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Abstract

This supplement contains the proofs omitted from the main text of the pa-
per. For simplicity, this supplement uses appendix and equation numbering that

continue from the main text of the paper.

B Proof of Theorem 1

The proof follows and generalizes that of Diamond (1965), and is based on the following lemmas.

Lemma 18 (Debreu (1954)). Let C be a completely ordered set and Z = (20,21, ...) be a countable
subset of C. If for every c,c’ € C' such that ¢ < ¢, there is z € Z such that ¢ 3 z 2 ¢, then there exists

on C a real, order-preserving function, continuous in any natural topology.45

Lemma 19. For any c € C, there exists x € X such that ¢ ~ (co,x,x,...).

Proof. Given ¢, let D, = {(co,y,y,...):y€ X}, A={d€ D.:d3c},and B={d € D.:d = c}. By
Axiom 1, AUB = D_; by Axiom 2, A and B are closed; by Axiom 3, A and B are nonempty. Moreover,
D, is connected. Indeed, for any continuous function ¢ : D. — {0,1}, the function ¢ : X — {0,1}
defined by ¢(z) = ¢(co, x,z,...) is also continuous. Connectedness of X implies that ¢ is constant and,

hence, that ¢ is constant, showing connectedness of D.. This implies that AN B # &.
]

To conclude the proof of Theorem 1, let Zy be a countable dense subset of X, which exists since X
is separable, and let Z be the subset of C consisting of streams (z,y,y,...) with z,y € Z;. Lemma 19
implies that Z satisfies the hypothesis of Lemma 18, which yields the result. Indeed, by Lemma 19 there
are z,y € X such that (co,z,z,...) ~ ¢ < ¢ ~ (¢}, y,y,...). Consider the set E C X? consisting of
(z,w) such that (¢, z,z,...) < (z,w,w,...) < (¢}, y,Yy,...). E is nonempty by connectedness of X and

open by Axiom 2. Since Z is dense in X2, E must contain an element of Z.

45 A natural topology is one under which Axiom 2 holds for that topology.



C Proof of Corollary 1

By Theorem 3, > can be represented by
U(c) = u(co) + »_ a'G(U(s0)).
t=1

Since (z,¢) = (y,¢), u(z) = u(y) + @ for some uw > 0. Hence, for any t > 1, U(c”) — U(c¢¥) equals
u— 22:1 a®*AGg, where AG, is defined recursively as follows: for s = t,
AGy = GU ")) — G(U(ze¥) — ),

otherwise .

AG, = G(Us(s¢%)) — G (Us(scy) - Z akAGs+k> .

k=1

By Proposition 1, AG; < 1=27% and

Athl = G(Utfl(tflcy)) — G (Utfl(tflcy) — OZAGt)

< (1-a)AG, < [l

Now, suppose that, for all k such that s < k <t—1, AGg < %ﬂ. It follows that

t—s—1

t—s s—
1— 1— 1—«)? 1—
AG, < a aTAGS+T < @ Z aTﬂ 4 at—s( Oz) m
@ T=1 «a =1 (6% (0%
(1-a)? t_ZS_2 1 (1 —a)?
- T = aT(l - a) + at—s— u = Tﬂ

Therefore,

ZQSAGS <u [atla —I—ioﬁ(la)z] =71 — a).

s=1

We conclude that U(c*) — U(c¥) > au > 0.

D Proof of Corollary 2

By representation (5), U clearly depends on ¢ only through ug = u(cg). This implies that U(yc)—and
hence also U(c) (from (5))—depends on ¢; only through u; = u(c;). By induction, U(c¢) depends on
(coy...,ct) only through (ug,...,u;), for each t. There remains to establish the result at infinity: If ¢
and ¢ are two streams such that u(c;) = u(é) for all ¢, we need to show that U(c) = U(é). From the
previous step, assume without loss of generality that ¢; = ¢ for all t < T, where T is any large, finite
constant. Since U is H-continuous, we can choose T so that |U(¢') —U(¢&')| < € for all ¢/, & that coincide

up to 7. Since ¢ and ¢ satisfy this property, |U(c) — U(é)| < €, and since € was arbitrary, U(c) = U(¢).



This shows that the sequence {u; = u(c)}$2, of period-utility levels entirely determines the value of

U(c), proving the result.

E Proof of Proposition 3

Consider representation (5) in Theorem 3. For every ¢ € C, we have sequences {us}52, and {Us}52,,
where us; = u(cs) and Us = U(uS7 Ust1,.-.). Since u is continuous and X is connected, the range of u is

a connected interval Z,, C R. Recall that the range of U is also a connected interval Y C R. Using the

notation,
8U0/aut
d(t,c) = ———.
( ’C) BUO/BuO
Note that gg =1 for all s > 0. Since G is differentiable, we have
aU — oU
0 t—1 t—7
— = G'(Us—r
8ut 7_2::0& ( K ) 8ut
More generally, for 1 < 7 <'t,
U, = U,
—T = TGN Up_s) ———.
aut ; @ ( t ) Gut

So, for 7 =1, 65;;1 = aG'(U;). More generally, for 2 < 7 <,

(r—1)—1

U, . (r=1)—s v U / aUt—(T—l)
Gt = a zzjo a G'(Ur-a) =g, = + G Ut-(r-1)—5,—
aljt—(T—l)
- Ta(1+G/(Ut_(T_1>)).
So,
aUt,-,- . T—1
G =0 G’(UJE(HG’(UH)).
Let [[2 (1 + G'(U;_s)) = 1 if 7 = 1. Then,
aU t—1 T—1
Tuo = a'G'(Uy) +G'(Uy) ZatG/(Utf‘r) H(1 +G'(Us-s))
t =1 s=1
t—1 T—1
= o'GUY) 14> GWU—,) [[0+E Uy
=1 s=1

F Proof of Proposition 4

Recall that by assumption ='=>" for all ¢ > 0 and each =! is represented by the function U(;c) =
V(Ct, U(t+1c), U(H_QC), .. )



Suppose that V' depends only on its first two arguments and is strictly increasing in its second argument.

