak-substitutes) implies that δi < 0, and thus that (A.7) holds. If there is only one nonzero
component, (A.7) holds trivially. �
Lemma 5 (Confinement). If bidders have weak-substitute valuations, p(0) � p and z(0) � 0,
then p(t) � p for all t � 0.

Proof. Suppose not: there exists a time t such that p(t) crosses the hyperrectangle R =
{z: z � p} from inside out. In particular, the index subset I = {j : pj (t) = pj } is nonempty,
and we have pj (t) < pj for j /∈ I . Moreover, p(s) � p for s in a right neighborhood of t : there
exists a nonempty subset J ⊂ I such that ps,j > pj for j ∈ J and s ∈ (t, t + ε). By construction
of the algorithm, this means that the vector n of smallest norm in the opposite of the subdiffer-
ential of p(t) satisfies nj > 0 for j ∈ J . We will contradict this statement by showing that the
vector m defined by mj = nj for j /∈ J and mj = 0 for j ∈ J is in the opposite of the subdif-
ferential. m’s norm is strictly smaller than n’s, contradicting the assumption that n is of smallest
norm in the opposite of the subdifferential. By definition of the subdifferential, we need to show
that, letting p = p(t),

m(q − p) � f (p) − f (q) (A.8)

for all q . We first show this inequality in a neighborhood of p. By construction of n, n(q − p) �
f (p) − f (q) for all q . Therefore, (A.8) is automatically satisfied for q such that qj � pj for
j ∈ J . Now consider the case where qj > pj for a subset J (q) of J . Consider the vector q ′
such that q ′

j = qj for j /∈ J (q) and q ′
j = pj for j ∈ J (q). Since we are in a neighborhood of p,

qj � pj for all j /∈ J (q). This implies that q ′ � p and, therefore, that q ′ = q ∧p. Submodularity
of f implies f (p ∧ q) + f (p ∨ q) � f (p) + f (q). The inequality, combined with the fact that
p is a minimum of f , implies that f (q ′) � f (q). By construction of q ′,

m(q − p) = m(q ′ − p) � n(q ′ − p) � f (p) − f (q ′) � f (p) − f (q),
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which concludes the proof on a neighborhood of p. To prove the result globally, consider any
vector q and let qλ = λq + (1 − λ)p where λ ∈ (0,1). From the previous analysis, we have for
λ small enough m(qλ − p) � f (p) − f (qλ). By convexity of f , f (qλ) � λf (q) + (1 − λ)f (p).
Combining the previous two inequalities and dividing by λ yields the result. �

We now conclude the proof of the theorem. Since p(t) is nondecreasing and bounded, it
must converge to some limit in L. Since α is bounded away from zero, the rate of change of p

is bounded away from zero on any closed subset of the price space that does not contain any
pseudo-equilibrium price. Since the only pseudo-equilibrium price contained in L is p, this has
to be the limit.

A.4. Section 6.2

Let z(p) denote the vector of smallest norm in the convex hull of the excess (aggregate)
demand set D(p) − x̄.

Lemma 6 (Feasible directions of descent). Suppose that the number of bidders is less than some
constant N > 0, and that no bidder can demand more than overall supply x̄. Then, for any
grid Pη , there exists α(η) > 0 such that α(η)z(p) ∈ Pη for all p and all bidder valuations.
Moreover, α can be chosen such that α(η) → 0 as η → 0.

Proof. By assumption, the excess demand set is an integer polytope of RK , bounded by the rect-
angle [−x̄,Nx̄]. Therefore, z can only take finitely many values. Since any such z is the vector
of minimum norm of an integral polytope, it has rational coordinates. Therefore, its direction
can always be achieved on any regular lattice. That is, there exists a positive number α(z) such
that α(z)z is the difference vector of two points of the lattice. Moreover, the smallest such α(z)

gets arbitrarily small as the grid gets arbitrarily thin. Since there are finitely many values of z,
maxz{α(z)} goes to zero as the grid thinness η goes to zero. �

Let {p(t)}t∈N and {q(t)}t∈N denote the trajectories generated by a given steepest-descent
algorithm, starting from respective initial prices p(0) and q(0).

Lemma 7 (Nearness lemma). Suppose that the number of bidders is less than some constant
N > 0, that no bidder can demand more than aggregate supply x̄, and that there exists a vector
M ∈ RK+ such that bidders demand none of good i whenever pi > Mi . Then, for any ε > 0, there
exists η̄ > 0 and ᾱ > 0 such that for all η < η̄ and step sizes less than ᾱ, ‖p(0) − q(0)‖ < ε

implies ‖p(t) − q(t)‖ < ε for all periods and all bidder valuations.

