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Abstract

Modeling intergenerational altruism is crucial to evaluate the long-term conse-

quences of current decisions, and requires a set of principles guiding such altruism.

We axiomatically develop a theory of pure, direct altruism: Altruism is pure if

it concerns the total utility (rather than the mere consumption utility) of future

generations, and direct if it directly incorporates the utility of all future genera-

tions. Our axioms deliver a new class of altruistic, forward-looking preferences,

whose weight put on the consumption of a future generation generally depends

on the consumption of other generations. The only preferences lacking this de-

pendence correspond to the quasi-hyperbolic discounting model, which our theory

characterizes. Our approach provides a framework to analyze welfare in the pres-

ence of altruistic preferences and addresses technical challenges stemming from the

interdependent nature of such preferences.

Keywords: pure altruism, non-paternalistic altruism, time inconsistency, present

bias, intergenerational welfare, quasi-hyperbolic discounting, welfare criterion.

JEL Classification: D01, D60, D90

∗The authors are grateful to Nageeb S. Ali, Nabil Al-Najjar, James Andreoni, Geir B. Asheim, Doug
Bernheim, Eddie Dekel, Jeff Ely, Drew Fudenberg, David Laibson, Bart Lipman, Ehud Kalai, Emir
Kamenica, Peter Klibanoff, Mark Machina, Paul Milgrom, David G. Pearce, Todd Sarver, Marciano
Siniscalchi, Joel Sobel, and Asher Wolinsky, as well as seminar participants at UC San Diego, Stanford,
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1 Introduction

Intergenerational concerns lie at the heart of many economic decisions: They deter-

mine the bequests from parents to their descendants (Bernheim et al. (1985)), which act

as a fundamental transmission mechanism in macroeconomic analysis (Barro (1974));

they affect our perception of social mobility and economic inequality (Becker and Tomes

(1979)); they play a central role in weighing the environmental consequences of current

economic activities, as prominently illustrated by the Stern Review (Stern (2007)) and

the ensuing debate on the appropriate level of discounting. Intergenerational altruism

also underlies models of capital accumulation (Phelps and Pollak (1968)) and affects the

stability of political regimes as already suggested by Tocqueville (1835).1 By shaping the

preferences of households, policymakers, and other economic agents, intergenerational

altruism influences how society evaluates and chooses between feasible courses of action.

Although many models of intergenerational altruism have been proposed, an investi-

gation of the fundamental properties of preferences that exhibit altruism towards future

generations seems to be missing.2 Understanding these properties is essential to assess

the merits and flaws of the different models available as well as to propose new ones.

This paper addresses this issue, exploiting the conceptual and analytical apparatus of

modern decision theory to describe and represent altruistic preferences.

We propose an axiomatic theory of pure, direct altruism. A generation exhibits pure

altruism if it derives utility—besides from its own consumption—from its descendants’

overall utility, or “well-being.” Pure altruism is sometimes called nonpaternalistic (Ray

(1987), Pearce (2008)) as it depends on future generations’ overall well-being, not on the

specific consumption bundles and other considerations which determine it; in particular,

it entails no value judgment about the nature of these components. When future gener-

ations are also altruistic, the current generation’s pure altruism ascribes to each of them

a well-being that includes their own altruism. Pure altruism is commonly assumed in

models of intergenerational altruism, such as Barro (1974), Kimball (1987), and Loury

(1981).3 Altruism is said to be direct if it directly depends on the well-being of all future

1On Tocqueville’s hypothesis, see also Lipset (1960).
2An exception is the axiomatization in Koopmans (1960), which may be interpreted as a theory of

pure indirect altruism, as explained in this paper. Like Koopmans (1960), Phelps and Pollak (1968), and
a large body of the ensuing literature, this paper focuses on the case of forward-looking preferences in
the sense that they do not depend on past generations’ consumption. The inclusion of backward-looking
preferences raises interesting challenges discussed in Section 6. A large literature on normative social
choice, discussed in Section 2, analyzes the implications of axioms such as equity and anonymity to rank
consumption streams, which may be compared to the altruistic preferences studied here.

3Pure altruism also plays a key role in Bergstrom’s (1989) analysis of reciprocal altruism.
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generations. For example, environmental policies chosen with a regard towards all fu-

ture generations reflect direct altruism towards these generations. This property is also

common in models of intergenerational altruism (Fels and Zeckhauser (2008), Saez-Marti

and Weibull (2005)).4

Our analysis takes as primitive the preference � of the present generation (hereafter,

generation 0) over consumption allocations to itself and future generations.5 We begin

by characterizing the class of generation 0’s preferences that have the following represen-

tation: For every stream (c0, c1, . . .), where ct is the consumption of generation t ≥ 0,

generation 0’s utility from it can be expressed as

U(c0, c1, . . .) = V (c0, U1, U2, . . .) (1)

where Ut = U(ct, ct+1, . . .) for t ≥ 1. We interpret Ut as the well-being that generation 0

assigns to generation t based on the stream (ct,ct+1, . . .). In particular, these well-beings

are all computed with the same function U , which means that generation 0 “projects” its

own preference onto future generations to evaluate continuation streams. A motivation

for this assumption, beyond tractability, is that generation 0 may not know the prefer-

ences of generations who will be born many years into the future and may thus use its

own preferences as the best guess. Alternatively, generation 0 may view its preference

as embodying some normatively desirable properties which future generations will also

adopt. The interpretation of Ut also serves to motivate our axioms and provide insights

into the resulting class of models and their properties. If � has the utility representa-

tion (1), then it is as if the current generation exhibited pure altruism. A special case

of (1) corresponds to Koopmans’ (1960) model of indirect pure altruism, in which V

depends only on c0 and U1. By contrast, direct pure altruism requires that V depend on

Ut for all t ≥ 1. Koopmans’ model obtains as a limit of direct altruism, as discussed in

Section 3.3.

Representation (1) allows for arbitrary relations in generation 0’s treatment of distinct

future generations. On normative and practical grounds, it is valuable to impose more

structure on these relations. We introduce two substantive axioms which, together with

4See also Abel (1985) and Pearce (2008). Ray and Wang (2001) analyze a model of direct paternalistic
altruism.

5The domain of this preference relation consists of infinite consumption streams, as in Koopmans
(1960) and Diamond (1965). In this decision-theoretic framework, eliciting a preference relation and
testing whether it satisfies some axiom requires a standard observability condition: One must know
which of any two streams the current generation would choose if it could implement either of them. In
this respect, our approach is identical to these earlier works and a large subsequent literature.
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ancillary conditions, narrow the representation down to the additive form

U(c0, c1, . . .) = u(c0) +
∞∑
t=1

αtG(U(ct, ct+1, . . .)), (2)

where 0 < α < 1 and the function G is interpreted as the utility that generation 0

derives from future generations’ well-being. The axioms imply that G is bounded, strictly

increasing, and Lipschitz continuous with modulus (1−α)/α, a property which turns out

to have important consequences, in particular concerning the continuity and uniqueness

of representation (2).

Our first axiom, intergenerational separability, adapts to pure altruism a principle which

often arises in the literature on impure (or paternalistic) altruism. The axiom rules

out any complementarity or substitutability in how the well-being of future generations

affects the well-being of generation 0. It thus expresses a form of “neutrality,” which the

literature has often used in relation to future consumption rather than to future well-

being (Koopmans (1960), Asheim (2010)). In a theory of pure altruism, this neutrality

naturally concerns future generations’ well-being rather than their consumption, since

their consumption does not matter per se to generation 0. Importantly, however, the

axiom—as all axioms of our theory—is formulated in terms of consumption streams,

since consumption streams are the primitive objects over which generation 0’s preference

is defined.

Our second axiom is altruism stationarity. It focuses on the altruistic components of

generation 0’s preference by considering only changes in the consumption of future gen-

erations. To illustrate, suppose that c = (c0, c1, . . .) and c′ = (c′0, c
′
1, . . .) give the same

consumption to a grandmother (c0 = c′0) who thinks that her son is indifferent between

(c1, c2, . . .) and (c′1, c
′
2, . . .) after accounting for his consumption and the well-being of

his daughter, grandson, and so on. Suppose that the future generations’ well-beings

induce the grandmother, who cares directly about them, to prefer c to c′. Then, in-

tuitively, altruism stationarity says that if her son were removed from the genealogical

sequence—bringing all remaining generations one step closer to the grandmother in the

sequence—his mother would continue to prefer (c2, c3, . . .) to (c′2, c
′
3, . . .) for her grand-

daughter and so on. From a normative standpoint, the axiom may be viewed as im-

posing coherence on how generation 0 directly cares about future generations. Altruism

stationarity is the axiom, in our theory, which distinguishes direct from indirect pure

altruism—hence our model from Koopmans’ (1960) model and in particular from the

exponentially-discounted-utility model (hereafter, EDU). In Koopmans’ (1960) model, if

the son is indifferent between (c1, c2, . . .) and (c′1, c
′
2, . . .), then his mother must also be
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indifferent, given her initial consumption. Once her son is removed from the genealogical

sequence, however, the grandmother can strictly prefer (c2, c3, . . .) to (c′2, c
′
3, . . .) for her

granddaughter and so on. As direct altruism becomes arbitrarily negligible, the EDU

model arises as a limit of our theory.

Representation (2) has distinctive implications concerning how generation 0 resolves

intergenerational trade-offs. First, its well-being can be expressed as a function of the

consumption utility of all generations (u(c0), u(c1), and so on), which allows us to ex-

amine how generation 0 trades off its own consumption utility against that of any future

generation t. We find that, even though generation 0 cares directly about the well-being

of all future generations, it exhibits positive discounting towards future consumption,

in the following sense: If generation 0 can swap consumption utility between itself and

some future generation, it always chooses the stream starting with the higher of the two

consumption utilities.

Perhaps more surprisingly, generation 0 exhibits present bias: Roughly speaking, it is

more reluctant to transfer consumption from itself to the next generation, than from any

future generation to a later one. To see why, consider a grandmother who cares about

her son’s well-being (understanding that it depends on his daughter’s well-being), but

also directly about her granddaughter’s well-being. The grandmother can disagree with

her son on whether he should transfer more resources to his daughter (say, as a bequest),

because they internalize differently the effects of changing her consumption. The son

takes into account the daughter’s utility through his well-being, while in addition to her

son’s well-being, the grandmother also cares directly about her granddaughter’s well-

being. As a result, the grandmother thinks that her son should transfer more resources

to his daughter than he wants to. At the same time, however, if she were in her son’s

position, she would agree on keeping more resources for herself. The grandmother thus

appears more willing to delay consumption when it affects future generations than when

it directly affects herself. Remarkably, therefore, present-generation bias is not an as-

sumption of our theory, but a logical consequence of direct pure altruism. We will show

that this consequences emerges already from representation (1), which does not use the

separability and stationarity axioms.

Under representation (2), how generation 0 discounts the consumption utility of some

future generation t generally depends on the entire consumption stream it is facing. If the

function G is concave, for instance, the consumption utilities of successive generations

are substitutes: Increasing the consumption utility of some generation t raises the well-

being of earlier generations, thereby reducing the marginal value of later generations’
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consumption utility. This reduces the effective discount factor applied to these later

generations, while the opposite holds if G is convex.

These observations suggest that consumption interdependence disappears if G is linear.

This is indeed the case, and with linear G our model takes on a well-known form: quasi-

hyperbolic (or β-δ) discounting (Phelps and Pollak (1968)), where β and δ are simple

functions of α and the constant slope of G. Linearity of G corresponds to an additional

axiom, consumption independence, which has two parts: (i) how a grandmother trades off

her consumption with that of her son does not depend on the consumption—and hence

well-being—of his descendants, and (ii) how she trades off her consumption with that of

her son’s descendants does not depend on his consumption. A byproduct of our general

analysis is thus to provide an axiomatization of Phelps and Pollack’s (1968) model of

imperfect intergenerational altruism as a model of direct pure altruism. While Phelps

and Pollak (1968) viewed the EDU model as capturing perfect intergenerational altruism

(p. 186), this paper’s perspective suggests that EDU exhibits only indirect pure altruism,

offering an opposite view on which of these discounting models—the exponential and the

quasi-hyperbolic one—captures a deeper degree of intergenerational altruism.

Direct pure altruism alone has significant implications if we now imagine a sequence

of generations, each having the same preference relation—a property commonly known

as time invariance.6 If each preference has representation (1) with V strictly increas-

ing in all U ’s, then the resulting sequence of preferences cannot be time consistent:7 A

course of action for generation t and its descendants that is optimal from the viewpoint

of generation t need not be optimal from the viewpoint of generation s < t. This con-

clusion identifies direct pure altruism as a possible source of time inconsistency across

generations. Importantly, the model predicts a specific form of inconsistency: By the

present-generation bias, each generation tends to disproportionately favor its own satis-

faction over that of any future generation.

Time-inconsistent preferences create well-known challenges for welfare analysis as dis-

6Time invariance is not needed to characterize the preference of generation 0: The former property
compares preferences across multiple generations, while the latter characterization is entirely focused
on the preference of a single generation. However, time invariance is a useful additional assumption to
assess the time consistency of successive generations whose preferences we have characterized. Besides
its analytical convenience, time invariance has additional justifications in our setting: First, under a
normative interpretation of our axioms, time invariance captures the idea that all generations are subject
to the same normative considerations. Second, it describes a coherence between the interpretation that
the current generation projects its own preference onto future generations and the future generations’
actual preferences. While the first generation’s projection may turn out to be false, assuming it is correct
is a useful and natural benchmark.

7For this conclusion to hold, it is enough that each generation cares about the well-being of its
immediate descendant as well as some other future generation.
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cussed, among others, by Rubinstein (2003) and Bernheim and Rangel (2007, 2009).

This paper makes several contributions to this discussion. As noted earlier, time incon-

sistency is a necessary consequence of direct pure altruism combined with time invariance.

This observation weakens the case for paternalistic interventions, which usually relies on

viewing time inconsistency as a form of irrationality. Another implication of our analy-

sis concerns the use of a “libertarian” criterion which measures social welfare with the

well-being of generation 0 (that is, U(c0, c1, . . .))—this is what is usually done in the

case of Koopmans’ (1960) model. Such a criterion seems more appropriate for direct

pure altruism—hence time inconsistency—than for indirect pure altruism—hence time

consistency. This assessment is based on the other properties of purely and directly al-

truistic preferences, such as neutrality and sensitivity towards future generations, whose

importance relative to time consistency seems a priori not obvious.8

One may argue that, despite generation 0’s altruism, a social planner should aggregate

the preferences of all generations, assigning an appropriate positive weight to each gen-

eration’s well-being. We show that pure altruism—whether direct or indirect—makes it

difficult to find an aggregator that also renders the planner time consistent.9 One remark-

able exception is representation (2) with linear G, the quasi-hyperbolic model. We show

that the standard welfare criterion for β-δ preferences obtained by setting β = 1 corre-

sponds to an aggregator that weighs the well-being of each generation t (including t = 0)

by αt, where α comes from representation (2) and satisfies α = δ(1− β).10

2 Related Literature

The relevance of intergenerational altruism is highlighted by its key role in various eco-

nomic applications, including optimal national savings (Ramsey (1928), Phelps and Pol-

lak (1968)), economic growth (Bernheim (1989)), charitable giving (Andreoni (1989)),

family economics (Bergstrom (1997)), public finance (Barro (1974)), and environmental

economics (Weitzman (1999), Dasgupta (2008), Schneider et al. (2012)).

Despite its importance, intergenerational altruism lacks a clear conceptual framework,

as emphasized by Ray (1987):

8Similar properties have been proposed in the normative social-choice literature as desirable features
of a welfare criterion (see, for example, Asheim (2010) and the references therein).

9In his study of hedonistic altruism and welfare, Ray (2014) examines welfare criteria that aggregate
well-being of altruistic, time-consistent, generations and that are formally similar to those in Section 5
(see also Bernheim (1989)).

10For other discussions on the “right” welfare criterion to use for the quasi-hyperbolic discounting
model see, for example, O’Donoghue and Rabin (1999), Rubinstein (2003), Bernheim and Rangel (2009).
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“the representation of non-paternalistic functions [in terms of total utilities,

U ] in paternalistic form [in terms of consumption utilities, u] has been the

subject of limited attention. A systematic analysis of the relationship between

these two frameworks [...] appears to be quite a challenge, especially for

models with an infinite horizon (pp. 113–114).

Saez-Marti and Weibull (2005) and Fels and Zeckhauser (2008) derive the mathematical

equivalence between the β-δ formula and expression (2) with linear G. Bergstrom (1999)

studies systems of utility functions that include altruism towards others, focusing on

the infinite regress that they may generate. None of these papers, however, provides an

axiomatic foundation of either representation.

Several axiomatizations of the intertemporal preference of a decision maker have been

proposed. Koopmans (1960) derives a general model which contains as a special case

Samuelson’s (1937) EDU model. The difference between Koopmans’ analysis and ours is

explained when we formally state our axioms. The EDU model obtains as a limit of our

theory as direct altruism becomes arbitrarily negligible. Other models that include quasi-

hyperbolic discounting have been characterized by Hayashi (2003), Olea and Strzalecki

(2014), and Echenique et al. (2016). We compare their approaches to ours in Section 3.3.

