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Abstract

This paper combines dynamic social choice and strategic experimentation to study the

following question: how does a society, a committee, or, more generally, a group of individuals

with potentially heterogeneous preferences, experiment with new opportunities? Each voter

recognizes that, during experimentation, other voters also learn about their preferences. As a

result, pivotal voters today are biased against experimentation because it reduces their like-

lihood of remaining pivotal. This phenomenon reduces equilibrium experimentation below

the socially efficient level, and may even result in a negative option value of experimentation.

However, one can restore efficiency by designing a voting rule that depends deterministically

on time. Another main result is that, even when payoffs of a reform are independently

distributed across the population, good news about any individual’s payoff increases other

individuals’ incentives to experiment with that reform, due to a positive voting externality.
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1 Introduction

Every reform has consequences which cannot be fully known until it has been implemented. For

example, the diverse effects of trade liberalization on a country’s industrial sectors (e.g., which

sectors will gain or lose from liberalization, and when) cannot be easily or fully anticipated.

Similarly, although economic liberalization in the form of more business-friendly laws and fiscal

policy can be expected to create opportunities for entrepreneurship and individual success, its

specific beneficiaries are also unknown a priori. Moreover, those individuals who are not among

its beneficiaries but rather “losers” in it its wake may experience such hardships/penalties as

reduced income redistribution or job security. Other contemporary examples of reforms whose

benefits and costs are both uncertain and heterogeneous across the population are reforms in

health care, national security policies, or environmental regulations.

This paper studies incentives for collective experimentation when individual interests may be

in conflict and are revealed gradually and at times which are random and may also vary across

individuals. It addresses the following questions: How do these incentives evolve as preferences

and heterogeneity get revealed? How do they vary with group size? How do they compare to

the utilitarian optimum? How do they vary with the voting rule chosen? Under which collective

decision mechanisms do they result in efficient experimentation? How are they affected by the

particular learning process?

The analysis is conducted in a two-armed bandit model in which a safe alternative yields a

constant, homogeneous payoff to everyone, while a risky alternative yields payoffs whose un-

known distribution, or type, may vary across individuals. At each instant, society elects one of

the two alternatives according to some voting rule. Individuals learn their type only through

experimentation with the risky alternative.1 In the benchmark setting the risky action is, for

each individual, either good or bad, and these types are independently distributed across indi-

viduals. Moreover, any news shock fully reveals to its recipient that the risky action is good for

him, i.e., he is a sure winner. By contrast, unsure voters are those individuals who have not yet

received any positive news about their type, and who become increasingly more pessimistic as

experimentation goes on. The benchmark setting focuses on simple majority voting, with other

1Focusing on two actions gets rid of Condorcet cycles and ensures the robustness of the equilibrium concept

used in the analysis. An example with three actions is studied section 7.

2



voting rules considered in later sections. Payoffs are initially assumed to be publicly observed,2

but section 6 considers the case of privately observed payoffs. In the benchmark setting, learning

occurs at the individual level only (section 7 discusses the case of correlated types). The fact

that an individual becomes successful, however, changes the unsure voters’ expected payoffs,

since it makes it more likely that the reform will not be overturned.

The first result is that incentives for experimentation are always weaker when power is shared,

compared to the case of a single decision maker, or to a dictatorship. Two kinds of risk shape

incentives for collective experimentation, in addition to the well-known trade-off between ex-

ploration and exploitation arising in individual experimentation. The loser trap occurs when

reform winners have enough power to make the reform irreversible, in effect trapping reform

losers into this new course of action. In contrast, winner frustration occurs when reform losers

(more precisely, unsure voters with a low enough belief) are powerful enough to effect a return

to the status quo, frustrating reform winners and whoever else still wishes to continue experi-

mentation. Costly reforms and projects may thus be abandoned too early if they do not garner

enough support, even when they turn out to be ex post efficient. These risks, which are specific

to decisions taken collectively and where interests may turn out to be heterogeneous, reduce

incentives for experimentation.

To illustrate, consider a community of N individuals with equal voting rights. Every month,

these individuals must decide between a centralized production, where tasks are fixed and earn-

ings are divided equally, and a decentralized one, where each individual chooses his task and

keeps his earnings. There are two types in this community: individuals with talent and those

without, where “talent” refers to an individual’s ability to find a successful task. If the com-

munity tries decentralization, individuals gradually find out whether or not they are talented.

As time elapses, two things can happen: A majority of talented people may form, in which

case decentralization is imposed forever. Alternatively, if few talents are revealed under de-

centralization, voters who remain unsure can impose reversal to a centralized production.3 In

the first case, untalented people are trapped in a community that essentially abandons them

economically. In the second case, talented people are frustrated by the collective constraint. If

these risks are severe enough ex ante, the community may prefer not to experiment at all with

decentralization, even if it is efficient to do so.

Loser trap and winner frustration have a systematic impact on welfare: experimentation in-

2Voters care only about the number of sure winners at any time, not about their identity.
3For the sake of this example, we suppose that a centralized production is better for individuals who are sure

of being untalented, and yields deterministic and homogeneous payoffs.
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centives are always too weak, compared to the utilitarian optimum. This result stems from two

effects. First, the utilitarian policy, which is the optimum of a single decision-maker problem

(faced by a utilitarian social planner), is not subject to the control sharing effects described

earlier. The value of the information acquired through experimentation is thus maximal, which

makes experimentation more valuable from an efficiency perspective. Second, unsure voters only

care about their own utility and thus sometimes impose the safe action even when including sure

winners’ utility would make the risky action more efficient.

This social inefficiency remains for any fixed voting rule. For example, if the risky action requires

unanimity, the risk of loser trap disappears. However, this very fact also makes experimentation

less attractive: winners are less likely to enjoy the risky action in the long run, for this would

require that all society members turn out to be winners. Unanimity rule thus exacerbates

winner frustration. Similarly, if the safe action requires unanimity, the risk of winner frustration

disappears, but the risk of loser trap becomes maximal.

However, efficiency can be restored by a voting rule that depends deterministically on time.

To implement the efficient policy, the number of votes required for the risky action increases

deterministically over time, according to a schedule agreed upon at the outset. Intuitively,

the more time elapses, the more numerous sure winners should be, if the reform is efficient.

Therefore, one way to make sure that the reform continues only if it is efficient is to gradually

raise the voting threshold required for it to be implemented. As the paper shows, the threshold

can be set so as to exactly implement the utilitarian policy.

Another dynamic aspect of experimentation concerns the impact of incoming news on experi-

mentation incentives. To return to the example given earlier, how do other voters react whenever

someone discovers a talent? The answer is that, in equilibrium, good news for anyone increases

others’ incentives to experiment. Intuitively, individuals vote for experimentation because they

hope to be winners and, hence, to enjoy the reform in the longer run. The appearance of a new

winner makes it more likely that others too will be able to enjoy the reform and thus makes it

more valuable to experiment.

As group size gets arbitrarily large, voters behave myopically, as if there were no value in

experimentation. Indeed, individual control over future decisions becomes infinitely diluted, so

one’s ability to react to individual news vanishes in an arbitrarily large group. For small groups,

however, equilibrium incentives for experimentation do not monotonically decrease with respect

to group size. This is because the addition of new voters reduces the risk of winner frustration,

a benefit that may locally dominate a higher risk of loser trap.
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Several key results are extended to general experimentation environments, beyond the bench-

mark setting. Most importantly, the main result on weak incentives for experimentation holds

even when individuals i) never fully learn their types, ii) receive both positive and negative news,

and/or iii) have correlated types. The analysis is based on a collective version of the Gittins

index. However, it is not true any more that experimentation is inefficiently short. In partic-

ular, Section 5.1 shows that with negative shocks, experimentation may be inefficiently short

or long depending on initial conditions. The paper also introduces a nonadversity condition on

the collective decision process under which the value of experimentation is always positive. A

collective decision rule is nonadverse to a given individual if, at any time, it is more likely to

select the risky action if that individual is a winner than if he is a loser.

Surprisingly, however, even fair-looking decision rules, such as the simple majority rule, can

violate the nonadversity condition. The value of experimentation may even be negative, in that

society may reject a reform with a higher expected payoff than that of the status quo.4 This

means that the common intuition of a positive “option value,” which captures a decision maker’s

ability to react to news (e.g. financial options, real options, options of waiting in endogenous

bankruptcy models), may be inaccurate in settings with multiple decision makers. In contrast,

the value of experimentation is always nonnegative when voters use the unanimity rule.

The paper contributes to a developing literature on experimentation with multiple agents, in

which conservatism may arise as a consequence of strategic information acquisition. Bolton and

Harris (1999), Li (2001), Décamps and Mariotti (2004), and Keller, Rady, and Cripps (2005)

analyze an informational free-riding problem in settings where agents can experiment individ-

ually with some risky action to learn about its common value. By contrast, the present paper

considers a reverse setting, in which a single action taken collectively is made at any time, but the

value of the action varies across individuals.5 In these papers, experimentation is inefficiently

4The result does not rely on commitment ability or asymmetric information, but is due solely to control sharing

effects, as shown here and in Section 5.2.
5In this way, the paper is also related to a burgeoning literature analyzing collective search in various settings,

where a group must choose, at any time, between accepting some outstanding proposal or trying a new proposal

with i.i.d. characteristics. Compte and Jehiel (2008) show, in particular, that more stringent majority require-

ments select more efficient proposals but take more time to do so. Albrecht, Andersen, and Vroman (2007) find

that committees are more permissive than a single decision maker facing an otherwise identical search problem.

Messner and Polborn (2008) discuss correlation across the two periods of their setting. In contrast to those pa-

pers, the present work focuses on social and individual learning and experimentation when voter types for a given

action are lasting and permanently influence collective decisions. Callander (2009) also considers experimentation

in a political setting. His focus is on the experimentation pattern of a single decision maker, the median voter,

facing a continuum of correlated policies. Although the median voter is myopic and non-strategic, the nature of
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low due to positive information spillovers that are not internalized by agents. In contrast, the

control sharing effects in the present paper reduce experimentation due to the negative payoff

externalities that voters impose on one another, and which are decomposed and quantified in

Equations (4) and (5). The analysis of the benchmark setting owes conceptual and technical

clarity to the use of exponential bandits, building on Keller, Rady, and Cripps (2005).6

The paper is related to Fernandez and Rodrik (1991), who identify an asymmetry between ex

ante and ex post support for reforms, which is due to uncertainty about winners’ identity. Voters

know that if the reform is implemented once, it will surely be implemented afterwards. However,

they do not know whether they are winners or losers under the reform, and hence bear the risk

of loser trap. Their setting is similar to the case of immediate type revelation and an infinite

population in the benchmark setting presented here. In the present paper, individuals learn at

different points in time, and the efficient policy is unknown a priori. The evolution of informed

agents introduces some of the interesting strategic issues that were absent from the model of

Fernandez and Rodrik (1991).

The paper is organized as follows. Section 2 below analyzes the benchmark setting under the sim-

ple majority rule. Section 3 considers the utilitarian optimum and compares it to the majority-

voting equilibrium . Section 4 takes a broader design approach to voting procedures, showing

which rules can restore efficiency. Section 5 extends the analysis to more general type and learn-

ing structures, where types are never fully revealed, news can be positive and/or negative, and

types may be correlated. Section 6 considers the case of publicly observed payoffs, showing that

the majority voting equilibrium of Section 2 is truthful. Section 7 discusses several assumptions

of the model, and Section 8 concludes.

