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Abstract

This supplement contains the proofs omitted from the main text of the pa-

per. For simplicity, this supplement uses appendix and equation numbering that

continue from the main text of the paper.

B Proof of Theorem 1

The proof follows and generalizes that of Diamond (1965), and is based on the following lemmas.

Lemma 18 (Debreu (1954)). Let C be a completely ordered set and Z = (z0, z1, ...) be a countable

subset of C. If for every c, c′ ∈ C such that c ≺ c′, there is z ∈ Z such that c - z - c′, then there exists

on C a real, order-preserving function, continuous in any natural topology.45

Lemma 19. For any c ∈ C, there exists x ∈ X such that c ∼ (c0, x, x, . . .).

Proof. Given c, let Dc = {(c0, y, y, . . .) : y ∈ X}, A = {d ∈ Dc : d - c}, and B = {d ∈ Dc : d % c}. By

Axiom 1, A∪B = Dc; by Axiom 2, A and B are closed; by Axiom 3, A and B are nonempty. Moreover,

Dc is connected. Indeed, for any continuous function φ : Dc → {0, 1}, the function φ̄ : X → {0, 1}
defined by φ̄(x) = φ(c0, x, x, . . .) is also continuous. Connectedness of X implies that φ̄ is constant and,

hence, that φ is constant, showing connectedness of Dc. This implies that A ∩B 6= ∅.

To conclude the proof of Theorem 1, let Z0 be a countable dense subset of X, which exists since X

is separable, and let Z be the subset of C consisting of streams (x, y, y, . . .) with x, y ∈ Z0. Lemma 19

implies that Z satisfies the hypothesis of Lemma 18, which yields the result. Indeed, by Lemma 19 there

are x, y ∈ X such that (c0, x, x, . . .) ∼ c ≺ c′ ∼ (c′0, y, y, . . .). Consider the set E ⊂ X2 consisting of

(z, w) such that (c0, x, x, . . .) ≺ (z, w,w, . . .) ≺ (c′0, y, y, . . .). E is nonempty by connectedness of X and

open by Axiom 2. Since Z is dense in X2, E must contain an element of Z.

45A natural topology is one under which Axiom 2 holds for that topology.
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C Proof of Corollary 1

By Theorem 3, � can be represented by

U(c) = u(c0) +

∞∑
t=1

αtG(U(tc)).

Since (x, c) � (y, c), u(x) = u(y) + u for some u > 0. Hence, for any t ≥ 1, U(cx) − U(cy) equals

u−
∑t
s=1 α

s∆Gs, where ∆Gs is defined recursively as follows: for s = t,

∆Gt = G(U(tc
y))−G(U(tc

y)− u),

otherwise

∆Gs = G(Us(sc
y))−G

(
Us(sc

y)−
t−s∑
k=1

αk∆Gs+k

)
.

By Proposition 1, ∆Gt <
1−α
α u and

∆Gt−1 = G(Ut−1(t−1c
y))−G (Ut−1(t−1c

y)− α∆Gt)

< (1− α)∆Gt <
(1− α)2

α
u.

Now, suppose that, for all k such that s < k ≤ t− 1, ∆Gk <
(1−α)2

α u. It follows that

∆Gs <
1− α
α

[
t−s∑
τ=1

ατ∆Gs+τ

]
<

1− α
α

[
t−s−1∑
τ=1

ατ
(1− α)2

α
+ αt−s

(1− α)

α

]
u

=
(1− α)2

α

[
t−s−2∑
τ=0

ατ (1− α) + αt−s−1

]
u =

(1− α)2

α
u.

Therefore,

t∑
s=1

αs∆Gs < u

[
αt

1− α
α

+

t−1∑
s=1

αs
(1− α)2

α

]
= u(1− α).

We conclude that U(cx)− U(cy) > αu > 0.

