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Abstract

This paper analyzes a dynamic voting model where individual preferences

evolve through experimentation. Individual votes reflect not only current prefer-

ences but also the anticipated effect of elected alternatives on future preferences

and votes. The analysis is conducted in a two-arm bandit model, with a safe (sta-

tus quo) alternative and a risky alternative whose payoff distribution, or “type”,

varies across individuals and may be learned through experimentation. Under

any voting rule, society experiments less than any individual would if he could

dictate future decisions, due to a control-loss effect. Depending on the nature of

uncertainty, majority-based experimentation also has a systematic bias compared

to the utilitarian policy. For large groups with independently distributed types,

this control-loss effect annihilates the value of experimentation, prompting indi-

viduals to vote myopically. However, even with independently distributed types,

a positive news shock for anyone raises everyone’s value function and incentive

to experiment. Efficiency increases with ex ante preference correlation. The pa-

per also discusses the effect on experimentation of the ability to commit and of

asymmetric information.
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1 Introduction

The positive social choice literature usually assumes that individuals perfectly know

their own preferences. In reality, however, preferences may evolve through learning.

For example, a reform may have uncertain consequences, hence desirability, which can

only be learned by experimenting with that reform. Similarly, decisions in committees

are often analyzed under the assumption that payoff distributions are perfectly known

to committee members at the time of their decisions, although this is rarely the case in

practice. This difference is important if those decisions are made repeatedly, because

one’s vote at any given time must take into account the impact of the current decision

on everyone’s future preferences and votes.

This paper analyzes how experimentation - the fact that an alternative is chosen,

despite its comparatively lower immediate expected payoff, in order to learn more about

its value - is affected by the nature and amount of individual control over collective

decisions. This raises another, dual question: how does the possibility that individual

rankings of social alternatives evolve through learning, potentially resulting in majority

shifts, affect collective decisions? The analysis is conducted in a two-arm bandit model

(settings with multiple risky actions are discussed at the end of the paper). The “safe”

alternative yields a constant, homogeneous payoff to all. The “risky” alternative yields

payoffs according to some distribution, or type, which varies across individuals. At any

time, only one of the two action is taken, according to some voting rule. Individuals may

learn their type through experimentation with the risky alternative. The paper first

analyzes a benchmark setting, in which the type is either “good” or “bad”, then extends

several results to general structures of preference uncertainty, which accommodate a

rich set of applications.

In the benchmark setting, if an individual’s type is good, the risky alternative pays him

some lump-sums whose arrival times are exponentially distributed. If his type is bad,

the risky action pays him nothing. Therefore, an individual knows for sure that his

type is good as soon as he receives a lump-sum (he is then a “sure winner”). However,
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he remains uncertain about his type as long as he has not received anything, for this

could be either due to a bad type, or to a late lump-sum arrival for a good type (he is

then an “unsure voter”). At each instant, society chooses a single action according to

some fixed voting rule. When society experiments with the risky action, this results in

a better assessment of individual valuations for that action, hence a better knowledge

of individual rankings of alternatives.

A key feature of the analysis is the feedback effect occurring between individual pref-

erences and collective decisions. Indeed, not only does preference uncertainty affect

society’s choices, but the reverse is also true. This social phenomenon has been de-

scribed in the context of conservatism by Kuran (1988):

I believe that a complete model for the study of conservatism would have a

circular dynamic structure, with individuals’ choices driven by their beliefs

and preferences; society’s choices generated by its members’ choices; and,

completing the circle, these members’ beliefs and preferences influenced by

society’s choices. It would thus incorporate three interactive processes: that

by which individuals’ seek and integrate information to form their beliefs

and preferences regarding the alternatives they face; that by which soci-

ety combines these choices to select policies, institutions, and technologies;

and finally, that by which collective outcomes mold individuals’ beliefs and

preferences. I am suggesting that the aim of theoretical analysis on the

subject should be to elucidate these three processes with an eye toward

deriving propositions as to when, how, and to what extent individuals and

collectivities adapt to changes in environmental factors.

Conservatism resulting from the interaction between preference uncertainty and col-

lective decisions has been studied, both empirically and theoretically, in the context of

trade liberalization.1 Fernandez and Rodrik (1991), in particular, are motivated by the

behavior of industry groups who lobby against trade reforms ex ante, but a majority

of which benefits from these reforms once they are implemented. They explain this

paradox by showing that reforms having a negative expected value ex ante may turn

1See Baldwin (1985), Bhagwati (1988) and Fernandez and Rodrik (1991).
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out to be beneficial to the majority once implemented. This will be the case, for exam-

ple, if a reform generates a few “losers,” whom it severely hits, while providing small

benefits to a majority of “winners”. In such a scenario, when the identity of winners

and losers is a priori unknown, the reform is initially opposed by all, but eventually

gains the support of a majority as the identity of winners and losers gets revealed.

This paper provides a general analysis of the above questions. It shows in particular

that the value of experimentation is reduced, compared to a single-decision-maker set-

ting, by one’s having to share control over future decisions with other society members.

This control-loss may be decomposed into a loser-trap effect: an individual has the risky

action imposed on him even though it turns out to be bad for him, and a symmetric

winner-frustration effect: an individual is blocked from enjoying the risky action in the

long run, despite his benefiting from it. These effects, each of which occurs with some

probability when control is shared, are absent from single-decision-making problems.

They reduce the attractiveness of experimentation. The loser trap effect arises even

when learning is infinitely fast, so that experimentation entails no time cost: given the

possibility of immediately revealing everybody’s type, society may prefer to reject this

possibility and impose instead the status quo forever, provided the loser-trap effect is

strong enough.

Moreover, provided that types are independently distributed, control-loss effects lead to

the stark result that, as group size goes to infinity, everyone votes myopically. The value

of experimentation vanishes and each individual votes for the risky action only if its

expected payoff is higher than that of the safe action. Intuitively, this can be explained

by the fact that control over future decisions is infinitely diluted and individual power

vanishes.

In the benchmark setting, society also experiments too little compared to the utilitarian

policy. Intuitively, whenever a majority of unsure voters imposes the safe action, it

ignores the utility of sure winners. Utilitarian welfare, however, would take sure win-

ners’ utility into account, making the risky action more attractive overall than from the

sole viewpoint of unsure voters. This result can be reinterpreted in terms of commit-

ment. If individuals are ex ante identical (i.e. behind a veil of ignorance) and able to

commit at the outset to some collective policy, they choose the utilitarian policy, since
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their expected utilities are identical and proportional to utilitarian welfare. Therefore,

society experiments less under majority voting than it would if it could commit to a

collective policy behind a veil of ignorance. In the symmetric setting where bad news

(negative lump-sums) reveals sure losers, and remaining voters are unsure, the oppo-

site bias occurs to some extent: as long as they have the majority, unsure voters push

experimentation too far compared to the socially efficient level, as they ignore the wel-

fare of sure losers (this case is more complex however, see Section 6.3). Therefore, for

applications that are appropriately modeled by either of these settings, it is possible

to identify systematic biases from majority-based experimentation, relative to socially

efficient decision making.

Given these results, it is tempting to shift to a normative analysis and ask whether

another voting rule would be more beneficial to society than the simple majority rule.

For example, if the risky action requires unanimity, an individual cannot has the risky

action imposed on him if it turns out to be detrimental for him. Unanimity thus

completely gets rid of the loser trap effect. However, this very fact also makes exper-

imentation less attractive. Indeed, any winner is less likely to enjoy the risky action

in the long run, for this would require that all other society members also turn out

to be winners. Requiring unanimity for the risky action thus exacerbates the winner-

frustration effect. Whatever control is gained from being able to veto the risky action

is balanced by a control loss for enforcing that same action. Examples indeed show

that with the unanimity rule, experimentation may last longer or shorter than under

the majority rule.

In contrast to the above results, the paper also shows for the benchmark setting that,

even when preferences are independently distributed, so that no learning can occur

from the observation of others’ payoffs, good news for any individual is good news for

all, and prompts society to experiment more. This result may seem counter-intuitive,

as the occurrence of a new winner brings unsure voters closer to the brink, where risky

action is imposed on them forever. However, it also makes unsure voters more likely

to enjoy the risky action if they turn out to be winners, an effect that must dominate

whenever society experiments in the first place.

As should be expected, the severity of the control-loss effect diminishes if types are pos-
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itively correlated ex ante, so that interests are more likely to be aligned. Such positive

correlation also makes experimentation more attractive as individuals learn from both

their and other individuals’ payoffs, which reduces the time cost of experimentation.

This observation is particularly relevant for large societies composed of groups with

high intra-group correlation (see also Section 7).

For several applications envisaged in this paper, such as national security and global

warming (Section 2), a more general description of preference uncertainty is required.

The paper shows, assuming that types are independently distributed across voters,

that collective experimentation is always shorter than experimentation in otherwise

identical single-person decision making problems, or than what any individual would

want if he had dictatorial power over decisions (without assuming type independence).

This result holds for all voting rules and for general specifications of the risky action.

Moreover, provided that collective decision rules are not “adverse”, in the sense that

for any individual, the risky action is more likely to be implemented if that individual

benefits from it than otherwise, there is always some amount of experimentation. In

particular, as long as any given individual has some control over decisions and other

voters are not encouraged to elect an action whenever it turns out to be detrimental to

him, that individual wishes to experiment with the risky action, i.e. to try it even in

some circumstances where its immediate expected payoff rate is below the safe action’s

rate.

The present analysis contributes to the literature on collective conservatism. In contrast

to earlier literature, it does not rely on arguments such as exogenous transaction costs

or sunk costs or bounded rationality, as surveyed by Kuran (1988). Some results of

this paper are closely related to Fernandez and Rodrik (1991), who were the first to

interpret the status quo bias as a consequence of preference uncertainty. In their setting

however, there is no experimentation. Whatever individuals learn in the first period

has no impact on the collective decision of the second period, which is known from the

outset, as there is no aggregate uncertainty. Moreover, preferences are immediately

fully revealed to all agents, which rules out any dynamic analysis, such as understanding

how a positive or negative news shock for one individual affects other voters’ willingness

to experiment.
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The paper is also related to a developing literature on games and experimentation in

which conservatism may arise as a consequence of strategic information acquisition, as

described by Bolton and Harris (1999), Décamps and Mariotti (2004) and Keller, Rady,

and Cripps (2005). Those papers identify a free-riding problem which may result in

lower experimentation. Li (2001) provides a theory of conservatism based on a similar

argument. In those papers, agents make individual investments to acquire information

about the common value of some alternative. In particular, information acquisition

amounts to a public-good problem. In contrast, the present analysis considers the

reverse setting, in which a single collective action is made at any time, but the value

of the action may vary across individuals. This paper therefore also contributes to the

literature on experimentation by analyzing voting and experimentation.

More generally, the paper contributes to the experimentation literature in economics,

started by Rothschild (1974), Jovanovic (1979), Weitzman (1979), and Roberts and

Weitzman (1981). For a recent survey of this literature, see Bergemann and Välimäki (2006).

With respect to this literature, the present paper is the first to consider voting and

experimentation.

The analysis of the benchmark setting owes conceptual and technical clarity to the

use of exponential bandits. Exponential bandits were introduced by Presman and

Sonin (1990) and Presman (1990), and used in economics by Malueg and Tsutsui (1997),

Bergemann and Hege (1998, 2001), Décamps and Mariotti (2004) and Keller, Rady,

and Cripps (2005). In contrast to the last and most closely related paper, where many

asymmetric equilibria may occur, the setting considered here has a unique equilibrium

which is solved by backward induction on the number of winners observed. This equi-

librium is robust to the chosen equilibrium concept, whether it be majority voting

equilibrium used by, among others, Roberts (1989), or the weak-dominance solution

concept, pervasive in the literature on legislative bargaining.