2 Benchmark Setting

The benchmark setting embeds the exponential bandit model analyzed by Keller, Rady, and

Cripps (2005) into a setting with majority voting. Time t ∈ [0,∞) is continuous and payoffs

are discounted at rate r > 0. There is an odd number N ≥ 1 of individuals who continually

decide according to the simple majority rule which of two actions to choose. The first action S is

“safe” and yields a flow s per unit of time to all individuals. The second action R is “risky” and

uncertainty in that model produces interesting experimentation patterns.
6Exponential bandits have also been used in economics by Malueg and Tsutsui (1997), Bergemann and

Hege (1998, 2001), and Décamps and Mariotti (2004).
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can be, for each player, either “good” or “bad.” The types (good and bad) are independently

distributed across the group. (The case of correlated types is discussed in Section 7.)

If R is bad for some individual i, it always pays him 0. If R is good for i, it pays him lump-

sum payoffs at random times which correspond to the jumping times of a Poisson process with

constant intensity λ. The arrival of lump sums is independent across individuals. The magnitude

of these lump sums7 equals h . If R is good for i, the expected payoff per unit of time is therefore

g = λh. The assumption 0 < s < g rules out the uninteresting case in which either R or S is

dominated for all beliefs.

Each individual starts with a probability p0 that R is good for him. This probability is the

same for all and is common knowledge. Thereafter, all payoffs are publicly observed, so that

everyone shares the same belief about any given individual’s type (for privately observed payoffs,

see Section 7). In particular, the arrival of the first lump sum to a given individual i makes him

publicly a “sure winner.” At any time t, the group is therefore divided into k “sure winners” for

whom R is good with probability one, and N−k “unsure voters,” who have the same probability

p of having a good type. Unsure voters’ probability evolves according to Bayes’ rule and obeys

the dynamic equation dp/dt = −λp(1 − p) if no lump sum is observed, with pj jumping to 1

when some voter j receives a lump sum.8 Type independence implies that an unsure voter learns

only from his payoff stream but not from those of others.

When N = 1, the setting reduces to the optimization problem of a single decision maker. The

optimal experimentation strategy is Markov with respect to the current belief p, determined by

a cut-off pSD such that R is played if and only if p ≥ pSD. This cut-off is determined by the

7All results hold if these lump sums have random, independently distributed magnitudes with constant mean h.

More generally, what matters to decision makers are the expected payoff rates of each action and the probability

that the risky action is good or bad. See Section 5 for a general specification of payoff distributions and beliefs.
8One way to derive this dynamic equation is to observe that pt is a martingale and jumps to 1 with probability

rate pλ; hence, 0 = E[dpt|pt] = ηtdt + λpt(1 − pt)dt, where ηt is the rate of decrease of pt conditional on not

observing any lump sum, i.e., ηt = dpt/dt if no lump sum is observed, and where the factor (1− pt) in the second

term is the change in probability in case a lump sum is observed. This yields the equation for dp/dt. One may

alternatively use Bayes’ rule to directly show that pt = (p0e
−λt)/(p0e

−λt + (1 − p0)), which yields the equation

by differentiation.
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indifference condition9

pSD =
µs

µg + (g − s)
, (1)

where µ = r/λ. Let pM = s/g denote the myopic cut-off, i.e. the probability below which

R yields a lower expected flow payoff than S. The previous formula implies that pSD < pM .

Indeed, experimentation really takes place only for all p ∈ [pSD, pM ], since the single decision

maker then chooses the risky action, despite its lower payoff, in order to learn more about its

true value for future decisions. Choosing R in this range is optimal due to the option value of

experimentation.

For a group using the simple majority rule, the formal analysis to follow in this section shows

that collective decisions are determined by nonincreasing cut-offs {p(k)}0≤k≤N such that the

risky action is played at time t if and only if pt > p(kt), where kt is the number of sure winners

at that time. The dynamics of collective decisions can thus be described as follows. Starting

with some (high enough) level p0, R is elected until the threshold p(0) is reached, at which point

experimentation either stops if no winner has been observed by then, or continues until another

threshold p(1) < p(0) is reached, and so forth. These dynamics are qualitatively represented by

Figure 1 for the case of three voters. Here and throughout, experimentation means choosing

(or voting for) the risky action when one’s type is unknown. (Thus, only unsure voters are

experimenting.) The option value of experimentation is formally defined after the equilibrium

concept is introduced.

A collective decision rule, or policy, is a stochastic process C = {Ct}t≥0 adapted to the filtration

generated by the arrival of voters’ lump sums and taking values in the action space {R,S}. Any

collective decision rule determines a value function for each agent i:

V i,C
t = Et

[
∫ ∞

t
e−r(τ−t)dπi

Cτ
(τ)

]

,

where the payoff rate is dπi
S(τ) = sdτ and dπi

R(τ) = hdZi
τ or 0 depending on whether R is good

or bad for i, and {Zi}1≤i≤N is a family of independent Poisson processes with intensity λ. At

any given time, let K denote the set of sure winners. The number k of sure winners is thus the

cardinal of K. A Markov strategy for voter i is a function di : (K, p) 7→ {R,S}.10 For a given

profile d = (d1, . . . , dN ) of Markov strategies, let C denote the resulting (Markov) collective

9Intuitively, if the decision maker experiments, his instantaneous payoff rate is pg, and with a probability rate

of λp, his value function jumps to g/r, from its current value. If he chooses S instead, his immediate payoff rate is

s. When the decision maker is indifferent, his current value is s/r, so the cutoff p solves the indifference equation

pg + λp(g/r − s/r) = s, which is exactly (1). The result is derived formally and more generally in the proof of

Theorem 1.
10We assume that, in the case of a jump at time t, the strategy depends only on the belief before the jump.
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0

pM = s/g

t0 t1

p0

p(0)

p(1)

pSD

switch to S if no winner so far

switch to S if only one winner so far

time t

R forever otherwise
pt

type probability p

p(2), p(3)

1

t0: experimentation end time if no winner is observed before reaching p(0).

t1: experimentation end time if only one winner is observed before reaching p(1).

p(2) = 0: R is elected forever if winners have the majority, no matter what pt for the remaining unsure voter.

pSD < p(1): a single decision maker always experiments more than a group with a majority of unsure voters.

Figure 1: Dynamics of Collective Experimentation with 3 Voters.

decision rule, i.e., such that C(K, p) = R if and only if |{i : di(K, p) = R}| > N/2. C is based on

the simple majority rule. V i,C(K, p) denotes i’s value function under policy C when the current

state is (K, p). Under any Markov rule, C(K, p) = S implies that S is played forever, since the

state (K, p) can evolve only when R is played. Therefore, V i,C(K, p) = s/r for all i whenever

C(K, p) = S. This, among other things, rules out strategies of the grim-trigger type. To avoid

trivial equilibria, the equilibrium concept used in the paper requires the elimination of weakly

dominated strategies, iterated in the following sense.

Definition 1 The profile d is a Markov Equilibrium in Undominated Strategies if for all

(K, p, i),

di(K, p) = R ⇔ pig + λp
∑

j /∈K

(

V i,C(K ∪ {j}, p) − V i,C(K, p)
)

− λp(1 − p)
∂V i,C

∂p
(K, p) > s,

(2)

where pi = 1 if i ∈ K and pi = p if i /∈ K.11

Other assumptions would yield the same outcome, since they affect payoffs only over a discrete time set, but do

not affect information, since the probability that two jumps occur at exactly the same time is zero.
11Since p only decreases over time, here and throughout derivatives of value functions should be understood as

left derivatives.
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Thus, i votes at each instant as if his vote were pivotal, realizing that voting for S in any given

state (K, p) will result in a constant payoff flow s forever. The left-hand side is i’s payoff from

the risky action, including the impact of incoming lump sums and Bayesian updating on i’s

immediate payoff and value function, as will be explained shortly. This equilibrium concept

entails an iterated elimination of dominated strategies, where the iteration proceeds backwards

with respect to the state (k, p). For example, the definition implies that if voter i, given other

voters’ strategies, prefers S over R at some state (k′, p′), then i will indeed vote for S if that

state is reached; it therefore also implies that, seen from any state (k, p) with k ≤ k′ and p ≥ p′

from which the state (k′, p′) may be reached, only strategies where i chooses S at (k′, p′) should

be considered. This concept is closely related to the elimination of conditionally dominated

strategies as defined in Fudenberg and Tirole (1991), except that the present case corresponds

to elimination of conditionally weakly dominated, rather than strictly dominated, strategies.12

The (option) value of experimentation of an unsure voter is the difference between his value

function and the maximum payoff he could get if he had to decide today on one action played

forever. Formally

Xi,C(K, p) = V i,C(K, p) − max

{

s

r
,
pig

r

}

. (3)

This value is positive for a single decision maker, since choosing a fixed action forever is only

one out of many policies over which the decision maker optimizes. In fact, this value is positive

for a single decision maker for any news arrival process generated by the risky action. It is also

positive under the majority rule in the present setting. However, Section 5.2 shows that when

both positive and negative news shocks are allowed, Xi
C can be negative, even under the simple

majority rule.

Finally, we quantitatively define loser trap and winner frustration. Both risks depend on the

probability of an action being imposed that is individually suboptimal, and on the magnitude

of this prejudice. These probabilities depend on the particular collective policy being used.

Therefore, loser trap and winner frustration depend not only on parameters p0, g, s, λ, and r

but also on the voting rule (see also Section 4). Let C denote any arbitrary policy and D denote

the policy that i chooses if he is a dictator. Then, the expected loser trap under C for individual

i is

Li(C) = E

[
∫ ∞

0
e−rt 1(Ct=R ∧ Dt=S) ·

(

dπi
R(t) − sdt

)

]

, (4)

where expectations, here and in the following equation, are taken with respect to player types

12The iterated elimination of dominated strategies, as described here, gets rid of the need to consider arbitrary,

suboptimal strategies at future states. In the present setting, the concept yields the same solution as the majority

voting equilibrium of Roberts (1989).
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and the arrival times of lump sums (and, therefore, independently of players’ actions). Similarly,

the expected winner frustration under C for i is

W i(C) = E

[
∫ ∞

0
e−rt 1(Ct=S ∧ Dt=R) ·

(

sdt− dπi
R(t)

)

]

. (5)

Thus, the expected loser trap is the expected relative loss that i incurs from R being imposed

whenever he would have chosen S had he had full control of the decision process. The difference

between i’s value function under C and D is the sum of the two control sharing effects.

Theorem 1 shows that there exists a unique Markov equilibrium in undominated strategies,

and that this equilibrium is characterized by cut-offs. Equilibrium uniqueness comes from a

backward induction argument on the number of winners. Here is some intuition for the proof.

