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LEARNING WHILE VOTING: DETERMINANTS OF
COLLECTIVE EXPERIMENTATION

BY BRUNO STRULOVICI1

This paper combines dynamic social choice and strategic experimentation to study
the following question: How does a society, a committee, or, more generally, a group
of individuals with potentially heterogeneous preferences, experiment with new oppor-
tunities? Each voter recognizes that, during experimentation, other voters also learn
about their preferences. As a result, pivotal voters today are biased against experi-
mentation because it reduces their likelihood of remaining pivotal. This phenomenon
reduces equilibrium experimentation below the socially efficient level, and may even re-
sult in a negative option value of experimentation. However, one can restore efficiency
by designing a voting rule that depends deterministically on time. Another main result
is that even when payoffs of a reform are independently distributed across the popula-
tion, good news about any individual’s payoff increases other individuals’ incentives to
experiment with that reform, due to a positive voting externality.
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1. INTRODUCTION

EVERY REFORM HAS CONSEQUENCES which cannot be fully known until it has
been implemented. For example, the diverse effects of trade liberalization on
a country’s industrial sectors (e.g., which sectors will gain or lose from liber-
alization and when) cannot be easily or fully anticipated.2 Similarly, although
economic liberalization in the form of more business-friendly laws and fiscal
policy can be expected to create opportunities for entrepreneurship and indi-
vidual success, its specific beneficiaries are also unknown a priori. Moreover,
those individuals who are not among its beneficiaries, but rather “losers” in its
wake, may experience such hardships/penalties as reduced income redistribu-
tion or job security. Other contemporary examples of reforms whose benefits
and costs are both uncertain and heterogeneous across the population are re-
forms in health care, national security policies, or environmental regulations.

1I am grateful to Meg Meyer, Paul Milgrom, Andrea Patacconi, and Kevin Roberts for insight-
ful conversations, as well as to the editor and three anonymous referees, Daron Acemoglu, Patrick
Bolton, Alessandra Casella, Eddie Dekel, Jeff Ely, Bard Harstad, Godfrey Keller, Marco Otta-
viani, Andrea Prat, John Quah, Phil Reny, Marzena Rostek, Nicolas Vieille, Marek Weretka, and
seminar participants at Oxford University, Gerzensee’s ESSET, Cambridge University, the Lon-
don School of Economics, the Kellogg School of Management, Princeton University, Northwest-
ern University, the California Institute of Technology, the University of Pennsylvania, Columbia
University, Stanford Graduate School of Business, University of Arizona, Penn State University,
the University of Toronto, University of Texas at Austin, CESifo’s Conference on Strategic In-
formation Acquisition and Transmission, the University of Washington at St. Louis, the Winter
Meeting of the Econometric Society 2009, the joint seminar of the École Polytechnique and HEC,
the University of Tokyo and CIRJE, New York University, the University of Chicago, and UCLA
for numerous comments.

2See Baldwin (1985), Bhagwati (1988), Fernandez and Rodrik (1990), and Rodrik (1993).
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This paper studies incentives for collective experimentation when individual
interests may be in conflict, are revealed gradually and at times which are ran-
dom, and may also vary across individuals. It addresses the following questions:
How do these incentives evolve as preferences and heterogeneity get revealed?
How do they vary with group size? How do they compare to the utilitarian op-
timum? How do they vary with the voting rule chosen? Under which collective
decision mechanisms do they result in efficient experimentation? How are they
affected by the particular learning process?

The analysis is conducted in a two-armed bandit model in which a safe al-
ternative yields a constant, homogeneous payoff to everyone, while a risky al-
ternative yields payoffs whose unknown distribution, or type, may vary across
individuals. At each instant, society elects one of the two alternatives according
to some voting rule. Individuals learn their type only through experimentation
with the risky alternative.3 In the benchmark setting the risky action is, for each
individual, either good or bad, and these types are independently distributed
across individuals. Moreover, any news shock fully reveals to its recipient that
the risky action is good for him, that is, he is a sure winner. By contrast, un-
sure voters are those individuals who have not yet received any positive news
about their type and who become increasingly more pessimistic as experimen-
tation goes on. The benchmark setting focuses on simple majority voting, with
other voting rules considered in later sections. Payoffs are initially assumed to
be publicly observed,4 but Section 6 considers the case of privately observed
payoffs. In the benchmark setting, learning occurs at the individual level only
(Section 7 discusses the case of correlated types). The fact that an individ-
ual becomes successful, however, changes the unsure voters’ expected payoffs,
since it makes it more likely that the reform will not be overturned.

The first result is that incentives for experimentation are always weaker when
power is shared, compared to the case of a single decision maker or to a dic-
tatorship. Two kinds of risk shape incentives for collective experimentation, in
addition to the well known trade-off between exploration and exploitation aris-
ing in individual experimentation. The loser trap occurs when reform winners
have enough power to make the reform irreversible, in effect trapping reform
losers into this new course of action. In contrast, winner frustration occurs when
reform losers (more precisely, unsure voters with a low enough belief) are pow-
erful enough to effect a return to the status quo, frustrating reform winners
and whoever else still wishes to continue experimentation. Costly reforms and
projects may thus be abandoned too early if they do not garner enough sup-
port, even when they turn out to be ex post efficient. These risks, which are
specific to decisions taken collectively and where interests may turn out to be
heterogeneous, reduce incentives for experimentation.

3Focusing on two actions gets rid of Condorcet cycles and ensures the robustness of the equi-
librium concept used in the analysis. An example with three actions is studied in Section 7.

4Voters care only about the number of sure winners at any time, not about their identity.



LEARNING WHILE VOTING 935

To illustrate, consider a community ofN individuals with equal voting rights.
Every month, these individuals must decide between a centralized production,
where tasks are fixed and earnings are divided equally, and a decentralized
one, where each individual chooses his task and keeps his earnings. There are
two types in this community: individuals with talent and those without, where
“talent” refers to an individual’s ability to find a successful task. If the commu-
nity tries decentralization, individuals gradually find out whether or not they
are talented. As time elapses, two things can happen: A majority of talented
people may form, in which case decentralization is imposed forever. Alterna-
tively, if few talents are revealed under decentralization, voters who remain
unsure can impose reversal to a centralized production.5 In the first case, un-
talented people are trapped in a community that essentially abandons them
economically. In the second case, talented people are frustrated by the collec-
tive constraint. If these risks are severe enough ex ante, the community may
prefer not to experiment at all with decentralization, even if it is efficient to do
so.

Loser trap and winner frustration have a systematic impact on welfare: exper-
imentation incentives are always too weak, compared to the utilitarian optimum.
This result stems from two effects. First, the utilitarian policy, which is the opti-
mum of a single-decision-maker problem (faced by a utilitarian social planner),
is not subject to the control-sharing effects described earlier. The value of the
information acquired through experimentation is thus maximal, which makes
experimentation more valuable from an efficiency perspective. Second, unsure
voters only care about their own utility and thus sometimes impose the safe
action even when including sure winners’ utility would make the risky action
more efficient.

This social inefficiency remains for any fixed voting rule. For example, if the
risky action requires unanimity, the risk of loser trap disappears. However,
this very fact also makes experimentation less attractive: winners are less likely
to enjoy the risky action in the long run, for this would require that all soci-
ety members turn out to be winners. Unanimity rule thus exacerbates winner
frustration. Similarly, if the safe action requires unanimity, the risk of winner
frustration disappears, but the risk of loser trap becomes maximal.

However, efficiency can be restored by a voting rule that depends deter-
ministically on time. To implement the efficient policy, the number of votes
required for the risky action increases deterministically over time, according to
a schedule agreed upon at the outset. Intuitively, the more time elapses, the
more numerous sure winners should be, if the reform is efficient. Therefore,
one way to make sure that the reform continues only if it is efficient is to grad-
ually raise the voting threshold required for it to be implemented. As the paper
shows, the threshold can be set so as to exactly implement the utilitarian policy.

5For the sake of this example, we suppose that a centralized production is better for individuals
who are sure of being untalented, and yields deterministic and homogeneous payoffs.
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Another dynamic aspect of experimentation concerns the impact of incom-
ing news on experimentation incentives. To return to the example given earlier,
How do other voters react whenever someone discovers a talent? The answer
is that, in equilibrium, good news for anyone increases others’ incentives to exper-
iment. Intuitively, individuals vote for experimentation because they hope to
be winners and, hence, to enjoy the reform in the longer run. The appearance
of a new winner makes it more likely that others too will be able to enjoy the
reform and thus makes it more valuable to experiment.

As group size gets arbitrarily large, voters behave myopically, as if there were
no value in experimentation. Indeed, individual control over future decisions
becomes infinitely diluted, so one’s ability to react to individual news vanishes
in an arbitrarily large group. For small groups, however, equilibrium incentives
for experimentation do not monotonically decrease with respect to group size. This
is because the addition of new voters reduces the risk of winner frustration, a
benefit that may locally dominate a higher risk of loser trap.

Several key results are extended to general experimentation environments,
beyond the benchmark setting. Most importantly, the main result on weak in-
centives for experimentation holds even when individuals (i) never fully learn
their types, (ii) receive both positive and negative news, and/or (iii) have cor-
related types. The analysis is based on a collective version of the Gittins index.
However, it is not true any more that experimentation is inefficiently short. In
particular, Section 5.1 shows that with negative shocks, experimentation may
be inefficiently short or long depending on initial conditions. The paper also
introduces a nonadversity condition on the collective decision process under
which the value of experimentation is always positive. A collective decision
rule is nonadverse to a given individual if, at any time, it is more likely to select
the risky action if that individual is a winner than if he is a loser.

Surprisingly, however, even fair-looking decision rules, such as the simple
majority rule, can violate the nonadversity condition. The value of experimen-
tation may even be negative, in that society may reject a reform with a higher
expected payoff than that of the status quo.6 This means that the common intu-
ition of a positive “option value,” which captures a decision maker’s ability to
react to news (e.g., financial options, real options, options of waiting in endoge-
nous bankruptcy models), may be inaccurate in settings with multiple decision
makers. In contrast, the value of experimentation is always nonnegative when
voters use the unanimity rule.

The paper contributes to a developing literature on experimentation with
multiple agents, in which conservatism may arise as a consequence of strate-
gic information acquisition. Bolton and Harris (1999), Li (2001), Décamps and
Mariotti (2004), and Keller, Rady, and Cripps (2005) analyzed an informa-
tional free-riding problem in settings where agents can experiment individu-
ally with some risky action to learn about its common value. By contrast, the

6The result does not rely on commitment ability or asymmetric information, but is due solely
to control-sharing effects, as shown here and in Section 5.2.
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present paper considers a reverse setting, in which a single action taken collec-
tively is made at any time, but the value of the action varies across individu-
als.7 In these papers, experimentation is inefficiently low due to positive infor-
mation spillovers that are not internalized by agents. In contrast, the control-
sharing effects in the present paper reduce experimentation due to the negative
payoff externalities that voters impose on one another, and which are decom-
posed and quantified in Equations (4) and (5). The analysis of the benchmark
setting owes conceptual and technical clarity to the use of exponential bandits,
building on Keller, Rady, and Cripps (2005).8

The paper is related to Fernandez and Rodrik (1991), who identified an
asymmetry between ex ante and ex post support for reforms, which is due to
uncertainty about winners’ identity. Voters know that if the reform is imple-
mented once, it will surely be implemented afterward. However, they do not
know whether they are winners or losers under the reform, and hence bear the
risk of loser trap. Their setting is similar to the case of immediate type reve-
lation and an infinite population in the benchmark setting presented here. In
the present paper, individuals learn at different points in time, and the effi-
cient policy is unknown a priori. The evolution of informed agents introduces
some of the interesting strategic issues that were absent from the model of
Fernandez and Rodrik (1991).