Section 2 presents a simple example providing intuition for several results of the pa-

per, and describes several applications. Section 3 analyzes the benchmark setting with

majority voting and independent types. Section 4 analyzes other decision processes:

i) utilitarian policy, ii) commitment, delegation, and delays, and iii) experimentation

based on the unanimity rule. Section 5 analyzes the effect of voter heterogeneity and
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ex ante type correlation on experimentation. Section 6 has two purposes: i) introduce

settings with negative news shocks, useful for several applications, and ii) extend sev-

eral results to general structures of preference uncertainty. Section 7 discusses some

assumptions and extensions of the main model, in particular: i) the case of privately

observed payoffs, ii) the case of multiple risky actions. Section 8 concludes.

2 Example and Applications

2.1 A Simple Example

Three friends, Ann, Bob, and Chris, go to a restaurant once every week-end. Each

week-end, they choose their restaurant using the majority rule. A new restaurant has

just opened. Should the friends try it? Do they try it? Suppose the alternative is a

restaurant that gives utility 1 to all. For each voter, the new restaurant can be either

bad (yielding 0 utility) or good (yielding utility u > 1). Suppose that preferences, or

“types” are independently distributed across friends (e.g. Ann is no more or less like

likely to appreciate the new restaurant if Bob likes it, etc.), with both types having an

ex ante probability of 1/2.

Immediate Full Type Revelation Suppose that, if they try this new restaurant,

all voters immediately learn their type. With probability 1/8, Ann and Bob will like it

but Chris won’t. In this case, Chris is trapped into always returning to that restaurant,

as Ann and Bob have the majority. This situation will be referred to as the “loser trap”.

Also with probability 1/8, Chris is the only one who turns out to like the restaurant,

but is blocked from exploiting this discovery for future dinners by Ann and Bob. This

symmetric situation will be referred to as “winner frustration”. Overall, there is a

probability 1/4 that Chris loses control over the decision process, compared to the

situation in which he could choose the restaurant by himself in the future. Depending

on u and on how time is discounted, these control-loss effects may be such that Chris

and, by symmetry, all voters prefer not to try the new restaurant even though each of

them would have preferred to try it if he had full control over future decisions.
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Gradual Type Revelation Now suppose that a voter likes the new restaurant if

and only if he finds a dish there that he really likes. In this case several visits to the

restaurant may be needed to find out one’s type. This can lead to situations in which

friends experiment with that restaurant until either a majority of them likes it, or a

majority of them judges unlikely that they will find anything like there. With this

assumption, suppose that, in their first try, only Chris discovers that he likes the new

restaurant. What effect does it have on Ann and Bob? Does this incite them to try

it more or, on the contrary, prompts them to block new experimentation? Good news

for Chris reduces the risk of winner frustration for Ann and Bob, but increases the

probability of the loser trap. It turns out that good news for Chris always makes Ann

and Bob more willing to experiment, as shown in Section 3.

Social Efficiency What would a social planner, wishing to maximize the sum of

utilities of the three friends, choose to do? Suppose that u is very close to 1, so that

“winners” (those who like the new restaurant) appreciate it only slightly more than

the incumbent. Then, the only case in which a social planner would impose the new

restaurant in the long run is if all friends turn out to be winners. If there is a loser

(i.e. someone who dislikes the new restaurant), the very small utility gain achieved

by winners does not compensate the disutility experienced by the loser. However, this

policy is incompatible with majority voting, which would result in the two winners

imposing the new restaurant despite the much larger magnitude of the loss incurred

by the third, losing voter. This difference may result in all friends voting against the

new restaurant when their preferences are still unknown, due to the loser-trap effect,

while a social planner will try it to see whether all friends like it. In fact, Section 4

shows that, with positive news shocks, majority-based experimentation is always less

than the socially efficient policy.

2.2 Applications

The effects described in this paper can arise whenever decisions are made collectively

and repeatedly. Although the examination of any particular application is beyond the

scope of this paper, the reader may keep in mind the following contexts when thinking

about the phenomena analyzed in the following sections.
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Reforms with Unknown Losers Reforms constitute a natural domain of appli-

cation of the above analysis. Even when they benefit a significant fraction of the

population, reforms usually harm some individuals or groups. Whenever the identity

of these losers is ex ante unknown, the “loser trap effect” becomes a source of con-

servatism, as this paper shows. Such reforms include the case of trade liberalization

studied by Fernandez and Rodrik. Uncertainty regarding the role that each individ-

ual will play in a more open society can also justify some lack of popular support for

transitions from rigid economic systems to more open ones.

Ex Ante Public Goods Section 6 considers a general specification of preference

uncertainty that encompasses a setting, symmetric to the benchmark setting, in which

negative lump-sums occur if the action is bad, while the status quo entails a small

cost compared to the payoff of the risk risky action if it turns out to be good. This

setting captures applications in which a costly effort is required of group members to

prevent catastrophes from happening, but the identity of those who may suffer from

these catastrophes, if no preventive action is taken, is unknown.

In the context of global warming, for example, the safe action is immediate adoption of

drastic policies to cut emissions of greenhouse gases. The risky action is to “explore”

the effects of global warming. The safe action has an economic cost. The risky action

results in losers, which are the countries most adversely affected by global warming.

The “winners” are those countries which suffer least from global warming. Actual con-

sequences of global warming are largely unknown in magnitude and nature. Despite

some degree of predictability, the identity of losers and winners is to a large extent also

unknown.2 The effects, whatever they are, are likely to be lasting. Moreover, fighting

global warming requires coordination: all significant polluters must simultaneously re-

duce gas emissions, as emissions emanating from any country affect all other countries.

From this viewpoint, the analysis of the paper yields several observations and predic-

tions (see Sections 6.1, 6.3, 4.1, and 4.2). It predicts two possible regimes, depending

on parameter values (payoffs, learning speed relative to discount rate, group size, etc.),

for gas emissions policies when countries cannot commit to a coordinated long-term

policy. In the first regime, individual polluting countries wait to better understand

2To take one example, the impact of global warming on several northern European countries will

dramatically depend on its influence on thermohaline circulation, which is largely unknown.
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the consequences of global warming until, possibly, countries which become actually

harmed by its consequences gain enough power to impose drastic emission reductions to

all polluters. In the second regime, individual countries, considering the risk of enter-

ing the first regime, agree very early on to drastically reduce emissions of greenhouse

gases, without learning anything about the actual consequences of global warming.

Both regimes are socially inefficient. The first regime pushes experimentation with

global warming too far, as polluting countries ignore the woes of affected countries.

The second regime does not explore enough the consequences of global warming, as it

imposes drastic actions to avoid a phenomenon that remains completely unknown. The

paper shows that social efficiency would require a unanimous long-term commitment

to a gas emission policy that depends on the observed consequences of global warm-

ing. This may entail, for example, all polluting countries agreeing to drastically cut

emissions as soon as any one of them is significantly harmed, where this last event may

be assessed based on different environmental indicators. The paper also shows that

commitment to an observation-dependent policy is very different from commitment to

an action, such as an irrevocable imposition of drastic reduction of gas emissions to

all polluters. Indeed, commitment to an action reduces efficiency even further than

equilibrium policies without commitment, as it adds even more rigidity to the decision

process. Furthermore, the paper shows that without policy commitment, coordinated

reduction of greenhouse gases i) is implemented earlier than what any country would

prefer if it could dictate current and future gas emission policies to all countries, and ii)

always involves some experimentation, in the sense that for all voting rules, countries

always wait to assess, to some extent, the effects of global warming before reducing gas

emissions. (See Section 6.)

As another example, some security policies benefit from coordination at an interna-

tional level (more generally a global, rather than local, level). All countries concerned

with the policy must bear the cost of this coordination. Investing in efficient security

coordination amounts to taking a “safe” action. The risky action is not to implement

such security coordination. The losers are countries who suffer from attacks which

might have been prevented or reduced by global coordination. The “winners” are those

countries who do not get attacked despite the lack of global security policies. The iden-

tity of losers is ex ante unknown, at least to some extent. To fit the dynamic analysis

of this paper, it is important that losers are affected in such a way that, after their first
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attack, they wish, more than unaffected countries, to implement global coordination.

In such case, this paper makes similar predictions as in the context of global warming,

namely i) policy coordination suffers the inefficiency of the two regimes discussed in

the context of global warming, ii) coordination is implemented earlier, others things

equal, than what any individual country would prefer if it could dictate to others the

degree, present and future, of coordination in security policies, and iii) there is always

some experimentation, in the sense that for all voting rules, countries always try to

assess to some extent the risk of attacks before implementing security coordination.

Joint Investment As an illustration of the winner frustration effect, suppose that

a firm considers a new, challenging project, which involves several development tasks.

Each task has some probability of success. Tasks are complementary: the project

can only succeed if all of the tasks are successful. In such a situation, the managers

of the individual tasks are exposed to the risk of the project being abandoned due to

failures with other tasks of the project, even if they achieve success with their own task.

The winner frustration effect dominates this setting, as the gain from the risky action

(here, undertaking the project) is large compared to the status quo. The loser trap

effect is small here, as losers from the risky action are not significantly harmed. This

highlights an important feature of many applications: the tension between a necessary

complementarity in actions with a possible misalignment of preferences.

3 Benchmark Setting

As a benchmark, this section embeds the exponential bandit model of Keller, Rady,

and Cripps “KRC” (2005) into a setting with majority voting. Time t ∈ [0,∞) is

continuous and discounted at rate r > 0. There is an odd number N ≥ 1 of individuals

who continually decide at the simple majority rule which of two actions to choose.

The first action S is “safe” and yields a flow s per unit of time to all individuals.

The second action R is “risky” and can be, for each player, either “good” or “bad.”

The types (good or bad) are independently distributed across the group (the case of

correlated types is considered in Section 5). If R is bad for some individual i, it always

pays him 0. If R is good for i, it pays him lump-sum payoffs at random times which

12



correspond to the jumping times of a Poisson process with constant intensity λ. The

arrival of lump-sums is independent across individuals. The magnitude of these lump

sums3 equals h . If R is good for i, the expected payoff per unit of time is therefore

g = λh. The assumption 0 < s < g rules out the uninteresting case in which either

R or S is dominated for all beliefs. Each individual starts with a probability p0 that

R be good for him. This probability is the same for all and is common knowledge.

Thereafter, all payoffs are publicly observed, so that everyone shares the same belief

about any given individual’s type (for privately observed payoffs, see Section 7). In

particular, the arrival of the first lump-sum to a given individual i makes him publicly

a “sure winner”. At any time t, therefore, the group is divided into k “sure winners”

for whom R is good with probability one, and N − k “unsure voters,” who have the

same probability p of having a good type. Unsure voters’ probability evolves according

to Bayes’ rule and obeying the dynamic equation dp/dt = −λp(1 − p) if no lump-sum

is observed, with pj jumping to 1 if some voter j receives a lump sum (see KRC, p. 45).

Type independence implies that an unsure voter only learns from his payoff stream but

not from others’.

When N = 1, the setting reduces to the optimization problem of a single decision

maker. The optimal experimentation strategy is Markov with respect to the current

belief p, determined by a cut-off pSD such that R is played if and only if p ≥ pSD. This

cut-off equals

pSD =
µs

µg + (g − s)
, (1)

where µ = r/λ (see KRC). Let pM = s/g denote the myopic cut-off, i.e. the probability

below which R yields a lower expected payoff than S. The previous formula implies

that pSD < pM . Indeed, experimentation really only takes place for all p ∈ [pSD, pM ],

since the single decision maker then chooses the risky action, despite its lower payoff,

in order to learn more about its true value for future decisions. Choosing R in this

range is optimal due to the option value of experimentation.