At any time t, the state of the group can be summarized by kt and pt. Each of the two voter

categories (i.e., sure winners or unsure voters) consists of individuals with currently perfectly

aligned interests. If sure winners have the majority, they optimally impose R, since any policy

involving R is strictly better for them than having S played forever. This determines the

common value function of unsure voters when winners have the majority. Since an unsure voter

can become a winner but a winner remains a winner forever, majority can only shift from unsure

voters to winners. Proceeding by backward induction on the number of winners, one can show

that unsure voters (or sure winners) always share a common voting strategy, after the iterated

elimination of weakly dominated ones.

Let u(k, p) and w(k, p) denote unsure voters’ and sure winners’ respective value function when

the state is (k, p). When there is a majority of unsure voters, decisions are dictated by their

common interest unless and until they lose the majority. The goal is therefore to determine

unsure voters’ preferences. These preferences are determined by the following Hamilton-Jacobi-

Bellman (HJB) equation, which is a simplified formulation of (2):

ru(k, p) = max {pg + λp[w(k + 1, p) − u(k, p)]

+λp(N − k − 1)[u(k + 1, p) − u(k, p)] − λp(1 − p)
∂u

∂p
(k, p), s

}

. (6)

The first part of the maximand corresponds to action R, and the second to action S. The effect

of R on an unsure voter i can be decomposed into four elements: i) the expected payoff rate pg;

ii) the jump of the value function if i receives a lump sum, which occurs at rate λ with probability

p: his value function jumps to w and the number of winners increases by 1, iii) the jump of

i’s value function if another unsure voter receives a lump-sum: i is still an unsure voter, but

the number of sure winners increases by 1, and iv) the effect of Bayesian updating on the value

function when no lump sum is observed. The independence of the Poisson processes governing
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individual payoffs implies that only one lump sum can be received during any infinitesimal

period of time, so that no term involving two or more jumps appears in the HJB equation. In

comparison, if S is chosen, learning stops and i simply receives payoff rate s.

Since unsure voters have identical value functions, they unanimously decide to stop experimen-

tation if p becomes too low, which occurs when the R part of (6) equals s. At this level p, the

smooth pasting condition implies that the derivative term vanishes, since the value function is

constant and equal to s/r, below that level (see, for example, Dixit, 1993). This determines

the equilibrium policy’s cut-offs as stated by Theorem 1, whose proof is in the appendix. The

theorem is proved for the simple majority rule, but the backward induction argument can also

be applied to other voting rules.

Let kN = (N − 1)/2. kN is the number of winners for which i) sure winners are in the minority

but ii) only one new winner is needed for the majority to change sides from unsure voters to

sure winners.

Theorem 1 (Equilibrium Characterization) There exists a unique Markov equilibrium in

undominated strategies. This equilibrium is characterized by cut-offs p(k), for k ∈ {0, . . . , N},

such that R is chosen in state (k, p) if and only if p > p(k). Furthermore, for all k ∈ {0, . . . , kN},

pM > p(k) > pSD,13 p(k) is decreasing in k for k ≤ kN , and p(k) = 0 for all k > kN . The value

functions u and w satisfy the following properties:

• u(k, p) and w(k, p) are nondecreasing in p,

• w(k, p) is nondecreasing in k for all p,

• u(k + 1, p) ≥ u(k, p) for all p and all k < kN ,

• u(kN + 1, p) < u(kN , p) for all p,

• u(k, p) = pg/r and w(k, p) = g/r for all p and all k > kN .

Cut-offs are decreasing in k: the larger the number of winners, the more remaining unsure

voters are willing to experiment. This result is perhaps surprising: why would unsure voters

want to experiment more when the risk of losing their majority and having R be imposed on

them forever increases? The intuition is as follows. Suppose that p is below the myopic cut-

off pM but above p(k) so that with k current winners, unsure voters choose to experiment. By

13The strict inequality p(k) > pSD holds only if N > 1.
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definition of pM , unsure voters get a lower immediate expected payoff rate with R than with S.

Therefore, their only reason for experimenting is their hope of becoming winners. Now suppose

by contradiction that p(k+1) > p(k), and that p lies in (pk, pk+1). Then, as soon as a new winner

is observed, k jumps to k+1, which implies that S is imposed forever, since p < pk+1. Therefore,

the very reason why unsure voters wanted to experiment - namely, the hope of becoming sure

winners - becomes moot: as soon as one of these unsure voters becomes a winner, he sees the safe

action imposed on him forever, which prevents him from actually enjoying any benefit of being a

winner.14 Theorem 1 also states that p(k) > pSD for all k ≤ kN ; that is, a single decision maker

always experiments more than a group whose majority consists of unsure voters. The reason is

the control-sharing effect mentioned in the introduction: a single decision maker knows that if

he turns out to be a winner, he will be able to enjoy the risky action, while if he turns out to be

a loser, he can stop experimentation whenever he wants. In a group, even if a voter turns out to

be a winner, he is not guaranteed that the risky action will be played forever, as a majority of

unsure voters may block it. And if he turns out to be a loser, he may still have the risky action

imposed on him forever if experimentation lasts long enough to reveal a majority of winners.

This double risk of losing control prompts unsure voters to experiment less than any one of them

would if he alone could dictate decisions in the future. In fact, a result stronger15 than cut-off

monotonicity obtains: when a new winner is revealed, the value function of both winners and

unsure voters jumps upwards, provided that k < kN . For sure winners, this result is intuitive:

a higher number of sure winners means a higher probability that a winning majority will be

achieved. To be complete, this argument also requires that experimentation gets longer as the

number of winners increases, which is guaranteed by cut-off monotonicity. More surprising is the

fact that the revelation of a new winner results in an upward jump of the unsure voters’ value

function unless this new winner is the decisive voter who gives the majority to winners. The

intuition here is that new winners reduce the risk of winner frustration, a risk that dominates

as long as unsure voters keep control of the decision process. Another possible interpretation of

this result is that the emergence of new winners increases the expected “pivotality” of unsure

voters, as it reduces the imbalance between the majority and the minority. Finally, the utility

of unsure voters jumps downwards when winners gain the majority (i.e., k jumps from kN to

kN + 1). This is true even if p is large. This may seem surprising since, when p is large, voters

are happy to experiment and could appreciate a priori that the opportunity to experiment will

not be overturned. However, this opportunity would have been overturned only after p became

sufficiently low (below the myopic cutoff), and now that option is no longer available.

14That is, apart from receiving a lump sum at the time of the jump, but the possibility of that gain is already

taken into account in the computation of the immediate expected payoff, which is still less than s for p < pM .
15This result is used to analyze the case of privately observed payoffs; see Theorem 10.
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The simpler case where learning is extremely fast teaches something else. When types are imme-

diately revealed as soon as R is tried, a single decision maker is always willing to experiment.16

However, this result does not extend to the case of collective experimentation, for even as the

time cost of experimentation vanishes, the risk of loser trap remains. If that risk is severe enough,

society may prefer to shun the opportunity of immediate type revelation and hence of making

a perfectly informed decision (clearly what a utilitarian planner would choose!). Keeping other

parameter values fixed, non-experimentation will occur if the total number N of individuals

is large enough and the initial probability p is low enough; experimentation cut-offs then stay

bounded away from 0 as learning intensity λ goes to infinity, provided that N is large enough.

The proof is a direct consequence of equation (17) in the appendix.

Corollary 1 (Immediate Type Revelation) If N > 2g/s − 1,

lim
λ→∞

p(kN ) =
(N + 1)s/g − 2

N − 1
> 0.

If N ≤ 2g/s − 1,

lim
λ→∞

p(kN ) = 0.

Corollary 1 suggests that the total number N of individuals has an important effect on experi-

mentation. In fact, the next proposition states that with independent types, individuals behave

myopically as group size becomes arbitrarily large, electing the risky action if and only if its ex-

pected payoff is higher than that of S. To state the result, let p(k,N) denote the experimentation

cut-off when there are k winners and N overall individuals.

Proposition 1 (Group Size) p(kN , N) is nondecreasing in N . Moreover, for all k, p(k,N) →

pM as N goes to infinity.

Proof. The first part of the proposition is an immediate consequence of (16) in the appendix.

For the second part, (16) also implies that p(kN , N) → s/g = pM as N goes to infinity. Finally,

Theorem 1 implies that p(kN , N) ≤ p(k,N) ≤ pM for fixed k and for all N ≥ 2k + 1. Taking

the limit as N goes to infinity proves the result. �

In general, cut-offs p(k,N) are not monotonic with respect to group size N , as can be proved by

numerical counter-example. Such violations may seem counter-intuitive: As N increases, indi-

vidual power gets more diluted. Shouldn’t this reduce the value of experimentation? However,

16Mathematically, this result comes from the single decision-maker cut-off equation (1): as the intensity λ goes

to infinity, µ goes to 0 and so does the cut-off pSD.
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Figure 2: Cut-offs as a function of group size N and the switching number κ. Parameter values: r = 1, λ = 10,

s = 1, g = 10. N takes all odd values from 3 to 17. For N = 1, pSD = 0.01.

adding unsure voters increases the expected number of winners, and thus the expected duration

of experimentation, for given cut-offs. The addition of voters thus reduces the risk of winner

frustration, which sometimes increases the attractiveness of experimentation.17

Figure 2 shows the numerical computation of cut-off policies for different values of N and of

the switching number κ = kN + 1− k of switches required for winners to gain the majority. For

κ = 4, the cut-off is not monotonic in N . For κ = 5, the cut-off is actually decreasing in N when

N is in the range [9, 17].

3 Utilitarian Policy

This section characterizes the optimal experimentation policy of a utilitarian social planner and

shows that it lasts longer than majority-based experimentation. A social planner faces a single

decision-maker experimentation problem, the solution of which can be computed by backward

17The expected length of experimentation is also not generally monotonic in N . To see this, it is easy to build

an example where the risky action is played forever when N is arbitrarily large (see Theorem 6 and the discussion

below it), whereas experimentation stops with positive probability when N is small. Similarly, it is also easy to

build an example where experimentation stops immediately when N is large, but has positive duration when N

is small.
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induction on the number of observed winners, and is characterized by monotonic cut-offs.

Theorem 2 Under the utilitarian criterion, the optimal policy is determined by cut-offs q(k)

such that C(k, p) = R if and only if p ≥ q(k). These cut-offs are decreasing in k for k < k̄ and

equal to zero for k ≥ k̄, where k̄ = s
gN .

Proof. See the appendix.

The next result shows that the equilibrium level of experimentation under the majoritarian rule

is inefficiently short compared to the utilitarian optimum. This result is due to two concurring

reasons. First, the social planner can exploit information better than individual voters, to meet

its objective, since he has full control over future decisions. That argument shows up in the proof

below (see (9)). Second, the social planner takes into account winners’ utility, while unsure voters

do not. This implies that when, under the majoritarian equilibrium, unsure voters decide to

stop, a social planner would take into account winners utility which, other things equal, makes

experimentation more attractive (see (10) in the proof below).

Theorem 3 (Majoritarian vs. Utilitarian Rules) Let {p(k)}k be the cut-off values as-

sociated with the majority rule. Then q(k) ≤ p(k) for all k ≤ kN .