The paper is organized as follows. Section 2 below analyzes the benchmark
setting under the simple majority rule. Section 3 considers the utilitarian op-
timum and compares it to the majority-voting equilibrium. Section 4 takes a
broader design approach to voting procedures, showing which rules can re-
store efficiency. Section 5 extends the analysis to more general type and learn-
ing structures, where types are never fully revealed, news can be positive and/or
negative, and types may be correlated. Section 6 considers the case of publicly
observed payoffs, showing that the majority voting equilibrium of Section 2 is
truthful. Section 7 discusses several assumptions of the model, and Section 8
concludes.

7In this way, the paper is also related to a burgeoning literature analyzing collective search in
various settings, where a group must choose, at any time, between accepting some outstanding
proposal or trying a new proposal with independent and identically distributed (i.i.d.) character-
istics. Compte and Jehiel (2008) showed, in particular, that more stringent majority requirements
select more efficient proposals but take more time to do so. Albrecht, Anderson, and Vroman
(2007) found that committees are more permissive than a single decision maker facing an oth-
erwise identical search problem. Messner and Polborn (2008) discussed correlation across the
two periods of their setting. In contrast to those papers, the present work focuses on social and
individual learning and experimentation when voter types for a given action are lasting and per-
manently influence collective decisions. Callander (2009) also considered experimentation in a
political setting. His focus is on the experimentation pattern of a single decision maker—the
median voter—facing a continuum of correlated policies. Although the median voter is myopic
and nonstrategic, the nature of uncertainty in that model produces interesting experimentation
patterns.

8Exponential bandits have also been used in economics by Malueg and Tsutsui (1997), Berge-
mann and Hege (1998, 2001), and Décamps and Mariotti (2004).
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2. BENCHMARK SETTING

The benchmark setting embeds the exponential bandit model analyzed by
Keller, Rady, and Cripps (2005) into a setting with majority voting. Time t ∈
[0�∞) is continuous and payoffs are discounted at rate r > 0. There is an odd
number N ≥ 1 of individuals who continually decide according to the simple
majority rule which of two actions to choose. The first action S is “safe” and
yields a flow s per unit of time to all individuals. The second action R is “risky”
and can be, for each player, either “good” or “bad.” The types (good and bad)
are independently distributed across the group. (The case of correlated types
is discussed in Section 7.)

If R is bad for some individual i, it always pays him 0. If R is good for i, it
pays him lump-sum payoffs at random times which correspond to the jumping
times of a Poisson process with constant intensity λ. The arrival of lump sums
is independent across individuals. The magnitude of these lump sums9 equals
h. If R is good for i, the expected payoff per unit of time is therefore g = λh.
The assumption 0< s < g rules out the uninteresting case in which either R or
S is dominated for all beliefs.

Each individual starts with a probability p0 thatR is good for him. This prob-
ability is the same for all and is common knowledge. Thereafter, all payoffs are
publicly observed, so that everyone shares the same belief about any given in-
dividual’s type (for privately observed payoffs, see Section 7). In particular, the
arrival of the first lump sum to a given individual i makes him publicly a sure
winner. At any time t, the group is therefore divided into k “sure winners,” for
whom R is good with probability 1, and N − k “unsure voters,” who have the
same probability p of having a good type. Unsure voters’ probability evolves
according to Bayes’ rule and obeys the dynamic equation dp/dt = −λp(1 −p)
if no lump sum is observed, with pj jumping to 1 when some voter j receives a
lump sum.10 Type independence implies that an unsure voter learns only from
his payoff stream, but not from those of others.

When N = 1, the setting reduces to the optimization problem of a single
decision maker. The optimal experimentation strategy is Markov with respect
to the current belief p, determined by a cutoff pSD such that R is played if and

9All results hold if these lump sums have random, independently distributed magnitudes with
constant mean h. More generally, what matters to decision makers are the expected payoff rates
of each action and the probability that the risky action is good or bad. See Section 5 for a general
specification of payoff distributions and beliefs.

10One way to derive this dynamic equation is to observe that pt is a martingale and jumps to
1 with probability rate pλ; hence, 0 = E[dpt |pt] = ηt dt + λpt(1 − pt)dt, where ηt is the rate
of decrease of pt conditional on not observing any lump sum, that is, ηt = dpt/dt if no lump
sum is observed, and where the factor (1 − pt) in the second term is the change in probability
in case a lump sum is observed. This yields the equation for dp/dt. One may alternatively use
Bayes’ rule to directly show that pt = (p0e

−λt)/(p0e
−λt + (1 −p0)), which yields the equation by

differentiation.
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only if p≥ pSD. This cutoff is determined by the indifference condition11

pSD = μs

μg+ (g− s)�(1)

where μ= r/λ. Let pM = s/g denote the myopic cutoff, that is, the probability
below which R yields a lower expected flow payoff than S. The previous for-
mula implies that pSD < pM . Indeed, experimentation really takes place only
for all p ∈ [pSD�pM], since the single decision maker then chooses the risky
action, despite its lower payoff, so as to learn more about its true value for fu-
ture decisions. Choosing R in this range is optimal due to the option value of
experimentation.

For a group using the simple majority rule, the formal analysis to follow in
this section shows that collective decisions are determined by nonincreasing
cutoffs {p(k)}0≤k≤N such that the risky action is played at time t if and only if
pt > p(kt), where kt is the number of sure winners at that time. The dynamics
of collective decisions can thus be described as follows. Starting with some
(high enough) level p0, R is elected until the threshold p(0) is reached, at
which point experimentation either stops if no winner has been observed by
then or continues until another threshold p(1) < p(0) is reached, and so forth.
These dynamics are qualitatively represented by Figure 1 for the case of three
voters. Here and throughout, experimentation means choosing (or voting for)
the risky action when one’s type is unknown. (Thus, only unsure voters are
experimenting.) The option value of experimentation is formally defined after
the equilibrium concept is introduced.

A collective decision rule, or policy, is a stochastic process C = {Ct}t≥0

adapted to the filtration generated by the arrival of voters’ lump sums and tak-
ing values in the action space {R�S}. Any collective decision rule determines a
value function for each agent i:

V i�C
t =Et

[∫ ∞

t

e−r(τ−t) dπiCτ(τ)
]
�

where the payoff rate is dπiS(τ) = s dτ and dπiR(τ) = hdZi
τ or 0 depend-

ing on whether R is good or bad for i, and {Zi}1≤i≤N is a family of inde-
pendent Poisson processes with intensity λ. At any given time, let K denote
the set of sure winners. The number k of sure winners is thus the cardinal
of K. A Markov strategy for voter i is a function di : (K�p) �→ {R�S}.12 For a

11Intuitively, if the decision maker experiments, his instantaneous payoff rate is pg, and with
a probability rate of λp, his value function jumps to g/r from its current value. If he chooses S
instead, his immediate payoff rate is s. When the decision maker is indifferent, his current value
is s/r, so the cutoff p solves the indifference equation pg + λp(g/r − s/r)= s, which is exactly
(1). The result is derived formally and more generally in the proof of Theorem 1.

12We assume that, in the case of a jump at time t, the strategy depends only on the belief before
the jump. Other assumptions would yield the same outcome, since they affect payoffs only over
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FIGURE 1.—Dynamics of collective experimentation with three voters.

given profile d = (d1� � � � � dN) of Markov strategies, let C denote the resulting
(Markov) collective decision rule, that is, such that C(K�p)=R if and only if
|{i :di(K�p) = R}| > N/2. C is based on the simple majority rule. V i�C(K�p)
denotes i’s value function under policy C when the current state is (K�p). Un-
der any Markov rule, C(K�p) = S implies that S is played forever, since the
state (K�p) can evolve only when R is played. Therefore, V i�C(K�p)= s/r for
all i whenever C(K�p) = S. This, among other things, rules out strategies of
the grim-trigger type. To avoid trivial equilibria, the equilibrium concept used
in this paper requires the elimination of weakly dominated strategies, iterated
in the following sense.

DEFINITION 1: The profile d is a Markov equilibrium in undominated strate-
gies if for all (K�p� i),

di(K�p)=R ⇔(2)

pig+ λp
∑
j /∈K

(
V i�C(K ∪ {j}�p)− V i�C(K�p)

)

− λp(1 −p)∂V
i�C

∂p
(K�p) > s�

a discrete time set, but do not affect information, since the probability that two jumps occur at
exactly the same time is zero.
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where pi = 1 if i ∈K and pi = p if i /∈K.13

Thus, i votes at each instant as if his vote were pivotal, realizing that voting
for S in any given state (K�p) will result in a constant payoff flow s forever.
The left-hand side is i’s payoff from the risky action, including the impact of
incoming lump sums and Bayesian updating on i’s immediate payoff and value
function, as will be explained shortly. This equilibrium concept entails an iter-
ated elimination of dominated strategies, where the iteration proceeds back-
ward with respect to the state (k�p). For example, the definition implies that
if voter i, given other voters’ strategies, prefers S over R at some state (k′�p′),
then i will indeed vote for S if that state is reached; it therefore also implies
that, seen from any state (k�p) with k ≤ k′ and p ≥ p′ from which the state
(k′�p′) may be reached, only strategies where i chooses S at (k′�p′) should
be considered. This concept is closely related to the elimination of condition-
ally dominated strategies as defined in Fudenberg and Tirole (1991), except
that the present case corresponds to elimination of conditionally weakly dom-
inated, rather than strictly dominated, strategies.14

The (option) value of experimentation of an unsure voter is the difference
between his value function and the maximum payoff he could get if he had to
decide today on one action played forever. Formally

Xi�C(K�p)= V i�C(K�p)− max
{
s

r
�
pig

r

}
�(3)

This value is positive for a single decision maker, since choosing a fixed action
forever is only one out of many policies over which the decision maker opti-
mizes. In fact, this value is positive for a single decision maker for any news
arrival process generated by the risky action. It is also positive under the ma-
jority rule in the present setting. However, Section 5.2 shows that when both
positive and negative news shocks are allowed,Xi

C can be negative, even under
the simple majority rule.

Finally, we quantitatively define loser trap and winner frustration. Both risks
depend on the probability of an action being imposed that is individually sub-
optimal, and on the magnitude of this prejudice. These probabilities depend
on the particular collective policy being used. Therefore, loser trap and winner
frustration depend not only on parameters p0, g, s, λ, and r, but also on the
voting rule (see also Section 4). Let C denote any arbitrary policy and let D

13Since p only decreases over time, here and throughout derivatives of value functions should
be understood as left derivatives.

14The iterated elimination of dominated strategies, as described here, gets rid of the need to
consider arbitrary, suboptimal strategies at future states. In the present setting, the concept yields
the same solution as the majority-voting equilibrium of Roberts (1989).
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denote the policy that i chooses if he is a dictator. Then the expected loser trap
under C for individual i is

Li(C)=E
[∫ ∞

0
e−rt1(Ct=R∧Dt=S) · (dπiR(t)− s dt)

]
�(4)

where expectations, here and in the following equation, are taken with respect
to player types and the arrival times of lump sums (and, therefore, indepen-
dently of players’ actions). Similarly, the expected winner frustration under C
for i is

W i(C)=E
[∫ ∞

0
e−rt1(Ct=S∧Dt=R) · (s dt − dπiR(t))

]
�(5)

Thus, the expected loser trap is the expected relative loss that i incurs from R
being imposed whenever he would have chosen S had he had full control of the
decision process. The difference between i’s value function under C and D is
the sum of the two control-sharing effects.