Time inconsistency of preferences has been extensively studied since Strotz’s (1955)

seminal work, and has been given several explanations. In Akerlof (1991), present bias

is based on a principle of cognitive psychology which says that decision-makers unduly

overweigh relatively more salient or tangible events, such as present consumption relative

to future one. In Gul and Pesendorfer (2001), time inconsistency can arise from a general

change in the decision-maker’s preference over time. Halevy (2008), Saito (2011), and

Chakraborty and Halevy (2016) link present bias to the certainty effect. In a setting

with uncertainty about the length of the horizon, this literature establishes an equiva-

lence between the decision-maker being disproportionately sensitive to certainty, as in

Allais (1953) and Kahneman and Tversky (1979), and exhibiting present bias. In Das-

gupta and Maskin (2005) hyperbolic discounting arises from an evolutionary response

to the uncertain time of payoff realizations, whereas in Farmer and Geanakoplos (2009)

it stems from uncertainty about future discount rates. In Kőszegi and Szeidl (2012),

time inconsistency and present bias arise because, when facing a present decision, the

agent focuses too much on its immediate consequences, but when considering that same

decision ex ante, he is able to focus more on its overall consequences over time. Our

theory provides a novel explanation for present bias, as part of a broader conceptual

framework of how future consequences of current decision enter into the decision-maker’s
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intertemporal preference.

This paper is also related to the normative social-choice literature studying how to rank

intergenerational consumption streams.11 Its typical approach is to introduce properties

that those rankings should satisfy and derive their implications and functional representa-

tions. Often suggested properties include sensitivity to and equal treatment of all future

generations’ well-being. The literature highlights, however, that these properties collide

with the standard goal of having a numerical representation of preferences (for example,

Basu and Mitra (2003)); the present work considers weaker properties consistent with

a numerical representation (see also Asheim et al. (2012)). The social-choice literature

also commonly excludes sentiments like altruism from the generations’ well-being. From

this perspective, one of our contributions is to add this dimension to intergenerational

preferences and explore the properties that it implies.

From a methodological perspective, our derivation of representation (2) builds on known

results in Debreu (1960) and Koopmans (1960) applied to the sequences of generation 0’s

consumption and future generations’ well-beings induced by the consumption streams.

A complication arises, however, because the space of such sequences does not have a

Cartesian-product structure: Since a generation’s well-being depends on its descendants’

well-beings, one cannot modify those well-being independently of one another. We pro-

pose a way to overcome this difficulty which may be useful in other settings where players’

preferences are interrelated. Segal (1992, 1994) provides a framework and general con-

ditions encompassing non-Cartesian spaces to derive representation results. While the

interdependence structure arising here makes it challenging to directly verify these con-

ditions, the present analysis suggests an approach to usefully connect such a structure

with Segal’s framework.

3 Preference Representations

3.1 Preliminaries

Consider an infinite sequence of generations, indexed by t ∈ N = {0, 1, 2, . . .}. Generation

t’s consumption is denoted by ct and belongs to a connected, separable, metric space X;

for example, ct can be a finite vector representing the lifetime consumption of generation t.

The streams of consumption starting from generation 0 are denoted by c = (c0, c1, . . .) and

11Asheim (2010) provides a detailed review of this literature. Intergenerational welfare has also been
extensively discussed in the moral-philosophy literature—for example, to apply to the set of all genera-
tions the principles laid out by Rawls (1971).
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belong to the set C = XN, which we endow with the sup-norm: ‖c− c′‖C = supt d(ct, c
′
t),

where d is a bounded metric on X.12 For t ≥ 1, the set of streams starting at t is

tC = XN, whose elements will be denoted by tc = (ct, ct+1, . . .).

The purpose of this paper is to study the single preference of generation 0 over streams

of consumption for itself and all future generations, i.e., over C. This preference is

denoted by �, with the symbols % and ∼ having the usual meaning, and represents the

choices that generation 0 would make for itself and all its descendants. A basic premise is

that � has a utility representation (as in Koopmans’ (1960) Postulate 1). This is ensured

by the following axioms.13

Axiom 1 (Weak Order). % is a complete and transitive binary relation.

Axiom 2 (Continuity). For all c ∈ C, {c′ ∈ C : c′ - c} and {c′ ∈ C : c′ % c} are closed.

Axiom 3 (Future Constant-Flow Dominance). For all c ∈ C, there exist x, y ∈ X such

that (c0, x, x, . . .) - c - (c0, y, y, . . .).

Axioms 1 and 2 are standard. Axiom 3 captures the following idea: For every stream c,

from generation 0’s viewpoint there is a sufficiently bad consumption x and a sufficiently

good one y such that forcing each future generation to consume x (resp. y) is worse (resp.

better) than forcing them to consume according to 1c. These axioms lead to the following

standard result.14

Theorem 1 (Utility Representation). Under axioms 1-3, there exists a continuous func-

tion U : C → R such that c � c′ if and only if U(c) > U(c′).

Hereafter, U(c) will represent the total utility of generation 0 from stream c. To avoid

confusion later with the utility that generation 0 derives from its own consumption, we

will use the term well-being to refer to U(c).

Since we are interested in studying altruism towards future generations, by assumption

the well-being of generation 0 depends on the consumption of later generations. It is also

natural that generation 0 cares about its own consumption.

Axiom 4 (Non-triviality). There exist x, x′, x̂ ∈ X and c, c′, ĉ ∈ C such that (x, ĉ) �
(x′, ĉ) and (x̂, c) � (x̂, c′).

12Assuming that d(·, ·) is bounded is without loss of generality, as we can always replace it by d̂(·, ·) =
d(·, ·)/(1 + d(·, ·)), which is another metric respecting the initial distances.

13This paper assumes, as in Koopmans’ (1960, 1964) classic analysis and a large subsequent litera-
ture, that generation 0’s preference does not depend on past generations’ consumption. Relaxing this
assumption raises interesting challenges, discussed in Section 6.

14The proofs of the main results are in the Appendix A. The remaining proofs are in the Online
Appendix.
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3.2 Pure-Altruism Representation

Our objective is to investigate which properties of � correspond to pure altruism towards

future generations. Intuitively, generation 0 exhibits pure altruism if it derives utility

from the total utilities—or well-being, in our terminology—of future generations (see,

for example, Ray (1987) and Pearce (2008)).15 Since � corresponds to the subjective

attitude of generation 0 towards future generations, � can only reveal how this generation

perceives the well-being that each future generation t derives from the stream tc. However,

generation 0 may not know future generations’ preferences—for instance, for those born

many years into the future; or it may have no reason to believe that their preference

will systematically differ from its own—for instance, because it views its preference as

based on some generally appealing and sensible principles. In these cases, generation 0

may simply “project” its preference onto future generations and use it to assess their

well-being. This is the approach that we take in this paper. Other axiomatic models of

altruism assume that the decision-maker projects its preference onto its peers (see, for

example, Saito (2015)).

This leads to the following general class of representations of purely altruistic prefer-

ences. Fixing a representation U of �, let U be the range of U and define

F = {(f1(c), f2(c), . . .) : ft(c) = U(tc) for c ∈ C and t ≥ 1}. (3)

Note that F ⊂ UN, but F need not be a Cartesian product because the well-being

U(tc) ascribed to generation t depends on the well-being ascribed to its descendants. For

example, generation 1’s maximal well-being—when it is finite—may only be achieved by

giving all future generations their highest well-being.

Definition 1 (Pure-Altruism Representation). Preference � has a pure-altruism repre-

sentation if and only if it can be represented by

U(c) = V (c0, U(1c), U(2c), . . .) (4)

for some function V : X ×F → R that is nonconstant in c0 and U(tc) for some t ≥ 1.

If generation 0 is purely altruistic, its ranking of any two streams c and c′ depends only

on its own consumption, c0 and c′0, and on how it perceives—through the lens of its

current preference—that each future generation t evaluates the continuation streams, tc

and tc
′. Hereafter, we will call U(tc) the well-being of generation t, keeping in mind that

15By contrast, generation 0 is impurely (or paternalistically) altruistic if it cares only about the
utility that other generations derive from what they actually consume. To the extent that generation 0
thinks that future generations are also altruistic, this utility from actual consumption differs from each
generation’s total utility.
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this well-being is evaluated from generation 0’s perspective.

Axiom 5 below is the key to obtaining a pure-altruism representation. It captures a

minimal property of purely altruistic preferences: Given its own consumption, if genera-

tion 0 thinks that two consumption streams will render all future generations indifferent,

it should also be indifferent.

Axiom 5 (Pure Altruism). If tc ∼ tc
′ for all t ≥ 1, then (c0, 1c) ∼ (c0, 1c

′).

The premise tc ∼ tc
′ captures the thought experiment of generation 0 facing the same

continuation stream as generation t will face and using its current preference to compare

tc and tc
′. Axiom 5 rules out the possibility, for instance, that generation 0 prefers c

to c′ because, despite generating the same stream of current consumption and future

well-being, they allocate future consumption differently across generations.

Theorem 2. Axioms 1–5 hold if and only if � has a pure-altruism representation.

Proof. Define F0 = X ×F and let f0(c) = c0 and f(c) = (f0, f1, f2, . . .).

(⇒) First, we define equivalence classes on C as follows: c is equivalent to c′ if ft(c) =

ft(c
′) for all t ≥ 0.16 Let C∗ be the set of equivalence classes of C, and let the function U∗

be defined by U on C∗. Then, the function f ∗ : C∗ → F , defined by f ∗(c∗) = f(c) for c

in the equivalence class c∗, is by construction one-to-one and onto. Let (f ∗)−1 denote its

inverse and, for any f ∈ F0, define

V (f) = U∗((f ∗)−1(f)).

By Axiom 5, V is a well-defined function, and V (f(c)) = U(c) for every c. By Axiom 4,

V is nonconstant in f0 and ft for some t ≥ 1.

(⇐) See Appendix A.

Axiom 5 requires that generation 0 be indifferent between two streams only if it per-

ceives that all future generations—not just generation 1—will be indifferent between the

relevant continuations of these streams. Axiom 5 clearly holds if generation 0 cares only,

besides its own consumption, about the well-being of generation 1—as in Koopmans’

(1960) model. By allowing generation 0’s preference to depend on future generations’

well-being in a richer way, Axiom 5 is a steppingstone in our approach to modeling

intergenerational preferences differently from Koopmans.

16In general, there may be several consumption streams in an equivalence class. For a sim-
ple illustration, take U(c) = c0 + c1 + c2 + c3, c = (1, 1,−1,−1, 1, 1,−1,−1, . . .) and c′ =
(1,−1,−1, 1, 1,−1,−1, 1, 1, . . .).
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To distinguish our approach from the standard one, we introduce the following termi-

nology. As noted, Koopmans’ (1960) model satisfies

U(c) = V (c0, U(1c));

in particular, for EDU we have U(c) = u(c0)+δU(1c). In this case, generation 0 is purely

altruistic only towards generation 1, and by expecting that all future generations will be

altruistic in a similar way, it ends up caring about how c affects all of them but only indi-

rectly through the well-being of generation 1. We will thus say that generation 0 exhibits

indirect pure altruism.17 We will say that generation 0 exhibits direct pure altruism if its

well-being U(c) depends directly on the well-being of all future generations (that is, V

in (4) depends on U(tc) for all t ≥ 1).18 Concretely, a grandmother usually cares about

her son’s well-being—which depends on his daughter’s well-being—and directly about

her granddaughter’s well-being. By contrast, in Koopmans’ (1960) model, it is as if the

grandmother cares about her granddaughter’s well-being only indirectly to the extent

that it affects her son’s well-being.

3.3 Additive Pure-Altruism Representation

To obtain sharper results, we refine the general representation V in (4) by considering

preferences that satisfy some form of intergenerational separability and stationarity.

The first axiom captures the idea that � is separable across generations—that is, sep-

arable between generation 0’s consumption and future generations’ well-being, as well as

across their well-being. Intuitively, this means that the well-being of future generations

does not affect how generation 0 enjoys its own consumption. Moreover, the well-being

of any group of future generations does not influence how generation 0 trades off the

well-being of the remaining generations. As such, this notion of separability captures a

form of neutrality of generation 0’s altruism towards future generations. To formalize

these properties, recall that tc ∼ tc
′ means that U(tc) = U(tc

′) and let Π consist of all

unions of subsets of {{1}, {2}, {3, 4, . . .}}.

Axiom 6 (Intergenerational Separability). Fix any π ∈ Π. If c, ĉ, c′, ĉ′ ∈ C satisfy

(i) tc ∼ tĉ and tc
′ ∼ tĉ

′ for all t ∈ π,

(ii) tc ∼ tc
′ and tĉ ∼ tĉ

′ for all t ∈ N \ π,

17An alternative interpretation of the EDU model is that generation 0 does care directly about all
future generations, but ignores the fact future generations are altruistic, reducing the well-being of
generation t to its consumption utility u(ct).

18This classification is non-exhaustive: Partially direct altruism would entail caring about a subset of
future generations, beyond the immediate descendant. This paper focuses on the two extreme cases.
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(iii) either c0 = c′0 and ĉ0 = ĉ′0, or c0 = ĉ0 and c′0 = ĉ′0,

then c � c′ if and only if ĉ � ĉ′.

To illustrate, set π = {1, 2} and consider streams c and c′ which give the same con-

sumption to generation 0 and yield the same well-being to all future generations, except

that generation 1 is better off under c while generation 2 is better off under c′. Suppose,

moreover, that generation 0 prefers c to c′. Now, replace c by ĉ and c′ by ĉ′, with the

new streams chosen so that going from c to ĉ and from c′ to ĉ′ leaves the well-being of

generations 1 and 2 unchanged, while generation 0’s consumption and the well-being of

all other generations change by the same amount. According to the axiom, generation 0

should prefer ĉ to ĉ′, thereby continuing to trade off the well-beings of generations 1

and 2 in favor of the former. Axiom 6 is inspired by Debreu’s (1960) and Koopmans’

(1960) separability axioms, but it differs substantively by requiring that certain continu-

ation streams render generation 0 indifferent (that is, U(tc) = U(tc
′)), rather that certain

physical consumptions be equal (that is, ct = c′t). While expressed purely in terms of

consumption streams, as with earlier theories, the axiom thus captures separability in

future generations’ well-being rather than in their consumption.

The next axiom imposes a weak monotonicity property of altruistic preferences. First,

all else equal, generation 0 is better off if it thinks that generation 1 will be better off.

Second, suppose that, for any horizon T and any common continuation stream c′′ after T ,

generation 0 prefers the consumption of the first T generations implied by stream c to

that implied by c′; then, generation 0 also prefers the whole c to c′. Intuitively, this rules

out the possibility that the well-being of a generation in the infinite future could overturn

how generation 0 ranks c and c′, even though, having fixed that generation’s well-being,

all intermediate generations are better off with c than with c′.

Axiom 7 (Monotonicity). Let c and c′ be any streams in C.

(i) If c0 = c′0, 1c � 1c
′, and tc ∼ tc

′ for all t ≥ 2, then c � c′.

(ii) If for every T and continuation stream c′′ we have (c0, c1, ..., cT , c
′′) % (c′0, c

′
1, ..., c

′
T , c
′′),

then c % c′ .

The axioms introduced so far are all satisfied by Koopmans’ (1960) model U(c) =

V̂ (u(c0), U(1c)), where V̂ strictly increasing in each argument, hence in particular by the

EDU model. They thus define a class of preferences which can exhibit either direct or

indirect altruism. It turns out that it is possible to distinguish these kinds of altruism by

means of a single additional property, stationarity, which marks the watershed between

Koopmans’ model and ours. Adding Koopmans’ (1960) notion of stationarity to Ax-

ioms 1-7 completes the characterization of indirectly altruistic preferences, as explained
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at the end of this section. The notion of stationarity introduced next takes our theory

on a different path which generates direct altruism.19

Altruism Stationarity and Direct Pure Altruism

Our notion of stationarity focuses on the altruistic component of generation 0’s prefer-

ence by fixing its own consumption and considering only changes in consumption streams

that involve future generations. Intuitively, if generation 0 cares directly about the well-

being of generations beyond its immediate descendant in a coherent way, it should be

possible to “remove” generation 1 and preserve how generation 0 ranks the consumption

streams starting from generation 2 onward. Clearly, for this comparison to be meaning-

ful, we must start from a situation in which how generation 0 ranks two streams in the

presence of generation 1 depends only on the well-being of subsequent generations but

not on that of generation 1.

Axiom 8 (Altruism Stationarity). If c, c′ ∈ C satisfy c0 = c′0 and 1c ∼ 1c
′, then c % c′

if and only if (c0, 2c) % (c′0, 2c
′).

To gain intuition, suppose that c and c′ give the same consumption to a grandmother

and that she thinks that her son is indifferent between 1c and 1c
′ after he takes into

account his consumption as well as the well-being of his daughter and later descendants.

Also, suppose that later descendants’ well-beings induce the grandmother, who cares

directly about them, to prefer c to c′. The axiom says that if the son were to die—which

moves all remaining generations one step closer in the genealogical sequence—his mother

should continue to prefer 2c to 2c
′ for her granddaughter and later descendants.

These axioms lead to the representation in Theorem 3 below. Intuitively, by the theorem

it is as if generation 0 derives a utility u from its consumption, as usual, and an altruism

utility G from the well-being of each future generation, which it discounts exponentially

as generations move farther away in the lineage.20 Moreover, G is bounded, so future

generations’ well-being can have only a limited impact on generation 0’s well-being. Intu-

itively, this generation cannot become infinitely happy or unhappy just from its altruism

towards its descendants. The consumption utility u, however, can be unbounded.