Proof. The utilitarian cut-off q(k) solves

(k/N)g + (1 − k/N)pg + (N − k)λp

[

W (k + 1, p)

N
− s/r

]

= s (7)

where W is the utilitarian value function. The left-hand side is the sum of the per-capita

immediate expected payoff given state (k,N) and of the per-capita jump of welfare following

the observation of a new winner, weighted by the probability rate of this event. The majority-

voting cut-off, p(k), solves

pg + (N − k)λp

[

w̄(k + 1, p)

N − k
+
N − k − 1

N − k
ū(k + 1, p) − s/r

]

= s (8)

where w̄ and ū are the value functions obtained under the majority rule. (The left-hand side is

obtained from (6) simplified through value-matching and smooth-pasting conditions.) Optimal-

ity of the utilitarian policy implies that for all k, p,

W (k, p)

N
≥

k

N
w̄(k, p) +

(

1 −
k

N

)

ū(k, p). (9)

Since w̄ > ū, this also implies that

W (k + 1, p)

N
>

1

N − k
w̄(k + 1, p) +

(

1 −
1

N − k

)

ū(k + 1, p) (10)

16



and, hence, that the left-hand side of (7) is higher than that of (8), for each p. Therefore, the

root of the first equation must be lower than that of the second. �

4 Design of Voting Procedures

This section considers which mechanism can improve efficiency compared to the simple majority

rule.

4.1 Fixed Quorum

The first issue is to determine how changing the number of votes (hereafter, quorum) required

for the risky action affects the length and efficiency of experimentation. The simpler case of a

constant quorum is considered first.18 In that case, Theorem 4 shows that there is no systematic

advantage of one voting rule over another. As one moves across the entire spectrum of voting

rules, from requiring unanimity for the safe action to requiring unanimity for the risky action,

the risk of loser trap diminishes while the risk of winner frustration increases, with exactly one

of the two risks entirely vanishing at the ends of the spectrum. Depending on the parameters

of the model, which determine the magnitude of these risks, the optimal rule can be any rule

in the spectrum. For simplicity, the analysis starts with the case of immediate type revelation,

which is sufficient to show the lack of comparability of voting rules.

Suppose that learning is arbitrarily fast (i.e. λ → ∞). In that case, there is no time cost of

experimentation hence no winner frustration. If one requires unanimity for the risky action, this

also gets rid of loser trap so will always prompt society to choose immediate type revelation.

However, once types are revealed, unanimity requires that R is only implemented if all voters

are winners, which typically is inefficiently too restrictive. Indeed, the utilitarian optimum is

to get immediate type revelation and then choose the risky action if and only kg > sN . For

ν ∈ {1, . . . N}, define the ν voting rule as the rule requiring ν votes for the risky action. Letting

νU = (sN)/g, a ν rule with ν > νU will never implement the risky action when it is socially

inefficient to do so. Let ν̄ denote the smallest integer such that society is ready to experiment

with the ν̄ voting rule, and let ν∗ = max{ν̄, νU}. Then, social efficiency is decreasing in ν for

18For any q-rule one may, proceeding as in Section 2, prove the existence of a unique equilibrium characterized

by monotonic cut-offs contained in [pSD, pM ]. The analysis of this section, based on immediate type revelation,

does not require this proof.
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ν ≥ ν∗, because on this range ν is high enough to prompt experimentation and the probability

of implementing the risky action if it is socially efficient ex post is decreasing in ν, while the

probability of implementing the risky action if it is inefficient is zero. As is easily checked, ν∗

can take any value between 1 and N (ν̄ decreases from N to 1 as p increases from 0 to 1).

To generate the reverse inefficiency ranking, suppose that, in addition to immediate type rev-

elation, p is arbitrarily close to 1. In that case, society always wishes to experiment, since the

probability of loser trap is arbitrarily small. Social efficiency is increasing in ν for ν ≤ νU :

since p is close to 1, initial experimentation takes place anyway, and ex post the probability of

implementing the risky action if it is socially inefficient decreases in ν. Since νU can take any

value between 1 and N , this implies the following result.

Theorem 4 For any voting rules ν 6= ν̃, there exist parameter values and an initial belief p

such that the ν voting rule is strictly socially more efficient than the ν̃ voting rule.

It would seem that, as the risk of loser trap becomes more salient compared to winner frustration,

it becomes more efficient to have a more restrictive voting rule, i.e. a higher ν. However, this

intuition may sometimes be wrong. For example, suppose that types are immediately revealed

if R is played. Owing to the risk of loser trap, there must exist a level ν∗, depending on initial

belief p0, such that society experiments for all ν ≥ ν∗ and sticks to S for ν < ν∗. Now suppose

that s is decreased by a small amount ε so that ν∗ stays unchanged. This increase of s can

be interpreted as the risk of loser trap becoming marginally less salient than the risk of winner

frustration. The change reduces voters’ value function for ν < ν∗ by ε/r, since they still choose

S, but it reduces their value function for ν > ν∗ by a lower amount, since under experimentation

the discounted time spent playing s is strictly less than 1/r.19 This shows that, at least in some

cases, reducing the risk of loser trap relative to winner frustration, does not make less restrictive

rules more desirable.

Efficiency depends not only on voters’ ex ante probability of falling in the loser trap but also on

the magnitude of the loser trap (more generally, the relative values of g and s and 0). With slower

learning, the risk and magnitude of winner frustration also influences voting rule efficiency in

the opposite direction. The impact of magnitude, already implicit in the above analysis through

νU , is illustrated below for the comparison of the simple majority rule and the unanimity rule

for R (i.e. ν = N). Let {χ(k)}0≤k≤N denote the cut-offs characterizing to the unanimity-voting

policy.

19Cut-offs are also affected by this change but this change is of second order, by optimality.
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Example 1 Suppose that N = 3 and s≪ g. Then, χ(1) > p(1).

Proof. Equation (16) in the appendix implies that

p(1) =
µs

µg + (g − s) − (s− pg)
∼

µs

(µ+ 1)g
(11)

if g ≫ s. In particular, p(1) is arbitrarily close to zero if g ≫ s. With the unanimity rule and

k = 1, unsure voters are indifferent when p satisfies

pg + λp[w(2, p) − s/r] + λp[vSD(p) − s/r] = s, (12)

where w(2, p) is the value of a sure winner under unanimity rule if there are two sure winners

(and N = 3), and vSD(p) is the value function of a single-decision maker. As can be easily

checked, vSD(p) ≤ pg/r + (1 − p)s/r, while w(2, p) ≤ pg/r + (1 − p)s/r. This and (12) imply

that χ(1) must satisfy the inequality

pg + 2λp2(g/r − s/r) ≥ s,

or

p ≥
µs

µg + 2p(g − s)
∼ s/g (13)

if g ≫ s. Comparing (11) and (13) shows that χ(1) > p(1). �

4.2 Time-varying quorum

Suppose now that at each time t, R is elected if and only if it gets νt of the votes. The next

result shows that even if νt is deterministic, efficiency can be fully restored.

Theorem 5 (Deterministic Quorum) There exists a quorum function t 7→ νt such that the

resulting unique Markov equilibrium in undominated strategies implements the utilitarian policy.

Moreover, νt is increasing in time and is entirely determined by the initial belief p0 and the

utilitarian cut-offs q(k).

Proof. Starting from a given belief p0, let tk denote the time such that ptk = q(k), for each

k ∈ {0, . . . N}. Since pt decreases over time, the sequence tk is increasing, and tN = ∞. For

t ∈ [tk, tk+1), let νt = k. This entirely and uniquely determines the function νt. By construction,

if there are at least k winners, they can impose R whenever t < tk, i.e. whenever p > q(k).

Moreover, if there are exactly k winners, they can only impose R if t < tk, i.e. when p > q(k).
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From Theorem 3,20 unsure voters always want to impose S when it is socially efficient to do

so, which guarantees implementation of the efficient policy whenever t ≥ tk and there are only

k sure winners or less. Proceeding by backward induction on k, as in the proof of Theorem 1,

one may therefore conclude that t 7→ νt yields a unique Markov equilibrium in undominated

strategies, and that this equilibrium implements the utilitarian policy.

The quorum is not unique. For example, near time zero, everyone wants to experiment (assuming

p0 is high enough) so any quorum initially yields the efficient policy. In general however, the

quorum must be low enough to allow R whenever unsure voters want to stop experimentation

while it is efficient to pursue it, and high enough to prevent winners from imposing R whenever

S is the socially efficient action. More generally, Theorem 5 suggests that, in settings where

news events amount to good news and no news is bad news, an efficient quorum should increase

over time: as more time elapses, society should require a higher number of winners in order for

R to be elected. Although the precise times of quorum change rely on the exact map between

pt and the utilitarian cutoffs and on p0, the insight that a gradual increase cut-offs may improve

efficiency over constant quorum is does not depend on that map.

Theorem 5 has several corollaries and equivalent formulations. For example, increasing voting

weights of unsure voters, relative to sure winners, offers an alternative way of implementing

efficiency. Indeed, it is easy to determine a particular weighting scheme that mirrors the proof

of Theorem 5, under which sure winners are in control of the collective decision process only if

R needs to be implemented. Naturally, history-dependent quorums, which contain deterministic

ones as a particular case, can also be devised to implement the efficient outcome. Such quorums

– as well as constant ones – amount to a form of commitment, as opposed to having the stronger

side impose his choice at any given time. In a setting where winners achieve increasing political

power (for example, their higher payoffs might give them higher lobbying power), the resulting

variation in voting weights goes opposite to the one implementing efficiency. In that case, winners

may impose the risky action, owing to their higher political power, when it is inefficient to do

so. Anticipation of this potential outcome should result in even more conservatism ex ante. The

next section considers efficiency under various forms of commitment assumptions.

20The proof is actually slightly different and simpler in the present case. Unsure voters choose between contin-

uing with the efficient policy versus imposing S forever.
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4.3 Commitment and Endogenous Quorum

Theorem 5 shows that it is possible to implement the efficient outcome as long as one can commit

to some time varying quorum. If voters are initially homogeneous and can only commit to an

anonymous policy at the outset, they share, initially, a common objective function.21 Since

expected payoffs are identical, the optimal policy also maximizes the sum of these expected

payoffs, i.e. utilitarian welfare. Therefore, if given the possibility, voters would like to commit

to the utilitarian policy, showing the following result.

Theorem 6 (Commitment) If voters can commit to an anonymous policy at time 0, they

choose the cut-off policy determined by cut-offs {q(k)}0≤k≤N .