For a group, the first results of this paper show that, with the simple majority rule,

3All results hold if these lump sums have random, independently distributed magnitudes with

constant mean h. More generally, what matters for decision makers are expected payoff rates of

each action and the probability that the risky action be good or bad. See Section 6 for a general

specification of payoff distributions and beliefs.
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0

pM = s/g

t0 t1

p0

p(0)

p(1)

pSD

switch to S if no winner so far

switch to S if only one winner so far

time t

R forever otherwisept

type probability p

p(2), p(3)

1

t0: experimentation end time if no winner is observed before reaching p(0).

t1: experimentation end time if only one winner is observed before reaching p(1).

p(2) = 0: R is elected forever if winners have the majority, no matter what pt for the remaining unsure voter.

pSD < p(1): a single decision maker always experiments more than a group with a majority of unsure voters.

Figure 1: Dynamics of Collective Experimentation with 3 Voters.

collective decisions are determined by a vector of nonincreasing cut-offs p(k)0≤k≤N such

that the risky action is played at time t if and only if pt > p(kt), where kt is the number

of sure winners at that time. The dynamics of collective decisions can thus be described

as follows. Starting with some (high enough) level p0 that is common to all, R is elected

until the threshold p(0) is reached, at which time two things can happen: either no one

received any lump-sum so far, and the safe action is then elected forever. Or at least

one winner has been observed by then, in which case experimentation continues until

at least another threshold p(1) < p(0), and so on. The dynamics of collective decisions,

which is next formally analyzed, is qualitatively represented by Figure 1 for the case

of three voters. The intuition for cut-off monotonicity is presented before Theorem 2.

A collective decision rule (or policy) is a stochastic process C = {Ct}t≥0 adapted to

the filtration generated by the arrival of voters’ lump sums and taking values in the

action space {R, S}. Any collective decision rule determines a value function for each
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agent i:

V i,C
t = Et

[
∫ ∞

t

e−r(τ−t)dπi
Cτ

(τ)

]

,

where dπi
S(τ) = sdτ , and dπi

R(τ) = hdN i
τ or 0 depending on whether R is good or bad

for i, where {N i}1≤i≤N is a family of independent Poisson processes with intensity λ.

At any time t, within each subgroup of voters (sure winners or unsure voters), all

voters have the same value function since their payoffs are identically distributed. Let

wk,C and uk,C respectively denote the value functions of sure winners and unsure voters

where superscripts indicate the current number k of sure winners and the rule C that

is followed. Letting kN = (N − 1)/2, winners have the majority if and only if k > kN .

Definition 1 C is a Majority Voting Equilibrium (MVE) if for all t, it satisfies the

following conditions:

• if kt ≤ kN , C solves

ukt,C
t = sup

θ

Et

[
∫ σ

t

e−r(τ−t)dπu
θτ

(τ)

+e−r(σ−t)

(

1

N − kt

wkt+1,C
σ +

(N − kt − 1)

N − kt

ukt+1,C
σ

)]

, (2)

• if kt > kN , C solves

wkt,C
t = sup

θ

Et

[
∫ σ

t

e−r(τ−t)dπw
θτ

(τ) + e−r(σ−t)wkt+1,C
σ

]

, (3)

where σ is the first (possibly infinite) time at which a new winner is observed, and θ is

any policy.

This definition means that at any time, the subgroup with the majority follows the

policy that is optimal for itself, until a change occurs in the composition of the sub-

groups. When unsure voters have the majority, the conditional probability that any

given unsure voter be that new winner is simply 1/(N − kt), since there are N − kt

unsure voters with identical payoff distributions. This explains the last term in (2).

This definition extends to a non-Markov setting the standard notion of majority voting

equilibrium for dynamic Markov policies (see for example Roberts (1989)). In partic-

ular, if one imposes at the outset that the collective decision rule only depend on the
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state (k, p), the above equations then reduce to the following Hamilton-Jacobi-Bellman

(HJB) equations (to be explained in detail shortly):

• If k ≤ kN , C = R if and only if

pg + λp[wC(k + 1, p) − uC(k, p)]

+ λp(N − k − 1)[uC(k + 1, p) − uC(k, p)] − λp(1 − p)
∂uC(k, p)

∂p
> s (4)

• If k > kN , C = R if and only if

g + λp(N − k)[wC(k + 1, p) − wC(k, p)] − λp(1 − p)
∂wC(k, p)

∂p
> s (5)

The equilibrium concept also corresponds, in a dynamic, continuous-time setting, to

the usual concept of weak dominance equilibrium: it is the outcome obtained if any

member of the majority chooses his optimal action, as if he were pivotal, given that

the same will be true of majority members at any future date. The concept rules out

trivial Nash equilibria, such as equilibria in which all individuals vote for the same

action. It also gets rid of some problems and subtleties specific to continuous games,

such as those identified by Simon and Stinchcombe (1989)

The first result of this paper states that there exists a unique4 majority voting equi-

librium, that this equilibrium has the Markov property, and that it is determined by

cut-off policies. Existence of Markov equilibria has been widely studied and is common

in dynamic stochastic games. However, the fact that any equilibrium of the present

dynamic game is Markov, and that there exists indeed a unique such equilibrium, is

rare and noteworthy. It owes to the particular structure of the model, which makes

possible the use of a backward induction argument on the number of winners, and

works despite the infinite horizon, continuous-time nature of the model.

Before formally stating and proving the result, some intuition for it may be helpful

(assuming for now the Markov property). At any time t the state of the group can

4As usual in the continuous-time stochastic control literature, uniqueness of the optimal policy is

understood up to a subset of times of measure 0 on which actions can take any possible values without

affecting value functions.
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be summarized by kt and pt. Each subgroup (sure winners or unsure voters) consists

of individuals with perfectly aligned interests. Majority belongs to either sure winners

if k > kN or to unsure voters if k ≤ kN . The group with the majority can enforce

whichever action it prefers. For example, if sure winners have the majority, it is clearly

in their interest to impose R forever. Similarly, if unsure voters have the majority and

p is equal (or very close) to 0, so that they are in fact (almost) sure that the action is

bad for them, they will impose the status quo S forever, and no further learning occurs.

Since an unsure voter can become a winner, but the reverse is false, majority can only

shift from unsure voters to winners. Starting with a majority of unsure voters, decisions

are dictated by unsure voters’ interest until they (possibly) lose the majority. The

main question is therefore to determine unsure voters’ preferences. These preferences

are assessed by the following Hamilton-Jacobi-Bellman (HJB) equation:

ru(k, p) = max {pg + λp[w(k + 1, p) − u(k, p)]

+λp(N − k − 1)[u(k + 1, p) − u(k, p)] − λp(1 − p)
∂u

∂p
(k, p), s

}

. (6)

The first part of the maximand corresponds to action R, the second to action S. The

effect of action R can be decomposed into four parts: i) the expected flow rate pg,

ii) the jump of the value function if i receives a lump-sum, which occurs at rate λ with

probability p: his value function jumps to w and the number of winners increases by

1, iii) the jump of i’s value function if another unsure voter receives a lump-sum: i

is still an unsure voter, but the number of sure winners increases by 1, and iv) the

effect of Bayesian updating on the value function when no lump-sum is observed.

Independence of the Poisson processes governing individual payoffs implies that only

one lump-sum can be received during any infinitesimal period of time, so that no

term involving two or more jumps appears in the HJB equation. In comparison, if S

is chosen, learning stops, and i simply receives the flow rate s. Since unsure voters

have identical value functions, they unanimously decided to stop experimentation if

p becomes too low. They do so when the R part of (6) equals s. At such level p,

the smooth pasting condition implies that the derivative term vanishes since the value

function is constant, equal to s/r, below that level (see for example Dixit (1993)). This

determines the equilibrium policy’s cut-offs.

Theorem 1 (Existence and Uniqueness) There exists a unique MVE. This equi-

librium is characterized by cut-offs p(k), 0 ≤ k ≤ N , such that R is chosen in state
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(k, p) if and only if p > p(k).

Proof. Suppose that k = N , i.e. all voters are sure winners. Then, σ is necessarily

infinite, so (3) reduces to

wN,C
t = sup

θ

Et

[
∫ ∞

t

e−r(τ−t)dπw
θτ

(τ)

]

.

The (essentially) unique solution is Cτ = R for all τ , since it provides winners at any

time with the maximal possible expected payoff g. This gives them the constant value

function wN
t = g/r. The value function of unsure voters is also easily computed: if

an unsure voter’s type is good, which happens with probability pt, he gets the same

expected value as winners, g/r. Otherwise, he gets 0 forever. Therefore, uN
t = ptg/r.

For k = N − 1, (3) reduces to

wN−1,C
t = sup

θ

Et

[
∫ σ

t

e−r(τ−t)dπw
θτ

(τ) + e−r(σ−t)g/r

]

,

where I use the fact that wN
t = g/r. Again, the (essentially) unique solution is Cτ = R

for all τ , value functions still equal wN−1
t = g/r and uN−1

t = ptg/r. By the same

induction argument, Cτ = R and wk
t = g/r and uk

t = ptg/r for all k > kN . Now

consider the case k = kN , in which unsure voters have the majority, but only one new

winner among them is needed for the majority to switch to sure winners. Then (2)

reduces to

ukN ,C
t = sup

θ

Et

[
∫ σ

t

e−r(τ−t)dπu
θτ

(τ) + e−r(σ−t)

(

1

N − kN

(g

r
+ h

)

+
(N − kN − 1)

N − kN

ptg

r

)]

,

(7)

using the relations wkN+1 = g/r and ukN+1 = ptg/r. The optimization problem (7) is

formally identical to the optimization problem of a single decision maker, with known

termination values. The solution of such problem is well known (see for example

Fleming and Soner (1993)). The control is Markov in p, with any indifference thresh-

old p(kN) determined by the smooth-pasting condition of the Hamilton-Jacobi-Bellman

equation (6), which reduces to

pg + pλ(g/r − s/r) + pλ(N − kN − 1)(pg/r− s/r) = s, (8)

using the relation ukN+1(p) = pg/r. The left-hand side of (8) is increasing in p, equal

to 0 if p = 0 and higher than g > s if p = 1. Therefore, the equation has a unique
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root, which can be reexpressed as

p(kN) =
µs

µg + (g − s) + (N − kN − 1)(p(kN)g − s)
. (9)

This shows that C(p, kN) = R if and only if5 p > p(kN). If p ≤ p(kN), S is chosen by

unsure voters. Since no more learning occurs, p remains constant forever, hence S is

played forever. The above strategy entirely determines the value functions wC(kN , p)

and uC(kN , p) of sure winners and unsure voters, which are in fact computable in

closed-form by integration of their dynamic equation:

w(kN , p) =
g

r
−
g − s

r

(

1 − p

1 − p(kN)

)N−kN
(

Ω(p)

Ω(p(kN))

)µ

, (10)

and

u(kN , p) =
pg

r
+
s− p(kN)g

r

(

1 − p

1 − p(kN)

)N−kN
(

Ω(p)

Ω(p(kN))

)µ

(11)

for p ≥ p(kN), where Ω(p) = (1 − p)/p. These functions are easily shown to be

increasing in p, with uC(kN , p) ≥ pg/r. Moreover, u(kN , p) = wC(kN , p) = s/r for

p ≤ p(kN), since the status quo is imposed forever.

Now suppose that k = kN − 1. Then, any new winner results in the case k = kN

just analyzed. Again, (2) is formally equivalent to the stochastic control problem of a

single decision maker. Using again the smooth pasting property in (6), which implies

that the derivative of the value function vanishes, any indifference threshold p(kN −1),

must solve

pg + pλ(w(kN , p) − s/r) + pλ(N − kN − 2)(u(kN , p) − s/r) = s. (12)

Since the left-hand side is increasing in p, equal to 0 for p = 0 and above s for p = 1, the

equation has a unique root p(kN −1). The choice rule thus defined entirely determines

value functions u(kN − 1, ·) and w(kN − 1, ·).