19As noted, indirect altruism arises at the limit, as direct altruism becomes negligible. This point is
particularly clear for the quasi-hyperbolic discounting case discussed in Section 4.3.

20Rogers (1994) suggests an evolutionary justification based on genetic relationship for why genera-
tion 0 may progressively care less about its children, grandchildren, and so on: Every step in the lineage
reduces the share of genes that generation 0 can expect to have in common with that generation.

15



Theorem 3 (Additive Pure-Altruism Representation). Axioms 1-8 hold if and only if

the function U may be chosen so that

U(c) = u(c0) +
∞∑
t=1

αtG(U(tc)) (5)

where α ∈ (0, 1), u : X → R and G : U → R are continuous, nonconstant functions,

and G is strictly increasing and bounded. Moreover, if (u, α,G) and (û, α̂, Ĝ) both rep-

resent �, then α̂ = α and there exist a > 0 and b ∈ R such that û(x) = au(x) + b

and Ĝ(Û) = aG( Û−b
a

) for all x and Û .

The proof relies on known results in Debreu (1960) and Koopmans (1960). However,

a complication arises in our setting. As noted, the set F of streams of future genera-

tions’ well-being induced by consumption streams in C may not be a Cartesian product

(see (3)). Roughly speaking, to deal with this issue, the key is to show that (i) if we

take any stream f in F , there is an open neighborhood of f which belongs to F and has

the structure of a Cartesian product, and (ii) it is possible to “cover” F with countably

many of such neighborhoods which intersect with each other. Given (i) and (ii), we can

obtain a preliminary additive representation on each neighborhood. Relying on these

representations’ uniqueness up to positive affine transformations, we can then “glue” all

of them into a single representation over the entire set F .21

To work with this class of models, it is natural to ask whether expression (5) is well

defined for any function G. Proposition 1, below, provides necessary and sufficient re-

strictions for (5) to be well defined. It also proves that the representation U is continuous

at infinity in the following sense: The effect on generation 0’s well-being of future con-

sumption changes becomes arbitrarily small when these changes take place arbitrarily

far in the future.

Definition 2. A function U : C → R is H-continuous22 if, for every ε > 0, there exists

T ∈ N such that |U(c)− U(c̃)| < ε whenever ct = c̃t for t ≤ T .

Proposition 1.

(i) In representation (5), U is H-continuous and for ν ′, ν ∈ U

|G(ν ′)−G(ν)| < 1− α
α
|ν ′ − ν| .

21This approach may be useful more generally to obtain separable models of a decision-maker who
exhibits pure altruism towards other individuals in society and takes into account that they are also
purely altruistic towards each other.

22This notion is similar to the concept of “continuity at infinity” of payoff functions in infinite-horizon
games (see, for example, Fudenberg and Tirole (1991)).
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(ii) Suppose that G is strictly increasing, bounded, and Lipschitz continuous with constant

K < 1−α
α

. Then, there exists a unique H-continuous function U : C → R that solves (5).

This result helps to choose G appropriately in applications, and implies several properties

of directly altruistic preferences, to be described shortly.

Koopmans’ Stationarity and Indirect Pure Altruism

Koopmans’ (1960) model is based on the general representation U(c) = V̂ (u(c0), U(1c))

with V̂ strictly increasing in each argument. To obtain such a representation in the

framework of the present paper, it is enough to add Koopmans’ stationarity axiom to

Axioms 1-7.23

Axiom 9 (Koopmans’ Stationarity). For some c0 and all 1c, 1c
′,

(c0, 1c) % (c0, 1c
′) if and only if 1c % 1c

′.

As Koopmans (1960) showed, if we want to specialize V̂ to obtain the EDU model, we

need stronger separability assumptions (cf. Section 4.3).

To see why Axiom 9 rules out direct pure altruism, note that Axiom 6 with π =

{1, 2, . . .} implies that, if the condition of Axiom 9 holds from some c0, then it holds for all

c0 ∈ X. Axiom 9 thus implies that, given her consumption c0, how a grandmother ranks

the consequences of streams 1c and 1c
′ for her son, granddaughter, great granddaughter,

and so on is always pinned down by how she thinks that her son ranks these consequences

for himself and his descendants. This property seems unduly restrictive and unrealistic:

Why, when assessing the consequences of its actions on future generations, should a

generation rely exclusively on its immediate descendant’s preferences? This exclusive

reliance arises as a limit of our model, when direct pure altruism becomes negligible.

4 Intergenerational Trade-offs

This section studies the consequences of direct pure altruism on how a generation trades

off consumption between generations. A special case of representation (5) corresponds to

the β-δ discounting model introduced by Phelps and Pollak (1968) to capture “imperfect”

intergenerational altruism. Our theory provides a very different perspective, suggesting

that the altruism captured by the β-δ discounting model is pure and direct.

23This set of axioms imply postulates 1-4 in Koopmans (1960).

17



4.1 Positive Discounting and Present-generation Bias

Pure direct altruism implies that a generation derives utility from the well-being of future

generations and recognizes that the well-being of each future generation depends on its

descendants’ well-being. Can this induce a generation to sacrifice its own consumption

utility in favor of that of a future generation? In the case of representation (5), the an-

swer is negative: Generation 0 always discounts positively its descendants’ consumption

utility, relative to its own. To formalize this, we introduce a precise definition of positive

discounting.

Definition 3 (Positive Discounting). � is said to exhibit positive discounting if the

following holds: For any x, y ∈ X such that (x, c) � (y, c) for all c ∈ C, and any t ≥ 1,

we have cx � cy whenever cx0 = x, cxt = y, cy0 = y, cyt = x, and cxs = cys for all s ∈ N\{0, t}.

The first part of the condition says that x is unambiguously preferred to y. The second

part says that, given any two streams which differ only at times 0 and t, with the streams

swapping x and y at times 0 and t, the stream starting with x is always preferred to the

stream starting with y. The necessary restrictions derived in Proposition 1, above, yield

the following key result.

Corollary 1. If axioms 1-8 hold, then � exhibits positive discounting.24

Positive discounting refers to how generation 0 trades off its own consumption utility

with future generations’, but how does it trade off satisfaction between future genera-

tions? Does it do so in the same way in which it trades off its own satisfaction against

that of any of those generations? As it turns out, pure direct altruism alone—without im-

posing stationarity or separability—introduces a systematic difference between trade-offs

which directly involve generation 0 and trade-offs which involve only future generations.

Perhaps more surprisingly, direct pure altruism leads generation 0 to be biased in favor

of its present satisfaction in the following sense.

Definition 4 (Present-generation bias). � exhibits present-generation bias if the fol-

lowing holds: For any x, y such that (x, c) � (y, c) for all c, and streams such that

(z0, . . . , zt−1, x, x̂, c
′) ∼ (z0, . . . , zt−1, y, ŷ, c

′) for some t ≥ 1, we have (x, x̂, c′) � (y, ŷ, c′).

24In a finite-horizon setting, a representation of the form in (5) is consistent with negative discounting:
Generation 0 may be willing to sacrifice its satisfaction for the benefit of future generations that are
sufficiently close to it in the lineage. Unlike the infinite-horizon case, (5) yields well-defined preferences
even if the function G is “steeper” than 1−α

α . See the earlier version of this paper (Galperti and Strulovici
(2014)).
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Intuitively, suppose that x is unambiguously preferred to y and that generation 0 is

indifferent if generation t is forced to give up x in exchange for y, provided that the change

is “compensated” by giving ŷ to generation t+1 instead of x̂. Then, if generation 0 itself

faced the choice between x and y in the present, it would strictly prefer not to give up x

for y even if generation 1 got ŷ in exchange.

As the next result shows, this form of present bias is already implied by pure direct

altruism, without requiring the separability and stationarity axioms used to characterize

representation (5).

Proposition 2. Suppose that U(c) = V (c0, U(1c), U(2c), . . .) represent � and that V is

strictly increasing in U(tc) for all t ≥ 1. Then, � exhibits present-generation bias.

The proof of the proposition establishes a stronger form of present bias: The conclusion

of Definition 4 holds when x̂ and ŷ concern any period s ≥ t+ 1, instead of just t+ 1.

The logic of Proposition 2 may be explained as follows. Set t = 1 in Definition 4 and

imagine that x and y correspond to higher and lower levels of consumption. From the

viewpoint of a grandmother (generation 0), a reduction in her son’s consumption from x to

y can be compensated by an appropriate increase in her granddaughter’s consumption, ŷ.

However, because the grandmother takes directly into account her granddaughter’s well-

being, the level ŷ that renders her indifferent may be insufficient to render her son

indifferent. This implies that if the grandmother were in the same situation of her son,

she would also strictly prefer not to reduce her own consumption from x to y even if her

child received ŷ. Thus, the grandmother appears to be more willing to shift consumption

to a later generation when only future generations are affected than when she is directly

affected.

Proposition 2 generalizes and offers an interpretation to the results obtained by Saez-

Marti and Weibull (2005) and Fels and Zeckhauser (2008). These papers assume that

generation 0’s preferences are represented by an aggregator V which is additive and linear

in future generations’s well-beings, U . For this specific case, they show that U(c) can

be rewritten as the discounted sum of future generations’ consumption utilities—given

by some function u(ct)—where discounting takes the quasi-hyperbolic form as in Phelps

and Pollak (1968) (see Corollary 3 below). This, of course, implies that the preference

corresponding to such a U(c) exhibits present-generation bias. Proposition 2 shows that

this conclusion holds more generally as a consequence of direct pure altruism.
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4.2 Intergenerational Rate of Utility Substitution

Representation (5) exhibits separability in future generations’ well-being but not neces-

sarily in their consumption. In fact, how generation 0 trades off its consumption and that

of generation t generally depends on the consumption of all other generations, because

generation t’s consumption affects the well-being of all preceding generations, and in a

way that depends on the consumption of all subsequent generations.

To examine this, we consider generation 0’s discount function between 0 and t. Clearly,

intergenerational trade-offs involving consumption also depend on the curvature of the

consumption utility u. To bypass this dependence, we start with a convenient result,

which follows from Theorem 3.

Corollary 2 (u-Representation). Given representation (5), there exists a nonconstant

function Û : INu → R (where Iu is u’s range) such that, for all c ∈ C,

U(c) = Û(u(c0), u(c1), . . .).

This implies that, given a stream c, what matters for generation 0’s preferences is the

streams of consumption utility us = u(cs), rather than consumption per se. This simpli-

fication is useful because utility levels are real numbers, whereas consumption bundles

take values in a potentially much more complex space. The discount function can now

be defined as

d(t, c) =
∂Û(u0, u1, . . .)/∂ut

∂Û(u0, u1, . . .)/∂u0
. (6)

That is, d(t, c) is the marginal rate at which generation 0 substitutes consumption utility

between 0 and t. In the EDU model, d(t, c) = δt. For d(t, c) to be well defined, the

derivatives in (6) must exist. This is always the case when G is differentiable.25

Proposition 3. Suppose that G is differentiable. Then, d(1, c) = αG′(U(1c)) and, for

t ≥ 2,

d(t, c) = αtG′(U(tc))

[
1 +

t−1∑
τ=1

G′(U(t−τc))
τ−1∏
s=1

(1 +G′(U(t−sc)))

]
,

where
∏τ−1

s=1(1 +G′(U(t−sc))) ≡ 1 if τ = 1.

To understand this formula, suppose that u(ct) rises by a small amount. This has

two effects: (i) generation t’s well-being rises, which explains the term G′(U(tc)); con-

sequently, (ii) the well-being of each generation τ ∈ [1, t] also rises, which explains the

25Differentiability is a mild additional assumption, since G’s monotonicity already implies that it is
differentiable almost everywhere.
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summation. Moreover, the rise in U(tc) affects U(t−τc) through the well-being of all

generations between t− τ and t, which explains the product.

For an arbitrary altruism function G, the discount function d(t, c) thus depends not

only on generation t’s consumption, but on the entire stream c. Suppose, to illustrate,

that G is concave. A drop in the consumption of some future generation s reduces the

well-being of earlier generations, which increases the G′ terms and, hence, the discount

factor d(t, c): Generation 0 becomes more willing sacrifice its current satisfaction u(c0)

in favor of future generations’. The only case in which d(t, c) is independent of c is when

G is linear, in which case, the discount factor takes a well-known form.26

Corollary 3. Suppose that G(U) = γU with γ ∈ (0, 1−α
α

). Then, for all t ≥ 1,

d(t, c) = βδt,

where β = γ
1+γ

< 1 and δ = (1 + γ)α < 1.

Proof. By Proposition 3, the result is immediate for t = 1, 2. For t ≥ 3,

d(t, c) = αtγ

[
1 + γ

t−1∑
τ=1

(1 + γ)τ−1

]
= αtγ(1 + γ)t−1.

Thus the class of preferences that Phelps and Pollak (1968) invented to model “im-

perfectly” altruistic generations is actually equivalent to a specific version of preferences

that exhibit direct pure altruism. By contrast, the EDU model—which Phelps and Pol-

lak (1968) viewed as modeling “perfectly” altruistic generations—is actually a specific

version of preferences that exhibit only indirect pure altruism. The present paper re-

verses the common view concerning which of the exponential and β-δ discounting models

captures a deeper degree of intergenerational altruism.

The EDU model obtains at the limit of ours as direct altruism towards generations

t ≥ 2 becomes negligible. This limit is obtained by taking α to zero while keeping the

product αγ equal to some constant δ̂—which necessitates that γ becomes arbitrarily

large. The weight that generation 0 puts on generation t is γαt, which converges to zero

except for t = 1. In this case, Corollary 3 implies that the preference has a beta-delta

representation, where β = γ/(1+γ) converges to 1 and δ = (1+γ)α converges to δ̂ = γα,

which corresponds to the EDU model.

26A formally equivalent result appears in Saez-Marti and Weibull (2005) and Fels and Zeckhauser
(2008).
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4.3 Quasi-hyperbolic Discounting of Consumption Utilities

Since the linearity of G implies quasi-hyperbolic discounting, we wish to determine which

properties of the preference imply this linearity. When G is nonlinear, we observed earlier

that generation 0’s trade-off between its consumption and that of generation t typically

depends on the well-being of other generations. Building on this observation, Axiom 10

rules out this type of dependence, and yields the desired conclusion.

Axiom 10 (Consumption Independence).

(i) (c0, c1, 2c) � (c′0, c
′
1, 2c) if and only if (c0, c1, 2c

′) � (c′0, c
′
1, 2c

′);

(ii) (c0, c1, 2c) � (c′0, c1, 2c
′) if and only if (c0, c

′
1, 2c) � (c′0, c

′
1, 2c

′).

Intuitively, condition (i) says that a grandmother trades off her consumption with that

of her son in a way that does not depend on the consumption and, hence, the well-being

of her son’s descendants. Condition (ii) says that she trades off her consumption with

that of her son’s descendants in a way that does not depend on her son’s consumption.

Theorem 4 (Linear Pure-Altruism Representation). Axiom 1-8 and 10 hold if and only

if the function U may be chosen so that

U(c) = u(c0) +
∞∑
t=1

αtγU(tc),

where α ∈ (0, 1), γ ∈ (0, 1−α
α

) and u : X → R is a continuous nonconstant function.

Corollary 4 (Quasi-hyperbolic Discounting). Axiom 1-8 and 10 hold if and only if there

exist β, δ ∈ (0, 1) and a continuous nonconstant function u : X → R such that

U(c) = u(c0) + β
∞∑
t=1

δtu(ct).

Proof. By Theorem 4, U(c) is a strictly increasing, linear function of the well-beings

U(tc) and of u(c0). By induction , U(c) is a strictly increasing, linear function of the

consumption utilities u(ct) for t ≥ 0. There exists then a function κ(t) : N \ {0} → R++

such that

U(c) = u(c0) +
∞∑
t=1

κ(t)u(ct).

Clearly, for all t ≥ 1, κ(t) = d(t, c) defined in (6). Corollary 3 then shows the claim.

This result allows us to understand β-δ discounting of consumption utilities in terms of

simple properties of generation 0’s directly altruistic preference. This preference depends

on two, conceptually different, entities: generation 0’s physical consumption and the
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overall well-being of all future generations. This sheds light on why generation 0 treats

its consumption utility differently from the consumption utilities of all future generations,

in a way that is, however, coherent across them as captured by altruism stationarity (Ax-

iom 8). Moreover, by expecting all future generations to also be altruistic, generation 0

develops the view that future generations should be more willing to sacrifice their con-

sumption for the good of their descendants than how much it itself is willing to sacrifice

its own consumption for them (present-generation bias). These properties contribute

to explaining why the different treatment of future consumption utilities takes a stark

form in Phelps and Pollack’s (1968) model, where those utilities are all scaled uniformly

by β < 1. Finally, generation 0 evaluates its consumption and future generations’ well-

being in a separable way, and trades off its consumption against that of any future gener-

ation independently of other generations’ well-being. This delivers additivity in terms of

consumption utilities. Note that Axiom 10 coincides with Koopmans’ (1960) strong sep-

arability axiom (Postulate 3′), which in his model delivers EDU. Therefore, according to

the present paper, one single axiom—the stationarity one—distinguishes exponential and

quasi-hyperbolic discounting. Put differently, in terms of the consumption-utility rep-

resentation (4), Koopmans’ stationarity corresponds to setting β = 1, whereas altruism

stationarity corresponds to setting β < 1.