If voters can only commit to a fixed action, such as imposing a new rule for the next five years

no matter how well that rule performs over that period, efficiency need not be restored. To

give an extreme illustration, suppose that voters must commit to an action for the entire time

horizon. In that case, the risky action is chosen if and only if its expected payoff is above the

myopic cut-off. This extreme case of action commitment thus entirely annihilates the value of

experimentation. Commitment to an action is formally equivalent to reducing the frequency

of decision making. For example, voting every five years amounts to a succession of five-year

commitments. The previous observation can therefore be reinterpreted as follows: if votes take

place at a low enough time frequency, individual control over collective decisions is reduced to

such extent that the resulting policy may be more inefficient. However, provided that aggregate

uncertainty is small enough and initial beliefs are optimistic enough, commitment to a fixed

action can restore efficiency.22

21Anonymity means that individuals cannot commit to a policy that favors or harms particular voters, such

as imposing generous redistribution if some given individuals turn out to be poor and no redistribution if these

same individuals turn out to be rich. This assumption is consistent with veil-of-ignorance arguments.
22With an infinite population, the law of large numbers allows one to compute the socially optimal action:

starting with an individual probability p that the action is good, the risky action is the social optimum if and only

if pg > s, since there surely is a fraction p of winners. Suppose that, initially, pg > s. From Theorem 6, individuals

find it optimal to commit to the risky action over the infinite horizon. What happens without commitment? The

second part of Proposition 1 implies that unsure voters, if they have the majority, impose the safe action as soon

as pt hits the myopic cut-off pM = s/g. This situation will occur surely if one starts with p = pM + ε for ε

for small enough. Indeed, from Proposition 2 in the appendix, the probability that an unsure voter with initial

probability p receives a lump sum before pt reaches q < p equals (p−q)/(1−q). This and the law of large numbers

imply that, when society starts at pM + ε, the fraction of remaining unsure voters when pM is reached equals

1 − ε/(1 − pM ), which is greater than 1/2 for ε < (g − s)/2g. This shows that commitment to the risky action is

strictly more efficient than no commitment.
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One may wonder whether a hybrid form of commitment, where voters commit to a fixed action

over some horizon but also get to dynamically modify the quorum required for the risky action,

can restore efficiency. The following result, which extends to a much more general setting than

the present one, answers negatively. Considers the following recursive procedure, which may be

called the “Endogenous Quorum” Procedure: at time 0, voters decide on two policy dimensions:

an initial horizon of experimentation, T1, and a quorum, ν1, used at T1 for deciding whether or

not to continue experimenting and, if so, on a new horizon of experimentation, T2, and on the

quorum ν2 used at T2 to vote on T3 and ν3, etc. The key of this procedure is that voters cannot

commit to the quorum function at the outset. Rather, they can, at any given election, mitigate

the law of the strongest by controlling the quorum used at the next election. This procedure

is a natural way to capture the idea that voting rules cannot be committed upon ex ante. As

soon as sure winners meet the quorum, they impose the risky action forever, by setting the

next experimentation period to infinity. If sure winners do not meet the quorum, the procedure

grants unsure voters the right to choose the next horizon and quorum. To be complete, the

procedure must specify an initial quorum, ν0, at time 0. Since voters are ex ante homogeneous,

this initial quorum plays no role in the present setting. In principle there may exist multiple

equilibria. However, the endogenous quorum procedure must be inefficient for any equilibrium,

as the next result shows.

Theorem 7 (Endogenous Quorum) There exist initial belief p0 and group size N such that

the Endogenous Quorum procedure does not implement the utilitarian policy.

Proof. Consider any policy C consistent with an endogenous quorum procedure: C is a right

continuous stochastic process taking values in {S,R} characterized by an increasing sequence

of (possibly infinite) random times Tj, such that C is constant on any interval [Tj, Tj+1], and

by a quorum process νj such that at each Tj , unsure voters impose S forever or set νj+1 and

Tj+1 optimally if there are at least νj of them, otherwise sure winners set Tj+1 = ∞. With

positive probability there exist both sure winners and unsure voters at time 1. Suppose that

sure winners do not meet the quorum ν1, so that unsure voters can choose the next quorum

and experimentation horizon. If Theorem 7 were false, then these unsure voters, starting from

their current belief p1 and group size N − k1, could choose ν1 and T1 as part of a policy that

maximizes their expected welfare, i.e. ignoring the utility of current sure winners. Since it would

be optimal for them to do so, they implement that policy, contradicting efficiency of C.
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5 General News Arrival Processes

Section 2 assumed that individuals perfectly learned their types upon receiving some lump sum,

that news events amounted to good news, and that types were independently distributed. Re-

laxing these assumptions, this section reconsiders in a very general setting whether i) collective

experimentation is shorter than the single decision maker equivalent, ii) collective experimen-

tation is shorter than the utilitarian optimum,23 and iii) there is always some experimentation,

i.e. a set of voter beliefs where R’s immediate payoffs is lower than S’s but society still elects R.

Suppose that, for any given individual, the risky arm has a payoff distribution, or “type”, θ

lying in some finite set Θ. At any time, that individual’s belief about his type is summarized

by a probability distribution or “state” γ ∈ Γ, where Γ = ∆(Θ) is the set of all probability

distributions24 over Θ. The safe arm still pays a constant rate s. For a single decision maker, the

Gittins index of the risky arm is the map G : Γ → R such that, given state γ, G(γ) is the smallest

value of s for which the single decision maker prefers the safe action over experimentation.

Mathematically, G(γ)solves

G(γ) = inf

{

s : s/r = sup
σ
E

[
∫ ∞

0
e−rtdπσt(t)|γ, s

]}

,

where σ is any policy, and the expectation is conditional on the current state γ and on the rate s

of the safe action.25

Now consider the case of N decision makers and let {Ft}t≥0 denote the filtration generated by

all voters’ payoffs. At any time, the state, known to all, is denoted γ. If types are independent,

then γ =
(

γ1, . . . , γN
)

∈ ΓN . In general, γ may contain information about type correlation. A

policy is a process adapted to the filtration {Ft}t≥0 and taking values in {S,R}.

For any rate s, policy C, and voter i, necessarily

sup
σ
E

[
∫ ∞

0
e−rtdπi

σt
(t)|γ, s

]

≥ E

[
∫ ∞

0
e−rtdπi

Ct
(t)|γ, s

]

. (14)

The inequality obtains because C is an element of the policy set over which the maximization

23That result is considered in the negative-news setting to follow.
24In the benchmark model, the type θ is either “good” or “bad” and the state γ is the probability p that the

type is good.
25The results of this section are easily adapted to discrete-time settings. In fact, Theorem 8 does not assume

anything about the time domain.
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is taken.26 We may define a policy-dependent generalization of the Gittins index as

Gi
C(γ) = inf

{

s : s/r = E

[
∫ ∞

0
e−rtdπi

Ct
(t)|γ, s

]}

.

Inequality (14) implies that Gi
D(γ) ≥ Gi

C(γ) for all i, γ, and C, where Gi
D(γ) is i’s Gittins index

if he has dictatorial power over all decisions.

The definition of Markov equilibrium in undominated strategies is extended as follows. Let ν

denote any integer in {1, . . . , N}

Definition 2 (Voting Equilibrium) C is a ν-voting equilibrium if, for any belief γ,

C(γ) = S ⇔ |{i : Gi
C(γ) ≤ s}| ≥ ν.

This definition should be interpreted as follows. If a voter is pivotal, the Markov property

implies that imposing S at any time amounts to imposing S forever, since the state γ is frozen

whenever S is played. Therefore, i votes for S if and only if he prefers getting the constant

payoff s forever over pursuing policy C, a choice that is determined by i’s C-Gittins index at

belief γ. The following result shows that collective experimentation is shorter than dictatorial

experimentation, in the following sense: if there are at least ν individuals who, taken individually,

would prefer the safe action if given dictatorial power over future decisions, then society also

picks the safe action in any ν-voting equilibrium. This result is an extreme generalization of the

fact that all equilibrium cut-offs in Section 2 were above the single decision-maker cut-off.

Theorem 8 Suppose that C is a ν-voting equilibrium. Then, C = S whenever |{i : Gi
D(γ) ≤

s}| ≥ ν.

The proof is an immediate consequence of the general inequality Gi
D(γ) ≥ Gi

C(γ) for all i and,

C and γ.

When types are independent, Gi
D(γ) = G(γi) where G(γi) is the Gittins index of the single de-

cision maker problem with (individual) belief γi. In that case, i’s optimal policy is independent

of other individuals’ types. As a corollary of Theorem 8, therefore, collective experimentation

is shorter than in an equivalent single decision maker setting. If types are positively correlated,

however, collective experimentation can last longer than in a single-decision maker setting, as

positive type correlation increases learning speed and thus reduces the time cost of experimen-

tation (see also Section 7). In contrast, collective experimentation is always shorter, even with

26In general, C depends on all voters’ types and need not be anonymous.

24



positive correlation, than what any voter would like if he could dictate all decisions, because a

dictator benefits from the same learning speed as society, unlike a single decision maker.

Theorem 1 also stated that all cut-offs were below the myopic cut-off, meaning that there always

was some experimentation. How general is this result? Are there cases where society elects the

safe action even when the risky action yields a higher payoff? To answer this question, the

following definitions will be used. For any probability distribution γi over the type space, let

g(γi) = E[dπi
R/dt|γ

i]. g(γi) is i’ immediate expected payoff rate with action R given type

distribution γi. For any individual type θi, let, slightly abusing notation, g(θi) = g(δθi), where

δθi is the Dirac distribution concentrated on type θi, denote i’s true immediate expected payoff

rate with action R when his actual type is θi. Say that i is a winner if g(θi) > s, and a loser

otherwise. Hence, i is a winner if R is optimal for him given his true type. Θ can thus be

partitioned into “good” (winner) types and “bad” (loser) types.

Definition 3 A policy C is adverse for Voter i if the set

{t : Pr[Ct = R|θi good] < Pr[Ct = R|θi bad]}

has positive Lebesgue measure.

Adversity means that R is more likely to be chosen if i is a loser, at least for some nonzero time

set. Adversity can occur, for example, if a voter’s type is perfectly negatively correlated with a

majority of voters. The majority then blocks R whenever that voter is a winner and imposes it

when he is a loser.27

Theorem 9 Suppose that C is a voting equilibrium for voting rule υ. Then, Gi
C(γ) ≥ g(γi) for

all i for which C is non-adverse.

Proof. See the appendix.

27In that case, however, majority would simply ignore i and proceed with experimentation. As a stronger case

of adversity, suppose that 10 individuals face the following problem. Either they elect the safe action forever

or they try R, in which case types are immediately revealed and a dictator is randomly, uniformly chosen, such

that the dictator has an opposite type from all other voters (i.e. either R is good for him and bad for all

others or vice versa), with a 50% chance of being a winner. Ex ante, R yields an individual expected value of

π = 1/10 ∗ [pg + (1 − p)s] + 9/10 ∗ (1 − p)s = pg/10 + (1 − p)s (letting r = 1). On the other hand, a voter’s

probability of being a winner is p/10 + (1 − p)9/10 = 1/2. Choosing g = 3s, the myopic cut off is pM = 1/3, so

p is above the myopic cut-off and yet voters prefer to avoid R since π < s. Section 5.2 provides an example of

endogenous adversity.
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It would seem a priori that in settings where types are independent or positively correlated,

usual voting rules would be non adverse. However, this intuition is incorrect, as explained in

Section 5.2.