Theorem 1 shows that there exists a unique Markov equilibrium in undomi-
nated strategies, and that this equilibrium is characterized by cutoffs. Equilib-
rium uniqueness comes from a backward induction argument on the number
of winners. Here is some intuition for the proof. At any time t, the state of the
group can be summarized by kt and pt . Each of the two voter categories (i.e.,
sure winners or unsure voters) consists of individuals with currently perfectly
aligned interests. If sure winners have the majority, they optimally impose R,
since any policy involving R is strictly better for them than having S played
forever. This determines the common value function of unsure voters when
winners have the majority. Since an unsure voter can become a winner but a
winner remains a winner forever, majority can only shift from unsure voters
to winners. Proceeding by backward induction on the number of winners, one
can show that unsure voters (or sure winners) always share a common voting
strategy after the iterated elimination of weakly dominated ones.

Let u(k�p) and w(k�p) denote unsure voters’ and sure winners’ respective
value function when the state is (k�p). When there is a majority of unsure vot-
ers, decisions are dictated by their common interest unless and until they lose
the majority. The goal is therefore to determine unsure voters’ preferences.
These preferences are determined by the following Hamilton–Jacobi–Bellman
(HJB) equation, which is a simplified formulation of (2):

ru(k�p)= max
{
pg+ λp[w(k+ 1�p)− u(k�p)](6)

+ λp(N − k− 1)[u(k+ 1�p)− u(k�p)]

− λp(1 −p)∂u
∂p
(k�p)� s

}
�
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The first part of the maximand corresponds to action R, and the second corre-
sponds to action S. The effect of R on an unsure voter i can be decomposed
into four elements: (i) the expected payoff rate pg, (ii) the jump of the value
function if i receives a lump sum, which occurs at rate λ with probability p—his
value function jumps to w and the number of winners increases by 1, (iii) the
jump of i’s value function if another unsure voter receives a lump sum—i is still
an unsure voter, but the number of sure winners increases by 1, and (iv) the ef-
fect of Bayesian updating on the value function when no lump sum is observed.
The independence of the Poisson processes governing individual payoffs im-
plies that only one lump sum can be received during any infinitesimal period
of time, so that no term involving two or more jumps appears in the HJB equa-
tion. In comparison, if S is chosen, learning stops and i simply receives payoff
rate s.

Since unsure voters have identical value functions, they unanimously decide
to stop experimentation if p becomes too low, which occurs when the R part
of (6) equals s. At this level p, the smooth-pasting condition implies that the
derivative term vanishes, since the value function is constant and equal to s/r
below that level (see, for example, Dixit (1993)). This determines the equilib-
rium policy’s cutoffs as stated by Theorem 1, whose proof is in the Appendix.
The theorem is proved for the simple majority rule, but the backward induction
argument can also be applied to other voting rules.

Let kN = (N − 1)/2, where kN is the number of winners for which (i) sure
winners are in the minority, but (ii) only one new winner is needed for the
majority to change sides from unsure voters to sure winners.

THEOREM 1—Equilibrium Characterization: There exists a unique Markov
equilibrium in undominated strategies. This equilibrium is characterized by cut-
offs p(k) for k ∈ {0� � � � �N}, such that R is chosen in state (k�p) if and only
if p > p(k). Furthermore, for all k ∈ {0� � � � �kN}, pM > p(k) > pSD,15 p(k) is
decreasing in k for k ≤ kN , and p(k)= 0 for all k > kN . The value functions u
and w satisfy the following properties:
• u(k�p) and w(k�p) are nondecreasing in p.
• w(k�p) is nondecreasing in k for all p.
• u(k+ 1�p)≥ u(k�p) for all p and all k< kN .
• u(kN + 1�p) < u(kN�p) for all p.
• u(k�p)= pg/r and w(k�p)= g/r for all p and all k> kN .

Cutoffs are decreasing in k: the larger the number of winners, the more
remaining unsure voters are willing to experiment. This result is perhaps sur-
prising: why would unsure voters want to experiment more when the risk of
losing their majority and having R be imposed on them forever increases? The
intuition is as follows. Suppose that p is below the myopic cutoff pM but above

15The strict inequality p(k) > pSD holds only if N > 1.
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p(k) so that with k current winners, unsure voters choose to experiment. By
definition ofpM , unsure voters get a lower immediate expected payoff rate with
R than with S. Therefore, their only reason for experimenting is their hope of
becoming winners. Now suppose by contradiction that p(k + 1) > p(k) and
that p lies in (pk�pk+1). Then, as soon as a new winner is observed, k jumps
to k+ 1, which implies that S is imposed forever, since p < pk+1. Therefore,
the very reason why unsure voters wanted to experiment—namely, the hope of
becoming sure winners—becomes moot: as soon as one of these unsure voters
becomes a winner, he sees the safe action imposed on him forever, which pre-
vents him from actually enjoying any benefit of being a winner.16 Theorem 1
also states that p(k) > pSD for all k ≤ kN ; that is, a single decision maker al-
ways experiments more than a group whose majority consists of unsure voters.
The reason is the control-sharing effect mentioned in the Introduction: a sin-
gle decision maker knows that if he turns out to be a winner, he will be able
to enjoy the risky action, while if he turns out to be a loser, he can stop ex-
perimentation whenever he wants. In a group, even if a voter turns out to be
a winner, he is not guaranteed that the risky action will be played forever, as
a majority of unsure voters may block it. And if he turns out to be a loser, he
may still have the risky action imposed on him forever if experimentation lasts
long enough to reveal a majority of winners. This double risk of losing con-
trol prompts unsure voters to experiment less than any one of them would if
he alone could dictate decisions in the future. In fact, a result stronger17 than
cutoff monotonicity obtains: when a new winner is revealed, the value function
of both winners and unsure voters jumps upward, provided that k < kN . For
sure winners, this result is intuitive: a higher number of sure winners means
a higher probability that a winning majority will be achieved. To be complete,
this argument also requires that experimentation gets longer as the number of
winners increases, which is guaranteed by cutoff monotonicity. More surprising
is the fact that the revelation of a new winner results in an upward jump of the
unsure voters’ value function unless this new winner is the decisive voter who
gives the majority to winners. The intuition here is that new winners reduce the
risk of winner frustration, a risk that dominates as long as unsure voters keep
control of the decision process. Another possible interpretation of this result is
that the emergence of new winners increases the expected “pivotality” of un-
sure voters, as it reduces the imbalance between the majority and the minority.
Finally, the utility of unsure voters jumps downward when winners gain the
majority (i.e., k jumps from kN to kN + 1). This is true even if p is large. This
may seem surprising since, when p is large, voters are happy to experiment
and could appreciate a priori that the opportunity to experiment will not be

16That is, apart from receiving a lump sum at the time of the jump, but the possibility of that
gain is already taken into account in the computation of the immediate expected payoff, which is
still less than s for p<pM .

17This result is used to analyze the case of privately observed payoffs; see Theorem 10.
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overturned. However, this opportunity would have been overturned only after
p became sufficiently low (below the myopic cutoff), and now that option is no
longer available.

The simpler case where learning is extremely fast teaches something else.
When types are immediately revealed as soon as R is tried, a single decision
maker is always willing to experiment.18 However, this result does not extend
to the case of collective experimentation, for even as the time cost of experi-
mentation vanishes, the risk of loser trap remains. If that risk is severe enough,
society may prefer to shun the opportunity of immediate type revelation and
hence of making a perfectly informed decision (clearly what a utilitarian plan-
ner would choose!). Keeping other parameter values fixed, nonexperimenta-
tion will occur if the total number N of individuals is large enough and the
initial probability p is low enough; experimentation cutoffs then stay bounded
away from 0 as learning intensity λ goes to infinity, provided that N is large
enough. The proof is a direct consequence of equation (17) in the Appendix.

COROLLARY 1—Immediate Type Revelation: If N > 2g/s− 1, then

lim
λ→∞

p(kN)= (N + 1)s/g− 2
N − 1

> 0�

If N ≤ 2g/s− 1, then

lim
λ→∞

p(kN)= 0�

Corollary 1 suggests that the total numberN of individuals has an important
effect on experimentation. In fact, the next proposition states that with inde-
pendent types, individuals behave myopically as group size becomes arbitrarily
large, electing the risky action if and only if its expected payoff is higher than
that of S. To state the result, let p(k�N) denote the experimentation cutoff
when there are k winners and N overall individuals.

PROPOSITION 1—Group Size: p(kN�N) is nondecreasing inN . Moreover, for
all k, p(k�N)→ pM as N goes to infinity.

PROOF: The first part of the proposition is an immediate consequence of
(16) in the Appendix. For the second part, (16) also implies that p(kN�N)→
s/g = pM as N goes to infinity. Finally, Theorem 1 implies that p(kN�N) ≤
p(k�N)≤ pM for fixed k and for all N ≥ 2k+ 1. Taking the limit as N goes to
infinity proves the result. Q.E.D.

18Mathematically, this result comes from the single-decision-maker cutoff equation (1): as the
intensity λ goes to infinity, μ goes to 0 and so does the cutoff pSD.
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FIGURE 2.—Cutoffs as a function of group size N and the switching number κ. Parameter
values: r = 1, λ= 10, s = 1, g= 10. N takes all odd values from 3 to 17. For N = 1, pSD = 0�01.

In general, cutoffs p(k�N) are not monotonic with respect to group size N ,
as can be proved by numerical counterexample. Such violations may seem
counterintuitive: As N increases, individual power gets more diluted. Should
this not reduce the value of experimentation? However, adding unsure voters
increases the expected number of winners, and thus the expected duration of
experimentation, for given cutoffs. The addition of voters thus reduces the risk
of winner frustration, which sometimes increases the attractiveness of experi-
mentation.19

Figure 2 shows the numerical computation of cutoff policies for different
values of N and of the switching number κ= kN + 1 − k of switches required
for winners to gain the majority. For κ= 4, the cutoff is not monotonic in N .
For κ= 5, the cutoff is actually decreasing in N when N is in the range [9�17].

3. UTILITARIAN POLICY

This section characterizes the optimal experimentation policy of a utilitarian
social planner and shows that it lasts longer than majority-based experimenta-
tion. A social planner faces a single-decision-maker experimentation problem,
the solution of which can be computed by backward induction on the number
of observed winners and is characterized by monotonic cutoffs.

19The expected length of experimentation is also not generally monotonic in N . To see this, it
is easy to build an example where the risky action is played forever when N is arbitrarily large
(see Theorem 6 and the discussion below it), whereas experimentation stops with positive proba-
bility when N is small. Similarly, it is also easy to build an example where experimentation stops
immediately when N is large, but has positive duration when N is small.
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THEOREM 2: Under the utilitarian criterion, the optimal policy is determined
by cutoffs q(k) such that C(k�p)= R if and only if p≥ q(k). These cutoffs are
decreasing in k for k< k̄ and equal to zero for k≥ k̄, where k̄= s

g
N .

See the Appendix for the proof.
The next result shows that the equilibrium level of experimentation under

the majoritarian rule is inefficiently short compared to the utilitarian optimum.
This result is due to two concurring reasons. First, the social planner can ex-
ploit information to meet its objective better than individual voters, since he
has full control over future decisions. That argument shows up in the proof
below (see (9)). Second, the social planner takes into account winners’ utility,
while unsure voters do not. This implies that, under the majoritarian equilib-
rium, when unsure voters decide to stop, a social planner would take into ac-
count winners’ utility which, other things equal, makes experimentation more
attractive (see (10) in the proof below).