Since V is a function, we have recursively that

U(ie) =U(d) < UGy, -1,4¢) = U(4—sy...,¢_1,¢C) for s > 1.
And by the monotonicity property of V' we have, again recursively, that

U(e) > U(id) & U(Crsy -, Gt—1,1¢) > U(Cr—s, ..., Ct—1,¢¢) for s > 1.

Therefore, {>~'}7° exhibits time consistency.

Now suppose that {>~!}2°, exhibits times consistency. In particular, this means that ;¢ ~! 1¢’ if and

only if (cg,1¢) ~Y (co,1¢'). Therefore, for every (U(ic), U(zc),...) and (U(1c’), U(2c’),...) that satisfy
U(ie) = UGC),
V(Co, U(lc), U(gC), . ) = V(Co, Uv(lcl)7 U(QC/), .. )

So V' can depend only on its first two arguments. Similarly, ;¢ =! ;¢ if and only if (co,1¢) =% (co,1¢).
Therefore, U(1¢) > U(1¢') implies that V(co, U(1¢)) > V(co, U(1¢')); that is, V must be strictly increasing

in its second argument.

G Proof of Lemma 17

Recall that for any v/ > v in U
l1-«a

[e%

G()-Gv) <

v —v).
We will show that, for any € > 0 small enough, there exists a constant K < 1’7(" such that
G(V) - Gv) <max{K(V —v),e} (22)

for all v/ > v in U.

Case (i): Suppose first that U is bounded and let U = cl(U). If necessary, extend G to U by continuity.
Since I is compact and G is continuous, it is also uniformly continuous. Hence, for any € > 0, there exists
n(e) > 0 such that [ — /| < n(e) implies |G(v) — G(V/)| < e. Let A(e) = {(n,v/) €U | v > V' +n(e)}.
The function F(v,v') = %S,('/) is continuous and strictly less?® than 129 on the compact set A(e)
and thus has a strictly positive upper bound K < 1?70‘ By construction, (22) holds for any (v,7') € A(e)
and any (v,v') € U?\ A(e).

Case (ii): Suppose that U is unbounded both above and below—the intermediate cases follow by

combining the two cases shown here. Let G = inf, ¢y G(v) and G = sup,,¢;; G(v), which are finite and

46This is true by assumption if v and v/ belong to I/, and it is easy to show that it is still true if either
v or v belongs to U \ U. For example, if v/ is the infimum of U, one can take any point 7 € (v/,v). By
assumption G(v) — G(?) < (1 — a)/a(v —P) and, by continuity of G, G(¥) - G(v') < (1 — a)/a(v — V).
Combining these inequalities yields the result, as is easily seen. (One way of showing this is to use the
fact that a/b < ¢/d = (a +b)/(c+ d) < ¢/d for a,b,c,d strictly positive—see the argument at the end
of this proof.)



distinet because G is bounded and strictly increasing. Fix any ¢ < G — G. Let v(e) = GG + ¢)
and 7(g) = G7Y(G —¢). If either v < v(e) and v/ < v(e), or v > ¥(e) and v/ > ¥(e), then (22) holds
by construction. Now take any 7,v € U with 7 > T(e) + 2(725 + 1) and v < v(e) — 2(725 +1). On

«

the compact set [v,7], the continuous function G is uniformly continuous, so there exists n > 0 and

n(e) = min{n, (v —7(e)), 3 (1(c) — )} such that |[v — /| < 5(e) implies |G(v) — G(V)| < e. Let A'(e) =
G(v)-G()

v—u’

{(v,v') € [v,7)* | v > V' +n(e)}. By the same argument as before, the function F(v,v') =
has a strictly positive upper bound K; < 1770“ on the set A’(e).

Define v,, = (v + 7(e)) and v,, = 3(v+ v(¢)). The only difficulty is to show the claim when
v

vV <7Ee) <v<vorv <u <) <wv. We focus on the first case. If v/ < (e), by construction

Um — V' > n(e) and hence
Gom) - G()

< Kj. 23
Upm — V' ! (23)
Now note that
ae
+ 1.

V—Tp >0 —Tpyp = 5(ﬁ—ﬁ(a)) >

Hence, there exists a strictly positive Ko < I’T‘”‘ such that, for all v > 7, we have v — 7, > ¢/ K5. Since
v > v(e) and Ty, > U(e), it follows that

Gv)— Gn) < €

V—"UVUpm T V—TVUnm

< K. (24)

For any strictly positive a, b, ¢, d, (a + ¢)/(b+ d) < max{a/b,c/d}. Combining this inequality to (23)

and (24), we conclude that
Gv) -G

Sy < max{Ky, K>}.

By a similar argument, for all v/ < v <p(e) < v,

G) - G()

v—1v

S max{Kl, Kg}

for some strictly positive K3 < 177(1 Letting K = max{ K, K3, K3} then proves the claim of the lemma.