To show that p(kN −1) > p(kN), suppose that the contrary holds. Then, u(kN , p(kN −

1)) = w(kN , p(kN − 1)) = u(kN − 1, p(kN − 1)) = s/r, and by the smooth-pasting

property, ∂uC

∂p
(kN − 1, p(kN − 1)) = 0. Therefore, (12) becomes p(kN − 1)g = s,

which contradicts the assumption that p(kN − 1) ≤ p(kN) < pM . Thus, necessarily,

p(kN) < p(kN − 1).

5As before, this is up to action changes on a time subset of measure 0.
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Let us now show that u(kN − 1, p) is nondecreasing in p. Suppose that pt = p̃ > p̄

and that unsure voters behave as if pt were equal to p̄, meaning that they will stop

experimenting after the same amount of time σS , unless a new winner is observed σW .

Until σ = min{σS, σW}, unsure voters receive nothing since R is played and no new

winner is observed. The value function of this strategy is thus equal to

u(pt) = Et

{

e−r(σ−t)

[

q

(

1

N − kN + 1
(w(kN , pσ) + h) +

N − kN

N − kN + 1
u(kN , pσ)

)

+ (1 − q)
s

r

]}

,

where q = Prob[σW < σS|pt]. We saw that u(kN , ·) and w(kN , ·) are increasing in

p. Moreover, these values are above s/r. Indeed, s/r is the value achieved if voters

chose the status quo, which is suboptimal by definition of σS and given that p(kN) <

p(kN − 1). Also, pσ is increasing in pt given the Bayesian updating dynamics. Finally,

σW is decreasing in pt, since a higher pt makes it more likely that a payoff will be

observed.6 This also implies that q is increasing in pt by definition of q and the fact

that σS is independent of pt by construction. Combining the above implies that u(p̃) >

u(p̄). Since unsure voters optimize their value function with respect to σS, this yields

u(kN − 1, p̃) ≥ u(p̃) > u(p̄) = u(kN − 1, p̄), which proves monotonicity of u(kN − 1, ·).

w(kN−1, ·) is also increasing in pt. Indeed, let σ1 < σ2 the arrivals times of lump-sum to

the next two new winners. As is easily shown, these stopping times are decreasing in pt,

in the sense of first order stochastic dominance. This, given the fixed experimentation

thresholds p(kN) and p(kN − 1), implies that the distribution of the (possibly infinite)

stopping time σS at which experimentation stops increases in pt in the sense of first-

order stochastic dominance. Finally, since

w(kN−1, pt) = Et

[g

r

(

1 − e−r(σS−t)
)

+
s

r
e−r(σS−t)

]

,

this shows that w(kN−1, ·) is increasing in pt. The remaining of the proof proceeds

by backward induction on k, where the induction hypothesis is that i) for all k′ > k,

C(k′, p) = R if and only if p > p(k′), where ii) p(k′) is non-increasing for k′ > k, and iii)

the resulting value functions u(k′, ·) and w(k′, ·) are non-decreasing in p. The general

induction step is then proved exactly as above. �

The main result of the next theorem is cut-off monotonicity: the larger the number of

winners, and the more remaining unsure voters are willing to experiment. This result

6Conditional on pt, σW is the mixture of exponential variables with intensity λj, j ∈ {0, . . . , N −

kN + 1}, with mixture weights {ρj} corresponding to the binomial distribution B(N − kN + 1, pt).

Monotonicity is in the sense of first-order stochastic dominance.
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is perhaps surprising: why would unsure voters want to experiment more when the risk

that they lose majority and be imposed R forever increases? The intuition is as follows.

Suppose that p is below the myopic cut-off pM but above p(k) so that with k current

winners, unsure voters choose to experiment. By definition of pM , unsure voters get, in

such situation, a lower immediate expected payoff rate with R than with S. Therefore,

the only reason why they choose to experiment is that they hope to become winners.

Now suppose by contradiction that p(k+1) > p(k), and that p lies in (pk, pk+1). Then,

as soon as a new winner is observed, k jumps to k + 1, which implies that the status

quo is imposed forever, since p < pk+1. Therefore, the very reason why unsure voters

wanted to experiment, namely the hope of being winners, becomes moot: as soon as

one of these unsure voters becomes a winner, he sees the safe action imposed on him

forever, which prevents him from actually enjoying any benefit of being a winner.7

In fact Theorem 3 shows that not only does experimentation increase when a new

winner is observed, but the value function of unsure voters also increases, as long as

this new winner does not gives majority to sure winners (i.e. as long as k < kN).

Another important result contained in the next theorem is that p(k) > pSD for all

k ≤ kN , which means that a single decision maker would always experiment more than

a group whose majority consists of unsure voters. The reason is the control-loss effect

mentioned in the introduction: when a single decision maker ignores his type, he still

knows that i) if he turns out to be winner, he will be able to enjoy the high-payoff,

risky action forever, and ii) if he turns out to be a loser, he can stop experimentation

whenever he wants. Neither of these facts are true for unsure voters in a group: even

if an unsure voter turns out to be a winner, he is not guaranteed that the risky action

will be played forever, since a majority of unsure voters may block it. And if he turns

out to be a loser, he may still be imposed the risky action forever if experimentation

lasts long enough to reveal that a majority of voters are winners. This twofold control

loss prompts unsure voters to experiment less than anyone of them would if he could

dictate decisions in the future.

Theorem 2 (Cut-Offs Relations) Equilibrium cut-offs satisfy the following rela-

tions:

7That is, apart from receiving a lump-sum at the time of jump, but the possibility of that gain is

already factored in the computation of the immediate expected payoff, which is still less than s for

p < pM .
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• pM > p(0).

• p(k) > p(k + 1) for k ≤ kN .

• p(kN) ≥ pSD with strict inequality if N > 1.

• p(k) = 0 for k > kN .

Proof. Theorem 1 already shows that p(k) = 0 for k > kN . The fact that p(kN) ≥ pSD

with strict inequality if N > 1 comes from the comparison of (9) and (1). Monotonicity

of p(k) is part of the induction in the proof of Theorem 1. There remains to show that

pM > p(0). The indifference condition for p(0) is

p(0)g + p(0)λ(w(1, p(0))− s/r) + p(0)λ(N − 1)(u(1, p(0))− s/r) = s. (13)

Since p(0) > p(1), unsure voters strictly prefer experimentation at p = p(0) when

k = 1. Therefore, u(1, p(0)) > s/r. Since winners always get a higher expected payoff

than losers no matter what action is chosen, w(1, p(0)) ≥ u(1, p(0)). Therefore, the

second and third terms on the left-hand side of (13) are positive, which implies that

p(0)g < s, or equivalently that p(0) < pM . �

When learning is extremely fast, a single-decision maker is always willing to experiment

until he learns his type (almost) perfectly. Mathematically, this result comes from

the single-decision maker cut-off equation (1): as the intensity λ goes to infinity, µ

goes to 0 and so does the cut-off pSD. However, this result does not extend to the

case of collective experimentation. In this case, the time cost of experimentation is

only one of two reasons for preferring the status quo. The other reason is the risk

of being imposed the risky action forever by the majority while being a loser. If

the control-loss effect is strong enough, society may prefer to shun the opportunity

of learning everyone’s type and make a perfectly informed decision (clearly what a

utilitarian planner would choose!), and stay in the dark, i.e. stick forever to the status

quo. Keeping other parameter values fixed, this will happen if the total number N

of individuals is large enough, as individual power gets more diluted. Mathematically,

this immediate revelation does systematically occur if cut-offs stay bounded away from

0 as learning intensity λ goes to infinity. The next result, which provides condition

under which this happens, is a direct consequence of (9).
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Corollary 1 (Immediate Type Revelation) If N > 2g/s− 1,

lim
λ→∞

p(kN) =
(N + 1)s/g − 2

N − 1
> 0.

If N ≤ 2g/s− 1,

lim
λ→∞

p(kN) = 0.

Corollary 1 suggests that the total number N of individuals plays an important role

on experimentation. Indeed, the next proposition provides a stark result as N gets

large. Still assuming type independence, it shows that, at the limit, individuals behave

myopically, choosing the risky action only if its immediate, expected payoff is larger

than that of the safe action. For large groups with independent types, therefore, true

experimentation, understood as the election of an action despite a lower immediate

payoff in order to learn more about it, completely disappears. To state this result, let

p(k,N) denote the experimentation cut-off when there are k winners and N overall

individuals.

Proposition 1 (Group Size) p(kN , N) is nondecreasing in N . Moreover, for all k,

p(k,N) → pM as N goes to infinity.

Proof. The first part of the proposition is an immediate consequence of (8). For the

second part, (8) also implies that p(kN , N) → s/g = pM as N goes to infinity. To

conclude the proof, observe that from Theorem 2, p(kN , N) ≤ p(k,N) ≤ pM for fixed

k and all N ≥ 2k + 1. Taking the limit as N goes to infinity proves the result. �

Figure 2 illustrates cut-off policies for different values of N and of the number κ =

kN + 1 − k of switches required for winners to gain the majority. In general, cut-offs

p(k,N) are not monotonic with respect to group size, as can be proved by numerical

computation. Such violations may seem counter-intuitive: as N increases, individual

power gets more diluted, so shouldn’t this reduce the value of experimentation? How-

ever, keeping k fixed, increasing N also makes it more likely, for any given unsure

voter, that other winners will be observed, for any fixed cut-offs value. Therefore, the

addition of new unsure voters reduces the winner frustration effect, for fixed cut-off

level. For some parameter values, this may, locally, increase the attractiveness of ex-

perimentation. The result of Proposition 1 is therefore not as natural as it may initially

appear.
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Figure 2: Policy Cut-Offs. r = 1, λ = 1, s = 1, g = 2.

The previous proposition is also interesting to think about power concentration. In-

deed, define an oligarchy as a subset of O (odd) voters such that, at any time, the

collective decision is the action chosen by the majority of that subset.

Proposition 2 (Oligarchy) With an oligarchy of O voters, there exists a unique

MVE. This MVE is defined by cut-offs such that C(p1, . . . , pN) = R if and only if

p ≥ p(kO, O), where kO is the number of sure winners in the oligarchy.

Proof. Decisions are entirely determined by the oligarchy. From their viewpoint, the

strategic situation is therefore equivalent to a society with only O individuals voting

at the majority rule. �

Combined with Proposition 1, Proposition 2 conveys a sense in which experimentation

lasts longer if power is concentrated into fewer hands. In particular, a dictator sets,

unsurprisingly, the same experimentation cut-off as the single-decision-maker cut-off

pSD.

We have seen in Theorem 2 that society experiments more as the number of winners

increases. It is actually possible to prove a stronger result, pertaining to the mono-

tonicity of value functions. Indeed, even the value function of unsure voters increases
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with the number of sure winners. For the value function of sure winners, this result

is more intuitive: a higher number of sure winners means a higher probability that a

winning majority will be achieved. However, to be complete, this argument also re-

quires that experimentation cut-offs decrease in k, which is guaranteed by Theorem 2.

Cut-off monotonicity implies that, when a new winner is observed, not only do winners

get closer to gaining the majority, but experimentation lasts longer in any case. More

surprising is the fact that the occurrence of a new winner is also good news for unsure

voters, meaning that their value function jumps upwards, unless this new winner is

the decisive voter that gives the majority to winners. The intuition here is that, for

k < kN , new winners make experimentation more attractive to unsure voters: if they

turn out to be winners, they will be more likely to enforce their preferred action. Of

course, it also increases the risk of being imposed that risky action if one turns out to

be a loser. However, because unsure voters were already willing to experiment before

the new winner is observed, it means that this trade-off was already resolved in favor

of experimentation. For p < pM , unsure voters were already in a situation in which

the only reason to play the risky action was their hope of being winners. Therefore,

the fact that experimentation is facilitated through lower cut-offs and more winners is

also good news for them. This argument is contingent on the fact that unsure voters

still are in control of the collective decision process, however. When k = kN and a new

winner is observed, remaining unsure voters lose the majority and their value function

suddenly drops to the imposed value of the risky action. Finally, as one would expect,

value functions are also increasing in p. For unsure voters, this is explained by their

higher likelihood of get lump-sums through action R, while their payoff from action S

is unchanged. The value function of sure voters is also increasing in p. Indeed, the

more likely unsure voters are to be winners, and the longer experimentation will last,

in expectation and, hence, the longer sure winners will be able to enjoy high payoffs.