D Proof of Corollary 2

By representation (5), U clearly depends on c0 only through u0 = u(c0). This implies that U(1c)—and

hence also U(c) (from (5))—depends on c1 only through u1 = u(c1). By induction, U(c) depends on

(c0, . . . , ct) only through (u0, . . . , ut), for each t. There remains to establish the result at infinity: If c

and c̃ are two streams such that u(ct) = u(c̃t) for all t, we need to show that U(c) = U(c̃). From the

previous step, assume without loss of generality that ct = c̃t for all t ≤ T , where T is any large, finite

constant. Since U is H-continuous, we can choose T so that |U(c′)−U(c̃′)| < ε for all c′, c̃′ that coincide

up to T . Since c and c̃ satisfy this property, |U(c)− U(c̃)| < ε, and since ε was arbitrary, U(c) = U(c̃).
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This shows that the sequence {ut = u(ct)}∞t=0 of period-utility levels entirely determines the value of

U(c), proving the result.

E Proof of Proposition 3

Consider representation (5) in Theorem 3. For every c ∈ C, we have sequences {us}∞s=0 and {Us}∞s=0,

where us = u(cs) and Us = Û(us, us+1, . . .). Since u is continuous and X is connected, the range of u is

a connected interval Iu ⊂ R. Recall that the range of U is also a connected interval U ⊂ R. Using the

notation,

d(t, c) =
∂U0/∂ut
∂U0/∂u0

.

Note that ∂Us
∂us

= 1 for all s ≥ 0. Since G is differentiable, we have

∂U0

∂ut
=

t−1∑
τ=0

αt−τG′(U t−τ )
∂U t−τ
∂ut

.

More generally, for 1 ≤ τ ≤ t,

∂U t−τ
∂ut

=

τ−1∑
s=0

ατ−sG′(U t−s)
∂U t−s
∂ut

.

So, for τ = 1, ∂Ut−1

∂ut
= αG′(U t). More generally, for 2 ≤ τ ≤ t,

∂U t−τ
∂ut

= α

(τ−1)−1∑
s=0

α(τ−1)−sG′(U t−s)
∂U t−s
∂ut

+ αG′(U t−(τ−1))
∂U t−(τ−1)

∂ut

=
∂U t−(τ−1)

∂ut
α(1 +G′(U t−(τ−1))).

So,

∂U t−τ
∂ut

= ατG′(U t)

τ−1∏
s=1

(1 +G′(U t−s)).

Let
∏τ−1
s=1 (1 +G′(U t−s)) = 1 if τ = 1. Then,

∂U0

∂ut
= αtG′(U t) +G′(U t)

t−1∑
τ=1

αtG′(U t−τ )

τ−1∏
s=1

(1 +G′(U t−s))

= αtG′(U t)

[
1 +

t−1∑
τ=1

G′(U t−τ )

τ−1∏
s=1

(1 +G′(U t−s))

]
.

F Proof of Proposition 4

Recall that by assumption �t=�0 for all t ≥ 0 and each �t is represented by the function U(tc) =

V (ct, U(t+1c), U(t+2c), . . .).

3



Suppose that V depends only on its first two arguments and is strictly increasing in its second argument.

Since V is a function, we have recursively that

U(tc) = U(tc
′)⇔ U(ĉt−s, . . . , ĉt−1, tc) = U(ĉt−s, . . . , ĉt−1, tc

′) for s ≥ 1.

And by the monotonicity property of V we have, again recursively, that

U(tc) > U(tc
′)⇔ U(ĉt−s, . . . , ĉt−1, tc) > U(ĉt−s, . . . , ĉt−1, tc

′) for s ≥ 1.

Therefore, {�t}∞t=0 exhibits time consistency.

Now suppose that {�t}∞t=0 exhibits times consistency. In particular, this means that 1c ∼1
1c
′ if and

only if (c0, 1c) ∼0 (c0, 1c
′). Therefore, for every (U(1c), U(2c), . . .) and (U(1c

′), U(2c
′), . . .) that satisfy

U(1c) = U(1c
′),

V (c0, U(1c), U(2c), . . .) = V (c0, U(1c
′), U(2c

′), . . .).

So V can depend only on its first two arguments. Similarly, 1c �1
1c
′ if and only if (c0, 1c) �0 (c0, 1c

′).

Therefore, U(1c) > U(1c
′) implies that V (c0, U(1c)) > V (c0, U(1c

′)); that is, V must be strictly increasing

in its second argument.

G Proof of Lemma 17

Recall that for any ν′ > ν in U
G(ν′)−G(ν) <

1− α
α

(ν′ − ν).