5.1 Negative News Shocks

Several potential applications concern a setting, symmetric to the benchmark one, where news

events amount to catastrophes and no news is good news. One model such applications by

assuming that the risky arm pays a positive constant rate if it is good and, in addition, pays

some negative lump sums according to some Poisson process if it is bad. One may assume

without loss of generality that the payoff rate of S is zero, since all payoffs can be translated

by the same constant without affecting voters’ decision problem. The state variables are the

number k of sure losers and the probability p that the arm is good for unsure voters. It may

be shown that the policy is also determined by cut-offs ρ(k) such that unsure voters impose the

risky action if and only if p ≥ ρ(k) provided k ≤ kN , and losers impose S when k > kN . In this

setting, pt increases over time since no news is good news for unsure voters. Therefore, the risky

action can only be stopped, if used at all, when enough sure losers are observed, either because

those obtain the majority, or because the cut-off ρ(kt) jumps over pt upon the observation of

a new loser (cut-off variation is discussed below). Theorem 8 implies that, provided that types

are independent, ρ(k) ≥ ρSD for all k < N/2, where ρSD is the single-decision-maker cut-off.

One may prove that the equilibrium policy resulting from the majority rule is non-adverse to

any voter.

With negative news shocks, it is not true any more that experimentation is inefficiently short.

Unsure voters, ignoring losers, may push experimentation further than a utilitarian social plan-

ner. However, a social planner still has a higher value of experimentation than control–sharing

voters.28 For example, a social planner would always welcome immediate type revelation,

whereas voters may prefer playing S forever rather than learn their type, however fast, pro-

vided that the risk of loser trap is high enough. At the outset, a social planner may thus be

more willing to experiment than individual voters. As the number of observed losers increases,

28More precisely, the value of experimentation of an agent, for a given policy, is the difference between that

agent’s value function if that policy is followed, and the value that the agent gets if the action that gives him

the highest expected payoff is played forever (see (3)). This definition captures the potential gain achieved by

reacting to incoming news. The social planner, being the sole decision maker of his welfare maximization problem,

chooses the policy that maximizes his value of experimentation. By contrast, the equilibrium policy differs from

the optimum of any given agent, and thus provides him with a lower value of experimentation.
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the first effect starts to dominate, with the social planner stopping experimentation before unsure

voters under majority voting.

In view of Theorem 1, one may wonder whether cut-offs are also monotonic in this negative news

setting. The answer is negative. Counter-examples can be observed numerically or constructed

with analytical results omitted here. Such violations can be explained as follows. Essentially, the

loser trap is more severe with negative news shocks. In the benchmark setting, unsure voters can

always impose the safe action when they have the majority, and the only shock that may occur in

that case is to become a winner. With negative news shocks, in contrast, any unsure voter can,

upon receiving a negative lump-sum, suddenly join the minority of sure losers and hence face the

worst possible situation. Negative news is compounded by a sudden control loss. This explains

why the “insurance” effect resulting from the apparition of a new loser can, paradoxically,

encourage experimentation. Seen differently, in the negative-news setting, p simply increases

over time, which is enough to make experimentation more attractive. In contrast, in the positive-

news setting, the apparition of news winners is necessary for experimentation to continue, for

otherwise, p decreases until it causes experimentation to stop.29 Note however that although cut-

offs need not be monotonic, it is always true that experimentation decreases with the number of

sure losers. Indeed, experimentation can only stop when a new loser is observed, since otherwise

unsure voters become more optimistic about their types and have no reason to switch to S.

5.2 Mixed Shocks and Negative Value of Experimentation

Suppose that the benchmark setting is modified as follows: if R is good, it pays positive lump

sums according to the jumping times of some Poisson process with intensity λg, and if it is bad,

it pays negative lump sums according to the jumping times of a Poisson process with intensity

λb. Without loss of generality, also suppose that the payoff rate of S is zero. In this case, state

variables consist of the number kW of observed winners, the number kL of observed losers, and

unsure voters’ probability p that R is good for them. Since the number of revealed winners

and losers can only increase over time, a backward induction argument on kW and kL shows

that there exists a unique majority voting equilibrium policy. If λg > λb, then no news is bad

news, since shocks are more likely to happen if R is good than if it is bad. This implies that,

29From a technical standpoint, another distinctive feature of the negative-news settings is that the smooth-

pasting property does not hold any more. Indeed, as time elapses, p moves away from its threshold p(k), so the

value function need not be smooth at that cut-off. Instead, cut-offs are determined by direct comparison of value

functions with and without starting experimentation.
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under this assumption, unsure voters become more pessimistic over time30, and that they stop

experimentation at some cut-offs p(kW , kL), provided they are pivotal. Theorem 8 implies that

pSD ≤ p(kW , kL), where pSD is single decision maker setting cut-off. This inequality holds

for all ν voting rules. If the risky action requires the unanimity rule, then Theorem 9 implies

that p(kW , kL) ≤ pM , where pM is the myopic cut-off: unanimity guarantees at least some

experimentation.

Negative Value of Experimentation With other voting rules, non-adversity need not hold,

due to the following perverse effect: if a loser is observed, this may prompt other voters to

experiment more by reducing their risk of the loser trap. The value of experimentation can be

negative, i.e. voters may prefer to elect the safe action even if the risky action has a higher

immediate expected payoff. Here is such an example. There are three unsure voters, voting at

the simple majority rule. If a loser is observed, the remaining two unsure voters are “protected”:

it is as if R required unanimity among them two. This increases their willingness to experiment.

If a winner is observed, the remaining two unsure voters are now on the brink: any winner

among them will impose the risky action to the other. This risk reduces their willingness to

experiment. Therefore, ex ante, the three voters know that if any of them turns out to be a

winner, other voters will soon revert to the safe action, while if one of them receives a negative

lump-sum, others will experiment more. This endogenous adversity makes R unattractive even if

its expected payoff is higher than S’s. For the value of experimentation to be negative, it requires

that i) the magnitude of loser trap be severe, and ii) learning be slow, so that experimentation

takes time and the adversity described above lasts long. An explicit example in the Appendix

This section highlights an important virtue of requiring unanimity for R: the unanimity rule

guarantees a nonnegative value of experimentation, whereas other voting rules may yield a

negative value of experimentation.

6 Privately Observed Payoffs

This section shows that even when payoffs are privately observed, the equilibrium policy of

Section 2 can be implemented. Suppose that individuals can only observe their own payoffs

and, at each time, the aggregate number of votes for each alternative. Voters cannot condition

their voting policy on the current number of winners, since when everyone votes for R it is

impossible to tell apart sure winners from unsure voters. However, voters do learn the number

30Precisely, one may show that dp/dt = −(λg − λb)p(1 − p).
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of sure winners when it matters, i.e. when cutoffs are reached. Indeed, each time a cut-off is

reached at which unsure voters would want to stop given the number of winners that was last

revealed, unsure voters vote for the safe action and sure winners vote for the risky action. That

way, everyone observes the current number of winners, and unsure voters then decide whether to

pursue experimentation to the next relevant cut-off (everyone votes for the risky action), or to

vote for the safe action if no new winner is revealed. With this protocol, voters know the current

number of winners only when p reaches particular cut-offs, but that suffices to implement the

policy of the public-information setting.31

To understand why it is in everyone’s interest to follow this scheme, the intuition is as follows.

First, sure winners always benefit from revealing their type, because this increases the duration

of experimentation by cut-off monotonicity (Theorem 1). Second, unsure voters cannot gain

from manipulating the choice process because, conditional on being pivotal (i.e. k ≤ kN ), they

are already choosing their optimal action. For example, if an unsure voter voted for R at some

cut-off where he is supposed to vote for S, prompting other voters to believe that there are

more winners than there really is, he will manage to extend experimentation. However, this will

increase his risk of loser trap, since other voters may become sure winners during that time.

The benefits and costs of such an extension of experimentation are already incorporated in the

cut-offs derived under public information, making deviations unprofitable. The proof that the

above protocol implements the public-information policy is sketched in the appendix.

Theorem 10 The above protocol yields the same equilibrium as the experimentation policy based

on publicly observed payoffs.

7 Extensions

Correlated Types Positive correlation across types reduces risks of loser trap and winner

frustration and thus increases experimentation, compared to the case of independent types.

Moreover, this also increases the speed of learning, reducing the time-cost of experimentation.

Results are shown formally in a technical appendix, which studies correlation for the case of two

voters and where unanimity is required for R. With positive type correlation, an advantage of

collective decision making compared to individual experimentation is to get rid of the free-rider

problem identified in papers such as Bolton and Harris (1999), Li (2001), and Keller, Rady,

and Cripps (2005). With perfect type correlation, voting on joint decision fully restores efficient

31In small committees, cheap talk would be another natural way for voters to truthfully reveal their payoffs.

29



experimentation, where when types are independent, letting each individual experiment on its

own is efficient. A natural conjecture here is that imposing a joint decision over individual ones

(assuming both forms of experimentation are possible) becomes more efficient as types get more

positively correlated.

If some voters have negatively correlated types, this may increase or reduce experimentation,

depending on the particular correlation structure. For example, suppose that there are only two

voters, that unanimity is required for the risky action, and that voters have perfectly negatively

correlated types. Then, as soon as one voter receives a lump, the other voter knows that

he is surely a loser and this imposes the safe action. This completely destroys the value of

experimentation, and voters stop at the myopic cut-off. A similar argument holds if unanimity

is required for the risky action. Consider now the mixed-correlation case in which, say, two voters

have a perfectly negatively correlated type with a third voter, and decisions are made according

to the majority rule. In that case, the first two voters have perfectly positively correlated types

and so have fully control over the decision process: if the third voter receives a lump sum, the

first two voters know that they are losers and thus impose the status quo. If one of the first

two voters gets a lump, these voters impose the risky action. Overall, negative correlation must

be seen more broadly as part of a more general description of potential alliances which may

be formed, may have a positive or negative impact depending on the context: if it reduces a

powerful group’s expected power, negative correlation is likely to reduce experimentation. If

it creates a more powerful group, the minority wants to experiment less but has no say on

decisions, and so only the majority’s increased incentive to experiment matters.

Factions and Heterogeneous Voting Weights. If some voters have a greater decision

weight, they are less subject to control sharing effects and wish to experiment longer. For

example, consider a setting with four voters, where Voter 1 (only) can cast two votes, and

decisions are made according to the simple majority rule. If, say, Voter 4 is the only sure winner

so far, Voter 1 can impose experimentation by siding with Voter 4. As long as no other winner

is observed, Voter 1 can push experimentation up to the single decision maker threshold. If,

say, Voter 2 becomes a winner, Voter 1 becomes subject to the risk of loser trap, as further

experimentation may reveal that Voter 3 also is a winner, resulting in a decisive coalition of sure

winners. Contrary to the benchmark setting, thus, experimentation can be interrupted by the

occurrence of a new winner.

Why not a two-period model? Some features of collective experimentation such as cut-off

monotonicity, the impact of news arrival and type correlation, and the possibility of a negative

value of experimentation, rely on the impact of one’s experimentation on other voters’ future
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experimentation, and hence require at least three periods. Infinite horizon provides time ho-

mogeneity, guaranteeing that cut-offs only depend on beliefs and not on time. Some potential

applications, such as joint R&D projects, can be seen as stopping games, where the time di-

mension is an important feature of the model. Some results in this paper can be interpreted as

comparative statics pertaining to stopping times.32

Risk aversion. The analysis above does not require risk neutrality: it is enough that voters

have a von Neumann-Morgenstern utility function, where lump sums actually correspond to

“lump utils”, or certainty equivalents thereof if the magnitude of these lump utils is random.