Corollary 4 provides a tight link between the degree of present bias, β, and the marginal

utility from altruism, γ. In this linear representation, it is possible to interpret γ as the

degree to which generation 0 finds future generations’ well-being “imaginable” or “vivid.”

Note that this is distinct from how much generation 0 cares about its descendants as the

intergenerational gap increases, which is captured by αt. Thus, we identify two possible

determinants of how much generation 0 is altruistic towards generation t. Corollary 4

implies that β is directly proportional to γ, so generation 0 becomes less present biased

when it anticipates more vividly the well-being of future generations.27

Other Axiomatizations of β-δ Discounting

Other papers axiomatize preferences over consumption streams that correspond to the

β-δ model (Hayashi (2003); Olea and Strzalecki (2014)). These papers take the perspec-

tive of a single individual instead of different generations.28 To attempt a comparison

with the present paper, note that generation 0—the decision-maker in our framework—

27Vividness of the well-being of future generations implied by today’s decisions may be influenced with
specific information campaigns. For example, consider the dramatic images that media and environmen-
tal organizations report on the catastrophic consequences of manmade climate change.

28While Phelps and Pollak (1968) focused on an intergenerational interpretation of quasi-hyperbolic
discounting, the single-individual interpretation is equally widespread (following Laibson (1997)).
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essentially treats its descendants as future copies of itself. Thus, from a single-individual

perspective, one may view our analysis as describing an agent who perceives himself as

a collection of selves, one for each period t, and exhibits direct pure altruism towards

his future selves, expecting that they will do the same. Therefore, self 0 directly cares

about the well-being (that is, U(tc)) of all his future selves through what we may call

intrapersonal altruism,29 an attitude that is revealed by his current preference over con-

sumption streams.

The property that self 0 directly cares about all his future selves’ well-being is the

first, key conceptual difference from the previous axiomatizations of β-δ discounting.

Both Hayashi (2003) and Olea and Strzalecki (2014) adopt the common view that the

decision-maker cares only about his per-period consumption utilities.30 Within this

framework, Koopmans’ (1960) stationarity (Axiom 9) is replaced by a weaker notion,

quasi-stationarity, which means stationarity from period 1 onward. However, if the

decision-maker evaluates streams based only on consumption utilities and views con-

sumption in the same way in all periods, it is unclear why stationarity should hold

between period 1 and later periods, but not between period 0 and period 1. This issue

does not arise with altruism stationarity (Axiom 8), as self 1’s well-being is equivalent

to the well-being of all future selves, but is different from self 0’s physical consumption.

Second, to obtain the β-δ representation, Olea and Strzalecki (2014) need to ensure

that current and future per-period utilities are cardinally equivalent. Their axioms lead

to novel, practical experiments to identify and measure β and δ, but may be difficult to

interpret. That paper imposes an additional, explicit present-bias axiom to obtain β ≤ 1.

By contrast, when self-0 directly cares about the well-being of all his future, similarly

altruistic selves, present bias follows as a general, logical consequence (Proposition 2). In

our theory, β-δ discounting is tightly linked with an intuitive consumption-independence

condition (Axiom 10).

Echenique et al. (2016) propose a different method to characterize several models of

29The idea that an individual over time consists of a collection of selves is not new in economics (see,
for example, Strotz (1955) who thought that “the individual over time is an infinity of individuals” (p.
179) and Frederick (2003)); it also has a long tradition in philosophy (see, for example, Parfit (1971,
1976, 1982)). In this case, direct pure altruism simply means that the individual’s present self cares
about his future selves and anticipates that they will continue to do the same.

30The second paper, in particular, is based on the idea of annuity compensation: To avoid relying
on assumptions of the form of u to elicit β and δ separately, the idea is to consider fix compensation
levels—and hence fixed u’s—and vary the time horizon at which they occur, so as to find exact points
of indifference for the decision-maker and hence infer the parameters of the model. The decision-maker
has different subjective views of the time distance between period 0 and 1 and between any two future
periods. If he cares only about the u’s that he gets in each period, then it is possible to objectively space
out these u’s in an appropriate way so as to identify β and δ.
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intertemporal preferences, including the EDU and β-δ model. Their starting point is

a dataset consisting of a decision-maker’s choices of finite consumption streams from

standard intertemporal budget sets and the dated prices that define them. They discuss

versions of the Generalized Axiom of Revealed Preference that satisfy various separability

requirements adapted to intertemporal settings. Using real data from the experiment

in Andreoni and Sprenger (2012), they apply their axioms to classify subjects across

models: Roughly, only one third of the 97 subjects is consistent with either EDU or β-δ

discounting, and about half violates time separability in consumption.

4.4 Time Inconsistency

The analysis thus far has concerned the preference of a single generation. This section

considers the implications of direct pure altruism on how different generations evaluate

a common consumption stream.

It is well known that if each generation has the same preference and this preference can

be represented by Koopmans’ (1960) recursive model, then as a whole these preferences

form a sequence which satisfies time consistency. That is, if a course of action starting

at time t is preferable according to generation t’s preference, then it remains preferable

for time t onward according to generation t− 1’s preference. To formalize this, consider

the family {�t}∞t=0, where �t is the preference relation of generation t.31

Definition 5 (Time Consistency). {�t}∞t=0 exhibits time consistency if, for every t ≥ 0,

s ≥ 1, and c, c′, ĉ ∈ C, the following condition holds:

(ĉt, . . . , ĉt+s−1, c) %
t (ĉt, . . . ĉt+s−1, c

′) if and only if c %t+s c′.

Despite its similarity with Axiom 9 when s = 1, time consistency is conceptually

different because it involves multiple, possibly different, preference relations.32 Indeed,

Koopmans et al. (1964) write,

“[Stationarity] does not imply that, after one period has elapsed, the ordering

then applicable to the ‘then’ future will be the same as that now applicable to the

‘present’ future. All postulates are concerned with only one ordering, namely that

guiding decisions to be taken in the present. Any question of change or consistency

31Definition 5 expresses in formal terms the idea of time consistency informally introduced by Strotz
(1955) in his seminal paper (p. 171).

32This point has also been recently emphasized in the experimental analysis of Halevy (2015). It is
straightforward to construct examples of preferences {�t}∞t=0 that satisfy Axiom 9 but are not time
consistent, and vice versa.
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of preferences as the time of choice changes is therefore extraneous to the present

study.” (Koopmans et al. (1964), p. 85, emphasis in the original)

Nonetheless, under the assumption that {�t}∞t=0 is time invariant—that is, there exists

a common preference relation �̂ such that �t= �̂ for all t ≥ 0—time consistency is

equivalent to Koopmans’ (1960) stationarity. As noted, this notion of stationarity implies

that each generation exhibits indirect altruism. The converse of this is that direct altruism

is incompatible with time consistency, a statement proved in the Supplemental Material.

Proposition 4. Consider a family of preferences {�t}∞t=0 and suppose that �t=�0 for

all t ≥ 1 and that �0 has a pure-altruism representation. Then, {�t}∞t=0 satisfies time

consistency if and only if

V (c0, U(1c), U(2c), . . .) = V (c0, U(1c))

for all c ∈ C, and V is strictly increasing in its second argument.

Proposition 4 identifies and highlights a possible source of time inconsistency across gen-

erations. This source corresponds to the intuitive property that each generation directly

cares about the well-being of future generations beyond its immediate descendant—as in

our running example of a grandmother, her son, and her granddaughter. It is common

to view time consistency of intergenerational preferences as the norm and time incon-

sistency as an exception. Proposition 4 reverses this view. If we deem plausible that

each altruistic generation cares about future generations’ well-being beyond its immedi-

ate descendant and expects them to do the same, then we have to conclude that time

inconsistency should be the norm, not the exception.33

In general, time inconsistency can take many forms. For instance, if we allow the

preferences to violate time invariance and differ in arbitrary ways across generations, we

could have that generation t prefers higher consumption (say, of fossil fuels) for itself and

all future generations, whereas generation t + 1 prefers lower consumption for itself and

all subsequent generations. This kind of inconsistency is clearly possible, but differs from

the one arising here. In particular, directly altruistic preferences are time inconsistent

33To see the intuition behind Proposition 4, suppose that 1c and 1c
′ represent two courses of actions

that start in period 1 and involve different consumptions only for generations 1 and 2 (that is, c1 6= c′1,
c2 6= c′2, but 3c = 3c

′). In this case, generation 0 (the grandmother) and generation 1 (her son) may
disagree on the ranking of 1c and 1c

′ for the following reason. The son trades off how his well-being varies
because his current consumption changes from c1 to c′1 and because his daughter’s well-being is affected
by the change from c2 to c′2. In addition to these two effects on her son’s well-being, the grandmother
also takes directly into account how her granddaughter’s well-being varies between c2 and c′2. Therefore,
the grandmother and her son internalize the effects of changing c2 in different ways, which can induce
them to disagree on which course of action is better.
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even if all generations have the same preference relation. Moreover, by Proposition 2

this inconsistency takes a very specific form: Each generation tends to disproportionately

favor its own satisfaction over that of any future generation.

4.5 Intergenerational Trade-offs with Backward-looking Altru-

ism

While our theory’s focus on forward-looking agents is standard, incorporating backward-

looking altruism to the theory would be instructive and realistic. An axiomatic treatment

of two-sided altruism raises conceptual and technical challenges beyond the scope of the

present paper—some of which is discussed in Section 6 along with the related literature.

As a first step in this direction, this section explores how the intergenerational trade-offs

discussed earlier would be affected by the addition of backward-looking altruism. As it

turns out, backward-looking altruism has rather counter-intuitive consequences.

We illustrate these consequences in settings with two and three generations. Suppose,

first, that there are only two generations, the second of which may be affected by the

first generation’s well-being. Specifically, consider the linear specification

U0 = u0 + αU1 U1 = u1 + α̂U0

where ui is generation i’s utility from consumption and α and α̂ are nonnegative factors

used to discount future and past generations’ well-being. This system has a unique

solution as long as the product αα̂ is strictly less than 1, yielding

U0 =
1

1− αα̂
(u0 + αu1) U1 =

1

1− αα̂
(u1 + α̂u0).

Ignoring the scaling factor 1/(1 − αα̂), notice that the weight put by generation 0 on

generation 1’s consumption utility, relative to its own, is equal to α and thus independent

of generation 1’s altruism coefficient α̂. Remarkably, therefore, adding backward-looking

altruism does not affect how generation 0 trades off the consumption utilities of both

generations. This result has the following intuition. With backward-looking altruism,

increasing 0’s consumption utility now raises 0’s well-being by increasing 1’s well-being,

which 0 finds valuable. But increasing 1’s consumption utility increases 1’s well-being

directly, and both increases, whether coming from 1’s backward-looking altruism or from

a direct increase of u1, get injected into 0’s well-being in the same way through 0’s

forward-looking altruism. Therefore, consumption utilities u0 and u1 have the same

relative impact on 0’s well-being with this new channel as they did over the original

forward-looking channel.
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The effect of backward-looking altruism gets even more surprising—in fact, counter-

intuitive—if one adds a third generation. Suppose that

U0 = u0 + αU1 + α2U2

U1 = u1 + αU2 + α̂U0

U2 = u2 + α̂U1 + α̂2U0.

This system has a unique solution provided αα̂ < 1
3
, yielding

U0 =
1

(1 + αα̂)(1− 3αα̂)
[(1− αα̂)u0 + α(1 + αα̂)u1 + 2α2u2].

Now the weights of u1 and u2 have increased, relative u0’s weight, as a result of gener-

ation 1’s and 2’s altruism towards older generations (α̂ > 0).34 This is counterintuitive

as one would expect that generation 0’s consumption matters more now that it affects

generation 1’s and 2’s well-being. To gain intuition, it is useful to compare this situa-

tion with the two-generation case, where the relative weights on 0’s and 1’s consumption

utility on 0’s well-being were independent of α̂. Consider the increase of u2’s weight

relative to u0’s weight. Backward-looking altruism causes generation 0’s well-being to

affect the well-being of generations 1 and 2. By forward-looking altruism, u2 also affects

the well-being of generation 1 and 2 by affecting generation 0’s well-being. Therefore,

if these were the only effects of u2, its weight relative to u0 would not depend on the

amount of backward-looking altruism, just as in the two-generation case. In addition,

however, now there is an intermediate generation between 0 and 2. Therefore, u2 also

enters the backward-looking channel that links 1’s well-being to 2’s well-being; and this

additional effect—from which u0 is excluded—increases the impact of u2 relative to u0.

The increase in u1’s relative weight has a similar intuition.

5 Welfare Analysis with Intergenerational Altruism

Models featuring time-inconsistent preferences raise serious conceptual problems when

defining welfare criteria and discuss policy questions (see, for example, Rubinstein (2003);

Bernheim and Rangel (2007, 2009)). Concerning β-δ discounting, Rubinstein (2003)

notes that

“Policy questions were freely discussed in these models even though welfare as-

sessment is particularly tricky in the presence of time inconsistency. The literature

34Note that the weight of u1 relative to u0, α(1 + αα̂)/(1 − αα̂), as well as the weight of u2 relative
to u0, 2α2/(1− αα̂), are increasing in α̂.
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often assumed, though with some hesitation, that the welfare criterion is the utility

function with stationary discounting rate δ (which is independent of β).” (p. 1208)

A more fundamental question is whether time inconsistency across generations’ prefer-

ences justifies some form of paternalistic social planner. An immediate consequence of

the present paper is to weaken the case for paternalistic interventions. If intergenera-

tional time inconsistency were the result of some form of bounded rationality or lack of

consideration for future generations, one may be tempted to argue that society benefits

from delegating its choices to a paternalistic planner. This argument, however, is moot

if time inconsistency is the logical consequence of direct pure altruism which every gen-

eration fully takes into account. In this case, the current generation 0 is already taking

into account the preferences that it expects all future generations to have. Thus, unless

the social planner believes that generation 0 anticipates these preferences in a system-

atically biased way, one may argue that she should simply adopt a “libertarian” stance

and measure the welfare of any stream c using WL(c) = U(c).

This libertarian criterion coincides with the criterion that is usually applied for standard

time-consistent models, such as EDU, but has significantly different implications in the

present model. For standard models, WL corresponds to evaluating consumption streams

for the entire society based only on the consumption of generation 0 and how it thinks

that generation 1 will rank the remaining entire streams. In our model, by contrast, WL

evaluates streams based on the consumption of generation 0 and how it thinks that all

future generations will rank the streams they will face for their remaining future. For

example, consider two policies, A and B, inducing streams cA and cB such that 1c
A ∼ 1c

B

but tc
A � tc

B for all t ≥ 2. Then, the criterion WL based on the standard model implies

that policy A is as desirable as B. By contrast, the criterion WL based on our model

implies that A is strictly more desirable. Thus, the second criterion is more sensitive to a

policy long-run consequences for all future generations’ well-being. From this perspective,

it is far from obvious that such a criterion should be dismissed simply because it violates

time consistency.

Despite generation 0’s direct pure altruism, one may still argue that a libertarian cri-

terion does not sufficiently take into account the preferences of future generations and

attempt to include these preferences above and beyond how they affect generation 0. This

leads to a paternalistic welfare criterion aggregating the preferences (that is, well-being)

across all generations (Bernheim (1989), Phelan (2006), Farhi and Werning (2007)). Cru-

cially, one may ask whether there exists an aggregator which, despite the preferences’
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time inconsistency, renders the social planner time consistent. For the additive criterion

W P (c) =
∞∑
t=0

w(t)U(tc), (7)

where w : N→ R++, we obtain the following result.

Proposition 1. Suppose that all generations have the same preference representations,

given by Theorem 4 and Corollary 4 with parameters (u, α, γ) and (u, β, δ), respectively.

Then,

W P (c) =
∞∑
t=0

δtu(ct)

if and only if w(t) = αt.

This proposition provides a novel justification for the welfare criterion, consisting in

dropping the β factor, cited by Rubinstein. We focus here on proving the “if” direction,

which has an intuitive justification, relegating the proof of the “only if” direction to

Appendix A. Let W (c) =
∑∞

t=0 α
tU(tc). Using the linear representation of U(c) in

Theorem 4, we have

W (c) = u(c0) + (1 + γ)α
∑
t≥1

αt−1U(tc) = u(c0) + (1 + γ)αW (1c).

Comparing the extremes of this equation already shows why the planner must be time

consistent. It also shows that W (c) must equal the discounted sum of consumption

utilities with discount factor δ̂ = (1 + γ)α. We know from Corollaries 3 and 4 that δ̂ = δ

in the β-δ version of U(c), which proves the “if” part. There is a more intuitive argument,

however. Note that the linear representation satisfies

U(c) = u(c0) + γαW (1c) = u(c0) +
γα

δ̂

∑
t≥1

δ̂tu(ct).

It follows that U(c) must have a quasi-hyperbolic representation in terms of consumption

utilities, where the long-run discount factor coincides with the planner’s factor.