THEOREM 3—Majoritarian versus Utilitarian Rules: Let {p(k)}k be the cut-
off values associated with the majority rule. Then q(k)≤ p(k) for all k≤ kN .

PROOF: The utilitarian cutoff q(k) solves
(
k

N

)
g+

(
1 − k

N

)
pg+ (N − k)λp

[
W (k+ 1�p)

N
− s

r

]
= s�(7)

where W is the utilitarian value function. The left-hand side is the sum of the
per-capita immediate expected payoff given state (k�N) and of the per-capita
jump of welfare following the observation of a new winner, weighted by the
probability rate of this event. The majority-voting cutoff, p(k), solves

pg+ (N − k)λp
[
w̄(k+ 1�p)
N − k + N − k− 1

N − k ū(k+ 1�p)− s

r

]
= s�(8)

where w̄ and ū are the value functions obtained under the majority rule.
(The left-hand side is obtained from (6) simplified through value-matching and
smooth-pasting conditions.) Optimality of the utilitarian policy implies that for
all k�p,

W (k�p)

N
≥ k

N
w̄(k�p)+

(
1 − k

N

)
ū(k�p)�(9)

Since w̄ > ū, this also implies that

W (k+ 1�p)
N

>
1

N − kw̄(k+ 1�p)+
(

1 − 1
N − k

)
ū(k+ 1�p)(10)
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and, hence, that the left-hand side of (7) is higher than that of (8), for each p.
Therefore, the root of the first equation must be lower than that of the sec-
ond. Q.E.D.

4. DESIGN OF VOTING PROCEDURES

This section considers which mechanism can improve efficiency compared
to the simple majority rule.

4.1. Fixed Quorum

The first issue is to determine how changing the number of votes (hereafter,
quorum) required for the risky action affects the length and efficiency of ex-
perimentation. The simpler case of a constant quorum is considered first.20 In
that case, Theorem 4 shows that there is no systematic advantage of one voting
rule over another. As one moves across the entire spectrum of voting rules,
from requiring unanimity for the safe action to requiring unanimity for the
risky action, the risk of loser trap diminishes while the risk of winner frustra-
tion increases, with exactly one of the two risks entirely vanishing at the ends
of the spectrum. Depending on the parameters of the model, which determine
the magnitude of these risks, the optimal rule can be any rule in the spectrum.
For simplicity, the analysis starts with the case of immediate type revelation,
which is sufficient to show the lack of comparability of voting rules.

Suppose that learning is arbitrarily fast (i.e., λ→ ∞). In that case, there is
no time cost of experimentation, hence no winner frustration. If one requires
unanimity for the risky action, this also gets rid of loser trap, so it will always
prompt society to choose immediate type revelation. However, once types are
revealed, unanimity requires that R is only implemented if all voters are win-
ners, which typically is inefficiently too restrictive. Indeed, the utilitarian op-
timum is to get immediate type revelation and then choose the risky action if
and only if kg > sN . For ν ∈ {1� � � � �N}, define the ν voting rule as the rule re-
quiring ν votes for the risky action. Letting νU = (sN)/g, a ν rule with ν > νU
will never implement the risky action when it is socially inefficient to do so. Let
ν̄ denote the smallest integer such that society is ready to experiment with the
ν̄ voting rule and let ν∗ = max{ν̄� νU}. Then, social efficiency is decreasing in ν
for ν ≥ ν∗, because in this range ν is high enough to prompt experimentation
and the probability of implementing the risky action if it is socially efficient ex
post is decreasing in ν, while the probability of implementing the risky action
if it is inefficient is zero. As is easily checked, ν∗ can take any value between 1
and N (ν̄ decreases from N to 1 as p increases from 0 to 1).

20For any q rule one may, proceeding as in Section 2, prove the existence of a unique equi-
librium characterized by monotonic cutoffs contained in [pSD�pM ]. The analysis of this section,
based on immediate type revelation, does not require this proof.
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To generate the reverse inefficiency ranking, suppose that, in addition to im-
mediate type revelation, p is arbitrarily close to 1. In that case, society always
wishes to experiment, since the probability of loser trap is arbitrarily small.
Social efficiency is increasing in ν for ν ≤ νU : since p is close to 1, initial ex-
perimentation takes place anyway, and ex post the probability of implementing
the risky action if it is socially inefficient decreases in ν. Since νU can take any
value between 1 and N , this implies the following result.

THEOREM 4: For any voting rules ν = ν̃, there exist parameter values and an
initial belief p such that the ν voting rule is strictly socially more efficient than the
ν̃ voting rule.

It would seem that as the risk of loser trap becomes more salient compared
to winner frustration, it becomes more efficient to have a more restrictive vot-
ing rule, that is, a higher ν. However, this intuition may sometimes be wrong.
For example, suppose that types are immediately revealed ifR is played. Owing
to the risk of loser trap, there must exist a level ν∗, depending on initial belief
p0, such that society experiments for all ν ≥ ν∗ and sticks to S for ν < ν∗. Now
suppose that s is decreased by a small amount ε so that ν∗ stays unchanged.
This increase of s can be interpreted as the risk of loser trap becoming mar-
ginally less salient than the risk of winner frustration. The change reduces vot-
ers’ value function for ν < ν∗ by ε/r, since they still choose S, but it reduces
their value function for ν > ν∗ by a lower amount, since under experimenta-
tion the discounted time spent playing s is strictly less than 1/r.21 This shows
that, at least in some cases, reducing the risk of loser trap relative to winner
frustration does not make less restrictive rules more desirable.

Efficiency depends not only on voters’ ex ante probability of falling in the
loser trap but also on the magnitude of the loser trap (more generally, the rel-
ative values of g and s and 0). With slower learning, the risk and magnitude of
winner frustration also influences voting rule efficiency in the opposite direc-
tion. The impact of magnitude, already implicit in the above analysis through
νU , is illustrated below for the comparison of the simple majority rule and the
unanimity rule for R (i.e., ν =N). Let {χ(k)}0≤k≤N denote the cutoffs charac-
terizing to the unanimity-voting policy.

EXAMPLE 1: Suppose that N = 3 and s� g. Then χ(1) > p(1).

PROOF: Equation (16) in the Appendix implies that

p(1)= μs

μg+ (g− s)− (s−pg) ∼ μs

(μ+ 1)g
(11)

21Cutoffs are also affected by this change, but this change is of second order by optimality.
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if g� s. In particular, p(1) is arbitrarily close to zero if g� s. With the una-
nimity rule and k= 1, unsure voters are indifferent when p satisfies

pg+ λp[w(2�p)− s/r] + λp[vSD(p)− s/r] = s�(12)

where w(2�p) is the value of a sure winner under unanimity rule if there are
two sure winners (and N = 3), and vSD(p) is the value function of a single
decision maker. As can be easily checked, vSD(p) ≤ pg/r + (1 − p)s/r, while
w(2�p) ≤ pg/r + (1 − p)s/r. This and (12) imply that χ(1) must satisfy the
inequality

pg+ 2λp2(g/r − s/r)≥ s
or

p≥ μs

μg+ 2p(g− s) ∼ s

g
(13)

if g� s. Comparing (11) and (13) shows that χ(1) > p(1). Q.E.D.

4.2. Time-Varying Quorum

Suppose now that at each time t, R is elected if and only if it gets νt of the
votes. The next result shows that even if νt is deterministic, efficiency can be
fully restored.

THEOREM 5—Deterministic Quorum: There exists a quorum function t �→
νt such that the resulting unique Markov equilibrium in undominated strategies
implements the utilitarian policy. Moreover, νt is increasing in time and is entirely
determined by the initial belief p0 and the utilitarian cutoffs q(k).

PROOF: Starting from a given belief p0, let tk denote the time such that
ptk = q(k) for each k ∈ {0� � � � �N}. Since pt decreases over time, the sequence
tk is increasing, and tN = ∞. For t ∈ [tk� tk+1), let νt = k. This entirely and
uniquely determines the function νt . By construction, if there are at least k
winners, they can imposeR whenever t < tk, that is, whenever p> q(k). More-
over, if there are exactly k winners, they can only impose R if t < tk, that
is, when p > q(k). From Theorem 3,22 unsure voters always want to impose
S when it is socially efficient to do so, which guarantees implementation of
the efficient policy whenever t ≥ tk and there are only k sure winners or less.
Proceeding by backward induction on k, as in the proof of Theorem 1, one

22The proof is actually slightly different and simpler in the present case. Unsure voters choose
between continuing with the efficient policy versus imposing S forever.
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may therefore conclude that t �→ νt yields a unique Markov equilibrium in un-
dominated strategies and that this equilibrium implements the utilitarian pol-
icy. Q.E.D.

The quorum is not unique. For example, near time zero, everyone wants to
experiment (assuming p0 is high enough), so any quorum initially yields the
efficient policy. In general however, the quorum must be low enough to allow
R whenever unsure voters want to stop experimentation while it is efficient to
pursue it, and must be high enough to prevent winners from imposing R when-
ever S is the socially efficient action. More generally, Theorem 5 suggests that
in settings where news events amount to good news and no news is bad news,
an efficient quorum should increase over time: as more time elapses, society
should require a higher number of winners for R to be elected. Although the
precise times of quorum change rely on the exact map between pt and the util-
itarian cutoffs, and on p0, the insight that a gradual increase in cut-offs may
improve efficiency over constant quorum does not depend on that map.

Theorem 5 has several corollaries and equivalent formulations. For exam-
ple, increasing voting weights of unsure voters, relative to sure winners, offers
an alternative way of implementing efficiency. Indeed, it is easy to determine a
particular weighting scheme that mirrors the proof of Theorem 5, under which
sure winners are in control of the collective decision process only if R needs to
be implemented. Naturally, history-dependent quorums, which contain deter-
ministic ones as a particular case, can also be devised to implement the efficient
outcome. Such quorums—as well as constant ones—amount to a form of com-
mitment, as opposed to having the stronger side impose his choice at any given
time. In a setting where winners achieve increasing political power (for exam-
ple, their higher payoffs might give them higher lobbying power), the resulting
variation in voting weights goes opposite to the one implementing efficiency. In
that case, winners may impose the risky action, owing to their higher political
power, when it is inefficient to do so. Anticipation of this potential outcome
should result in even more conservatism ex ante. The next section considers
efficiency under various forms of commitment assumptions.

4.3. Commitment and Endogenous Quorum

Theorem 5 shows that it is possible to implement the efficient outcome as
long as one can commit to some time-varying quorum. If voters are initially
homogeneous and can only commit to an anonymous policy at the outset, they
share, initially, a common objective function.23 Since expected payoffs are iden-
tical, the optimal policy also maximizes the sum of these expected payoffs, that

23Anonymity means that individuals cannot commit to a policy that favors or harms particular
voters, such as imposing generous redistribution if some given individuals turn out to be poor and
no redistribution if these same individuals turn out to be rich. This assumption is consistent with
veil-of-ignorance arguments.
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is, utilitarian welfare. Therefore, if given the possibility, voters would like to
commit to the utilitarian policy, showing the following result.

THEOREM 6—Commitment: If voters can commit to an anonymous policy at
time 0, they choose the cutoff policy determined by cutoffs {q(k)}0≤k≤N .