Side payments. Side payments may restore efficiency under some implementations. However,

a free-rider problem occurs if multiple individuals are needed to influence some voters. For

example, if sure winners must coordinate to influence some unsure voter, then obtaining this

switch amount to a public good provision problem for sure winners. Furthermore, transfers may

also be impractical or unethical.

Switching costs. With a safe and a risky action, switching costs are easily accommodated,

because the equilibrium policy can only switch actions once, from the risky to the safe action.

Adding a cost there simply reduces the value of experimentation ex ante and, once the risky

action is started, modifies indifference cut-offs.

Multiple Risky Actions Adding a second risky action to the benchmark setting may decrease

experimentation. This will occur, for example, if the two risky actions are perfectly correlated

(for each voter) and the payoff of the new action exacerbates the loser trap.33 In that case,

unsure voters may be unwilling to experiment with R for fear that winners impose the new

action, causing an even lower payoff for losers. Depending on the payoff structure, even a small

probability that the second risky action becomes relevant can have a dramatic impact on the

equilibrium policy.

Two risky actions. Using a safe and a risky action provides an ideal setting to analyze

conservatism: conservatism means choosing the safe action when the risky action would be more

efficient. With two risky actions, conservatism could still be interpreted as settling inefficiently

too early on one of the two risky actions when it would be more efficient to continue learning

about the other action’s value. In this spirit, Albrecht, Anderson, and Vroman (2007) show

in their model of search by committees that collective search settles earlier (i.e. acceptance

32Setting λ = ∞ reduces the model to two periods: before and after type revelation.
33Perfectly correlation ensures that there are still only two types of voters at any time and, therefore, no

Condorcet cycles.
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thresholds are lower) than in the equivalent single-decision-maker setting.

Voter heterogeneity. If voters start with different type probabilities, this heterogeneity may

increase experimentation. Indeed, heterogeneity concentrates more power in the hands of those

voters who are pivotal today, because they are more likely to be also pivotal in the future. To

illustrate with an extreme case, suppose that there are 9 voters, 4 of which are (almost) sure

to be winners and 4 of which are (almost) sure to be losers. The remaining voter has (almost)

perfect control over collective decision today, but also in the future: he will be able to side with

whichever group corresponds to his preferred action.

Power Concentration The impact of group size on experimentation, as described by Proposi-

tion 1 and the discussion that follows, can be reinterpreted as a result on power concentration.

As a simple model of power concentration, define an oligarchy as a subset of O (odd) voters such

that, at any time, the collective decision is the action chosen by the majority of that subset.

Experimentation cut-offs are therefore defined as before, replacing k by the number of winners

within the oligarchy, and the total number of voters by the cardinal of the oligarchy. With this

interpretation, Proposition 1, conveys a sense in which experimentation lasts longer if power is

concentrated into fewer hands. In particular, a dictator sets the same experimentation cut-off

as a single decision maker.34

8 Conclusion

This paper has introduced a framework to study collective decisions when individual preferences

evolve through learning. In this framework, experimentation with new alternatives is influenced

by the potential effect of learning on future preferences and votes. Control sharing effects arise,

which introduce a conservative bias compared to the case of a single decision maker setting or

a utilitarian social planner. Equilibrium policy is influenced by group size, voting rule, voting

frequency, voter heterogeneity and correlation, the relative strength of loser trap and winner

frustration, the ability to commit to an observation-dependent policy or to a fixed action, the

amount of aggregate uncertainty, and the particular process of news arrival, among other factors.

In addition to the points developed in Section 7, there are several other important extensions

to consider. For example, the cost or benefit of experimentation relative to the safe action

34This assumes type independence. With positively correlated types, a dictator would learn from others and

set lower cut-off than the single decision-maker cut-off.

32



may be heterogeneous across voters. Voters may also have an outside option allowing them

to leave the group. In political applications, there may be several subgroups with high intra-

group correlation and low inter-group correlation, with different and possibly evolving voting

weights. Finally, some risky decisions may be (at least partially) irreversible. Such features may

be necessary to analyze realistic settings. For example, “experimenting” with gas emissions has

long-lasting effects, implying irreversibility. A country’s cost of reducing gas emissions much

depends on its primary source of energy, which is a source of heterogeneity. It will be useful

to investigate the effect of such features on the equilibrium policy. When fully observation-

contingent commitments are not available, what forms of commitment can improve efficiency

under such extensions?

9 Appendix

9.1 Proof of Theorem 1

Suppose first that k > kN = (N − 1)/2, i.e. sure winners have the majority. We show that

C(K, p) = R for all p. If not, there exists K̄ with |K̄| > N/2 and p̄ for which C(K̄, p̄) = S. In

this situation, S is played forever whenever p reaches p̄, resulting in a constant value function of

s/r for all voters. Suppose that sure winner i is pivotal. Then voting for R yields an immediate

expected payoff of g and a continuation value function that is weakly greater than s/r, since sure

winners get a payoff rate of at least s no matter which action is played. This strictly dominates

s/r. So the only undominated strategies, starting from (K̄, p̄), must start with i voting for R.

Since this is true of all sure winners, and |K̄| > N/2, necessarily C(K̄, p̄) = R. This means that

in any Markov equilibrium in undominated strategies, R is elected forever as soon as winners

gain the majority. The value function of unsure voters is easily computed in that case: if an

unsure voter’s type is good, which happens with probability p, he gets the same expected value

as winners, g/r. Otherwise, he gets 0 forever. Therefore, u(k, p) = pg/r for k > kN . Now

consider the case k = kN , in which unsure voters have the majority, but only one new winner

suffices for sure winners to gain the majority. If i is an unsure voter, (2) reduces to

pg+ λp
(g

r
− V i,C(k, p)

)

+ (N − kN − 1)λp
(pg

r
− V i,C(k, p)

)

− λp(1− p)
∂V i,C

∂p
(K, ) > s. (15)

In any equilibrium, C(K, p) = R if and only if condition (15) holds. This condition is formally

identical to the HJB equation for the optimization problem of a single decision maker. The

solution is characterized by some indifference threshold p(kN ) determined by the smooth-pasting
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condition of the Hamilton-Jacobi-Bellman equation (6), which reduces to

pg + pλ(g/r − s/r) + pλ(N − kN − 1)(pg/r − s/r) = s, (16)

using the relation ukN+1(p) = pg/r. The left-hand side of (16) is increasing in p, equal to 0 if

p = 0 and higher than g > s if p = 1. Therefore, the equation has a unique root, which can be

reexpressed as

p(kN ) =
µs

µg + (g − s) + (N − kN − 1)(p(kN )g − s)
. (17)

This shows that C(K, p) = R if and only if p > p(kN ). If p ≤ p(kN ), S is chosen by unsure

voters. Since no more learning occurs, p remains constant forever, hence S is played forever.

The above policy entirely determines the value functions w(k, p) and u(k, p) of sure winners and

unsure voters, for k = kN , which are in fact computable in closed-form by integration of their

dynamic equation (a similar derivation is done by Keller, Rady, and Cripps, 2005):

w(kN , p) =
g

r
−
g − s

r

(

1 − p

1 − p(kN )

)N−kN
(

Ω(p)

Ω(p(kN ))

)µ

, (18)

and

u(kN , p) =
pg

r
+
s− p(kN )g

r

(

1 − p

1 − p(kN )

)N−kN
(

Ω(p)

Ω(p(kN ))

)µ

(19)

for p ≥ p(kN ), where Ω(p) = (1 − p)/p. These functions are easily shown to be increasing in p,

with u(kN , p) ≥ pg/r. Moreover, u(kN , p) = w(kN , p) = s/r for p ≤ p(kN ), since the status quo

is imposed forever.

Now suppose that k = kN − 1. Then, any new winner results in the case k = kN just analyzed.

Again, (2) is formally equivalent to the stochastic control problem of a single decision maker.

Using again the smooth pasting property in (6), which implies that the derivative of the value

function vanishes, any indifference threshold p(kN − 1), must solve

pg + pλ(w(kN , p) − s/r) + pλ(N − kN − 2)(u(kN , p) − s/r) = s. (20)

Since the left-hand side is increasing in p, equal to 0 for p = 0 and above s for p = 1, the

equation has a unique root p(kN − 1). The choice rule thus defined entirely determines value

functions u(kN − 1, ·) and w(kN − 1, ·).

To show that p(kN − 1) > p(kN ), suppose that the contrary holds. Then, u(kN , p(kN − 1)) =

w(kN , p(kN − 1)) = u(kN − 1, p(kN − 1)) = s/r, and by the smooth-pasting property, ∂u
∂p (kN −

1, p(kN − 1)) = 0. Therefore, (20) becomes p(kN − 1)g = s, which contradicts the assumption

that p(kN − 1) ≤ p(kN ) < pM .
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Let us now show that u(kN − 1, p) is nondecreasing in p. Suppose that pt = p̃ > p̄ and that

unsure voters behave as if pt were equal to p̄, meaning that they will stop experimenting after the

same amount of time σS , unless a new winner is observed before. Let σW denote the (possibly

infinite) time at which a new winner is observed. Until σ = min{σS , σW }, unsure voters receive

nothing since R is played and no new winner is observed. The value function of this strategy is

thus equal to

u(pt) = Et

{

e−r(σ−t)

[

q

(

1

N − kN + 1
(w(kN , pσ) + h) +

N − kN

N − kN + 1
u(kN , pσ)

)

+ (1 − q)
s

r

]}

,

where q = Prob[σW < σS|pt]. We saw that u(kN , ·) and w(kN , ·) were increasing in p. Moreover,

these values are above s/r. Indeed, s/r is the value achieved if voters chose the status quo,

which is suboptimal by definition of σS and given that p(kN ) < p(kN −1). Also, pσ is increasing

in pt given the Bayesian updating dynamics. Finally, σW is decreasing in pt, since a higher pt

makes it more likely that a payoff will be observed.35 This also implies that q is increasing in

pt, by definition of q and by the fact that σS is independent of pt, by construction. Combining

the above implies that u(p̃) > u(p̄). Since unsure voters optimize their value function with

respect to σS , this yields u(kN − 1, p̃) ≥ u(p̃) > u(p̄) = u(kN − 1, p̄), which proves monotonicity

of u(kN − 1, ·). w(kN − 1, ·) is also increasing in pt. Indeed, let σ1 < σ2 the arrivals times of

lump-sum to the next two new winners. As is easily shown, these stopping times are decreasing

in pt in the sense of first-order stochastic dominance. This, given the fixed experimentation

thresholds p(kN ) and p(kN − 1), implies that the distribution of the (possibly infinite) stopping

time σS at which experimentation stops increases in pt in the sense of first-order stochastic

dominance. Finally, since

w(kN−1, pt) = Et

[g

r

(

1 − e−r(σS−t)
)

+
s

r
e−r(σS−t)

]

,

this shows that w(kN−1, ·) is increasing in pt. The remaining of the proof proceeds by backward

induction on k, where the induction hypothesis is that i) for all k′ > k, C(k′, p) = R if and only

if p > p(k′), where ii) p(k′) is non-increasing for k′ > k, and iii) the resulting value functions

u(k′, ·) and w(k′, ·) are non-decreasing in p. The general induction step is then proved exactly

as above.