Proposition 1 implies, for the widespread Phelps–Pollak model of intergenerational

altruism, the existence of a paternalistic welfare criterion that aggregates the time-

inconsistent preferences of all generations, yet renders the planner time consistent. This

criterion is completely determined by generation 0’s revealed preference, summarized by

u, α, and γ and is easily interpreted by viewing α as a survival probability used by both

the social planner and each successive generation to assess the relevance of each succes-

sive period. However, the conclusion of Proposition 1 does not hold for more general

directly altruistic preferences.35

35For a general function G, the criterion WP (c) =
∑∞
t=0 α

tU(tc) need not satisfy time consistency. It is
possible to construct examples in which

∑∞
t=1 α

tG(U(tc)) >
∑∞
t=1 α

tG(U(tc
′)) and

∑∞
t=1 α

t[G(U(tc)) +
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By contrast, aggregating time-consistent preferences by a similar process leads to a time-

inconsistent welfare criterion. In particular, using the EDU model U(c) =
∑∞

t=0 δ
tu(ct),

we may rely on δ to aggregate well-being across generations using the criterion Ŵ (c) =∑∞
t=0 δ

tU(tc) (cf. Ray (2014)). Doing so makes the planner time inconsistent, since it can

be shown that Ŵ (c) = u(c0)+
∑∞

t=1 δ
t(1+t)u(ct). Except for Phelps and Pollack’s (1968)

quasi-hyperbolic model, pure altruism across generations—whether direct or indirect—

thus makes it difficult to construct a welfare criterion that includes the preferences of all

generations and renders a planner time consistent.

6 Concluding Remarks

We have examined how pure direct altruism towards future generations shapes the pref-

erence of a generation over courses of action that have long-lasting consequences. Each

generation exhibits positive discounting and a present-generation bias. The dependence

of each generation’s well-being on that of its descendants gives rise to rich discounting

patterns, the simplest of which turns out to be quasi-hyperbolic discounting. Our analysis

characterizes directly altruistic preferences within a classic decision-theoretic framework

and in terms of axioms that are easy to interpret. Given the importance of uncertainty

for long-run problems—such as poverty or climate change—future work should extend

the theory to allow for stochastic consumption streams.

A natural question is whether the theory in this paper is descriptive or normative. We

view these interpretations as non-exclusive and both valid and provide rigorous concep-

tual tools which may be used for both. On the one hand, our axioms are meant to

capture general properties that one might expect to describe how each generation ranks

consumption streams for itself and its descendants. Our results then identify which

utility functions satisfy these properties and help understand their key behavioral im-

plications. On the other hand, one can view our axioms as crystallizing some ethical

principles—whose origin lies outside the model—that all generations adopt and share as

guides for intergenerational altruism. Such principles might be that one should be sensi-

tive to all of one’s descendants’ preferences (to the extent that they may be anticipated)

and should try to treat those preferences in a neutral way. For instance, the ongoing

public debate on the control of greenhouse-gas emissions often stresses the importance

of taking into account the consequences of these decisions for many generations far into

U(tc)] >
∑∞
t=1 α

t[G(U(tc
′)) + U(tc

′)], but
∑∞
t=1 α

tU(tc) <
∑∞
t=1 α

tU(tc
′). In this case, WP (c0, 1c) >

WP (c0, 1c
′), but WP (1c) < WP (1c

′).
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the future, but usually does not consider complementarities or complicated dependence

across these generations. These principles may provide a normative foundation for our

main axioms—intergenerational separability and altruism stationarity—and hence for

our main representation theorem. More generally, the paper points out that requiring

preferences to be time consistent on the basis of some normative consideration comes at

the cost of violating other properties which may also have a normative appeal.

Our welfare analysis also lends itself to positive and normative interpretations. On

the one hand, it connects generations’ altruistic preferences with the welfare criterion

used by a social planner. This is important if, for instance, the planner coincides with

a democratically elected government which responds only to the preference of the cur-

rent generation: Its altruism will be the only channel through which the government

will take into account future generations. In this case, the paper emphasizes that the

government will inherit the current generation’s desire for long-run sustainable policies

(such as adopting renewable sources of energy) but also its present bias, which may ren-

der commitments to those policies desirable. On the other hand, the aggregating rules

that we considered may again be based on some external ethical principles—for example,

that the planner should directly weigh the well-being of each generation in a way that

includes its own altruism. These principles, combined with direct pure altruism, may

give a normative meaning to the time-consistent criterion that we derive in our welfare

analysis. Our results highlight that, at least for a well-known and broadly-used model of

intertemporal preferences, it is possible to reconcile time inconsistency at the generations’

level with time consistency at the planner’s level.

This paper proposes a theory of forward-looking altruism, which is consistent with a

large literature on intergenerational preferences and instrumental in comparing our ap-

proach with other theories of forward-looking agents. The addition of backward-looking

altruism can affect intergenerational trade-offs in surprising and even counter-intuitive

ways, as we saw in Section 4.5. Beyond this, incorporating backward-looking altruism

into an axiomatic approach raises a number of conceptual challenges.36 One is an ob-

servability problem: how can we determine how a generation’s preference depends on the

consumption of its ancestors, when this consumption is past and thus unchangeable? A

potential resolution is to extract from a generation’s preference information about how

this generation perceives that its descendants will care about itself, so as to back out

the backward-looking component of altruism. Another challenge concerns the infinite

36Backward-looking altruism is considered by Peleg and Yaari (1973), Pearce (2008), Kimball (1987),
Bergstrom (1989), and Bergstrom (1999), who assume specific utility functions and derive conditions
leading to well-defined preferences and equilibrium existence.
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regress stemming from reciprocal altruism, and the technical difficulties that it raises

for an axiomatic formulation. Addressing the reciprocity challenge would pave the way

to an axiomatic theory of altruism across contemporaneous members of society, extend-

ing the analysis beyond backward-looking altruism. Incorporating backward-looking and

contemporaneous altruism into an axiomatic approach is an exciting avenue for future

research; the framework and techniques developed in this paper should prove helpful to

this end.37

37In particular, a well-known problem when writing a reciprocal altruism model is that the utility
function may “blow up.” However, if one starts with preferences as primitives, then the class of model
emerging from axioms capturing reciprocal altruism will come with specific parametric restrictions—also
implied by the axioms—guaranteeing that the models of the class are well specified and do not blow up.
Even in our theory of forward-looking altruism, the altruism utility G must be (1−α)/α-Lipschitz con-
tinuous, by Proposition 1, which guarantees that the discounting effect dominates the forward-looking-
altruism effect so that utility is always well-defined and finite in the additive representation (5).
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A Appendix: Proofs of the Main Results

A.1 Proof of the “only if” part of Theorem 2

Suppose that there exists a continuous function U : C → R which represents � and that U(c) = V (f(c))

where V : F0 → R is a function which is nonconstant in f0 and ft for some t ≥ 1. This last property

immediately implies that � satisfies Axiom 4. Since U is a continuous representation of %, standard

arguments imply that this relation satisfies Axioms 1-3. Finally, consider any streams c, c′ ∈ C that

satisfy c0 = c′0 and tc ∼ tc
′ for all t ≥ 1. Then, since U represent �, we have U(tc) = U(tc

′) for all t ≥ 1;

that is, ft(c) = ft(c
′) for all t ≥ 1. Since by assumption f0(c) = c0 = c′0 = f0(c′) and V is a function,

we must have V (f(c)) = V (f(c′)) or, in other words, U(c) = U(c′), which in turn implies that c ∼ c′ as

required by Axiom 5.

A.2 Proof of Theorem 3

By the definition of F in (3), note that F need not be a Cartesian product, as ft depends on fs for

s > t. Letting tf = (ft, ft+1, . . .), we can denote elements in F by (f1, f2, . . . , ft−1, tf). On F0 = X ×F
(where f0(c) = c0), the primitive � induces a �∗ with representation V : F0 → R; by Theorem 2, �∗

is well defined. If F0 were a Cartesian product, we could mimic the steps in Debreu (1960) (Theorem

3) and Koopmans (1972) on the domain F0 to prove our theorem. However, this is not possible. We

will then proceed as follows. In step 1, we show that �∗ satisfies the essentiality and strong separability

properties at the heart of Debreu’s (1960) Theorem 3. In step 2, we show that the ranking of streams

(f0, f1, f2, 3f) ∈ F0 depends only on a function of 3f ; so we can restrict attention to a four dimensional

space. In step 3, we show that this space is a Cartesian product ‘locally;’ so we can apply Debreu’s result

to obtain an additive representation ‘locally.’ Since additive representations are unique up to positive,

affine transformations, we can extend uniquely the additive representation to the entire F0. In step 4,

we show that this representation takes the form in our Theorem 3.

Step 1. Lemma 1 says that, if (f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′), then changing the common compo-

nents of (f0, f1, f2, 3f) and (f ′0, f
′
1, f
′
2, 3f

′) in the same way leaves the ranking under �∗ unchanged.

Lemma 1. Fix any nonempty subset π of {0, 1, 2, 3}. Then

(f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′)⇔ (f̂0, f̂1, f̂2, 3f̂) �∗ (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′),

where ft = f̂t, f
′
t = f̂ ′t, 3f = 3f̂ , and 3f

′ = 3f̂
′ if t or 3 are in π, and ft = f ′t, f̂t = f̂ ′t, 3f = 3f

′, and

3f̂ = 3f̂
′ if t or 3 are not in π.

Proof. Recall that tc ∼ tc
′ is equivalent to ft = f ′t . Then, by Axiom 6, for any π

V (f0, f1, f2, 3f) > V (f ′0, f
′
1, f
′
2, 3f

′)⇔ V (f̂0, f̂1, f̂2, 3f̂) > V (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′).

Using Lemma 1 with π = {0} and π = {1, 2, 3}, we obtain the following.
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Lemma 2. The function V : F0 → R can be written in the form

V (f) = W (u(f0), d(1f)), (8)

where u : X → Iu ⊂ R and d : F → D ⊂ R. W is jointly continuous in its two arguments and strictly

increasing in each of them, u is continuous, and Iu and D are non-degenerate intervals.

Proof. Consider �∗ on X × F and Lemma 1 with π = {0} and π = {1, 2, 3}. By an argument similar

to that in Section 5 of Koopmans’ (1960), for any f we can write V (f) = W (u(f0), d(1f)), where

u(f0) = V (f0, 1f̂) for some 1f̂ ∈ F and d(1f) = V (f ′0, 1f) for some f ′0 ∈ X. Recall that V (f(c)) = U(c)

for all c ∈ C. Hence, the continuity property of U implies continuity of u. By Axiom 4, neither u

nor d can be constant. Since X is connected, u takes all values in a connected interval Iu ⊂ R. Since

d(1f(c)) = U(f ′0, 1c), U is continuous, and X is connected, d takes all values in a connected interval

D ⊂ R. By definition of u and Lemma 1 with π = {0}, W must be strictly increasing in its first argument

on Iu. Similarly, by definition of d and Lemma 1 with π = {1, 2, 3}, W must be strictly increasing in

its second argument on D. Given ĉ, U(·, 1ĉ) takes values in an interval. Then the strictly increasing

W (·, d(1f(ĉ))) also takes values in an interval and hence must be continuous in its first argument on Iu.

By a similar argument, W must be continuous in its second argument, and hence jointly continuous on

Iu ×D.

Hereafter, let u = sup Iu and u = inf Iu. Also note that the function d in Lemma 2 defines a ranking

on F .

Lemma 3. There exist x, y, z, x′, y′, z′ ∈ X and c ∈ C such that (i) (z, c) � (z′, c), (ii) (y, z, c) ∼
(y′z′, c), and (iii) (x, y, z, c) ∼ (x′, y′, z′, c).

Proof. By Axiom 4, there exist z, z′ ∈ X and c ∈ C such that (z, c) � (z′, c). Using representation

(8), we have u(z) > u(z′). Now, consider (y′, z, c) and (y, z′, c) where y = z and y′ = z′. By Axiom 7(i),

(y′, z, c) � (y′, z′, c).

Case 1: (y, z′, c) % (y′, z, c). Since Iu is connected, we can modify y to y′′ ∈ X so that u(y′′) takes any

value in [u(y′), u(y)]. By Axiom 2, there exists y′′ such that (y′′, z′, c) ∼ (y′, z, c); moreover, we must

have u(y′′) > u(y′). Now consider (x, y′′, z′, c) and (x′, y′, z, c) where x = z and x′ = z′. By Axiom 7(i),

(x′, z, c) � (x′, z′, c); so, by Axiom 8, (x′, y′, z, c) � (x′, y′′, z′, c).

Case 1.1: (x, y′′, z′, c) % (x′, y′, z, c). Since we can modify x to x′′ ∈ X so that u(x′′) takes any value

in [u(x′), u(x)], by Axiom 2, there exists x′′ such that (x′′, y′′, z′, c) ∼ (x′, y′, z, c).

Case 1.2: (x, y′′, z′, c) ≺ (x′, y′, z, c). We can modify z and y′′ to ỹ, z̃ ∈ X so that u(z̃) and u(ỹ) take

any value in [u(z′), u(z)] and [u(y′), u(y′′)]. Moreover, we can do so maintaining (ỹ, z′, c) ∼ (y′, z̃, c)

by Axiom 2. Since (x, y′, z′, c) � (x′, y′, z′, c), by Axiom 2, there exist ỹ and z̃ such that (x, ỹ, z′, c) ∼
(x′, y′, z̃, c). Finally, we must have u(z̃) > u(z′), so (z̃, c) � (z′, c).

Case 2: (y, z′, c) ≺ (y′, z, c). We can modify z to ẑ ∈ X so that u(ẑ) takes any value in [u(z′), u(z)].

Since (y, z′, c) � (y′, z′, c), by Axiom 2 there exists ẑ such that (y, z′, c) ∼ (y′, ẑ, c), and by Axiom 7(i)

we must have (ẑ, c) � (z′, c) and hence u(ẑ) > u(z′). Now consider (x, y, z′, c) and (x′, y′, ẑ, c) where

x = z and x′ = z′.
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Case 2.1: (x, y, z′, c) % (x′, y′, ẑ, c). We can modify x to x̂ so that u(x̂) takes any value in [u(x′), u(x)].

By Axiom 7(i), (x′, z′, c) ≺ (x′, ẑ, c); so, by Axiom 8, (x′, y, z′, c) ≺ (x′, y′, ẑ, c). Then, by Axiom 2 there

exists x̂ such that (x̂, y, z′, c) ∼ (x′, y′, ẑ, c).

Case 2.2: (x, y, z′, c) ≺ (x′, y′, ẑ, c). We can modify y and ẑ to ŷ and ẑ′ so that u(ŷ) and u(ẑ′) take

any value in [u(y′), u(y)] and [u(z′), u(ẑ)]. Moreover, we can do so maintaining (ŷ, z′, c) ∼ (y′, ẑ′, c) by

Axiom 2. Since (x, y′, z′, c) � (x′, y′, z′, c), by Axiom 2 there exists ŷ and ẑ′ such that (x, ŷ, z′, c) ∼
(x′, y′, ẑ′, c).

Hereafter, for t ∈ {0, 1, 2, 3}, we will refer to the factor t of F0 as the component of position t + 1

in the representation (f0, f1, f2, 3f) of every f ∈ F0 (e.g., the factor 2 is the third component of every

(f0, f1, f2, 3f) ∈ F0).

Definition 6 (Debreu (1960)). For t ∈ {0, 1, 2}, if f �∗ f ′ for some f, f ′ ∈ F0 with fs = f ′s for

all s 6= t, then the factor t of F0 is called essential for �∗. If (f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′) for some

f, f ′ ∈ F0 with fs = f ′s for s = 0, 1, 2, then the factor 3 is called essential for �∗.

Lemma 4. For all t ∈ {0, 1, 2, 3}, the factor t of F0 is essential.

Proof. By Axiom 4, the factor 0 is essential. Using the streams in Lemma 3, let 1c = (x, y, z, c) and

1c
′ = (x′, y′, z′, c) and consider the corresponding f and f ′ in F0 with any f0 = f ′0. We have f1 = f ′1,

f2 = f ′2, f3 > f ′3, and ft = f ′t for all t ≥ 4. By Axiom 7(i), (f0, f3, f4, 5f) �∗ (f ′0, f
′
3, f
′
4, 5f

′), hence the

factor 1 is essential. By Axiom 8, (f0, f2, f3, 4f) �∗ (f ′0, f
′
2, f
′
3, 4f

′) and (f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′).

So the factors 2 and 3 are essential.

Step 2. By Lemma 1 with π = {2, 3}, �∗ also satisfies the following property:

(f0, f1, 2f) �∗ (f0, f1, 2f
′)⇔ (f̂0, f̂1, 2f) �∗ (f̂0, f̂1, 2f

′).

Define Q̃ = {(f1(c), d(2f(c))) : c ∈ C}. Note that Q̃ ⊂ U × D, but it need not be a Cartesian product

because the value of d affects that of f1.

Lemma 5. There exists a continuous function Ṽ : X × Q̃ → R such that, for all f ∈ F0,

V (f) = Ṽ (f0, f1, d(2f)), (9)

where d is the function defined in Lemma 2. For any f1, f ′1, d′, and d′′ we have the following:

(5.i) if (f1, d
′′) and (f ′1, d

′′) are in Q̃, Ṽ (f0, f1, d
′′) > Ṽ (f0, f

′
1, d
′′) iff38 f1 > f ′1;

(5.ii) if (f1, d
′) and (f1, d

′′) are in Q̃, Ṽ (f0, f1, d
′) > Ṽ (f0, f1, d

′′) iff d′ > d′′.