These various monotonicity properties are illustrated by Figure 3.

Theorem 3 (Value Function Monotonicity) The following holds:

• u and w are nondecreasing in p,

• w(k, p) is nondecreasing in k for all p,

• u(k + 1, p) ≥ u(k, p) for all p, and k < kN ,
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• u(kN + 1, p) < u(kN , p) for all p,

• u(k, p) = pg/r and w(k, p) = g/r for all p and k > kN .

Proof. Monotonicity of u and w with respect to p was shown as part of the induction

hypothesis in the proof of Theorem 1. If k > kN R is elected forever since winners

have the majority. This determines value functions for this case and yields the last

claim. To show monotonicity in k of w for k ≤ kN , we proceed by induction. Clearly,

g/r = w(kN + 1, p) ≥ w(kN , p). Suppose that w(k, p) ≤ w(k + 1, p). We need to

show that w(k − 1, p) ≤ w(k, p). Let φ(p) = w(k + 1, p) − w(k, p) ≥ 0 and ψ(p) =

w(k, p) − w(k − 1, p). Since p(k − 1) ≥ p(k), ψ(p) ≥ 0 for p ≤ p(k − 1). Recall the

dynamic equation of w for p ≥ p(k − 1) and k̃ ≥ k − 1:

−rw(k̃, p) + λ(N − k̃)p(w(k̃ + 1, p) − w(k̃, p)) − λp(1 − p)
∂w

∂p
(k̃, p) + g = 0.

Taking the difference of the resulting equations for k̃ = k, k− 1 and rearranging terms

yields

(r + λp(N − k + 1))ψ(p) = λp(N − k)φ(p) − λp(1 − p)ψ′(p).

Suppose φ is nonnegative by induction hypothesis, the previous equation can be rewrit-

ten as ψ′(p) ≤ α(p)ψ(p) for function α. A direct application of Gronwall’s inequality

along with ψ(p(k − 1)) ≥ 0 proves that ψ is nonnegative, completing the induction

step.

To show monotonicity of u with respect to k ≤ kN , fix some k ≤ kN . The dynamic

equation of u for p ≥ p(k − 1) and k̃ ≥ k − 1 is

−ru(k̃, p)+λp(w(k̃+1, p)−u(k̃, p))+λp(N−k̃−1)(u(k̃+1, p)−u(k̃, p))−λp(1−p)
∂u

∂p
(k̃, p)+pg = 0.

Let φ(p) = u(k+1, p)−u(k, p), φw(p) = w(k+1, p)−w(k, p), and ψ(p) = u(k, p)−u(k−

1, p). Taking the difference of the previous equation for k̃ = k, k − 1 and rearranging

terms yields:

(r + λp(N − k + 1))ψ(p) = λp[φw(p) + (N − k − 1)φ(p)] − λp(1 − p)ψ′(p). (14)

We already know that φw is positive. Therefore, if φ were also nonnegative, the argu-

ment we just used for w would also show that ψ is nonnegative. In particular, if one
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can show that u(kN , p) ≥ u(kN − 1, p), a backward induction will prove the result for

all k ≤ kN . Combining (10) and (11) implies that, for k = kN ,

φw(p)+(N−kN−1)φ(p) =
g − s− (N − kN − 1)(s− p(kN)g)

r

(

1 − p

1 − p(kN)

)N−kN
(

Ω(p)

Ω(p(kN))

)µ

.

Therefore, the left-hand side has the sign of g−s−(N −kN −1)(s−p(kN )g). From the

cut-off formula (8), this latter term has the same sign as s− p(kN)g, which is positive.

Therefore, we can apply the first term in the right-hand side of 14 is nonnegative for

k = kN , which implies that ψ is nonnegative for k = kN . This fills the missing step of

the induction, concluding the proof that u is increasing in k for k ≤ kN .

To show the last statement, observe that u(kN + 1, p) = pg/r from Theorem 1, and

that u(kN , p) > pg/r, from (11). �

4 Other Decision Rules

This section investigates how previous results are affected by changes of decision rules,

keeping the setting otherwise identical. The optimal experimentation policy of a social

planner maximizing utilitarian welfare is first derived and shown to last longer than

majority-based experimentation. The impact of commitment, delegation, and delays

in decision rules is then considered. In particular, the utilitarian policy is shown to

be equivalent to the policy to which all voters would want to commit at the outset

if placed behind a veil of ignorance. The distinction between committing to a policy

versus committing to an action has dramatic consequences on policy efficiency. Finally,

majority-based experimentation is then compared to the unanimity-based experimen-

tation, where it is shown that no voting rule dominates the other in terms of efficiency.

In brief, when unanimity is required for the risky action, the loser trap effect disap-

pears, but the winner frustration effect is reinforced, which may reduce experimentation

further than the majority rule under circumstances illustrated in this section.
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4.1 Utilitarian Criterion

Theorem 4 Under the utilitarian criterion, the optimal policy is determined by cut-

offs q(k) such that C(k, p) = R if and only if p ≥ q(k). These cut-offs are non-

increasing in k, with q(k) = 0 if

k ≥ k̄ =
s

g
N.

Proof. The proof is similar to that of Theorem 1, proceeding by backward induction

on the number k of winners. For k ≥ k̄, the utilitarian optimum is to choose R forever

even if p = 0, since sure winners’ gains from R outweigh the aggregate gain from S

even if all unsure voters get nothing from R. This fact can be expressed as q(k) = 0

for k ≥ k̄. The resulting welfare is W (k, p) = k g

r
+(N −k)pg

r
. Consider next k = k̄−1.

Let wC(k, p) and uC(k, p) denote the value functions of sure winners and unsure voters

if policy C is used, given that R is played forever if a new winner is observed, and let

WC(k, p) = kwC(k, p) + (N − k)uC(k, p), denote utilitarian welfare under policy C.

Then, the utilitarian criterion C must solve

W kt,C
t = sup

θ

Et

[

∫ σ

t

e−r(τ−t
∑

i

dπi
θτ

(τ) + e−r(σ−t)W kt+1,C
σ

]

,

where σ is the first (possibly infinite) time at which a new winner is observed, and

where W kt+1,C
σ = W (k̄, pσ), the welfare that was computed earlier for k = k̄. This is a

standard control problem, whose solution is Markov. The indifference boundary must

satisfy the smooth pasting condition

kg + (N − k)pg + (N − k)λp

[

kg + (N − k)pg

r
−
Ns

r

]

= Ns,

which has a unique root q(k), since the left-hand side is increasing in p, greater than

Ns if p = 1 and less than Ns for p = 0, by definition of k̄. Therefore, C(k, p) = R if

and only if p ≥ q(k). This entirely determines w(k, ·), u(k, ·) and W (k, ·), which are

easily shown to be increasing in p. The remaining of the proof proceeds by backward

induction on k as in Theorem 1, where the induction hypothesis is that i) for all k′ > k,

C(k′, p) = R if and only if p > q(k′), where ii) q(k′) is non-increasing for k′ > k, and

iii) resulting value functions w(k′, ·), u(k′, ·), and W (k′, ·) are non-decreasing in p. �
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The next result states that majority experimentation is inefficiently short compared to

the utilitarian optimum.

Theorem 5 (Majoritarian vs. Utilitarian Rules) q(k) ≤ p(k) for all k ≤ kN .

Proof. The utilitarian cut-off q(k) solves

(k/N)g + (1 − k/N)pg + (N − k)λp

[

W (k + 1, p)

N
− s/r

]

= s, (15)

while the majoritarian cut-off p(k) solves

pg + (N − k)λp

[

w̄(k + 1, p)

N − k
+
N − k − 1

N − k
ū(k + 1, p) − s/r

]

= s (16)

where w̄ and ū are the value functions obtained under the majoritarian rule. Opti-

mality of the utilitarian policy implies that for all k, p, W (k,p)
N

≥ (k/N)w̄(k, p) + (1 −

k/N)ū(k, p). Since w̄ > ū, this also implies that W (k+1,p)
N

> 1/(N − k)w̄(k + 1, p) +

(1 − 1/(N − k))ū(k + 1, p), and subsequently that the left-hand side of (15) is higher

than that of (16) for given p. Therefore, the root of the first equation must be lower

than that of the second. �

4.2 Commitment, Delegation, and Delays

If voters are initially homogeneous and can commit to a policy at the outset, they will

choose a policy that maximizes their expected payoffs which are identical and the sum

of their expected payoffs. This latter maximization is identical to the utilitarian policy

above. This shows the following result.

Theorem 6 (Commitment) If voters can commit to a policy at time 0, they choose

the cut-off policy determined by cut-offs {q(k)}0≤k≤N .

Theorem 6 suggests that social efficiency can be partially restored if voters can com-

mit to a policy to some extent. However, such choice should not be confused with

commitment to an action. Indeed, a policy prescribes which action should be taken

depending on past observations. It adapts collective decisions to circumstances. Com-

mitment to an action, in contrast, is harmful because too rigid. The intuition appears
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best in the extreme case where voters must commit to a once-and-for-all action at the

outset. Then, their preference is to choose the risky action if and only if it is above the

myopic cut-off. This extreme case of action commitment thus entirely annihilates ex-

perimentation. This result can be reinterpreted as follows: if votes take place at a low

time frequency, this reduces everyone’s individual control over collective decisions even

further than in the benchmark case, which causes even less experimentation and thus

even more inefficiency. As another consequence, suppose that voters can temporarily

transfer the decision process to a delegate who makes decisions based on a mixture of

electoral and welfare concerns. Such delegation can improve efficiency to the extent

that welfare enters the delegate’s objective, as he is able to adapt to incoming informa-

tion. In contrast, commitment to an action (either safe or risky) reduces willingness

to experiment and increases inefficiency.

4.3 Unanimity Rule

Suppose now that R can be enforced only if everyone votes in its favor.

Proposition 3 Under the unanimity rule, there exists a unique MVE. This MVE is

defined by cut-offs χ(k) which are decreasing in k, and such that χ(N − 1) = χSD.

Proof. The first part is proved similarly to that of Theorem 1. For the last part,

observe that if k = N − 1, the remaining unsure voter has full control over collective

decisions. His optimal policy is therefore the same as that of a single decision maker.�

In general, χ(k) can be smaller or greater (even for k ≤ kN) than the majoritarian

cut-off p(k). Here are examples illustrating both possibilities.

Example 1 For N large, p(kN) ∼ pM , independently of λ, but χ(kN) → 0 as λ→ ∞

for N fixed.

Proof. From (8), if N is large, necessarily p(kN) is close to pM , independently of λ

(to see this, divide (8) by Nλ). With the unanimity rule however, fixing N large but

finite, and letting λ go to infinity, the experimentation cost for unsure voters goes to

0, as they learn almost immediately their type, and they lose no power. Specifically,
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u(kN , p) → pNg/r+ (1 − pN )s/r as λ goes to ∞, which is strictly greater than s/r for

all p > 0. Hence χ(k,N) → 0 as λ→ ∞. �

Example 2 Suppose that N = 3 and s≪ g. Then χ(1) > p(1).