Proof. Without loss of generality, we can restrict attention to price vectors less than M . Since the
number of bidders is finite, the function f :p → π(p)+ x̄p is piecewise affine, with finitely many
regions. Moreover, directions of the hyperplanes supporting f are determined by excess demand
vectors, which take finitely many values (cf. proof of Lemma 6). Since z is in the opposite of the
differential of f , f (q) − f (p) � z(p)(p − q) for all q , with strict inequality if p and q are in
distinct regions. The fact that p is bounded by M and that there are finitely many possible slopes
for f implies the existence of a constant ρ > 0 such that

f (q) − f (p) � ρ + z(p)(p − q) (A.9)
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whenever p and q are not in the same region. We now consider paths of the discrete steepest-
descent algorithm starting from respective initial price vectors p0 and q0, with ‖p0 − q0‖ < ε.
Trajectories are parallel until the two prices reach different regions, and thus leave the vec-
tor pt − qt unchange until that time. Let s � 0 denote the first time that the two paths hit
distinct regions. (A.9) implies f (qs) − f (ps) � ρ + z(ps)(ps − qs) and f (ps) − f (qs) �
ρ + z(qs)(qs −ps). Summing these inequalities yields29 (z(ps)− z(qs))(ps − qs) � −2ρ. Let α

be the step size30 of the steepest-descent algorithm: ps+1 = ps +αz(ps), and qs+1 = qs +αz(qs)

‖ps+1 − qs+1‖2 = ‖ps − qs‖2 + ∥∥α
(
z(ps) − z(qs)

)∥∥2 + 2α
(
z(ps) − z(qs)

) · (ps − qs).

Therefore,

‖ps+1 − qs+1‖2 − ‖ps − qs‖2 � −4ρα + O
(
α2),

which is negative for α small enough, which we impose by appropriately setting ᾱ. Thus, we
have proved that ‖pt − qt‖ remains constant when prices are in the same region, and decreases
otherwise. �
Proof of Theorem 24. Starting in the same region, trajectories of both algorithms are initially
undistinguishable, since gradients are identical. Let t0 denote the first time that the trajectory T

of the discrete algorithm overshoots, causing the two paths to have distinct vectors. Let ε > 0 be
a positive constant (to be chosen later), and denote by pt0 the price of the discrete algorithm, and
by qt0 a price on T (p0) such that ‖pt0 − qt0‖ < ε. Such a price exists if the step size ᾱ(ε), which
gives an upper bound on the overshoot, is small enough. Let T1 denote the trajectory that the
discretized algorithm would generate if it were starting from qt0 . By construction T1 coincides
with T (p0) until there is a second overshoot. By the nearness lemma, T and T1 are within ε

from each other. Therefore, when T1 overshoots, at time t1, there is a price qt1 of T (p0) such that
‖p(t1) − qt1‖ < 2ε. Iterating the process, we thus prove that, up to the kth overshoot, we have
T ⊂ T (p0, kε) when T is truncated at t = tk . The number of overshoots is bounded above by the
number R of regions (since any region is visited at most once by the continuous algorithm, see
proof of Theorem 23). Therefore, the result obtains by setting ε = ε/R. �
A.5. Section 7

Counter-Example 1. There exist concave nonlinear-substitute valuations that do not satisfy the
generalized law of aggregate demand.

Proof (Sketch). The example only requires two goods. Let x < x′ and y < y′ be positive num-
bers, and consider the bundles A = (x, y), B = (x′, y), C = (x, y′), and D = (x′, y′) and let
(pi, qi) be the supporting prices for i = A,B,C,D (such prices will exist by concavity). If
GLoAD held, there would exist some increasing functions f and g with f (x(p,q))+g(y(p, q))

nonincreasing in (p, q), where (p, q) is the price vector of the two goods and (x(p, q), y(p, q))

is the demand at that price. Suppose that at (pB, qB) and (pC, qC), a small increase in price p

reduces x(p,q) by a very small amount and increases y(p,q) by a very large amount (as in the
ticket/pass example above). GLoAD can31 only hold if f ′(x′) is much larger than g′(y) (looking

29 This proof strategy introduces a strict version of the theory of maximally monotone mapping. See Rockafellar [14].
30 The result holds if α depends on t and p, as long as it is continuous in p.
31 The proof is easily adapted if f and g are not differentiable at these points.
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at B), and if f ′(x) is much larger than g′(y′) (looking at C). Now suppose that at (pA,qA) and
(pD,qD), a small increase in price q reduces y(q) by a very small amount and increases x(q)

by a very large amount. GLoAD can only hold if g′(y) is much larger than f ′(x) (looking at A)
and if g′(y′) much larger than f ′(x′) (looking at D). These two sets of conditions are incom-
patible proving that GLoAD cannot hold. To conclude the counter-example, it remains to show
that there exist concave nonlinear-substitute valuations satisfying the demand behavior described
at points A, B , C, and D. Demand variations are determined by the Hessian of the valuation
at these points. As is easily checked, one can choose for each bundle in {A,B,C,D} a Hes-
sian matrix that is negative definite with negative cross derivatives and that satisfies the demand
behavior specified at that point. It is also possible to extend these Hessian matrices over the en-
tire consumption space, while keeping negative definiteness and negative cross derivatives. This
construction is achieved by superposition of four concave submodular functions, one for each
bundle, whose Hessian coincides with the specified Hessian at that bundle and vanishes around
the three remaining bundles. For each of the four bundles, it is possible by Urysohn’s lemma to
construct a continuous, matrix-valued function that equals the desired Hessian at the bundle and
vanishes outside an arbitrarily small neighborhood of that bundle (see e.g. Willard [18, p. 102]).
Such superposition defines a valuation (up to an affine term) that is submodular and concave.
In two dimensions, submodularity implies the linear-substitute property. By Theorem 27, the
constructed valuation is therefore a concave nonlinear-substitute valuation. �
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