If voters can only commit to a fixed action, such as imposing a new rule for
the next five years no matter how well that rule performs over that period, effi-
ciency need not be restored. To give an extreme illustration, suppose that voters
must commit to an action for the entire time horizon. In that case, the risky ac-
tion is chosen if and only if its expected payoff is above the myopic cutoff. This
extreme case of action commitment thus entirely annihilates the value of ex-
perimentation. Commitment to an action is formally equivalent to reducing the
frequency of decision making. For example, voting every five years amounts to
a succession of five-year commitments. The previous observation can therefore
be reinterpreted as follows: if votes take place at a low enough time frequency,
individual control over collective decisions is reduced to such an extent that the
resulting policy may be more inefficient. However, provided that aggregate un-
certainty is small enough and initial beliefs are optimistic enough, commitment
to a fixed action can restore efficiency.24

One may wonder whether a hybrid form of commitment, where voters com-
mit to a fixed action over some horizon but also get to dynamically modify
the quorum required for the risky action, can restore efficiency. The follow-
ing result, which extends to a much more general setting than the present one,
answers negatively. Consider the following recursive procedure, which may be
called the endogenous quorum procedure. At time 0, voters decide on two pol-
icy dimensions: an initial horizon of experimentation, T1, and a quorum, ν1,
used at T1 for deciding whether or not to continue experimenting and, if so,
on a new horizon of experimentation, T2, and on the quorum ν2 used at T2 to
vote on T3 and ν3, and so forth. The key of this procedure is that voters cannot
commit to the quorum function at the outset. Rather, they can, at any given
election, mitigate the law of the strongest by controlling the quorum used at

24With an infinite population, the law of large numbers allows one to compute the socially
optimal action: starting with an individual probability p that the action is good, the risky action
is the social optimum if and only if pg > s, since there surely is a fraction p of winners. Suppose
that, initially, pg > s. From Theorem 6, individuals find it optimal to commit to the risky action
over the infinite horizon. What happens without commitment? The second part of Proposition 1
implies that unsure voters, if they have the majority, impose the safe action as soon as pt hits the
myopic cutoff pM = s/g. This situation will occur surely if one starts with p= pM + ε for ε small
enough. Indeed, from Proposition 2 in the Appendix, the probability that an unsure voter with
initial probability p receives a lump sum before pt reaches q < p equals (p−q)/(1−q). This and
the law of large numbers imply that when society starts at pM+ε, the fraction of remaining unsure
voters when pM is reached equals 1 − ε/(1 − pM), which is greater than 1/2 for ε < (g− s)/2g.
This shows that commitment to the risky action is strictly more efficient than no commitment.
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the next election. This procedure is a natural way to capture the idea that vot-
ing rules cannot be committed to ex ante. As soon as sure winners meet the
quorum, they impose the risky action forever by setting the next experimenta-
tion period to infinity. If sure winners do not meet the quorum, the procedure
grants unsure voters the right to choose the next horizon and quorum. To be
complete, the procedure must specify an initial quorum, ν0, at time 0. Since vot-
ers are ex ante homogeneous, this initial quorum plays no role in the present
setting. In principle there may exist multiple equilibria. However, the endoge-
nous quorum procedure must be inefficient for any equilibrium, as the next
result shows.

THEOREM 7—Endogenous Quorum: There exist initial belief p0 and group
size N such that the endogenous quorum procedure does not implement the utili-
tarian policy.

PROOF: Consider any policy C consistent with an endogenous quorum pro-
cedure: C is a right continuous stochastic process taking values in {S�R} char-
acterized by an increasing sequence of (possibly infinite) random times Tj such
that C is constant on any interval [Tj�Tj+1], and by a quorum process νj such
that at each Tj , unsure voters impose S forever or set νj+1 and Tj+1 optimally
if there are at least νj of them; otherwise, sure winners set Tj+1 = ∞. With
positive probability there exist both sure winners and unsure voters at time 1.
Suppose that sure winners do not meet the quorum ν1, so that unsure voters
can choose the next quorum and experimentation horizon. If Theorem 7 were
false, then these unsure voters, starting from their current belief p1 and group
size N − k1, could choose ν1 and T1 as part of a policy that maximizes their
expected welfare, that is, ignoring the utility of current sure winners. Since it
would be optimal for them to do so, they implement that policy, contradicting
efficiency of C. Q.E.D.

5. GENERAL NEWS ARRIVAL PROCESSES

Section 2 assumed that individuals perfectly learned their types upon receiv-
ing some lump sum, that news events amounted to good news, and that types
were independently distributed. Relaxing these assumptions, this section re-
considers in a very general setting whether (i) collective experimentation is
shorter than the single-decision-maker equivalent, (ii) collective experimenta-
tion is shorter than the utilitarian optimum,25 and (iii) there is always some
experimentation, that is, a set of voter beliefs where R’s immediate payoffs is
lower than S’s but society still elects R.

Suppose that, for any given individual, the risky arm has a payoff distribution
or type θ lying in some finite set Θ. At any time, that individual’s belief about

25That result is considered in the negative-news setting to follow.
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his type is summarized by a probability distribution or state γ ∈ Γ , where Γ =
Δ(Θ) is the set of all probability distributions26 over Θ. The safe arm still pays
a constant rate s. For a single decision maker, the Gittins index of the risky arm
is the mapG :Γ → R such that, given state γ,G(γ) is the smallest value of s for
which the single decision maker prefers the safe action over experimentation.
Mathematically, G(γ) solves

G(γ)= inf
{
s :
s

r
= sup

σ

E

[∫ ∞

0
e−rt dπσt (t)

∣∣∣γ� s
]}
�

where σ is any policy, and the expectation is conditional on the current state γ
and on the rate s of the safe action.27

Now consider the case of N decision makers and let {Ft}t≥0 denote the fil-
tration generated by all voters’ payoffs. At any time, the state, known to all, is
denoted γ. If types are independent, then γ = (γ1� � � � � γN) ∈ Γ N . In general, γ
may contain information about type correlation. A policy is a process adapted
to the filtration {Ft}t≥0 and taking values in {S�R}.

For any rate s, policy C, and voter i, necessarily

sup
σ

E

[∫ ∞

0
e−rt dπiσt (t)

∣∣∣γ� s
]

≥E
[∫ ∞

0
e−rt dπiCt (t)

∣∣∣γ� s
]
�(14)

The inequality obtains because C is an element of the policy set over which the
maximization is taken.28 We may define a policy-dependent generalization of
the Gittins index as

Gi
C(γ)= inf

{
s :
s

r
=E

[∫ ∞

0
e−rt dπiCt (t)

∣∣∣γ� s
]}
�

Inequality (14) implies thatGi
D(γ)≥Gi

C(γ) for all i, γ, and C, whereGi
D(γ) is

i’s Gittins index if he has dictatorial power over all decisions.
The definition of Markov equilibrium in undominated strategies is extended

as follows. Let ν denote any integer in {1� � � � �N}.

DEFINITION 2—Voting Equilibrium: C is a ν voting equilibrium if, for any
belief γ,

C(γ)= S ⇔ ∣∣{i :Gi
C(γ)≤ s}∣∣ ≥ ν�

26In the benchmark model, the type θ is either “good” or “bad,” and the state γ is the proba-
bility p that the type is good.

27The results of this section are easily adapted to discrete-time settings. In fact, Theorem 8
does not assume anything about the time domain.

28In general, C depends on all voters’ types and need not be anonymous.
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This definition should be interpreted as follows. If a voter is pivotal, the
Markov property implies that imposing S at any time amounts to imposing S
forever, since the state γ is frozen whenever S is played. Therefore, i votes for
S if and only if he prefers getting the constant payoff s forever over pursuing
policy C, a choice that is determined by i’s C Gittins index at belief γ. The fol-
lowing result shows that collective experimentation is shorter than dictatorial
experimentation in the following sense: if there are at least ν individuals who,
taken individually, would prefer the safe action if given dictatorial power over
future decisions, then society also picks the safe action in any ν voting equilib-
rium. This result is an extreme generalization of the fact that all equilibrium
cutoffs in Section 2 were above the single-decision-maker cutoff.

THEOREM 8: Suppose that C is a ν voting equilibrium. Then C = S whenever
|{i :Gi

D(γ)≤ s}| ≥ ν.

The proof is an immediate consequence of the general inequality Gi
D(γ) ≥

Gi
C(γ) for all i and, C and γ.
When types are independent, Gi

D(γ) = G(γi), where G(γi) is the Gittins
index of the single-decision-maker problem with (individual) belief γi. In that
case, i’s optimal policy is independent of other individuals’ types. As a corollary
of Theorem 8, therefore, collective experimentation is shorter than in an equiv-
alent single-decision-maker setting. If types are positively correlated, however,
collective experimentation can last longer than in a single-decision-maker set-
ting, as positive type correlation increases learning speed and thus reduces the
time cost of experimentation (see also Section 7). In contrast, collective experi-
mentation is always shorter, even with positive correlation, than what any voter
would like if he could dictate all decisions, because a dictator benefits from the
same learning speed as society, unlike a single decision maker.

Theorem 1 also stated that all cutoffs were below the myopic cutoff, mean-
ing that there always was some experimentation. How general is this result?
Are there cases where society elects the safe action even when the risky ac-
tion yields a higher payoff? To answer this question, the following defini-
tions will be used. For any probability distribution γi over the type space, let
g(γi)= E[dπiR/dt|γi]. g(γi) is i’s immediate expected payoff rate with action
R given type distribution γi. For any individual type θi, slightly abusing nota-
tion, let g(θi)= g(δθi), where δθi is the Dirac distribution concentrated on type
θi, denote i’s true immediate expected payoff rate with action R when his ac-
tual type is θi. Say that i is a winner if g(θi) > s and a loser otherwise. Hence, i
is a winner if R is optimal for him given his true type.Θ can thus be partitioned
into good (winner) types and bad (loser) types.

DEFINITION 3: A policy C is adverse for voter i if the set{
t : Pr[Ct =R|θi good]< Pr[Ct =R|θi bad]}

has positive Lebesgue measure.
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Adversity means that R is more likely to be chosen if i is a loser, at least
for some nonzero time set. Adversity can occur, for example, if a voter’s type
is perfectly negatively correlated with a majority of voters. The majority then
blocks R whenever that voter is a winner and imposes it when he is a loser.29

THEOREM 9: Suppose that C is a voting equilibrium for voting rule υ. Then
Gi
C(γ)≥ g(γi) for all i for which C is nonadverse.

See the Appendix for the proof.
It would seem a priori that in settings where types are independent or posi-

tively correlated, usual voting rules would be nonadverse. However, this intu-
ition is incorrect, as explained in Section 5.2.

5.1. Negative-News Shocks

Several potential applications concern a setting, which is symmetric to the
benchmark, where news events amount to catastrophes and no news is good
news. One models such applications by assuming that the risky arm pays a pos-
itive constant rate if it is good and, in addition, pays some negative lump sums
according to some Poisson process if it is bad. One may assume without loss of
generality that the payoff rate of S is zero, since all payoffs can be translated by
the same constant without affecting voters’ decision problem. The state vari-
ables are the number k of sure losers and the probability p that the arm is
good for unsure voters. It may be shown that the policy is also determined
by cutoffs ρ(k) such that unsure voters impose the risky action if and only if
p ≥ ρ(k) provided k ≤ kN , and losers impose S when k > kN . In this setting,
pt increases over time since no news is good news for unsure voters. Therefore,
the risky action can only be stopped, if used at all, when enough sure losers are
observed, either because those losers obtain the majority or because the cutoff
ρ(kt) jumps over pt upon the observation of a new loser (cutoff variation is dis-
cussed below). Theorem 8 implies that, provided that types are independent,
ρ(k)≥ ρSD for all k<N/2, where ρSD is the single-decision-maker cutoff. One
may prove that the equilibrium policy resulting from the majority rule is non-
adverse to any voter.