Proof. Equation (8) implies that

p(1) =
µs

µg + (g − s) − (s− pg)
∼

µs

(µ+ 1)g
(17)

if g ≫ s. In particular, p(1) is very close to zero if g ≫ s. On the other hand,

indifference of unsure voters with unanimity the rule, and k = 1 obtains if p satisfies

pg + λp[w(2, p) − s/r] + λp[vSD(p) − s/r] = s, (18)

where w(2, p) is the value of a sure winner under unanimity rule if there are two sure

winners (and N = 3), and vSD(p) is the value function of a single-decision maker. As

can be easily checked, vSD(p) ≤ pg/r + (1 − p)s/r, while w(2, p) ≤ pg/r + (1 − p)s/r.

This and (18) imply that χ(1) must satisfy the inequality

pg + 2λp2(g/r − s/r) ≥ s,

or

p ≥
µs

µg + 2p(g − s)
∼ s/g (19)

if g ≫ s. Comparing (17) and (19) shows that χ(1) > p(1). �

5 Correlation and Heterogeneity

This section considers the case of two voters, 1 and 2, who share a common belief

about the initial joint distribution of their types, although this distribution need not

be symmetric any more, and allows for correlation between the voter types. Let θi

denote Voter i’s type, and let pt1t2 = Pr[(θ1, θ2) = (t1, t2), where ti ∈ {g, b} represent

the possible types (good or bad) of each voter. Also let pi = Prob[θi = g] for i ∈ {1, 2},

and α = pgg/(p1p2). α is a measure of the correlation between voter types. The usual

correlation measure and α have a one-to-one relationship for any given p1 and p2. If
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α = 1, types are uncorrelated. In general, α takes values in R+, although not all values

of R+ are achievable for given p1, p2. For example, p1 = 1 implies that α = 1, since in

that case Voter 1’s type is deterministic hence uncorrelated with Voter 2’s type. Let ∆

denote the set of (p2, α) that are achievable as elementary probabilities vary over the

four-dimensional simplex. The following proposition is a simple exercise of Bayesian

updating, whose proof is easy and omitted.

Proposition 4 (State Dynamics) Beliefs are governed by the following dynamics

equations. When no lump-sum is observed,

• dpgg

dt
= −λpgg(2 − p1 − p2)

• dpbb

dt
= λpbb(p1 + p2)

• dpgb

dt
= −λpgb(1 − p1 − p2), dpbg

dt
= −λpbg(1 − p1 − p2)

• dα
dt

= −λα(1 − α)(p1 + p2)

When Voter 1 receives a lump-sum,

• pbb
+ = 0, pgb

+ = pgb

p1 , pbg
+ = 0, pbb

+ = pbb

p1

• α+ = 1, p1
+ = 1, p2

+ = αp2

where the subscript ‘+’ denotes values immediately after the lump-sum is observed,

and its absence denotes values immediately before the lump-sum. Symmetric formulas

if instead Voter 2 receives a lump sum.

With two voters, let us replace the majority rule by assuming that unanimity is required

to play R. Since voters may now be heterogeneous (i.e. p1 6= p2 even if none of them is

a sure winner, the concept of equilibrium must be modified. In the spirit of Section 3,

and given the unanimity rule, it is natural to assume that the voter who is the less

likely of being a winner (i.e. voter i if pi ≤ pj), is in control: if that voter wants to play

the risky action, so should the player with a higher expected type. This notion is also

consistent with elimination of weakly dominated strategies, because the pivotal voter
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is always the voter who wishes to stop experimentation. For simplicity, let us therefore

define a unanimity equilibrium (UE) as follows: at any time t, if pi ≤ pj , then j votes

for R whenever i does.

Theorem 7 There exists a unique UE. This equilibrium determined by a cut-off func-

tion δ : ∆ → [0, 1] such that C(p1, p2, α) = R if and only if p1 > δ(p2, α) whenever

p1 ≤ p2, with the reverse relation if p1 > p2.

Proof. First suppose that p2 = 1. Then voter 1 has full control over the collective

decision. He therefore imposes his optimal policy, which is that of a single decision

maker. This defines δ(1, 1) = pSD. This also fully determines the value functions of

both voters in that case. Let p 7→ w(p) denote the value function of voter 2, where p

is voter 1’s probability of being a winner is p, and vSD is the value function of a single

decision maker, which is also voter 1’s value function in this case. More generally

suppose that at time 0, p1
0 ≤ p2

0. It follows from Proposition 4 that p1
t ≤ p2

t for all

t preceding the first arrival of a lump-sum. In particular, this implies that 1 has full

control of the collective decision (under unanimity) over that period. Therefore, he

chooses a policy θ that solves

ut = sup
θ

E

[
∫ σ

t

e−r(τ−t)dπ1
θτ

(τ) + e−r(σ−t)
(

qw(p2
σ+

) + (1 − q)v(p1
σ+

)
)

]

,

where, letting σi denote the (possibly infinite) time at which i receives his first lump

sum, σ = min{σ1, σ2} and q = Prob[σ1 < σ2]. This is a standard control problem,

whose solution is known to be Markov. Voter 1 is indifferent between R and S at

probability level p, if p solves the equation

pg + λp[w(αp2) − s/r] + λp2[vSD(αp) − s/r] = s. (20)

The left-hand side is increasing in p, equal to 0 for p = 0 and greater than g > s if

p = 1. Therefore, it has a unique root δ(p2, α). This shows that C(p1, p2, α) = R if

and only if p1 > δ(p2, α). The case p1 > p2 obtains by symmetry. �

The next theorem shows that a voter’s incentive to experiment increases both with

the other voter’s probability of being a winner and with voters’ type correlation. The

latter result is intuitive: if types are more positively correlated, the control-loss effect

weakens: if a voter turns out to be a winner, he is less likely to be blocked by the other
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Figure 4: Experimentation Boundary δ as a function of α. r = 1, λ = 1, s = 1, g = 2.

voter. The first result is also intuitive, given the unanimity rule, a higher probability

by the other voter of being a winner makes it less likely that one’s decision be blocked.

In the extreme case in which, say, Voter 2 is a sure winner (i.e. p2 = 1), Voter 1 has full

control over collective decisions, and can behave in effect as a single-decision maker.

In addition, positive correlation increases the speed of learning, since voters learn from

both their own and the other voter’s payoff observation. In the extreme case of perfect

type correlation, the setting is equivalent to a single decision maker setting in which

the learning intensity is the double of individual arrival rates. Faster learning reduces

the time-cost of experimentation, hence makes it more attractive and reduces cut-offs.

These effects yield the next result, which is illustrated by Figure 4 representing the

experimentation domain as a function of the correlation measure α.

Theorem 8 δ is decreasing in both components.

Proof. The left-hand side of (20), is increasing in p, p2 and α. Therefore, keeping α

fixed, the root δ(p2, α) must be decreasing in p2, and similarly keeping p2 fixed, δ(p2, α)
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must be decreasing in α. �

6 Negative Shocks and General Bandits

The purpose of this section is twofold. First, it considers the opposite of the benchmark

setting, where news shocks are negative. This setting is useful for several applications,

as illustrated by Section 2. Second, it generalizes two results of the previous sections:

i) a group always performs less experimentation than any of its member would if he

could dictate future decisions, and ii) there is always some experimentation, provided

that decision rules are not adverse, in the sense that the preferences of any voter are,

at any time, positively taken into account by society. Finally, another setting, allowing

for both positive and negative shocks is considered, in which population at any time is

divided between sure winners, sure losers, and unsure voters.

6.1 Negative News Shocks

Several applications mentioned in Section 2 require a setting in which news events

amount to bad news. To accommodate such applications, suppose that the risky arm

pays a positive constant rate if it is good and, in addition, also pays some negative

lump sums according to some Poisson process if it is bad. One may assume without

loss of generality that the safe rate is zero, since all payoffs can be translated by the

same constant without affecting voters’ decision problem.

In that case, the state is composed of k sure losers and the probability p that the arm

be good for other voters. Moreover, p increases in time, reflecting the fact that, in this

setting, no news is good news for unsure voters.

It can be shown that the policy is also determined by cut-offs ρ(k) such that unsure

voters impose the risky action if and only if p ≥ ρ(k). Since unsure voters’ belief pt

increases over time, the risky action can only be stopped, if used at all, when enough

sure losers are observed, either because those obtain the majority and impose the safe

action, or because the cut-offs ρ(kt) get high enough and jump over pt.
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This setting is also useful to visualize the general theorems to follow. Moreover, each

theorem has a corollary for the setting with negative news shocks, as summarized in

Section 6.3.

6.2 General Bandits

Suppose that, for any given individual, the risky arm has a payoff distribution or “type”

θ lying in some finite set Θ. At any time, that individual’s belief about his type is

summarized by a probability distribution or “state” γ ∈ Γ, where Γ = ∆(Θ) is the set

of all probability distributions8 over Θ. The safe arm still pays a constant rate s. For

a single decision maker, the Gittins index of the risky arm is the map G : Γ → R such

that, given state γ, G(γ) is the smallest value of s for which the single decision maker

prefers the safe action over experimentation. Mathematically, G(γ) solves

G(γ) = inf

{

s : s/r = sup
σ

E

[
∫ ∞

0

e−rtdπσt
(t)|γ, s

]}

,

where σ is any policy, and the expectation is conditional on the current state γ and on

the rate s of the safe action.9

Now consider the case of N decision makers. Still assuming publicly observed payoffs,

let {Ft}t≥0 denote the filtration generated by all voters’ payoffs. At any time, the state,

known to all, is denoted γ. If types are independent, then γ =
(

γ1, . . . , γN
)

∈ ΓN . In

general, γ may contain more information, such as type correlation (see Section 5). A

policy is a process adapted to the filtration {Ft}t≥0 and taking values in {S,R}.

For any rate s, policy C, and voter i, necessarily

sup
σ

E

[
∫ ∞

0

e−rtdπi
σt

(t)|γ, s

]

≥ E

[
∫ ∞

0

e−rtdπi
Ct

(t)|γ, s

]

. (21)

The inequality obtains because C is an element of the policy set over which the max-

imization is taken.10 We may define a policy-dependent generalization of the Gittins

8In the benchmark model, the type θ is either “good” or “bad” and the state γ is the probability

p that the type be good.
9Although not explicitly stated, the results of this section naturally apply to discrete-time settings.

10In general, C depends on all voters’ types and need not be anonymous.
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index as

Gi
C(γ) = inf

{

s : s/r = E

[
∫ ∞

0

e−rtdπi
Ct

(t)|γ, s

]}

.

Inequality (21) implies that Gi
D(γ) ≥ Gi

C(γ) for all i, γ, and C, where Gi
D(γ) is i’s

Gittins index if he has dictatorial power over all decisions.

The definition of voting equilibria is extended as follows. The ν-supermajority rule is

the map υ : {S,R}N → {S,R} such that υ = S if and only if the number of votes for

S is greater than or equal to some constant ν.

Definition 2 (Voting Equilibria) C is a voting equilibrium for voting rule υ if

for all γ, C = S if and only if the number of voters i such that Gi
C(γ) ≤ s is greater

than or equal to ν.

The following result shows that collective experimentation stops earlier than individual

experimentation in some qualified sense.

Theorem 9 Suppose that C is a voting equilibrium for voting rule υ. Then, C = S

whenever |{i : Gi
D(γ) ≤ s}| ≥ ν.

The proof is an immediate consequence of the general inequality Gi
D(γ) ≥ Gi

C(γ) for

all i and, C and γ.

Theorem 9 states that experimentation stops whenever there are at least ν voters, each

of which would prefer to stop if he had dictatorial control over the policy. When types

are independent, then Gi
D(γ) = G(γi), where G(γi) is the Gittins index of the single

decision maker problem with state γi. In that case, i’s optimal policy is independent of

other individuals’ types. Therefore, Theorem 9 implies that, in the case of independent

types, experimentation stops whenever at least ν voters would want to stop if placed

in a single decision maker setting, given their individual state. This distinction is

important: if types are positively correlated, collective experimentation can last longer

than in a single-decision maker setting, as positive type correlation increases learning

speed and thus reduces the time cost of experimentation, as shown in Section 5. In

contrast, collective experimentation is always less, even with positive correlation, than

what any voter would like if he could dictate all decisions. In this case, not only does

he avoid the loser trap and winner frustration effects, but he can also exploit other
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voters’ payoffs to learn about his type, which he cannot do in a single decision maker

setting.