Proof. Recall that d(·) defines a ranking on F and that 2f ∈ F . For any (f0, f1, 2f) and (f ′0, f
′
1, 2f

′)

such that both (f0, f1, 2f
′) and (f ′0, f

′
1, 2f) are in F0, by Lemma 1 with π = {2, 3}, V (f0, f1, 2f) ≥

38Hereafter, “iff” stands for “if and only if.”

36



V (f0, f1, 2f
′) iff V (f ′0, f

′
1, 2f) ≥ V (f ′0, f

′
1, 2f

′). Moreover, for any (f1, 2f) and (f1, 2f
′) in F , by Axiom

8, V (f0, f1, 2f) ≥ V (f0, f1, 2f
′) iff W (u(f0), d(2f)) ≥ W (u(f0), d(2f

′)), and therefore iff d(2f) ≥ d(2f
′).

So, the ranking of (f0, f1, 2f) and (f0, f1, 2f
′) depends only on the value of d(·). Now, for any f ∈ F0,

set

Ṽ (f0, f1, d(2f)) = V (f0, f1, 2f).

The previous argument implies property (5.i).

Ṽ is well defined for the following reasons. First, if (f0, f1, 2f) and (f ′0, f
′
1, 2f

′) are such that ft = f ′t for

t = 0, 1 and d(2f) = d(2f
′), then V (f0, f1, 2f) = V (f ′0, f

′
1, 2f

′) again by Axiom 8. Second, if (f0, f1, 2f)

and (f ′0, f
′
1, 2f

′) are such that either (f0, f1, 2f
′) /∈ F0 or (f ′0, f

′
1, 2f) /∈ F0, then (f0, f1) 6= (f ′0, f

′
1). So,

even if d(2f) = d(2f
′), Ṽ (f0, f1, d(2f)) can be different from Ṽ (f ′0, f

′
1, d(2f

′)).

Consider now (f1, d
′′), (f ′1, d

′′) ∈ Q̃. There exist c, c′ ∈ C, such that ft = ft(c) and f ′t = ft(c
′) for

t = 0, 1, and d(2f(c)) = d(2f(c′)) = d′′. By Lemma 2, without loss, we can assume that 2c = 2c
′ so

that 2f(c) = 2f(c′) = 2f
′′. By Axiom 7(i), then V (f0, f1, 2f

′′) > V (f0, f
′
1, 2f

′′) iff f1 > f ′1, and property

(5.ii) follows from (9).

Finally, Ṽ is continuous for the following reasons. For any (f1, d) ∈ Q̃, Ṽ (·, f1, d) = U(·, 1c) for any c

such that f1 = f1(c) and d = d(2f(c)). Hence, the continuity property of U implies that Ṽ is continuous

in its first argument. Given any f0 and d ∈ D, Ṽ (f0, ·, d) = U(f0, ·, 2c) for some c such that f0(c) = f0

and d = d(2f(c)). Hence, Ṽ must take value in a connected interval and, being strictly increasing, it

must be continuous in its second argument given f0 and d. By a similar argument, for any (f0, f1),

Ṽ (f0, f1, ·) must take values in a connected interval and, being strictly increasing, it must be continuous

in its last argument. It follows that Ṽ must be continuous on the connected set X × Q̃.

Now define Q = {(f1(c), f2(c), d(3f(c))) : c ∈ C}. By an argument similar to that in the proof of

Lemma 5, using Lemma 1 with π = {3}, we obtain the following.

Lemma 6. There exists a continuous function V : X ×Q → R such that, for all f ∈ F0,

V (f) = V (f0, f1, f2, d(3f)), (10)

where d is the function defined in Lemma 2. Moreover, for any f1, f ′1, f2, f ′2, d′, and d′′ we have the

following:

(6.i) if (f1, f2, d
′), (f ′1, f2, d

′) ∈ Q, then V (f0, f1, f2, d
′) > V (f0, f

′
1, f2, d

′) iff f1 > f ′1;

(6.ii) if (f1, f2, d
′), (f1, f

′
2, d
′) ∈ Q, then V (f0, f1, f2, d

′) > V (f0, f1, f
′
2, d
′) iff f2 > f ′2;

(6.iii) if (f1, f2, d
′), (f1, f2, d

′′) ∈ Q, then V (f0, f1, f2, d
′) > V (f0, f1, f2, d

′′) iff d′ > d′′.

Hereafter, for any c ∈ C, let d3(c) = d(3f(c)). Also, we say that c ∈ C induces (f0, f1, f2, d3) ∈ X ×Q
if ft(c) = ft for t = 0, 1, 2 and d3(c) = d3. Note that the function V defines a preference �̄ on X ×Q;

moreover, by definition, for c, c′ ∈ C

(f0(c), f1(c), f2(c), d3(c))�̄(f0(c′), f1(c′), f2(c′), d3(c′))⇔ f(c) �∗ f(c′).

Lemma 7. The preference �̄ satisfies the following property (see Definition 4 in Debreu (1960)). Fix
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any nonempty subset π of {0, 1, 2, 3}. Then

(f0, f1, f2, d3)�̄(f ′0, f
′
1, f
′
2, d
′
3)⇔ (f̂0, f̂1, f̂2, d̂3)�̄(f̂ ′0, f̂

′
1, f̂
′
2, d̂
′
3)

where ft = f̂t, f
′
t = f̂ ′t, d3 = d̂3, and d′3 = d̂′3 if t or 3 are in π, and ft = f ′t, f̂t = f̂ ′t, d3 = d′3, and

d̂3 = d̂′3 if t or 3 are not in π.

Proof. Given π, let πc be its complement. If 3 ∈ πc, then there exist c, c′, ĉ, ĉ′ ∈ C such that, for

t = 0, 1, 2, ft = ft(c), f
′
t = ft(c

′), f̂ ′t = ft(ĉ
′), f̂t = ft(ĉ), d(3f(c)) = d(3f(c′)), and d(3f(ĉ)) = d(3f(ĉ′)).

Then, by Lemma 2, f2(c) = f2(c0, c1, c2, 3c
′) and f2(ĉ) = f2(ĉ0, ĉ1, ĉ2, 3ĉ

′). Similarly, by Lemma 5,

f1(c) = f1(c0, c1, c2, 3c
′) and f1(ĉ) = f1(ĉ0, ĉ1, ĉ2, 3ĉ

′). Therefore, we can take 3c = 3c
′ and 3ĉ = 3ĉ

′, so

that 3f = 3f
′ and 3f̂ = 3f̂

′.39 It follows from Lemma 1, that

V (f0, f1, f2, 3f) > V (f ′0, f
′
1, f
′
2, 3f

′)⇔ V (f̂0, f̂1, f̂2, 3f̂) > V (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′).

Hence, by (10), the result follows.

Suppose 3 ∈ π. Again, there exist c, c′, ĉ, ĉ′ ∈ C, each inducing the respective element of X×Q—in par-

ticular, d(3f(c)) = d(3f(ĉ)) and d(3f(c′)) = d(3f(ĉ′)). Then, by Lemma 2, f2(c) = f2(c0, c1, c2, 3ĉ) and

f2(c′) = f2(c′0, c
′
1, c
′
2, 3ĉ

′). Similarly, by Lemma 5, f1(c) = f1(c0, c1, c2, 3ĉ) and f1(c′) = f1(c′0, c
′
1, c
′
2, 3ĉ

′).

Therefore, we can take 3c = 3ĉ and 3c
′ = 3ĉ

′, so that 3f = 3f̂ and 3f
′ = 3f̂

′. It follows again from

Lemma 1, that

V (f0, f1, f2, 3f) > V (f ′0, f
′
1, f
′
2, 3f

′)⇔ V (f̂0, f̂1, f̂2, 3f̂) > V (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′).

Hence, by (10), the result follows.

Step 3: Let O be the set of vectors (f1(c), f2(c), d(3f(c))) for c ∈ C, such that u < u(ct) < u for

t = 1, 2 and d(3f(c)) ∈ intD. It is straightforward to check that O is nonempty and that Q is included

in the closure of O.40

Lemma 8. For any (f1, f2, d3) ∈ O, there exists η > 0 such that the rectangle

R(f1, f2, d3; η) = (f1 − η, f1 + η)× (f2 − η, f2 + η)× (d3 − η, d3 + η)

lies in O.

39Recall that by Lemma 6, if (f0, f1, f2, 3f̃) and (f0, f1, f2, 3f̃
′) are in F0 and d(3f̃) = d(3f̃

′), then
V (f0, f1, f2, 3f̃) = V (f0, f1, f2, 3f̃

′).
40To see that O 6= ∅, consider any constant c′ ∈ C such that u < u(c′0) < u. By changing c′3 so that

u(c3) varies continuously in an open interval around u(c′3), by continuity of U we can continuously span
an open interval around f3(c′). By Axiom 7(i), this variation in c3 leads to variations in f2(c), which
must span an open interval around f2(c′), again by continuity of U . Since we are not changing c′2, by
Lemma 2, d3(c) must change in an open interval around d3(c′). Finally, by Lemma 5, f1(c) must also
vary continuously in an open interval around f1(c′). To see that Q ⊂ clO, notice that any point of Q
induced by some c ∈ C can be approximated, by slightly modifying c, by a c′ such that d3(c′) ∈ intD
and u(c′t) ∈ intIu for t = 1, 2, i.e., a point in O.
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Proof. Fix (f1, f2, d3) ∈ O and, for the inducing c, let ut = u(ct) for t = 1, 2. Since d3 ∈ intD,

there is an interval (d3, d3) ⊂ D containing d3. Since u < u2 < u, given d3, there is an interval

(f
2
(d3), f2(d3)) ⊂ U , containing f2 and spanned by u2 ∈ intIu. Let η′ > 0 be such that [d3−η′, d3+η′] ⊂

(d3, d3). By the properties of W in Lemma 2, there exists η′ > 0 such that f
2
(d3) < f

2
(d3 + η′) < f2

and f2(d3) > f2(d3 − η′) > f2. Hence, for all d′3 ∈ [d3 − η′, d3 + η′], all f ′2 ∈ [f2 − ε(η′), f2 + ε(η′)]

are achievable by changing only u2, where ε(η′) = min{f2 − f
2
(d3 + η′), f2(d3 − η′) − f2}. Since

u < u1 < u, given f2 and d3, there is an interval (f
1
(f2, d3), f1(f2, d3)) ⊂ U , containing f1 and

spanned by u1 ∈ intIu. By the properties of Ṽ in Lemma 5, there exist η′′ > 0 and ε′′ > 0 such that

[d3−η′′, d3 +η′′] ⊂ (d3, d3), [f2−ε′′, f2 +ε′′] ⊂ (f
2
(d3), f2(d3)), and f

1
(f2, d3) < f

1
(f2 +ε′′, d3 +η′′) < f1

and f1(f2, d3) > f1(f2− ε′′, d3− η′′) > f1. Hence, for all (f ′′2 , d
′′
3) ∈ [f2− ε′′, f2 + ε′′]× [d3− η′′, d3 + η′′],

all f ′′1 ∈ [f1 − δ(ε′′, η′′), f1 + δ(ε′′, η′′)] are achievable by changing only u1, where δ(ε′′, η′′) = min{f1 −
f

1
(f2 + ε′′, d3 + η′′), f1(f2 − ε′′, d3 − η′′)− f1}. Let η̂ = min{η′, η′′}, ε = min{ε(η̂), ε′′}, and δ = δ(ε, η̂).

Noting that ε(η̂) ≥ ε(η′) and letting η = min{η̂, ε, δ}, we have that all (f ′1, f
′
2, d
′
3) in R(f1, f2, d3; η) are

induced by some c ∈ C and belong to O.

Lemma 9. O is connected.

Proof. We will show that O is path connected and hence connected. Take any (f ′1, f
′
2, d
′
3), (f ′′1 , f

′′
2 , d
′′
3) ∈

O with inducing streams c′, c′′ ∈ C. By definition, u(c′t), u(c′′t ) ∈ intIu for t = 1, 2 and d′3, d
′′
3 ∈ intD.

Since D is an interval, we can vary consumption from t = 3 onward, creating a path from 3c
′ to 3c

′′ so

as to cover the interval between d′3 and d′′3 . Along this path d3 remains in intD; moreover, by Lemma 2,

f2 varies covering an interval between f ′2 and f2(c′0, c
′
1, c
′
2, 3c

′′), and by Lemma 5, f1 varies covering an

interval between f ′1 and f1(c′0, c
′
1, c
′
2, 3c

′′). Since c′1 and c′2 are unchanged, all (f1, f2, d3) along the path

are in O. Now fix 3c = 3c
′′ and vary c2 to create a path from c′2 to c′′2 so as to cover the interval between

u(c′2) and u(c′′2). Along this path u(c2) remains in intIu; moreover, by Lemma 2, f2 varies covering the

interval between f2(c′0, c
′
1, c
′
2, 3c

′′) and f2(c′0, c
′
1, c
′′
2 , 3c

′′), and by Lemma 5, f1 varies covering an interval

between f1(c′0, c
′
1, c
′
2, 3c

′′) and f1(c′0, c
′
1, c
′′
2 , 3c

′′). Since c′1 is unchanged, again all (f1, f2, d3) along this

second path are in O. Finally, fix 2c = 2c
′′ and vary c1 to create a path from c′1 to c′′1 so as to cover

the interval between u(c′1) and u(c′′1). Along this path u(c1) remains in intIu; moreover, by Lemma 2,

f1 varies covering the interval between f1(c′0, c
′
1, c
′′
2 , 3c

′′) and f1(c′0, c
′′
1 , c
′′
2 , 3c

′′). Since c′′2 is unchanged,

again all (f1, f2, d3) along this third path are in O. The three paths together form a connected path

from (f ′1, f
′
2, d
′
3) to (f ′′1 , f

′′
2 , d
′′
3) which never leaves O.

We are now ready to obtain an additive representation of �̄, relying on Debreu (1960).

Lemma 10. The preference �̄ over X ×Q can be represented by an additive function

V 0(f0, f1, f2, d3) = û(f0) + a(f1) + b(f2) + ζ(d3),

where û, a, b, and ζ are continuous, and a, b, ζ are strictly increasing on U .

Proof. We first show that �̄ has an additive representation over X ×O. By continuity, we then extend
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this representation to X × Q. The representation of �̄ over X × Q immediately implies the desired

representation of �∗ on F0.

The set O may be expressed as a countable union of open rectangles {Ri}i∈N of the form in Lemma

8, and such that for any j there is an i < j such that Ri ∩ Rj 6= ∅. To construct {Ri}i∈N, proceed as

follows. Let {Bn}∞n=1 be the sequence of closed balls of radius n centered at the origin in R3. Then, let

Kn = {o ∈ O | o ∈ Bn,B1/n(o) ⊂ O},

where B1/n(o) is the open ball of radius 1/n centered at point o. For each n, Kn is compact41 and the

increasing sequence {Kn}∞n=1 converges to O. So, each Kn can be covered by finitely many rectangles of

the form in Lemma 8. Since Kn ⊂ Kn+1, when moving from Kn to Kn+1, one can cover Kn+1 by simply

adding rectangles to those used to cover Kn. Without loss, any added rectangle contains a point with

rational coordinates not contained in other rectangles, so that the list of rectangles needed to cover O,

denoted by {Ri}i∈N, is countable. Finally, since O is connected, each Rj must intersect at least another

Ri. For simplicity, we can relabel the rectangles so that, for each j, we have Rj ∩Ri 6= ∅ for some i < j.

For any Ri, Lemmas 4 and 7 guarantee that the hypotheses of Debreu’s (1960) Theorem 3 are satisfied

on X ×Ri. Therefore, �̄ may be expressed over each X ×Ri as

V i(f0, f1, f2, d3) = ûi(f0) + ai(f1) + bi(f2) + ζi(d3),

for functions ûi, ai, bi, and ζi that are continuous and, except for ûi, strictly increasing by the properties

of V̄ which induces �̄.42

By construction, R0 and R1 have a nonempty open intersection. Over X × (R0 ∩R1) representations

V 0 and V 1 must be positive affine transformations of each other (Debreu’s (1960) Theorem 3). So there

exist constants ρ > 0 and χ ∈ R such that, on X × (R0 ∩R1),

û0(f0) = ρû1(f0) + χ, a0(f1) = ρa1(f1), b0(f2) = ρb1(f2), ζ0(d3) = ρζ1(d3).

Using these conditions, we can extend û0, a0, b0, and ζ0 to the set X × (R0 ∪R1). Indeed, each function

ai, bi, and ζi is defined on Rik which denotes the projection of Ri on the kth dimension of Q. Consider

a0. By extending a0 over R1
1 \ R0

1 using a1, the resulting function a0 is well defined and continuous on

R0
1 ∪ R1

1. By a similar reasoning for b0 and ζ0, the function V 0 can be extended to X × (R0
1 ∪ R1

1)×
(R0

2 ∪R1
2)× (R0

3 ∪R1
3). Since this product includes X ×R0 ∪R1, the function V 0 is, in particular, well

defined and continuous on it.

Finally, since for each j > 0 we have Rj ∩ Ri 6= ∅ for some i < j, we can extend by induction

representation V 0 from X ×R0 to X × (∪i∈NRi) = X × O, in countably many steps. Notice that the

functions a, b, and ζ (we henceforth omit the superscript ‘0’) entering the formula of V 0 are defined,

through the induction, over the respective projections of O.