29In that case, however, majority would simply ignore i and proceed with experimentation. As
a stronger case of adversity, suppose that 10 individuals face the following problem. Either they
elect the safe action forever or they try R, in which case types are immediately revealed and a
dictator is randomly, uniformly chosen, such that the dictator has an opposite type from all other
voters (i.e., either R is good for him and bad for all others or vice versa), with a 50% chance of
being a winner. Ex ante, R yields an individual expected value of π = 1/10 ∗ [pg + (1 − p)s] +
9/10 ∗ (1 − p)s = pg/10 + (1 − p)s (letting r = 1). On the other hand, a voter’s probability of
being a winner is p/10 + (1 −p)9/10 = 1/2. Choosing g = 3s, the myopic cutoff is pM = 1/3, so
p is above the myopic cutoff and yet voters prefer to avoid R since π < s. Section 5.2 provides an
example of endogenous adversity.
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With negative-news shocks, it is not true any more that experimentation is
inefficiently short. Unsure voters, ignoring losers, may push experimentation
further than a utilitarian social planner. However, a social planner still has a
higher value of experimentation than control-sharing voters.30 For example, a
social planner would always welcome immediate type revelation, whereas vot-
ers may prefer playing S forever rather than learn their type, however fast, pro-
vided that the risk of loser trap is high enough. At the outset, a social planner
may thus be more willing to experiment than individual voters. As the number
of observed losers increases, the first effect starts to dominate, with the social
planner stopping experimentation sooner than unsure voters under majority
voting.

In view of Theorem 1, one may wonder whether cutoffs are also monotonic
in this negative-news setting. The answer is negative. Counterexamples can be
observed numerically or constructed with analytical results omitted here. Such
violations can be explained as follows. Essentially, the loser trap is more se-
vere with negative-news shocks. In the benchmark setting, unsure voters can
always impose the safe action when they have the majority, and the only shock
that may occur in that case is to become a winner. With negative-news shocks,
in contrast, any unsure voter can, upon receiving a negative lump sum, sud-
denly join the minority of sure losers and hence face the worst possible situa-
tion. Negative news is compounded by a sudden control loss. This explains why
the “insurance” effect resulting from the apparition of a new loser can, para-
doxically, encourage experimentation. Seen differently, in the negative-news
setting, p simply increases over time, which is enough to make experimenta-
tion more attractive. In contrast, in the positive-news setting, the apparition of
news winners is necessary for experimentation to continue, for otherwise, p de-
creases until it causes experimentation to stop.31 Note however that although
cutoffs need not be monotonic, it is always true that experimentation decreases
with the number of sure losers. Indeed, experimentation can only stop when a
new loser is observed, since otherwise unsure voters become more optimistic
about their types and have no reason to switch to S.

30More precisely, the value of experimentation of an agent, for a given policy, is the difference
between that agent’s value function if that policy is followed and the value that the agent gets if
the action that gives him the highest expected payoff is played forever (see (3)). This definition
captures the potential gain achieved by reacting to incoming news. The social planner, being the
sole decision maker of his welfare maximization problem, chooses the policy that maximizes his
value of experimentation. By contrast, the equilibrium policy differs from the optimum of any
given agent, and thus provides him with a lower value of experimentation.

31From a technical standpoint, another distinctive feature of the negative-news settings is that
the smooth-pasting property does not hold any more. Indeed, as time elapses, pmoves away from
its threshold p(k), so the value function need not be smooth at that cutoff. Instead, cutoffs are
determined by direct comparison of value functions with and without starting experimentation.
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5.2. Mixed Shocks and Negative Value of Experimentation

Suppose that the benchmark setting is modified as follows: If R is good,
it pays positive lump sums according to the jumping times of some Poisson
process with intensity λg; if it is bad, it pays negative lump sums according to
the jumping times of a Poisson process with intensity λb. Without loss of gener-
ality, also suppose that the payoff rate of S is zero. In this case, state variables
consist of the number kW of observed winners, the number kL of observed
losers, and unsure voters’ probability p that R is good for them. Since the
number of revealed winners and losers can only increase over time, a backward
induction argument on kW and kL shows that there exists a unique majority-
voting equilibrium policy. If λg > λb, then no news is bad news, since shocks are
more likely to happen if R is good than if it is bad. This implies that, under this
assumption, unsure voters become more pessimistic over time32 and that they
stop experimentation at some cutoffs p(kW �kL), provided they are pivotal.
Theorem 8 implies that pSD ≤ p(kW �kL), where pSD is the single-decision-
maker setting cutoff. This inequality holds for all ν voting rules. If the risky ac-
tion requires the unanimity rule, then Theorem 9 implies that p(kW �kL)≤ pM ,
where pM is the myopic cutoff: unanimity guarantees at least some experimen-
tation.

Negative Value of Experimentation

With other voting rules, nonadversity need not hold, due to the following
perverse effect: if a loser is observed, this may prompt other voters to experi-
ment more by reducing their risk of the loser trap. The value of experimenta-
tion can be negative, that is, voters may prefer to elect the safe action even if
the risky action has a higher immediate expected payoff. Here is such an ex-
ample. There are three unsure voters, voting at the simple majority rule. If a
loser is observed, the remaining two unsure voters are “protected”: it is as if R
required unanimity among the two. This increases their willingness to experi-
ment. If a winner is observed, the remaining two unsure voters are now on the
brink: any winner among them will impose the risky action on the other. This
risk reduces their willingness to experiment. Therefore, ex ante, the three vot-
ers know that if any one of them turns out to be a winner, other voters will soon
revert to the safe action, while if one of them receives a negative lump sum,
others will experiment more. This endogenous adversity makes R unattractive
even if its expected payoff is higher than S’s. For the value of experimenta-
tion to be negative, it is required that (i) the magnitude of loser trap be severe
and (ii) learning be slow, so that experimentation takes time and the adversity
described above lasts long. An explicit example is given in the Appendix

This section highlights an important virtue of requiring unanimity for R: the
unanimity rule guarantees a nonnegative value of experimentation, whereas
other voting rules may yield a negative value of experimentation.

32Precisely, one may show that dp/dt = −(λg − λb)p(1 −p).
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6. PRIVATELY OBSERVED PAYOFFS

This section shows that even when payoffs are privately observed, the equi-
librium policy of Section 2 can be implemented. Suppose that individuals can
only observe their own payoffs and, at each time, the aggregate number of votes
for each alternative. Voters cannot condition their voting policy on the current
number of winners, since when everyone votes forR, it is impossible to tell sure
winners apart from unsure voters. However, voters do learn the number of sure
winners when it matters, that is, when cutoffs are reached. Indeed, each time a
cutoff is reached at which unsure voters would want to stop given the number
of winners that were last revealed, unsure voters vote for the safe action and
sure winners vote for the risky action. That way, everyone observes the current
number of winners, and unsure voters then decide whether to pursue experi-
mentation to the next relevant cutoff (everyone votes for the risky action) or to
vote for the safe action if no new winner is revealed. With this protocol, voters
know the current number of winners only when p reaches particular cutoffs,
but that suffices to implement the policy of the public-information setting.33

To understand why it is in everyone’s interest to follow this scheme, the intu-
ition is as follows. First, sure winners always benefit from revealing their type,
because this increases the duration of experimentation by cutoff monotonic-
ity (Theorem 1). Second, unsure voters cannot gain from manipulating the
choice process, because, conditional on being pivotal (i.e., k ≤ kN), they are
already choosing their optimal action. For example, if an unsure voter voted
for R at some cutoff where he is supposed to vote for S, prompting other vot-
ers to believe that there are more winners than there really are, he will manage
to extend experimentation. However, this will increase his risk of loser trap,
since other voters may become sure winners during that time. The benefits and
costs of such an extension of experimentation are already incorporated into
the cutoffs derived under public information, making deviations unprofitable.
The proof that the above protocol implements the public-information policy is
sketched in the Appendix.

THEOREM 10: The above protocol yields the same equilibrium as the experi-
mentation policy based on publicly observed payoffs.

7. EXTENSIONS

Correlated Types

Positive correlation across types reduces risks of loser trap and winner frus-
tration, and thus increases experimentation, compared to the case of indepen-
dent types. Moreover, this also increases the speed of learning, reducing the

33In small committees, cheap talk would be another natural way for voters to truthfully reveal
their payoffs.
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time cost of experimentation. Results are shown formally in Strulovici (2010),
which studies correlation for the case of two voters and where unanimity is re-
quired forR. With positive type correlation, an advantage of collective decision
making compared to individual experimentation is to get rid of the free-rider
problem identified in papers such as Bolton and Harris (1999), Li (2001), and
Keller, Rady, and Cripps (2005). With perfect type correlation, voting on joint
decision fully restores efficient experimentation, where when types are inde-
pendent, letting each individual experiment on his/her own is efficient. A nat-
ural conjecture here is that imposing a joint decision over individual ones (as-
suming both forms of experimentation are possible) becomes more efficient as
types get more positively correlated.

If some voters have negatively correlated types, this may increase or reduce
experimentation, depending on the particular correlation structure. For exam-
ple, suppose that there are only two voters, that unanimity is required for the
risky action, and that voters have perfectly negatively correlated types. Then, as
soon as one voter receives a lump sum, the other voter knows that he is surely
a loser and this imposes the safe action. This completely destroys the value
of experimentation, and voters stop at the myopic cutoff. A similar argument
holds if unanimity is required for the risky action. Consider now the mixed-
correlation case in which, say, two voters have a perfectly negatively correlated
type with a third voter, and decisions are made according to the majority rule.
In that case, the first two voters have perfectly positively correlated types and
so have full control over the decision process: if the third voter receives a lump
sum, the first two voters know that they are losers and thus impose the status
quo. If one of the first two voters gets a lump sum, these voters impose the
risky action. Overall, negative correlation must be seen more broadly as part
of a more general description of potential alliances which may be formed and
may have a positive or negative impact depending on the context. If it reduces
a powerful group’s expected power, negative correlation is likely to reduce ex-
perimentation. If it creates a more powerful group, the minority wants to ex-
periment less but has no say on decisions, and so only the majority’s increased
incentive to experiment matters.

Factions and Heterogeneous Voting Weights

If some voters have a greater decision weight, they are less subject to control-
sharing effects and wish to experiment longer. For example, consider a setting
with four voters, where voter 1 (only) can cast two votes and decisions are
made according to the simple majority rule. If, say, voter 4 is the only sure
winner so far, voter 1 can impose experimentation by siding with voter 4. As
long as no other winner is observed, voter 1 can push experimentation up to
the single-decision-maker threshold. If, say, voter 2 becomes a winner, voter 1
becomes subject to the risk of loser trap, as further experimentation may reveal
that voter 3 also is a winner, resulting in a decisive coalition of sure winners.
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Contrary to the benchmark setting, thus, experimentation can be interrupted
by the occurrence of a new winner.

Why Not a Two-Period Model?

Some features of collective experimentation such as cutoff monotonicity, the
impact of news arrival and type correlation, and the possibility of a negative
value of experimentation, rely on the impact of one’s experimentation on other
voters’ future experimentation, and hence require at least three periods. Infi-
nite horizon provides time homogeneity, guaranteeing that cutoffs only depend
on beliefs and not on time. Some potential applications, such as joint research
and development projects, can be seen as stopping games, where the time di-
mension is an important feature of the model. Some results in this paper can
be interpreted as comparative statics pertaining to stopping times.34

Risk Aversion

The analysis above does not require risk neutrality: it is enough that voters
have a von Neumann–Morgenstern utility function, where lump sums actually
correspond to “lump utils” or certainty equivalents thereof if the magnitude of
these lump utils is random.