Theorem 9 is illustrated for the case of negative and mixed shocks in Sections 6.1

and 6.4.

The next result requires the following definitions. For any probability distribution γi

over the type space, let g(γi) = E[dπi
R/dt|γ

i]. g(γi) is i’ immediate expected payoff

rate with action R given type distribution γi. For any individual type θi, let, slightly

abusing notation, g(θi) = g(δθi), where δθi is the Dirac distribution concentrated on

type θi, denote i’s true immediate expected payoff rate with action R when his actual

type is θi.

Definition 3 i is a winner (resp. a loser) if

g(θi) > (≤)s.

This generalizes the definitions of winners and losers of Section 3. Individual i is a

winner if, given his actual type θi, the risky action is better than the safe one, and a

loser in the opposite case. Therefore, if i perfectly knows his type, he prefers R if he is

a winner and S if he is a loser. The set of types can thus be partitioned into “good”

types and “bad” types, such that a type is good if and only if a voter with this type is

a winner.

Definition 4 A policy C is adverse for Voter i if the set

{t : Pr[Ct = R|θi good] < Pr[Ct = R|θi bad]}

has positive Lebesgue measure.

A policy is adverse for Voter i if the risky action is more likely to be chosen if his type

is bad than if his type is good, at least for some nonzero time set. This may be the

case, for example, if i’s type is negatively correlated with a decisive majority of voters.

In this case, these voters will block the risky action whenever it benefits i, and impose

it whenever it hurts him. If types are independently or positively distributed, one

expects policies not to be adverse to any voter since, all else equal, a voter’s influence
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over collective decisions results in decisions that favor him. Non-adversity is not as

benign an assumption as it may appear. For example, in a setting with both positive

and negative news shocks (Section 6.4), unsure voters may, upon observing a sure loser,

want to push experimentation further as the risk of the loser trap is reduced, which

adversely affects this loser. However, it holds in important particular cases. First, it

holds when unanimity is required for either of the actions. Second, it holds in the

negative news shock setting, as will be verified in Section 6.3, on which several of

applications are based. Finally, it also holds in the mixed-shocks setting of Section 6.4,

as long as learning is fast enough or, equivalently, voters are patient enough.

Theorem 10 Suppose that C is a voting equilibrium for voting rule υ. Then, Gi
C(γ) ≥

g(γi) for all i for which C is non-adverse.

Proof. For any safe rate s and policy C, Voter i’s expected payoff with policy C is

V i
C = E

[
∫ ∞

0

e−rtdπi
Ct

(t)

]

=

∫ ∞

0

e−rtE[dπi
Ct

(t)], (22)

where expectations are conditioned on γ.

E[dπi
Ct

(t)] = Pr[Ct = S]sdt+ Pr[Ct = R]E[dπi
Ct

(t)|Ct = R]

Therefore, if E[dπi
Ct

(t)|Ct = R] > sdt for all t, then V i
C > s/r, implying thatGi

C(γ) > s.

Suppose that s < g(γi). Then, by definition of g(·) and by the fact that the probability

of each type is a martingale, E[dπi
R(t)] = g(γi)dt > sdt. Moreover, C’s non-adversity

with respect to i implies that

E[dπi
Ct

(t)|Ct = R] ≥ E[dπi
R(t)],

as will be shown shortly. This inequality shows that Gi
C(γ) > s for all s < g(γi),

which proves the theorem. To show the inequality, observe that, by Bayes’ rule, C is

non-adverse for i if and only if Pr[θi good|Ct = R] ≥ Pr[θi good|Ct = S]. Moreover,

E[dπi
Ct

(t)|Ct = R] = Pr[θi good|Ct = R]E[dπi
Ct

(t)|Ct = R, θi good]

+ Pr[θi bad|Ct = R]E[dπi
Ct

(t)|Ct = R, θi bad]. (23)

Combining these results yields the inequality. �
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6.3 Properties of the Negative-Shock Setting

Theorem 9 implies the following result for the negative-news setting.

Corollary 2 Suppose that types are independent. Then, ρ(k) ≥ ρSD for all k < N/2,

where ρSD is the single-decision-maker cut-off.

Moreover, the equilibrium policy resulting from the majority rule is non-adverse to

any voter. Indeed, suppose that the risky action is elected by unsure voters at some

time t. Then, the (possibly infinite) time at which the risky action is abandoned

necessarily decreases with the number of sure losers, since as time passes, the belief

of unsure voters gets better and better (see Section 6.1). Therefore, for any unsure

voter i, Pr[θi good|Ct = R] ≥ Pr[θi bad|Ct = R], which shows non-adversity of the

equilibrium policy. Theorem 10 then implies that all cut-offs lie below the myopic

cut-off, hence that unsure voters always experiment to some extent.

Section 4 showed that majority-based experimentation is inefficiently short compared

to the utilitarian policy, in the benchmark setting where news events amount to positive

news. With negative news shocks, the reverse intuition holds to some extent: provided

unsure voters have the majority, they may be willing to experiment for a wider set of

states than a utilitarian social planner who takes into account sure losers. However,

the value of the risky action is higher for society as a whole when the utilitarian

policy is followed than with the majority-voting equilibrium policy, by social optimality

of the utilitarian policy. This effect makes experimentation more valuable for the

social planner, and may offset the first effect. For example, suppose that no loser has

been observed yet. Then, unsure voters may require a higher probability of success

to start experimentation than a social planner would, because the latter can always

exploit information to improve social welfare, whereas unsure voters face loser trap

and winner frustration effects. As the number of sure losers increases, the first effect

starts to dominate, with the social planner stopping experimentation if too many losers

are observed. This will be case if i) some losers have been observed, who face large

negative lump sums, but ii) unsure voters have a very low probability to be losers. In

such circumstances, a social planner will not wish to push experimentation further,

whereas unsure voters, ignoring the plight of revealed sure losers, will continue with
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the risky action.

In the negative-shock setting, cut-offs need not be monotonic in the number of losers.

Such violations can be observed numerically or in combination with analytical results

omitted here. It is interesting to understand why such violation occurs in the negative-

shocks setting but not in the positive-shocks setting. The apparition of a new loser has

mixed effects for unsure voters: it reduces the risk of being imposed the risky action,

but it also reduces the value of experimentation. The latter effect is similar to the

positive-news setting. The main difference is that the risk of being imposed the risky

action is more severe in the negative-news setting. Intuitively, unsure voters’ control

over collective decisions is better in the positive-news case than in the negative-news

one. In the positive-news case, the only event that can happen to an unsure voter is

to become a sure winner. If this does not happen, unsure voters can impose the status

quo at any time (or until they lose the majority, but this only occur if k = kN). In

contrast, with negative news, the worst that can happen to an unsure voter is to receive

a negative lump-sum and suddenly join the minority of sure losers, which have no

control of collective decisions. Thus, negative news is compounded by a sudden control

loss. This explains why the “insurance” effect resulting from the apparition of a new

loser can, paradoxically, encourage experimentation. Furthermore, if nothing happens

in the negative-news case, p simply increases which is enough to push experimentation

forward. In contrast, in the positive-news setting, the apparition of news winners is

necessary for experimentation to continue, for otherwise, p decreases until it causes

experimentation to stop.11

6.4 Mixed Shocks

Now suppose that the benchmark setting is modified as follows: if the risky arm is good,

it pays positive lump sums according to the jumping times of some Poisson process with

intensity λg, and if it is bad, it pays negative lump sums according to the jumping times

11From a technical viewpoint, another distinctive feature of the negative-news settings is that the

smooth-pasting property does not hold any more. Indeed, as time elapses, p moves away from its

threshold p(k), so the value function need not be smooth at that cut-off. Instead, cut-offs are deter-

mined by direct comparison of value functions with and without starting experimentation.
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of a Poisson process with intensity λb. Without loss of generality, also suppose that the

safe rate is zero (action payoffs can be translated so as to achieve this condition, without

affecting preferences). In this case, there are three categories of voters: sure winners

(who received a positive lump sum), sure losers (who received a negative lump sum),

and unsure voter. Starting with homogeneous beliefs and independently distributed

types, the state at any time can be summarized by three numbers: the number kW of

sure winners, the number kL of sure losers, and unsure voters’ individual probability

p that the risky action be good for any one of them. Proceeding as in Section 3,

one may show that the unique majority voting equilibrium policy, starting with N

odd voters, is determined by cut-offs p(kW , kL), that equals 0 if kW > N/2, that

equals 1 if kL > N/2, and that lies in (0, 1) in the remaining case, for which unsure

voters are pivotal. Theorem 9 implies that pD ≤ p(kW , kL), where pD is the cut-off

an unsure voter would use if he had full control over future decisions or, in a single

decision maker setting, provided types are independent. This inequality holds for all

supermajority rules. Moreover, if the risky action requires the unanimity rule, then

Theorem 10 implies that p(kW , kL) ≤ pM , where pM is the myopic cut-off. That is,

unsure voters always wish to experiment to some degree given the unanimity rule.

With the majority rule, Theorem 10 does not apply directly, because non-adversity

need not hold.12 However, as learning becomes faster, an argument similar in spirit to

non-adversity also implies that unsure voters always experiment to some extent.

Indeed, suppose that either λb or λg becomes infinite, so that unsure voters immediately

learn their type if they elect the risky action. Let g > 0 and b < 0 the expected payoff

rates of the risky arm for sure winners and sure losers respectively.13 Then, the expected

value of the risky action for any unsure voter i, unsure voters are ex ante pivotal (i.e.

max{kW , kL} < N/2), is

V i = Pr[k+
W > N/2]

(

g/rPr[θi good|k+
W > N/2] + b/rPr[θi bad|k+

W > N/2]
)

+ Pr[k+
L > N/2]

(

g/rPr[θi good|k+
L > N/2] + b/rPr[θi bad|k+

L > N/2]
)

, (24)

where k+
W (resp. k+

L ) denotes the number of winners after all types are revealed. Clearly,

12Whether it holds in this case is an open question.
13These payoff rates can have any magnitude, since they are the product of jump intensities and

lump-sum magnitudes.
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Pr[θi good|k+
W > N/2] > Pr[θi good] > Pr[θi good|k+

L > N/2]. This implies that

V i > g/rPr[θi good] + b/rPr[θi bad] = pg/r + (1 − p)b/r,

which is nothing by the myopic payoff. Therefore, Voter i is willing to experiment at

least until p drops below the myopic cut-off pM , defined by pMg/r + (1 − pM)b/r = 0

(since s = 0).

Since only the ratios r/λb and r/λg of the discount rate and learning intensities matter

for the analysis, the result can be reinterpreted as follows: if voters are patient enough,

the majority voting equilibrium always entails some experimentation.

7 Extensions and Discussion

Privately Observed Payoffs

Previous sections assumed that all payoffs were publicly observable. What happens if

payoffs are privately observed? The following analysis shows that, perhaps surprisingly,

this need not affect experimentation.

First consider the case of two individuals with independent types voting at the una-

nimity rule. For a winner, playing the risky action is always optimal as it maximizes

immediate payoff and prompts the other voter to experiment longer, as indicated by

Theorem 8. However, why wouldn’t an unsure voter want to wrongfully pretend that

he is a winner? Indeed, this would prompt the other voter to experiment more, still

by Theorem 8, giving more time to the former voter to check whether he is a winner,

while leaving him the possibility to stop at any time.