41Kn is clearly bounded. Consider any sequence {om} ⊂ Kn converging to o′. Since Bn is closed,
o′ ∈ Bn. There remains to show that B1/n(o′) ⊂ O. Let o′′ be any point such that ||o′ − o′′|| = r < 1/n.
Then ||o′′ − om|| ≤ r + ||o′ − om||. So, for m large enough, o′′ ∈ B1/n(om) and hence o′′ ∈ O.

42While Debreu’s theorem requires that the preference domain be a Cartesian product, it does not
assume compactness of the sets forming the product.
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Since any point of X × O is contained in X × Ri for some i ∈ N, V 0 and its components û, a, b,

and ζ are continuous over X × O. Moreover, V 0 represents �̄ on X × O. To see this, we need to

check that for any (f ′0, f
′
1, f
′
2, d
′
3) and (f ′′0 , f

′′
1 , f

′′
2 , d
′′
3) in X ×O, V 0(f ′0, f

′
1, f
′
2, d
′
3) > V 0(f ′′0 , f

′′
1 , f

′′
2 , d
′′
3) iff

(f ′0, f
′
1, f
′
2, d
′
3)�̄ (f ′′0 , f

′′
1 , f

′′
2 , d
′′
3). Note that (f ′1, f

′
2, d
′
3) and (f ′′1 , f

′′
2 , d
′′
3) must both belong to some Kn in

the previous construction. Since V 0 represents �̄ on X ×Kn, it ranks (f ′0, f
′
1, f
′
2, d
′
3) and (f ′′0 , f

′′
1 , f

′′
2 , d
′′
3)

correctly, which proves the claim.

It remains to show that V 0 can be extended to the entire domain X × Q, additively, and that it

represents �̄ over this domain. We first show that V 0 can be extended to a continuous function over

X × Q. Recall that V is continuous and represents �̄ over X × Q—and hence over X × O. So, there

exists a strictly increasing map φ : Y → Y 0 such that V 0 = φ ◦V , where Y 0 and Y are the ranges of V 0

and V on X×O. Y 0 and Y are intervals of R because X×O is connected and V 0 and V are continuous

over this domain. Since φ is strictly increasing, it must be continuous on its domain, otherwise it would

not cover Y 0. Let Y be the range of V over X ×Q. Since X ×Q ⊂ cl(X ×O) and V is continuous, Y

contains at most two more points than Y (its boundaries), and this may occur only when the relevant

boundaries are finite. One can extend φ to these points, whenever applicable, by taking the limit of φ:

for example, if ȳ denotes the upper bound of Y and y /∈ Y , one may define φ(ȳ) as limy↑ȳ φ(y).43 Finally,

we can extend V 0 to X ×Q by letting V 0 = φ ◦ V over this domain. By construction, V 0 is continuous

as the composition of continuous functions.

Next, we show that this extension of V 0 to X ×Q still obeys the additive representation obtained on

X×O in terms of û, a, b and ζ. We first show that a, b, and ζ can be extended on the relevant projections

of Q (not just of O). Since O is connected and Q ⊂ clO, the extension is only needed (possibly) at the

two boundaries of D for ζ, and at the boundaries of U for a and b; these extensions are necessary only

if these boundaries are achieved by some (f1, f2, d3) ∈ Q.

To extend ζ, suppose that there is an (f1, f2, d3) ∈ Q such that d3 is the upper bound of D—the

other case follows similarly. Without loss, we can choose f1, f2 ∈ intU .44 By perturbing c3, we can

then construct a sequence {(fn1 , fn2 , dn3 )} such that fn1 and fn2 are in some compact K ⊂ intU and

dn3 ∈ intD for all n, and dn3 → d3. By construction, each (fn1 , f
n
2 , d

n
3 ) ∈ O. Fixing some f0, the sum

û(f0) + a(fn1 ) + b(fn2 ) + ζ(dn3 ) is well defined and equal to V 0(f0, f
n
1 , f

n
2 , d

n
3 ) for each n. Moreover,

possibly moving to subsequences, fn1 → f̂1 and fn2 → f̂2 for some f̂1, f̂2 ∈ K. Since a and b are

43One can show that for ȳ ∈ Y \ Y , limy↑ȳ φ(y) must be finite. Suppose not: First, there exist i)
s̄ = (f̄0, f̄1, f̄2, d̄) ∈ X×Q such that V̄ (s̄) = ȳ, which means that the agent prefers s̄ to any other stream;
and ii) a sequence sn = (fn0 , f

n
1 , f

n
2 , d

n) ∈ X ×O that converges to s̄, and such that V 0(sn) diverges to
+∞. Because V 0 is additive, this means that there must be at least one sequence, among û(fn0 ), a(fn1 ),
b(fn2 ), and ζ(dn), with a subsequence diverging to +∞. For example, suppose that dn is such that ζ(dn)
diverges to +∞. Then, for any stream c such that d(3f(c)) = d̄, we have V̄ (f0(c), f1(c), f2(c), d̄(c)) = ȳ.
Indeed, fix any c0 and ct’s such that u < u(ct) < ū for t ∈ 1, 2. Choosing the sequence of continuation
streams (c3, . . .) corresponding to the sequence of dn converging to d̄, V 0 evaluated at those streams
(and the fixed c0, c1, c2) must diverge to +∞. This implies that V̄ converges to ȳ for that sequence. By
continuity of V̄ over its entire domain, this implies that when choosing (c3, . . .) such that d(3f(c)) = d̄, we
have V̄ (f0(c), f1(c), f2(c), d(3f(c))) = ȳ, regardless of the values of c0, c1, c2. This, however, violates the
fact that preferences are strictly increasing in u(c0) (Lemma 2), a contradiction. A similar contradiction
can be derived if instead û(fn0 ), or a(fn1 ), or b(fn2 ) has a subsequence diverging to +∞. This shows that
necessarily Y0 is bounded above whenever ȳ ∈ Ȳ \ Y . By a similar argument for the lower bound, we
conclude that φ is bounded at any boundary for which it needs to be extended.

44This can be achieved by changing c1 and c2 of the stream inducing (f1, f2, d3), without affecting d3.
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continuous over K, a(fn1 ) and b(fn2 ) converge on these subsequences. Therefore, ζ(d3) is well defined

as the difference V 0(f0, f̂1, f̂2, d3) − û(f0) − a(f̂1) − b(f̂2), because V 0 has already been extended to

(f0, f̂1, f̂2, d3). Moreover, since V 0 was extended continuously over X ×Q, ζ must also be continuous at

d3.

We can similarly extend b to the boundary of U , whenever needed. To see this, take any (f1, f2, d3) ∈ Q
such that f2 lies at a boundary of U , say f2 = ν̄—again, the other case follows similarly. Moreover, we

can choose c1 in the inducing stream c ∈ C so that f1 ∈ intU . By perturbing c2, we can build a sequence

{(fn1 , fn2 , d3)} such that fn1 is in a compact K ⊂ intU and fn2 ∈ intU for all n, and fn2 → ν. Possibly

taking a subsequence such that fn1 → f̂1 for some f̂1 ∈ K, we obtain a well define limit for V 0, a, and

ζ, from which we can obtain the value of b(ν̄). The argument for a is identical.

In conclusion, the function û(·) + a(·) + b(·) + ζ(·) is equal to V 0 over the entire set X × Q, and

represents �̄ over this domain.

Step 4: By Lemma 1 with π = {1, 2, 3}, for any f0 ∈ X, the induced preference �∗−0 on F is

independent of f0. By Lemma 10, we can conclude that �∗−0 has a representation

V ∗−0(f1, f2, 3f) = a(f1) + b(f2) + ζ(d(3f)). (11)

Note that Axiom 8 holds for any f0. So if f1 = f ′1, (f1, f2, 3f) %∗−0 (f ′1, f
′
2, 3f

′) iff (f2, f3, 4f) %∗−0

(f ′2, f
′
3, 4f

′).

Lemma 11. There exist α > 0, ξ ∈ R, and G : U → R continuous and strictly increasing such that,

for any finite T ≥ 2 any f ∈ F ,

V ∗−0(f) =

T∑
t=1

αtG(ft) + αT d̃(T+1f) + ξ

T−2∑
t=0

αt. (12)

Proof. Consider again R0 in the proof of Lemma 10. By definition of a rectangle, if (f1, f2, 3f) and

(f ′1, f
′
2, 3f

′) are such that (f1, f2, d(3f)), (f ′1, f
′
2, d(3f

′)) ∈ R0, then all f̂1 ∈ R0
1 are feasible with both

(f2, 3f) and (f ′2, 3f
′). By the stationarity property of �∗−0, we have

a(f̂1) + b(f2) + ζ(d(3f)) ≥ a(f̂1Let) + b(f ′2) + ζ(d(3f
′))

if and only if

a(f2) + b(f3) + ζ(d(4f)) ≥ a(f ′2) + b(f ′3) + ζ(d(4f
′)).

Hence, since additive representations are unique up to positive affine transformations, for all (f2, 3f)

such that (f1, f2, d(3f)) ∈ R0,

α(a(f2) + b(f3) + ζ(d(4f))) + ξ = b(f2) + ζ(d(3f)) (13)

for some α > 0 and ξ ∈ R.

The argument used for R0 can be equivalently applied to any Ri in the covering {Ri}i∈N of O.

Moreover, since for each j > 0 we have Rj ∩ Ri 6= ∅ for some i < j, it is clear that the α in (13) must
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be the same for all f ∈ F such that (f1, f2, d(3f)) ∈ O. That (13) must hold for all f ∈ F is implied

by the following two observations. First, if c ∈ C induces (f1, f2, d3) ∈ O, it imposes no restriction on

d(4f(c)), which can take any value in D—hence 4f can take any value in F . To see this, recall that for

f ∈ F we defined d(f) = V (f̂0, f) for some f̂0 ∈ X, and V (f̂0, f) = Ṽ (f̂0, f1, d(2f)) by Lemma 5. So,

since Ṽ is strictly increasing in its second and third argument, the condition d3(c) ∈ intD only implies

f3(c) ∈ intU , but d(4f(c)) can be at the boundary of D. Therefore, (13) already holds for any value of

4f ∈ F . Second, suppose that f is such that (f1, f2, d(3f)) is at boundary of Q. Take a sequence {fn}
such that (fn1 , f

n
2 , d(3f

n)) ∈ O for all n and converges to (f1, f2, d(3f)). The sequence can be chosen

so that 4f is fixed: perturbing only c1, c2, and c3 is enough to guarantee that we are in O. Now recall

that the functions a, b, and ζ are continuous by Lemma 10. Then, the right-hand side of (13) converges,

as do the first two terms of the left-hand side. The last term is constant and equal to ζ(d(4f)), so it

converges trivially. Therefore (13) holds everywhere.

We conclude that, for all f ∈ F ,

V ∗−0(f1, f2, 3f) = a(f1) + ξ + αV ∗−0(f2, f3, 4f).

Therefore, using this condition recursively and (11), for any f ∈ F and finite T > 2, we have

V ∗−0(f1, f2, 3f) =

T−1∑
t=0

αta(ft+1) + αT−1(b(fT+1) + ζ(d(T+2f))) + ξ

T−2∑
t=0

αt.

The result then follows by defining G = α−1a and d̃(·) = α−1(b(·) + ζ(d(·))).

By Lemma 11, for any finite T ≥ 2, we can represent � for streams c as

U(c) = û(c0) +

T∑
t=1

αtG(U(tc)) + αT d̃(U(T+1c), U(T+2c), . . .) + ξ

T−2∑
t=0

αt. (14)

The next two technical lemmas will be useful to complete the proof of our theorem.

Lemma 12. For any constant streams c, c′ ∈ C, c � c′ iff û(c0) > û(c′0).

Proof. Suppose û(x) > û(y) and consider c = (x, x, . . .) and ĉ = (x, y, . . .). For any t ≥ 0 and c′′ ∈ C,

define ct = (c0, . . . , ct, c
′′) and ĉt = (ĉ0, . . . , ĉt, c

′′). For t = 0, we have U(ct) = U(ĉt). For any t ≥ 1,

using (14), we first have U(tc
t) > U(tĉ

t). Then, using again (14) backward recursively and monotonicity

of G, we conclude that U(ct) ≥ U(ĉt). Since this is true for any t ≥ 0 and c′′ ∈ C, Axiom 7(ii) implies

c % ĉ. Now note that, again by (14), ĉ � (y, y, . . .). Hence, by Axiom 1, c � (y, y, . . .).

Now suppose û(x) = û(y) and consider c = (x, x, . . .) and ĉ = (y, y, . . .). For any t and c′′ ∈ C, define

ct and ĉt as before. Using again (14) backward recursively and the fact that G is a function, we conclude

that U(ct) = U(ĉt). Since this is true for any t and c′′ ∈ C, Axiom 7(ii) implies c ∼ c′.

Lemma 13. For any c ∈ C, there exists x ∈ X such that c ∼ (x, x, . . .).
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Proof. By Lemma 19 in the Supplemental Material, for any c ∈ C, there exists y ∈ X such that

c ∼ (c0, y, y, . . .). Suppose (c0, y, y, . . .) 6∼ (y, y, . . .). If (c0, y, y, . . .) � (y, y, . . .), then û(c0) > û(y). Let

ĉ = (c0, c0, . . .) and c̃ = (c0, y, y, . . .). For any t ≥ 0 and any c′′ ∈ C, consider ĉt = (ĉ0, . . . , ĉt, c
′′) and

c̃t = (c̃0, . . . , c̃t, c
′′). We have ĉt % c̃t. Indeed, for t = 0, ĉt = c̃t. For t ≥ 1, we can proceed using (14).

Since û(c0) > û(y), U(tĉ
t) > U(tc̃

t). For s < t, since û(ĉts) ≥ û(c̃ts) and G is strictly increasing, we have

U(sĉ
t) ≥ U(sc̃

t). By Axiom 7(ii), we then have ĉ % c̃ and hence (c0, c0, . . .) % c � (y, y, . . .). Since X is

connected, by Axiom 2, there exists x ∈ X such that (x, x, . . .) ∼ c. The case (c0, y, y, . . .) ≺ (y, y, . . .)

follows similarly.

We can now prove that α < 1.

Lemma 14. α < 1.

Proof. Consider consumption streams that are constant from t = 3 onward. Then ft is constant for

t ≥ 3. So we can write d(3f) = d(4f) = e(f3) in (13) and thus obtain

(1− α)e(f3) = αb(f3) + αa(f2)− b(f2) + ξ.

First, note that f3 > f ′3 implies e(f3) > e(f ′3). By Lemma 12, f3 > f ′3 implies u(c3) > u(c′3). Define

c = (c3, c3, . . .) and c′ = (c3, c
′
3, c
′
3, . . . ). Replicating the argument in the proof of Lemma 13, we have

c % (c3, c3, c
′
3, c
′
3, . . . ). Moreover, by Axiom 7(i), (c3, c3, c

′
3, c
′
3, . . . ) � c′. Then, by Axiom 1 and Lemma

2, W (u(c3), d(f3, f3, . . .)) > W (u(c3), d(f ′3, f
′
3, . . .)), which holds iff d(f3, f3, . . .) > d(f ′3, f

′
3, . . .).

Second, we can find ĉ, c̃ ∈ C, constant from t = 3 onward, such that f2(ĉ) = f2(c̃) and f3(ĉ) > f3(c̃).

Consider x, y ∈ X with u(x) > u(y) and the streams (x, y, y, . . .) and (y, x, x, . . .). By the previous

argument based on Axiom 7(ii), (x, x, x, . . .) � (x, y, y, . . .). If (x, y, y, . . .) % (y, x, x, . . .), then by

(14) and continuity of û there exists z ∈ X such that (x, y, y, . . .) ∼ (z, x, x, . . .). In this case, let

ĉ = (c0, c1, z, x, x, . . .). If (x, y, y, . . .) ≺ (y, x, x, . . .), then by Axiom 2 there exists w ∈ X such that

(x, y, y, . . .) ∼ (y, w,w, . . .). Moreover, u(w) > u(y). Otherwise, since (y, y, y, . . .) % (y, w,w, . . .) for

u(y) ≥ u(w) (again by the same argument as before), we would have (x, y, y, . . .) � (y, w,w, . . .) by (14)

and Axiom 1. In this case, let ĉ = (c0, c1, y, w,w, . . .). Finally, let c̃ = (c0, c1, x, y, y, . . .).

To conclude the proof, note that for c ∈ {ĉ, c̃}, (1− α)e(f3(c)) = αb(f3(c)) + ξ′ for some constant ξ′.

Since b and e are strictly increasing, we must have α < 1.

Note that, if c is constant from any T ≥ 3 onward, by Lemma 14 and (13)

d̃(U(T c), U(T+1c), . . .) =
α

1− α
G(U(T c)) +

ξ

α(1− α)
.

So, for eventually constant streams, we can write

U(c) = û(c0) +

T∑
t=1

αtG(U(tc)) +
αT+1

1− α
G(U(T+1c)) +

1 + α(1− αT−1)

α(1− α)
ξ. (15)
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Lemma 15. G is bounded on U .