Side Payments

Side payments may restore efficiency under some implementations. How-
ever, a free-rider problem occurs if multiple individuals are needed to influ-
ence some voters. For example, if sure winners must coordinate to influence
some unsure voter, then obtaining this switch amounts to a public good provi-
sion problem for sure winners. Furthermore, transfers may also be impractical
or unethical.

Switching Costs

With a safe and a risky action, switching costs are easily accommodated, be-
cause the equilibrium policy can only switch actions once, from the risky to the
safe action. Adding a cost there simply reduces the value of experimentation
ex ante and, once the risky action is started, modifies indifference cutoffs.

Multiple Risky Actions

Adding a second risky action to the benchmark setting may decrease exper-
imentation. This will occur, for example, if the two risky actions are perfectly

34Setting λ= ∞ reduces the model to two periods: before and after type revelation.
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correlated (for each voter) and the payoff of the new action exacerbates the
loser trap.35 In that case, unsure voters may be unwilling to experiment with
R for fear that winners impose the new action, causing an even lower payoff
for losers. Depending on the payoff structure, even a small probability that
the second risky action becomes relevant can have a dramatic impact on the
equilibrium policy.

Two Risky Actions

Using a safe and a risky action provides an ideal setting to analyze con-
servatism: conservatism means choosing the safe action when the risky action
would be more efficient. With two risky actions, conservatism could still be in-
terpreted as settling inefficiently too early on one of the two risky actions when
it would be more efficient to continue learning about the other action’s value.
In this spirit, Albrecht, Anderson, and Vroman (2007) showed in their model
of search by committees that collective search settles earlier (i.e., acceptance
thresholds are lower) than in the equivalent single-decision-maker setting.

Voter Heterogeneity

If voters start with different type probabilities, this heterogeneity may in-
crease experimentation. Indeed, heterogeneity concentrates more power in the
hands of those voters who are pivotal today, because they are more likely to be
also pivotal in the future. To illustrate with an extreme case, suppose that there
are 9 voters, 4 of whom are (almost) sure to be winners and 4 of whom are
(almost) sure to be losers. The remaining voter has (almost) perfect control
over collective decision today, but also in the future: he will be able to side
with whichever group corresponds to his preferred action.

Power Concentration

The impact of group size on experimentation, as described by Proposition 1
and the discussion that follows, can be reinterpreted as a result on power con-
centration. As a simple model of power concentration, define an oligarchy as
a subset of O (odd) voters such that, at any time, the collective decision is
the action chosen by the majority of that subset. Experimentation cutoffs are
therefore defined as before, replacing k by the number of winners within the
oligarchy and replacing the total number of voters by the cardinal of the oli-
garchy. With this interpretation, Proposition 1 conveys a sense in which experi-
mentation lasts longer if power is concentrated into fewer hands. In particular,
a dictator sets the same experimentation cutoff as a single decision maker.36

35Perfect correlation ensures that there are still only two types of voters at any time and, there-
fore, no Condorcet cycles.

36This assumes type independence. With positively correlated types, a dictator would learn
from others and set a lower cutoff than the single-decision-maker cutoff.
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8. CONCLUSION

This paper has introduced a framework to study collective decisions when
individual preferences evolve through learning. In this framework, experimen-
tation with new alternatives is influenced by the potential effect of learning on
future preferences and votes. Control-sharing effects arise, which introduce
a conservative bias compared to the case of a single-decision-maker setting
or a utilitarian social planner. Equilibrium policy is influenced by group size,
voting rule, voting frequency, voter heterogeneity and correlation, the rela-
tive strength of loser trap and winner frustration, the ability to commit to an
observation-dependent policy or to a fixed action, the amount of aggregate un-
certainty, and the particular process of news arrival, among other factors.

In addition to the points developed in Section 7, there are several other im-
portant extensions to consider. For example, the cost or benefit of experimen-
tation relative to the safe action may be heterogeneous across voters. Voters
may also have an outside option allowing them to leave the group. In polit-
ical applications, there may be several subgroups with high intragroup cor-
relation and low intergroup correlation, with different and possibly evolving
voting weights. Finally, some risky decisions may be (at least partially) irre-
versible. Such features may be necessary to analyze realistic settings. For ex-
ample, “experimenting” with gas emissions has long-lasting effects, implying
irreversibility. A country’s cost of reducing gas emissions much depends on its
primary source of energy, which is a source of heterogeneity. It will be useful
to investigate the effect of such features on the equilibrium policy. When fully
observation-contingent commitments are not available, what forms of commit-
ment can improve efficiency under such extensions?

APPENDIX

A.1. Proof of Theorem 1

Suppose first that k> kN = (N − 1)/2, that is, sure winners have the major-
ity. We show that C(K�p)= R for all p. If not, there exist K̄ with |K̄|>N/2
and p̄ for which C(K̄� p̄)= S. In this situation, S is played forever whenever p
reaches p̄, resulting in a constant value function of s/r for all voters. Suppose
that sure winner i is pivotal. Then voting for R yields an immediate expected
payoff of g and a continuation value function that is weakly greater than s/r,
since sure winners get a payoff rate of at least s no matter which action is
played. This strictly dominates s/r. So the only undominated strategies, start-
ing from (K̄� p̄), must start with i voting for R. Since this is true of all sure
winners and since |K̄|>N/2, necessarily C(K̄� p̄)=R. This means that in any
Markov equilibrium in undominated strategies, R is elected forever as soon as
winners gain the majority. The value function of unsure voters is easily com-
puted in that case: if an unsure voter’s type is good, which happens with proba-
bility p, he gets the same expected value as winners, g/r. Otherwise, he gets 0
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forever. Therefore, u(k�p)= pg/r for k> kN . Now consider the case k= kN ,
in which unsure voters have the majority, but only one new winner suffices for
sure winners to gain the majority. If i is an unsure voter, (2) reduces to

pg+ λp
(
g

r
− V i�C(k�p)

)
+ (N − kN − 1)λp

(
pg

r
− V i�C(k�p)

)
(15)

− λp(1 −p)∂V
i�C

∂p
(K� ·) > s�

In any equilibrium, C(K�p)=R if and only if condition (15) holds. This con-
dition is formally identical to the HJB equation for the optimization prob-
lem of a single decision maker. The solution is characterized by some indif-
ference threshold p(kN) determined by the smooth-pasting condition of the
Hamilton–Jacobi–Bellman equation (6), which reduces to

pg+pλ(g/r − s/r)+pλ(N − kN − 1)(pg/r − s/r)= s�(16)

using the relation ukN+1(p)= pg/r. The left-hand side of (16) is increasing in
p, equal to 0 if p= 0 and higher than g > s if p= 1. Therefore, the equation
has a unique root, which can be reexpressed as

p(kN)= μs

μg+ (g− s)+ (N − kN − 1)(p(kN)g− s) �(17)

This shows that C(K�p) = R if and only if p > p(kN). If p ≤ p(kN), S is
chosen by unsure voters. Since no more learning occurs, p remains constant
forever, hence S is played forever. The above policy entirely determines the
value functions w(k�p) and u(k�p) of sure winners and unsure voters, for
k = kN , which are in fact computable in closed form by integration of their
dynamic equation (a similar derivation was done by Keller, Rady, and Cripps
(2005)):

w(kN�p)= g

r
− g− s

r

(
1 −p

1 −p(kN)
)N−kN(

Ω(p)

Ω(p(kN))

)μ

(18)

and

u(kN�p)= pg

r
+ s−p(kN)g

r

(
1 −p

1 −p(kN)
)N−kN(

Ω(p)

Ω(p(kN))

)μ

(19)

for p≥ p(kN), where Ω(p)= (1 − p)/p. These functions are easily shown to
be increasing in p, with u(kN�p) ≥ pg/r. Moreover, u(kN�p) = w(kN�p) =
s/r for p≤ p(kN), since the status quo is imposed forever.

Now suppose that k= kN − 1. Then any new winner results in the case k=
kN just analyzed. Again, (2) is formally equivalent to the stochastic control
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problem of a single decision maker. Using again the smooth-pasting property
in (6), which implies that the derivative of the value function vanishes, any
indifference threshold p(kN − 1) must solve

pg+pλ(w(kN�p)− s/r)+pλ(N − kN − 2)(u(kN�p)− s/r)= s�(20)

Since the left-hand side is increasing in p, equal to 0 for p= 0, and above s for
p= 1, the equation has a unique root p(kN − 1). The choice rule thus defined
entirely determines value functions u(kN − 1� ·) and w(kN − 1� ·).

To show that p(kN − 1) > p(kN), suppose that the contrary holds. Then
u(kN�p(kN − 1)) = w(kN�p(kN − 1))= u(kN − 1�p(kN − 1)) = s/r and, by
the smooth-pasting property, ∂u

∂p
(kN − 1�p(kN − 1)) = 0. Therefore, (20) be-

comes p(kN − 1)g = s, which contradicts the assumption that p(kN − 1) ≤
p(kN) < p

M .
Let us now show that u(kN − 1�p) is nondecreasing in p. Suppose that pt =

p̃ > p̄ and that unsure voters behave as if pt were equal to p̄, meaning that
they will stop experimenting after the same amount of time σS , unless a new
winner is observed before. Let σW denote the (possibly infinite) time at which a
new winner is observed. Until σ = min{σS�σW }, unsure voters receive nothing
since R is played and no new winner is observed. The value function of this
strategy is thus equal to

u(pt)= Et

{
e−r(σ−t)

[
q

(
1

N − kN + 1
(w(kN�pσ)+ h)

+ N − kN
N − kN + 1

u(kN�pσ)

)
+ (1 − q)s

r

]}
�

where q = Pr[σW < σS|pt]. We saw that u(kN� ·) and w(kN� ·) were increas-
ing in p. Moreover, these values are above s/r. Indeed, s/r is the value
achieved if voters chose the status quo, which is suboptimal by definition of
σS and given that p(kN) < p(kN − 1). Also, pσ is increasing in pt given the
Bayesian updating dynamics. Finally, σW is decreasing in pt , since a higher pt
makes it more likely that a payoff will be observed.37 This also implies that
q is increasing in pt , by definition of q and by the fact that σS is indepen-
dent of pt , by construction. Combining the above implies that u(p̃) > u(p̄).
Since unsure voters optimize their value function with respect to σS , this yields
u(kN − 1� p̃) ≥ u(p̃) > u(p̄) = u(kN − 1� p̄), which proves monotonicity of
u(kN − 1� ·). w(kN − 1� ·) is also increasing in pt . Indeed, let σ1 <σ2 be the ar-
rivals times of lump sum to the next two new winners. As is easily shown, these

37Conditional on pt , σW is the mixture of exponential variables with intensity λj, j ∈
{0� � � � �N − kN + 1}, with mixture weights {ρj} corresponding to the binomial distribution
B(N − kN + 1�pt). Monotonicity is in the sense of first-order stochastic dominance.
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stopping times are decreasing in pt in the sense of first-order stochastic domi-
nance. This, given the fixed experimentation thresholds p(kN) and p(kN − 1),
implies that the distribution of the (possibly infinite) stopping time σS at which
experimentation stops increases in pt in the sense of first-order stochastic dom-
inance. Finally, since

w(kN−1�pt)=Et
[
g

r

(
1 − e−r(σS−t)) + s

r
e−r(σS−t)

]
�

this shows that w(kN−1� ·) is increasing in pt . The remainder of the proof pro-
ceeds by backward induction on k, where the induction hypothesis is that (i) for
all k′ > k, C(k′�p) = R if and only if p > p(k′), where (ii) p(k′) is nonin-
creasing for k′ > k, and (iii) the resulting value functions u(k′� ·) and w(k′� ·)
are nondecreasing in p. The general induction step is then proved exactly as
above.