We will show that, for any ε > 0 small enough, there exists a constant K < 1−α
α such that

G(ν′)−G(ν) ≤ max{K(ν′ − ν), ε} (22)

for all ν′ > ν in U .

Case (i): Suppose first that U is bounded and let U = cl(U). If necessary, extend G to U by continuity.

Since U is compact and G is continuous, it is also uniformly continuous. Hence, for any ε > 0, there exists

η(ε) > 0 such that |ν − ν′| < η(ε) implies |G(ν)−G(ν′)| < ε. Let ∆(ε) = {(ν, ν′) ∈ U2 | ν ≥ ν′ + η(ε)}.
The function F (ν, ν′) = G(ν)−G(ν′)

ν−ν′ is continuous and strictly less46 than 1−α
α on the compact set ∆(ε)

and thus has a strictly positive upper bound K < 1−α
α . By construction, (22) holds for any (ν, ν′) ∈ ∆(ε)

and any (ν, ν′) ∈ U2 \∆(ε).

Case (ii): Suppose that U is unbounded both above and below—the intermediate cases follow by

combining the two cases shown here. Let G = infν∈U G(ν) and G = supν∈U G(ν), which are finite and

46This is true by assumption if ν and ν′ belong to U , and it is easy to show that it is still true if either
ν or ν′ belongs to U \ U . For example, if ν′ is the infimum of U , one can take any point ν̃ ∈ (ν′, ν). By
assumption G(ν)−G(ν̃) < (1−α)/α(ν − ν̃) and, by continuity of G, G(ν̃)−G(ν′) ≤ (1−α)/α(ν̃ − ν′).
Combining these inequalities yields the result, as is easily seen. (One way of showing this is to use the
fact that a/b < c/d ⇒ (a + b)/(c + d) < c/d for a, b, c, d strictly positive—see the argument at the end
of this proof.)
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distinct because G is bounded and strictly increasing. Fix any ε < G − G. Let ν(ε) = G−1(G + ε)

and ν(ε) = G−1(G − ε). If either ν ≤ ν(ε) and ν′ ≤ ν(ε), or ν ≥ ν(ε) and ν′ ≥ ν(ε), then (22) holds

by construction. Now take any ν, ν ∈ U with ν > ν(ε) + 2( αε
1−α + 1) and ν < ν(ε) − 2( αε

1−α + 1). On

the compact set [ν, ν], the continuous function G is uniformly continuous, so there exists η > 0 and

η(ε) = min{η, 1
2 (v−ν(ε)), 1

2 (ν(ε)−ν)} such that |ν − ν′| < η(ε) implies |G(ν)−G(ν′)| < ε. Let ∆′(ε) =

{(ν, ν′) ∈ [ν, ν]2 | ν ≥ ν′ + η(ε)}. By the same argument as before, the function F (ν, ν′) = G(ν)−G(ν′)
ν−ν′

has a strictly positive upper bound K1 <
1−α
α on the set ∆′(ε).

Define νm = 1
2 (ν + ν(ε)) and νm = 1

2 (v + ν(ε)). The only difficulty is to show the claim when

ν′ < ν(ε) ≤ ν < ν or ν′ < v ≤ ν(ε) < ν. We focus on the first case. If ν′ < v(ε), by construction

νm − ν′ ≥ η(ε) and hence
G(νm)−G(ν′)

νm − ν′
< K1. (23)

Now note that

ν − νm > ν − νm =
1

2
(ν − ν(ε)) >

αε

1− α
+ 1.

Hence, there exists a strictly positive K2 <
1−α
α such that, for all ν > ν, we have ν − νm > ε/K2. Since

ν > ν(ε) and νm > ν(ε), it follows that

G(ν)−G(νm)

ν − νm
≤ ε

ν − νm
< K2. (24)

For any strictly positive a, b, c, d, (a + c)/(b + d) ≤ max{a/b, c/d}. Combining this inequality to (23)

and (24), we conclude that
G(ν)−G(ν′)

ν − ν′
≤ max{K1,K2}.

By a similar argument, for all ν′ < v ≤ ν(ε) < ν,

G(ν)−G(ν′)

ν − ν′
≤ max{K1,K3}

for some strictly positive K3 <
1−α
α . Letting K = max{K1,K2,K3} then proves the claim of the lemma.
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