We now show cut-off monotonicity. We have seen above that p(k) = 0 for k > kN . The fact

that p(kN ) ≥ pSD with strict inequality if N > 1 comes from the comparison of (17) and (1).

Monotonicity of p(k) is part of the induction in the proof of Theorem 1. There remains to show

35Conditional on pt, σW is the mixture of exponential variables with intensity λj, j ∈ {0, . . . , N −kN +1}, with

mixture weights {ρj} corresponding to the binomial distribution B(N − kN + 1, pt). Monotonicity is in the sense

of first-order stochastic dominance.
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that pM > p(0). The indifference condition for p(0) is

p(0)g + p(0)λ(w(1, p(0)) − s/r) + p(0)λ(N − 1)(u(1, p(0)) − s/r) = s. (21)

Since p(0) > p(1), unsure voters strictly prefer experimentation at p = p(0) when k = 1.

Therefore, u(1, p(0)) > s/r. Since winners always get a higher expected payoff than losers no

matter what action is chosen, w(1, p(0)) ≥ u(1, p(0)). Therefore, the second and third terms

on the left-hand side of (21) are positive, which implies that p(0)g < s, or equivalently that

p(0) < pM .

Monotonicity of u and w with respect to p was shown as part of the induction hypothesis of the

above proof. If k > kN R is elected forever since winners have the majority. This determines

value functions for this case and yields the last claim. To show monotonicity in k of w for k ≤ kN ,

we proceed by induction. Clearly, g/r = w(kN + 1, p) ≥ w(kN , p). Suppose that w(k, p) ≤

w(k + 1, p). We need to show that w(k − 1, p) ≤ w(k, p). Let φ(p) = w(k + 1, p) − w(k, p) ≥ 0

and ψ(p) = w(k, p) − w(k − 1, p). Since p(k − 1) ≥ p(k), ψ(p) ≥ 0 for p ≤ p(k − 1). Recall the

dynamic equation of w for p ≥ p(k − 1) and k̃ ≥ k − 1:

−rw(k̃, p) + λ(N − k̃)p(w(k̃ + 1, p) −w(k̃, p)) − λp(1 − p)
∂w

∂p
(k̃, p) + g = 0.

Taking the difference of the resulting equations for k̃ = k, k − 1 and rearranging terms yields

(r + λp(N − k + 1))ψ(p) = λp(N − k)φ(p) − λp(1 − p)ψ′(p).

Suppose φ is nonnegative by induction hypothesis, the previous equation can be rewritten as

ψ′(p) ≤ α(p)ψ(p) for function α. A direct application of Gronwall’s inequality along with

ψ(p(k − 1)) ≥ 0 proves that ψ is nonnegative, completing the induction step.

To show monotonicity of u with respect to k ≤ kN , fix some k ≤ kN . The dynamic equation of

u for p ≥ p(k − 1) and k̃ ≥ k − 1 is

−ru(k̃, p)+λp(w(k̃+1, p)−u(k̃, p))+λp(N−k̃−1)(u(k̃+1, p)−u(k̃, p))−λp(1−p)
∂u

∂p
(k̃, p)+pg = 0.

Let φ(p) = u(k + 1, p)− u(k, p), φw(p) = w(k + 1, p) −w(k, p), and ψ(p) = u(k, p) − u(k − 1, p).

Taking the difference of the previous equation for k̃ = k, k − 1 and rearranging terms yields:

(r + λp(N − k + 1))ψ(p) = λp[φw(p) + (N − k − 1)φ(p)] − λp(1 − p)ψ′(p). (22)

We already know that φw is positive. Therefore, if φ were also nonnegative, the argument we just

used for w would also show that ψ is nonnegative. In particular, if one can show that u(kN , p) ≥
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u(kN −1, p), a backward induction will prove the result for all k ≤ kN . Combining (18) and (19)

implies that, for k = kN ,

φw(p)+(N−kN−1)φ(p) =
g − s− (N − kN − 1)(s − p(kN )g)

r

(

1 − p

1 − p(kN )

)N−kN
(

Ω(p)

Ω(p(kN ))

)µ

.

Therefore, the left-hand side has the sign of g− s− (N − kN − 1)(s− p(kN )g). From the cut-off

formula (16), this expression has the same sign as s − p(kN )g, which is positive. Therefore,

the first term in the right-hand side of (22) is nonnegative for k = kN , which implies that ψ is

nonnegative for k = kN . This fills the missing step of the induction, concluding the proof that

u is increasing in k for k ≤ kN .

To show the last statement, observe that u(kN + 1, p) = pg/r from Theorem 1, and that

u(kN , p) > pg/r, from (19).

9.2 Proof of Theorem 2

The proof is similar to that of Theorem 1, proceeding by backward induction on the number k

of winners. For k ≥ k̄, the utilitarian optimum is to choose R forever even if p = 0, since

sure winners’ gains from R outweigh the aggregate gain from S even if all unsure voters get

nothing from R. This fact can be expressed as q(k) = 0 for k ≥ k̄. The resulting welfare is

W (k, p) = k g
r +(N −k)pg

r . Consider next k = k̄−1. Let wC(k, p) and uC(k, p) denote the value

functions of sure winners and unsure voters if policy C is used, given that R is played forever if

a new winner is observed, and let WC(k, p) = kwC(k, p) + (N − k)uC(k, p), denote utilitarian

welfare under policy C. Then, the utilitarian criterion C must solve

W kt,C
t = sup

θ
Et

[

∫ σ

t
e−r(τ−t

∑

i

dπi
θτ

(τ) + e−r(σ−t)W kt+1,C
σ

]

,

where σ is the first (possibly infinite) time at which a new winner is observed, and where

W kt+1,C
σ = W (k̄, pσ), the welfare that was computed earlier for k = k̄. This is a standard

control problem, whose solution is Markov. The indifference boundary must satisfy the smooth

pasting condition

kg + (N − k)pg + (N − k)λp

[

kg + (N − k)pg

r
−
Ns

r

]

= Ns,

which has a unique root q(k), since the left-hand side is increasing in p, greater than Ns if p = 1

and less than Ns for p = 0, by definition of k̄. Therefore, C(k, p) = R if and only if p ≥ q(k).

This entirely determines w(k, ·), u(k, ·) and W (k, ·), which are easily shown to be increasing in
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p. The remaining of the proof proceeds by backward induction on k as in Theorem 1, where

the induction hypothesis is that i) for all k′ > k, C(k′, p) = R if and only if p > q(k′), where ii)

q(k′) is non-increasing for k′ > k, and iii) resulting value functions w(k′, ·), u(k′, ·), and W (k′, ·)

are non-decreasing in p.

9.3 Probability of receiving a lump sum between p and q < p

Let pS denote the probability that an individual with initial probability p of being a winner

receives a lump-sum by the time his belief has dropped to q < p.

Proposition 2 pS = (p− q)/(1 − q).

Proof. From the Bayesian updating equation, pt = (pe−λt)/((1 − p) + pe−λt).Therefore, q is

reached at a time T such that e−λT = Ω(p)/Ω(q), where Ω(p) = (1 − p)/p. Conditional on

the individual being a winner, the probability of getting a lump-sum before time T is simply

1− e−λT , since the arrival rate is an exponential random variable with parameter λ. Combining

the previous formulas concludes the proof. �

9.4 Proof of Theorem 9

For any safe rate s and policy C, Voter i’s expected payoff with policy C is

V i
C = E

[
∫ ∞

0
e−rtdπi

Ct
(t)

]

=

∫ ∞

0
e−rtE[dπi

Ct
(t)], (23)

where expectations are conditioned on γ.

E[dπi
Ct

(t)] = Pr[Ct = S]sdt+ Pr[Ct = R]E[dπi
Ct

(t)|Ct = R]

Therefore, if E[dπi
Ct

(t)|Ct = R] > sdt for all t, then V i
C > s/r, implying that Gi

C(γ) > s.

Suppose that s < g(γi). Then, by definition of g(·) and by the fact that the probability of each

type is a martingale, E[dπi
R(t)] = g(γi)dt > sdt. Moreover, C’s non-adversity with respect to

i implies that E[dπi
Ct

(t)|Ct = R] ≥ E[dπi
R(t)] as will be shown shortly. This inequality implies

that Gi
C(γ) > s for all s < g(γi), which concludes the proof. To show the inequality, observe that,

by Bayes’ rule, C is non-adverse for i if and only if Pr[θi good|Ct = R] ≥ Pr[θi good|Ct = S]
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for almost all t.36 Moreover,

E[dπi
Ct

(t)|Ct = R] = Pr[θi good|Ct = R]E[dπi
Ct

(t)|Ct = R, θi good]

+ Pr[θi bad|Ct = R]E[dπi
Ct

(t)|Ct = R, θi bad]. (24)

Combining these results yields the inequality.

9.5 Negative Value of Experimentation

Let g > 0 and b < 0 the expected payoff rates of the risky arm for sure winners and sure

losers respectively. Let pM , pSD, pL, pW , p3, respectively denote the myopic cut-off, the single

decision maker cut-off, the two unsure voters’ cut-off when the third voter is a loser, the two

unsure voters’ cut-off when the third voter is a winner, and the experimentation cut-off when

all three voters are unsure. For the following parameter values g = .1, b = −1, s = 0, r = 1,

λb = .1, λg = .11, cut-offs have the following values:

pM pSD pL pW p3

.9091 .9001 .9016 .9083 .9095

The most important result is that p3 > pM : voters stop experimentation at a probability level

where R’s expected payoff is strictly above S’s. As explained above, pL is much lower37 than

pW , meaning that if a voter is a loser, experimentation lasts much longer than if he is a winner.

From (3), this implies that the value of experimentation is negative at p3, since V (p3) = s
r <

p3g
r .

9.6 Proof of Theorem 10 (Sketch)

For sure winners, voting R forever is optimal as it maximizes their immediate payoff as well as

the length of experimentation, due to the cut-off monotonicity established in Theorem 1. Under

the protocol described in Section 6, unsure voters only observe the state k when particular cut-

offs are reached. Let l denote the number of winners that was last revealed. For p > p(l), unsure

voters only know that the number k̃ of current winners is greater than or equal to l. Unsure

voters are only pivotal if k̃ ≤ kN . By Theorem 1, u(k̄, p) ≥ u(l, p) for l ≤ k̄ ≤ kN . Therefore,

E[u(k̃, p)|l ≤ k̃ ≤ kN ] ≥ u(l, p) > s/r for p > p(l). Therefore, it is optimal for unsure voters

to choose the risky action whenever indicated by the protocol, conditional on being pivotal. If,

36Precisely, we have for all t, Pr[Ct = R|good] ≥ Pr[Ct = R|bad] ⇔ Pr[Ct = R|good] ≥ Pr[Ct = R] ⇔

Pr[good|Ct = R] ≥ Pr[good] ⇔ Pr[good|Ct = R] ≥ Pr[good|Ct = B].
37Indeed, pL is close to the single decision maker cut-off, while pW is close to the myopic cut-off.
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upon reaching p(l), it turns out that k = l, i.e. no new winner has been observed since the last

release of public information, then it is optimal for unsure voters to stop: their value function

is identical to the benchmark case, equal to s/r.
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