We now show cutoff monotonicity. We have seen above that p(k) = 0 for
k > kN . The fact that p(kN) ≥ pSD with strict inequality if N > 1 comes from
the comparison of (17) and (1). Monotonicity of p(k) is part of the induction
in the proof of Theorem 1. There remains to show that pM > p(0). The indif-
ference condition for p(0) is

p(0)g+p(0)λ(w(1�p(0))− s/r)(21)

+p(0)λ(N − 1)
(
u(1�p(0))− s/r) = s�

Since p(0) > p(1), unsure voters strictly prefer experimentation at p = p(0)
when k = 1. Therefore, u(1�p(0)) > s/r. Since winners always get a higher
expected payoff than losers no matter what action is chosen, w(1�p(0)) ≥
u(1�p(0)). Therefore, the second and third terms on the left-hand side of (21)
are positive, which implies that p(0)g < s or, equivalently, that p(0) < pM .

Monotonicity of u and w with respect to p was shown as part of the in-
duction hypothesis of the above proof. If k > kN , R is elected forever since
winners have the majority. This determines value functions for this case and
yields the last claim. To show monotonicity in k of w for k ≤ kN , we pro-
ceed by induction. Clearly, g/r = w(kN + 1�p) ≥ w(kN�p). Suppose that
w(k�p) ≤ w(k + 1�p). We need to show that w(k − 1�p) ≤ w(k�p). Let
φ(p)= w(k+ 1�p)−w(k�p) ≥ 0 and ψ(p)= w(k�p)−w(k− 1�p). Since
p(k− 1)≥ p(k), ψ(p)≥ 0 for p≤ p(k− 1). Recall the dynamic equation of
w for p≥ p(k− 1) and k̃≥ k− 1:

−rw(k̃�p)+ λ(N − k̃)p(w(k̃+ 1�p)−w(k̃�p))
− λp(1 −p)∂w

∂p
(k̃�p)+ g= 0�
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Taking the difference of the resulting equations for k̃= k�k− 1 and rearrang-
ing terms yields

(r + λp(N − k+ 1))ψ(p)= λp(N − k)φ(p)− λp(1 −p)ψ′(p)�

Supposeφ is nonnegative by the induction hypothesis. Then the previous equa-
tion can be rewritten as ψ′(p)≤ α(p)ψ(p) for function α. A direct application
of Gronwall’s inequality along with ψ(p(k− 1))≥ 0 proves that ψ is nonneg-
ative, completing the induction step.

To show monotonicity of u with respect to k ≤ kN , fix some k ≤ kN . The
dynamic equation of u for p≥ p(k− 1) and k̃≥ k− 1 is

−ru(k̃�p)+ λp(w(k̃+ 1�p)− u(k̃�p))
+ λp(N − k̃− 1)(u(k̃+ 1�p)− u(k̃�p))
− λp(1 −p)∂u

∂p
(k̃�p)+pg= 0�

Let φ(p) = u(k + 1�p) − u(k�p), φw(p) = w(k + 1�p) − w(k�p), and
ψ(p)= u(k�p)− u(k− 1�p). Taking the difference of the previous equation
for k̃= k�k− 1 and rearranging terms yields

(r + λp(N − k+ 1))ψ(p)(22)

= λp[φw(p)+ (N − k− 1)φ(p)] − λp(1 −p)ψ′(p)�

We already know that φw is positive. Therefore, if φ were also nonnegative,
the argument we just used for w would also show that ψ is nonnegative. In
particular, if one can show that u(kN�p)≥ u(kN −1�p), a backward induction
will prove the result for all k ≤ kN . Combining (18) and (19) implies that, for
k= kN ,

φw(p)+ (N − kN − 1)φ(p)= g− s− (N − kN − 1)(s−p(kN)g)
r

×
(

1 −p
1 −p(kN)

)N−kN(
Ω(p)

Ω(p(kN))

)μ

�

Therefore, the left-hand side has the sign of g− s− (N−kN −1)(s−p(kN)g).
From the cutoff formula (16), this expression has the same sign as s−p(kN)g,
which is positive. Therefore, the first term on the right-hand side of (22) is
nonnegative for k= kN , which implies that ψ is nonnegative for k= kN . This
fills the missing step of the induction, concluding the proof that u is increasing
in k for k≤ kN .

To show the last statement, observe that u(kN + 1�p) = pg/r from Theo-
rem 1, and that u(kN�p) > pg/r from (19). Q.E.D.
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A.2. Proof of Theorem 2

The proof is similar to that of Theorem 1, proceeding by backward in-
duction on the number k of winners. For k ≥ k̄, the utilitarian optimum is
to choose R forever even if p = 0, since sure winners’ gains from R out-
weigh the aggregate gain from S even if all unsure voters get nothing from
R. This fact can be expressed as q(k) = 0 for k ≥ k̄. The resulting welfare
is W (k�p) = kg

r
+ (N − k)pg

r
. Consider next k = k̄ − 1. Let wC(k�p) and

uC(k�p) denote the value functions of sure winners and unsure voters if policy
C is used, given that R is played forever if a new winner is observed, and let
W C(k�p) = kwC(k�p) + (N − k)uC(k�p), denote utilitarian welfare under
policy C. Then the utilitarian criterion C must solve

W kt�C
t = sup

θ

Et

[∫ σ

t

e−r(τ−t)∑
i

dπiθτ (τ)+ e−r(σ−t)W kt+1�C
σ

]
�

where σ is the first (possibly infinite) time at which a new winner is observed
and where W kt+1�C

σ = W (k̄�pσ), the welfare that was computed earlier for
k = k̄. This is a standard control problem, whose solution is Markov. The in-
difference boundary must satisfy the smooth-pasting condition

kg+ (N − k)pg+ (N − k)λp
[
kg+ (N − k)pg

r
− Ns

r

]
=Ns�

which has a unique root q(k), since the left-hand side is increasing in p, greater
than Ns if p = 1, and less than Ns for p = 0, by definition of k̄. Therefore,
C(k�p)= R if and only if p ≥ q(k). This entirely determines w(k� ·), u(k� ·),
andW (k� ·), which are easily shown to be increasing in p. The remainder of the
proof proceeds by backward induction on k as in Theorem 1, where the induc-
tion hypothesis is that (i) for all k′ > k, C(k′�p)= R if and only if p > q(k′),
where (ii) q(k′) is nonincreasing for k′ > k, and (iii) resulting value functions
w(k′� ·), u(k′� ·), and W (k′� ·) are nondecreasing in p. Q.E.D.

A.3. Probability of Receiving a Lump Sum Between p and q < p

Let pS denote the probability that an individual with initial probability p of
being a winner receives a lump sum by the time his belief has dropped to q < p.

PROPOSITION 2: pS = (p− q)/(1 − q).
PROOF: From the Bayesian updating equation, pt = (pe−λt)/((1 − p) +

pe−λt). Therefore, q is reached at a time T such that e−λT =Ω(p)/Ω(q), where
Ω(p)= (1 −p)/p. Conditional on the individual being a winner, the probabil-
ity of getting a lump sum before time T is simply 1 −e−λT , since the arrival rate
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is an exponential random variable with parameter λ. Combining the previous
formulas concludes the proof. Q.E.D.

A.4. Proof of Theorem 9

For any safe rate s and policy C, voter i’s expected payoff with policy C is

V i
C =E

[∫ ∞

0
e−rt dπiCt (t)

]
=

∫ ∞

0
e−rtE[dπiCt (t)]�(23)

where expectations are conditioned on γ:

E[dπiCt (t)] = Pr[Ct = S]s dt + Pr[Ct =R]E[dπiCt (t)|Ct =R]�
Therefore, if E[dπiCt (t)|Ct =R]> sdt for all t, then V i

C > s/r, implying that
Gi
C(γ) > s. Suppose that s < g(γi). Then, by definition of g(·) and by the fact

that the probability of each type is a martingale, E[dπiR(t)] = g(γi)dt > s dt.
Moreover, C’s nonadversity with respect to i implies that E[dπiCt (t)|Ct =R] ≥
E[dπiR(t)] as will be shown shortly. This inequality implies that Gi

C(γ) > s
for all s < g(γi), which concludes the proof. To show the inequality, observe
that by Bayes’ rule, C is nonadverse for i if and only if Pr[θi good|Ct = R] ≥
Pr[θi good|Ct = S] for almost all t.38 Moreover,

E[dπiCt (t)|Ct =R] = Pr[θi good|Ct =R]E[dπiCt (t)|Ct =R�θi good](24)

+ Pr[θi bad|Ct =R]E[dπiCt (t)|Ct =R�θi bad]�
Combining these results yields the inequality. Q.E.D.

A.5. Negative Value of Experimentation

Let g > 0 and b < 0 be the expected payoff rates of the risky arm for sure
winners and sure losers, respectively. Let pM , pSD, pL, pW , and p3, respec-
tively, denote the myopic cutoff, the single-decision-maker cutoff, the two un-
sure voters’ cutoff when the third voter is a loser, the two unsure voters’ cut-
off when the third voter is a winner, and the experimentation cutoff when all
three voters are unsure. For the parameter values g= 0�1, b= −1, s = 0, r = 1,
λb = 0�1, and λg = 0�11, cutoffs have the values

pM pSD pL pW p3

0.9091 0.9001 0.9016 0.9083 0.9095

38Precisely, we have for all t, Pr[Ct =R|good] ≥ Pr[Ct =R|bad] ⇔ Pr[Ct =R|good] ≥ Pr[Ct =
R] ⇔ Pr[good|Ct =R] ≥ Pr[good] ⇔ Pr[good|Ct =R] ≥ Pr[good|Ct = B].
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The most important result is that p3 > pM : voters stop experimentation at a
probability level where R’s expected payoff is strictly above S’s. As explained
above, pL is much lower39 than pW , meaning that if a voter is a loser, experi-
mentation lasts much longer than if he is a winner. From (3), this implies that
the value of experimentation is negative at p3, since V (p3)= s/r < p3g/r.

A.6. Proof of Theorem 10 (Sketch)

For sure winners, votingR forever is optimal as it maximizes their immediate
payoff as well as the length of experimentation, due to the cutoff monotonicity
established in Theorem 1. Under the protocol described in Section 6, unsure
voters only observe the state k when particular cutoffs are reached. Let l de-
note the number of winners that was last revealed. For p>p(l), unsure voters
only know that the number k̃ of current winners is greater than or equal to l.
Unsure voters are only pivotal if k̃≤ kN . By Theorem 1, u(k̄�p)≥ u(l�p) for
l ≤ k̄ ≤ kN . Therefore, E[u(k̃�p)|l ≤ k̃ ≤ kN] ≥ u(l�p) > s/r for p > p(l).
Therefore, it is optimal for unsure voters to choose the risky action when-
ever indicated by the protocol, conditional on being pivotal. Upon reaching
p(l), if it turns out that k= l, that is, no new winner has been observed since
the last release of public information, then it is optimal for unsure voters to
stop: their value function is identical to the benchmark case, which is equal to
s/r. Q.E.D.
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