Proof. By Axiom 3, V ∗−0 is finite for all c ∈ C. Suppose that G is unbounded above—the other

case follows similarly. Then, for each r ∈ R++, there must be a stream cr with utility Ur such that

Gr ≡ G(Ur) ≥ r. Moreover, for r > r′, we can choose cr and cr
′

so that Gr > Gr
′
, relying on continuity

of G and connectedness of U . By Lemma 13, for each r we can also let cr be constant. As a preliminary

observation, note the following: given r′ > r, a stream c that equals cr for the first k periods and cr
′

forever after must satisfy G(U(c)) ≥ r. This is because, by definition, U(tc) > U(tc
r) for t ≥ k; then,

by monotonicity of G and using (15) backward recursively, we have U(tc) > U(tc
r) for 0 ≤ t < k.

Now construct stream ĉ as follows. For some M > 1 and each t ≥ 1, consider the constant stream

c(M/α)t with the property αtG(M/α)t ≥M t. Then, let ĉ0 be such that u < û(ĉ0) < u and, for each t ≥ 2,

let ĉt = c
(M/α)t

t . Now, for any T > 0, let cT be equal to ĉ up to T and to c(M/α)T thereafter. Using (15),

we have

U(cT ) =û(ĉ0) +

T−1∑
t=1

αtG(U(tc
T )) +

αT

1− α
G(M/α)T +

1 + α(1− αT−2)

α(1− α)
ξ

≥û(ĉ0) +

T−1∑
t=1

M t +
1

1− α
MT +

1 + α(1− αT−2)

α(1− α)
ξ,

where the inequality follows by recursively applying our preliminary observation. Note that the lower

bound on U(cT ) goes to +∞ as T →∞.

Now fix any T and cT . To simplify notation, let c̃ = cT . Using Axiom 7(ii), we have U(ĉ) ≥ U(c̃). To

see this, consider any t ≥ 0 and c′′ ∈ C, and let ĉt = (ĉ0, . . . , ĉt, c
′′) and c̃t = (c̃0, . . . , c̃t, c

′′). For t ≤ T ,

we have ĉt ∼ c̃t because the two streams are identical. For t ≥ T + 1, we first have that u(ĉs) > u(c̃s)

for T < s ≤ t by Lemma 12. Hence, U(ĉt, c
′′) > U(c̃t, c

′′). Second, using again monotonicity of G and

(12) recursively, we conclude U(ĉt) ≥ U(c̃t). By Axiom 7(ii), we then have the claimed property.

It follows that, for any T , U(ĉ) ≥ U(cT ) and hence, since û(ĉ0) is bounded by assumption, V ∗−0(f(ĉ))

must be infinite, violating Axiom 3.

Lemma 16. For any c ∈ C, U(c) = û(c0) +
∑∞
t=1 α

tG(U(tc)).

Proof. Again by Axiom 3, V ∗−0 is finite for all c ∈ C. Using (12) for any finite T and observing that

T f can take any value in F , we conclude that the function d̃ must be finite because G is bounded. The

result then follows by letting T →∞, relying on α < 1 and ignoring the additive constant.

To conclude, both functions U and U represent � over C. So, they are strictly increasing transfor-

mations of one another. Letting G denote the function of U such that G(U(c)) = G(U(c)) for all c,

we obtain representation (5). For uniqueness, note that the additive form of U is unique up to positive

affine transformations, i.e., Ũ = ρU + χ for ρ > 0 and χ ∈ R. So,

Ũ(c) = ρû(c0) + χ+

∞∑
t=1

αtρG(U(tc)) = ρû(c0) + χ+

∞∑
t=1

αtρG

(
Ũ(tc)− χ

ρ

)
.

45



A.3 Proof of Proposition 1

Part (i). Take ν′, ν ∈ U . By definition, there exist c′, c ∈ C such that U(c′) = ν′ and U(c) = ν. By

Lemma 13, we can take c′ = (x, x, . . .) and c = (y, y, . . .) for some x, y ∈ X. Suppose u(x) > u(y). Then,

by Lemma 12, U(x, . . .) > U(y, . . . ). By representation (5),

U(x)− α

1− α
G(U(x)) > U(y)− α

1− α
G(U(y)).

Rearranging, we get that for any ν′ > ν in U

G(ν′)−G(ν) <
1− α
α

(ν′ − ν).

Lemma 17. For any ε > 0, there exists a constant K ∈ ( 1−α
2α , 1−α

α ) such that, for all ν′ > ν in U ,

G(ν′)−G(ν) ≤ max{K(ν′ − ν), ε}

Proof. See the Supplemental Material.

To show that U is H-continuous, consider any c, c̃ ∈ C and define cT = (c0, c1, . . . , cT , c) and c̃T =

(c0, c1, . . . , cT , c̃). Using Lemma 17, we will show that for any ε > 0, there exists T such that

|U(cT )− U(c̃T )| < 2αε

1− α
.

To do so, let M = α
1−α2 supν∈U |G(U)| and δ = (1 +K)α). Since K < (1− α)/α, we have δ < 1. Let

T denote the first time such that KMδT < ε. Note that for all t < T , we have max{KMδt, ε} = KMδt.

We first show that for all t < T , we have |U(ct) − U(c̃t)| ≤ Mδt. The proof works by induction. For

t = 0, we have ct0 = c̃t0, so

|U(c0)− U(c̃0)| =
∞∑
s=1

αs|G(U(sc
0))−G(U(sc̃

0))| ≤M

Suppose the claim holds for t < T − 1, we will show it holds for t+ 1. We have

|U(ct+1)− U(c̃t+1)| ≤ α|G(U(1c
t+1))−G(U(1c̃

t+1))| (16)

+α

∞∑
s=1

αs|G(U(s+1c
t+1))−G(U(s+1c̃

t+1))|.

By the induction hypothesis, the sum in (16) is bounded above by Mδt. And because t < T − 1, we

have KMδt ≥ ε. Therefore,

|U(c)− U(c′)| ≤ αKMδt + αMδt ≤Mδt+1,

which shows the claim.
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Finally, for t = T , (16) still applies, but this time the first term is bounded by αε, because KMδT < ε.

This implies that

|U(c)− U(c′)| ≤ αε+ αMδT ≤ αε+ αε/K = δε/K.

Since δ < 1 and K > (1− α)/2α, (A.3) follows.

Part (ii). Let C(M) be the set of consumption streams such that |u(ct)| ≤M for all t, and B(M) be

the space of bounded real-valued functions with domain C(M). Endowed with the sup norm ‖U‖∞ =

supc∈C(M) |U(c)|, B(M) is a complete metric space. Let J be the operator on B(M) defined by

J (U)(c) = u(c0) +

∞∑
t=1

αtG(U(tc)).

By construction, J (U) is bounded over C(M), as u is bounded by M and U is bounded over C(M).

Moreover, since G is K-Lipschitz continuous with K < (1− α)/α, J must be a contraction, as is easily

checked. So, J has a unique fixed point; call it UM . As M increases, the domain of UM increases.

However, for any M,N , uniqueness of the fixed point guarantees that UM and UN coincide on the

intersection of their domains. Thus, we obtain a unique solution U∗ to (5) over C(B) = ∪MC(M).

Let H be the set of H-continuous functions. To verify that U∗ ∈ H, it suffices to show that (a) J maps

H onto itself, and (b) H is closed under the sup norm. Indeed, this will guarantee that J ’s fixed-point

belongs to H. To show (a), take any U ∈ H and ε > 0. Since α < 1 and G is bounded, there is

T > 0 such that αT 2Ḡ
1−α < ε/2, where Ḡ = supν∈U |G(ν)|. Moreover, since U ∈ H, there exists N such

|U(c)− U(c̃)| < ε/2 whenever ct = c̃t for all t ≤ N . For any c and c̃,

|J (U)(c)− J (U)(c̃)| ≤

∣∣∣∣∣
∞∑
t=1

αt [G(U(tc))−G(U(tc̃))]

∣∣∣∣∣
≤ K

T−1∑
t=1

αt|U(tc)− U(tc̃)|+ αT
2Ḡ

1− α
.

where K is the Lipschitz constant of G. The first term is less than Kα
(1−α) maxt≤T−1 |U(tc) − U(tc̃)|.

Now suppose that ct = c̃t for all t ≤ N ′ = N + T . This implies that (tc)t′ = (tc̃)t′ for all t ≤ T

and t′ ≤ N , because tc is truncating at most T elements of c, and c and c̃ were identical up to time

T + N , by construction. By definition of N , we have |U(tc) − U(tc̃)| < ε/2 for all t ≤ T and, hence,

|J (U)(c) − J (U)(c̃)| < ε. Setting T (ε) = N ′ shows that J (U) satisfies H-continuity. To prove (b),

consider a sequence {Um} in H that converges to some limit U in the sup norm. Now fix ε > 0. There is

m such that ‖Um − U‖∞ < ε/3. Since Um ∈ H, there is N such that |Um(c)− Um(c̃)| < ε/3 whenever

ct = c̃t for all t ≤ N . Thus, for such c, c̃,

|U(c)− U(c̃)| ≤ |U(c)− Um(c)|+ |Um(c)− Um(c̃)|+ |Um(c̃)− U(c̃)| < ε,

which shows that U ∈ H.

To extend the definition of U∗ from C(B) to C, for any c ∈ C \ C(B), consider any sequence {cn} in

C(B) such that cnt = ct for all t ≤ n, and let U∗(c) = limn→+∞ U∗(cn). This limit is well-defined and

independent of the chosen sequence. To see this, note that, for any such sequence {cn} and any ε > 0,

H-continuity of U∗ implies that there is T such that |U∗(c)−U∗(c̃)| < ε whenever ct = c̃t for all t ≤ T .
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Hence, |U∗(cn) − U∗(cm)| < ε for all n,m ≥ T , since the consumption levels of cn and cm coincide up

to min{n,m}. So, {U∗(cn)} forms a Cauchy sequence in R and thus converges. Moreover, the limit is

independent of the chosen sequence, as for any ε > 0, |U∗(cn) − U∗(c̃n)| < ε for n large enough and

sequences {cn} and {c̃n} of the type constructed above.

The limit U thus defined satisfies representation (5). Since U∗ is a fixed point of J on C(B) and cn

belongs to C(B), for each n

U∗(cn) = u(cn0 ) +

∞∑
t=1

αtG(U∗(tc
n))

The left-hand side converges to U∗(c). Moreover, for each t, U∗(tc
n) converges to U∗(tc) (which is

similarly well defined). Since G is continuous, G(U∗(tc
n)) converges to G(U∗(tc)) for each t. Since

α < 1 and G is bounded, by the dominated convergence theorem, the right-hand side converges to

u(c0) +
∑∞
t=1 α

tG(U∗(tc)), which proves that (5) holds for all c ∈ C.

Finally, there is a unique H-continuous extension of U∗ from C(B) to C that solves (5). To see this,

let U be any H-continuous solution to (5). Since U is a fixed point of J and the fixed point is unique

on C(B), U must coincide with U∗ on C(B). Take any c ∈ C \ C(B) and ε > 0. By H-continuity of

U and U∗, both |U(c) − U(c̃)| and |U∗(c) − U∗(c̃)| are less than ε/2 for some c̃ ∈ C(B) equal to c for

all t up to a large N . Since U and U∗ must be equal at c̃, |U(c) − U∗(c)| < ε. Since ε was arbitrary,

U(c) = U∗(c) for all c, establishing uniqueness.

A.4 Proof of Proposition 2

Let U(c) = V (c0, U(1c), U(2c), . . .) where V is strictly increasing in U(tc) for all t ≥ 1. By definition,

(x, c) � (y, c) means that U(x, c) > U(y, c). Hence, for all 0 ≤ s ≤ t,

U(szt, x, c) > U(szt, y, c),

where, for s < t, szt = (zs, . . . , zt) and tzt = zt. This follows by induction. For s = t,

U(tzt, x, c) = V (tzt, U(x, c), U(c), . . .) > V (tzt, U(y, c), U(c), . . .) = U(tzt, y, c).

Now suppose that the claim holds for r + 1 ≤ s ≤ t, with 0 ≤ r < t. Then

U(rzt, x, c) = V (zr, U(r+1zt, x, c), . . . , U(tzt, x, c), U(x, c), . . .)

> V (zr, U(r+1zt, y, c), . . . , U(tzt, y, c), U(y, c), . . .) = U(rzt, y, c).

By definition, (0zt, x, x̂, c
′) ∼ (0zt, y, ŷ, c

′) means that

V (z0, U(1zt, x, x̂, c
′), . . . , U(tzt, x, x̂, c

′), U(x, x̂, c′), U(x̂, c′), . . .)

= V (z0, U(1zt, y, ŷ, c
′), . . . , U(tzt, y, ŷ, c

′), U(y, ŷ, c′), U(ŷ, c′), . . .).

Since U(0zt, x, c) > U(0zt, y, c) for all c,

V (z0, U(1zt, y, x̂, c
′), . . . , U(tzt, y, x̂, c

′), U(y, x̂, c′), U(x̂, c′), . . .)
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< V (z0, U(1zt, y, ŷ, c
′), . . . , U(zt, y, ŷ, c

′), U(y, ŷ, c′), U(ŷ, c′), . . .).

This implies that U(ŷ, c′)> U(x̂, c′). Otherwise, U(y, ŷ, c′)≤ U(y, x̂, c′) and, by induction, U(szt, y, ŷ, c
′) ≤

U(szt, y, x̂, c
′) for all 0 ≤ s ≤ t, which is a contradiction.

Finally, we must have U(x, x̂, c′) > U(y, ŷ, c′). Otherwise, again by induction, for all 0 ≤ s ≤ t

U(szt, y, ŷ, c
′) > U(szt, x, x̂, c

′),

which contradicts (0zt, x, x̂, c
′) ∼ (0zt, y, ŷ, c

′).

Suppose that we replace condition (0zt, x, x̂, c
′)∼ (0zt, y, ŷ, c

′) with (0zt, x, t+2zs, x̂, c
′) ∼ (0zt, y, t+2zs, ŷ, c

′)

where s ≥ t + 2. By the same argument as before, (0zt, y, t+2zs, x̂, c
′) ≺ (0zt, y, t+2zs, ŷ, c

′) and so

(ŷ, c′) � (x̂, c′). If not, by induction (τzs, x̂, c
′) % (τzs, ŷ, c

′) for all 0 ≤ τ ≤ s (where zt+1 = y). Then,

we must have (x, t+2zs, x̂, c
′) � (y, t+2zs, ŷ, c

′). If not, since (τzs, ŷ, c
′) � (τzs, x̂, c

′) for all t+ 2 ≤ τ ≤ s,
we would have (0zt, y, t+2zs, ŷ, c

′) � (0zt, x, t+2zs, x̂, c
′).

A.5 Proof of Theorem 4

Using Axiom 10 and Theorem 3, we also have

(c0, c1, 2c) � (c0, c
′
1, 2c)⇔ (ĉ0, c1, 2c

′) � (ĉ0, c
′
1, 2c

′) (17)

(c0, c1, 2c) � (c0, c1, 2c
′)⇔ (ĉ0, c

′
1, 2c) � (ĉ0, c

′
1, 2c

′) (18)

(c0, c1, 2c) � (c′0, c1, 2c)⇔ (c0, c
′
1, 2c

′) � (c′0, c
′
1, 2c

′) (19)

(c0, c1, 2c) � (c0, c
′
1, 2c

′)⇔ (ĉ0, c1, 2c) � (ĉ0, c
′
1, 2c

′) (20)

By Debreu’s (1960) Theorem 3, conditions (17)-(20) and (i)-(ii) in Axiom 10 imply that � can be

represented by

w0(c0) + w1(c1) + w2(2c),

for some continuous and nonconstant functions w0, w1, and w2. By Theorem 3, � is also represented by

u(c0) + αG(u(c1) + g(2c)) + αg(2c),

where g(2c) =
∑∞
t=2 α

t−1G(U(tc)). It follows that

u(c0) + αG(u(c1) + g(2c)) + αg(2c) = ξ [w0(c0) + w1(c1) + w2(2c)] + χ,

for some ξ > 0 and χ ∈ R. This implies that

αG(u(c1) + g(2c)) + αg(2c) = ξ [w1(c1) + w2(2c)] ,

and therefore G must be affine. Since G must be increasing, without loss of generality let G(U) = γU

with γ > 0. Finally, by Proposition 1, γ < 1−α
α .
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A.6 Proof of Proposition 5

By assumption, for all t,

U(tc) = u(ct) +

∞∑
τ=t+1

βδτ−tu(cτ ), (21)

where 0 < β = γ
1+γ < 1, 0 < δ = (1 + γ)α < 1, 0 < α < 1.

For the “if part” see the main text. For the “only if” part, using (21), we get

∞∑
t=0

w(t)U(tc) = w(0)u(c0) +

∞∑
t=1

u(ct)

[
w(t) + βδt

(
t−1∑
τ=0

w(τ)

δτ

)]
.

By assumption,
∑∞
t=0 w(t)U(tc) =

∑∞
t=0 δ

tu(ct). So the coefficients of u(ct) must match for all t. For

t = 0, w(0) = 1. Then, for t = 1, w(1) = (1 − β)δ = α. Now suppose w(t) = αt for all t = 0, . . . , τ .

Then,

w(τ + 1) = δτ+1 − βδτ+1 1− ατ+1

δτ+1

1− α
δ

= ατ+1.

Hence, by induction, w(t) = αt for all t.
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