However, such manipulation has no value. Indeed, suppose that Voter 2 mistakenly

believes that Voter 1 is a winner. When would Voter 1 want to stop pretending that

he is a winner and impose the status quo? In such scenario, Voter 2 thinks he has full

control over the decision process, hence experiments up to the single-decision maker

threshold. Therefore, Voter 1 can choose any level of experimentation up to the single

decision maker threshold at which Voter 2 will stop if he turns out be a loser. Voter 1

may wish to stop earlier however. His optimal cut-off p is determined by the indifference

44



equation

pg + λp[w(p) − s/r] + λp[vSD(p) − s/r] = s,

where w(p) the level to which his value function jumps if he receives a lump-sum,

and vSD is his new value function (i.e. that of a single decision maker) if Voter 2

receives a lump-sum (see Section 5). This indifference equation is identical to the case

of complete information: i) the payoff flow (pg) is the same, ii) the winner value w(p)

is the same, since a lump-sum makes Voter 1 an actual winner and iii) a lump-sum to

Voter 2 prompts that voter to choose the risky action forever, independently of what

Voter 1 had pretended to be. This suggests that truthful type revelation is optimal.

With N voters, the intuition is the same. When unsure voters have the majority and

payoffs are publicly observed, they already impose the experimentation level that is

optimal to each of them, since their interests are perfectly aligned. Therefore, assuming

that other voters are truthful, an unsure voter cannot benefit from manipulating the

level of experimentation. Mathematically, his indifference equation is unchanged. This

again suggests that truthful type revelation is optimal.

There remains to discuss how individuals communicate their types. An obvious way,

if the group is small enough, is to use cheap talk. If the group is large, the following

protocol is natural. Suppose that experimentation starts with a common type proba-

bility p for all voters. Voters are willing to experiment until the first threshold p(0),

even if no one has received any lump sum by then. When p(0) is reached, suppose

that voters who are still unsure at that point vote for S, while sure winners vote for R.

Upon observing the number of votes for R, unsure voters can deduce whether to con-

tinue experimentation or not. If no one has voted for R, the status quo is imposed

forever. If k > 0 voters have chosen R, then experimentation resumes (i.e. everyone

votes for R) until p reaches the cut-off p(k), at which point unsure voters vote for the

status quo while sure winners, whose number k′ is greater than or equal to k, choose R.

If k′ > k, experimentation continues at least up to p(k′). If k′ = k, experimentation

stops at p(k). Also assume that off the equilibrium path if one voter chooses the safe

action when he should be experimenting, he is believed to be an unsure voter, and

vice versa. The above protocol is not information efficient in the sense that voters only

know the true state of the world when p reaches some particular cut-offs. Indeed, other

less natural protocols would be more efficient, for example if a new winner reveals his
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type change by voting for S for an infinitesimal amount of time. However, even the

less informationally efficient but more natural protocol suffices to implement the full-

information policy, as stated in the next theorem. What matters is that the natural

protocol is sufficiently informative to exactly implement the policy of Section 3.

Theorem 11 The protocol defined above is an equilibrium of the dynamic voting game

with privately observed payoffs.

Proof. For sure winners, it is clearly optimal to follow the protocol, as it requires

them to vote R forever. Indeed, such strategy maximizes their immediate payoff as

well as the length of experimentation, due to the cut-off monotonicity established in

Theorem 2.

With the protocol, the benchmark policy is exactly implemented. Therefore, unsure

voters value function, given k and p is the same as in Section 3. However, under

the above protocol, unsure voters (and, less importantly, other voters) only know the

true state k when particular cut-offs are reached. Let l denote the last such public

release of information. For p > p(l), unsure voters only know that the number k̃

of voters who have received lump sums so far is greater than or equal to l. The

symbol tilde is added to indicate that k is random from unsure voters’ viewpoint.

The first part of the proof is to verify that under the protocol, unsure voters wish to

experiment for p > p(l). This is indeed the case if their value function is greater than

s/r, the value they get with the safe action. This value function, when the protocol

is followed by all, equals U(l, p) = E[u(k̃, p)|l]. However, crucially, unsure voters only

matter if they have the majority. Conditioning on unsure voters being pivotal, the

support of k̃ lies in K(l) = {l, . . . , kN}. By Theorem 3, u(k̄, p) ≥ u(l, p) for k̄ ∈ K(l).

Therefore, Upiv(l, p) ≥ u(l, p) > s/r for p > p(l), where the superscript piv indicates

the conditioning on the event k̃ ≤ kN . Therefore, it is optimal for unsure voters to

choose the risky action whenever indicated by the protocol. Similarly, if, upon reaching

p(l), it turns out that k = l, i.e. no new winner has been observed since the last release

of public information, then it is optimal for unsure voters to stop. Indeed, if they

follow the protocol, their value function is identical to the benchmark case, because

the protocol policy is exactly the same as in that case. Therefore, their indifference

equation is identical to the benchmark case, yielding the same cut-off p(l).
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There remains to show that an unsure voter cannot benefit from misrepresenting his

type. This is done by backward induction on k. If k > kN , sure voters impose the risky

action forever, so that unsure voter’s value function is identical to the benchmark case,

and he cannot manipulate the protocol. Now suppose that k = kN . Pretending to

be a sure winner prompts unsure voters to continue experimentation beyond the full-

information level. From above, however, it is suboptimal from that voter’s viewpoint,

given his value function and his value function if other sure winners were observed: his

HJB equation is identical to the benchmark case by induction hypothesis. Therefore,

the unsure voter cannot benefit from deviating if k = kN , resulting in the benchmark

policy being implemented in that case, which yields the value function u(kN , p). By

backward induction, suppose that the unsure voter does not benefit from deviating

for all k strictly greater than k̄ hence that his value function is the same as in the

benchmark case for such k. Then, his HJB equation at p = p(k̄) and knowing k̄ is the

same as in the benchmark case, so he cannot benefit from deviations. The benchmark

policy is thus also implemented in that case, which yields him a value function u(k̄, p)

for all p, concluding the induction step. �

Factions and Heterogeneous Voting Weights. The analysis of this paper extends

naturally to settings in which some voters weigh more in the decisions than others.

Given the results of this paper, it is natural to expect that voters with more decision

weight will be more inclined to experiment longer. For example, suppose that there are

four voters with Voter 1 weighing twice as much as other voters and decisions being

made at the simple majority rule. Suppose that Voter 4 is the only sure winner so far.

Then, Voter 1 can impose experimentation to the level that he desires since, by siding

with Voter 4, he creates a majority for the risky action. Therefore, as long as no new

winner is observed, Voter 1 can push experimentation up to the single decision maker

threshold. However, he will stop earlier if, say, Voter 2 becomes a winner. Indeed,

Voter 1 should then fear the possibility that Voter 3 receives a lump-sum, resulting in

a winning coalition that imposes upon Voter 1. Contrary to the benchmark setting,

thus, experimentation can be interrupted by the occurrence of a new winner. (In this

case, though, experimentation still lasts longer than if Voter 1 were split into two

independent voters.)

Risk aversion. Although not mentioned so far, the analysis of this paper does not
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require that voters be risk neutral. Indeed, voters could have any von Neumann-

Morgenstern utility function, where lump sums actually correspond to “lump utils”,

or certainty equivalents thereof if the magnitude of these lump utils is random.

Side payments. In another paper, work in progress, I show how social efficiency,

according to utilitarian welfare, can be “spontaneously” restored in the two-arm bandit

setting of this paper, if side payments are allowed.

Coordination Breakdown with Multiple Risky Actions

In settings with multiple, correlated risky actions, even the slightest risk of modification

in the preference ranking of some voter can result in the group choosing the most

conservative action. The fear of such ranking modification may result in coordination

breakdown among group members who would otherwise agree to impose some more

lucrative action. The following setting provides a stark illustration of the control-loss

effect.

Consider a group three individuals (1,2, and 3) voting at the majority rule. First

suppose that there are two actions, R and S. S pays a constant rate s = 1 to all

players. R pays a certain rate of 2 to Voters 1 and 2, but has an uncertain payoff

distribution for Voter 3: with probability p it gives off lump-sums to Voter 3, whose

corresponding expected payoff is g = 0.1. In this simple configuration, it is easy to see

that there is a unique equilibrium, in which Voters 1 and 2 impose R forever. This

equilibrium holds independently of p, and goes against Voter 3’s interest: even if p = 1,

Voter 3 prefers S, which gives him a higher payoff than 0.1.

Now suppose that there is another risky action, X, such that i) X is good for Voters 2

and 3 if and only if R is good for Voter 3, ii) X surely pays −9 to Voter 1, and has

expected payoffs g2
X = 2.1 and g3

X = 1.1 respectively to Voters 2 and 3 if it is good.

Perfect correlation implies that any lump-sum observed by Voters 2 or 3 with action X

or by Voter 3 with action R causes the common probability p to jump to 1.

Since there are three actions, let us assume that if no action receives at least two votes,

then the status quo S is imposed. The impact on equilibrium of preference uncertainty

appears through the next propositions.
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Proposition 5 If p = 0 or p = 1, there is a unique MVE: if p = 0 R is played forever,

if p = 1, X is played forever.

Proof. If p = 0 there is no learning. Individual preferences are ordered as follows:

R ≻1 S ≻1 X, R ≻2 S ≻2 X, and S ≻3 X ∼3 R. In particular, R is the unique

Condorcet winner hence the unique MVE. Similarly if p = 1, there is no learning:

individual preferences are ordered as follows: R ≻1 S ≻1 X and X ≻2 R ≻2 S, and

X ≻3 S ∼3 R. X is the Condorcet winner hence the unique MVE. �

For the next result, suppose that µ = r/λ = 1.

Proposition 6 If p ∈ (0.1, 0.8), there is a unique MVE. In this MVE, S is played

forever.

Proof. Voter 1 is indifferent between R and S if p solves the equation

2 + λp

[

−
9

r
−

1

r

]

= 1,

which yields p
¯

= 0.1. Thus if p is greater than p
¯
, Voter 1 prefers the low payoff of S

rather than risking that Voters 2 and 3 discover that X is good for them and imposing

it forever, from Proposition 5. Voter 3’s indifference equation relative to actions X and

S is

p1.1 + λp[1.1/r − 1/r] = 1,

which yields p̄ = µ/(0.1 + 1, 1µ) = 0.8 if µ = 1. Therefore, if p ∈ (.1, .8), S is the

preferred choice for 1 and 3, hence chosen forever. �

To illustrate the content of these propositions, consider the following variation of the

restaurant example of Section 2. Three friends, Chris, Ian, and Paul go the restaurant

once every week-end, and choose each time their restaurant according to the majority

rule. They start with the following preferences. Chris likes Chinese cuisine above

anything else. Ian likes Indian cuisine but not Chinese one. Paul does not know Asian

cuisine, and is thus uncertain about his preferences. There are three restaurants in

town: i) a gourmet Chinese restaurant, clearly the best choice for those like Chinese

cuisine, ii) a Singaporean restaurant whose menu contains both Chinese and Indian
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dishes, and iii) a plain restaurant who has a well known common, relatively low value

to all friends.

For some parameter values of everyone’s tastes, the following paradox may occur: Ian

and Paul vote for the plain restaurant. However, if the gourmet Chinese restaurant

closes down, Chris and Ian vote for the Singaporean restaurant. Why did Ian change

his vote? In both cases, Ian prefers the Singaporean restaurant. However, if he agrees

with Chris to go there, he runs the risk that Paul discovers that likes Chinese cuisine,

resulting in Chris and Paul to impose the gourmet Chinese restaurant in the future. If

this risk is high enough, Ian prefers to vote for the plain restaurant, which Paul also

prefers if his expected value for Asian cuisines is low enough.

8 Conclusion

The analysis of this paper has shown that, in a dynamic setting, collective decisions

tend to be too conservative compared to what any individual would choose if he had full

control over future decisions, other things equal. Moreover, when news shocks amount

to good news, experimentation is also inefficiently short compared to the utilitarian

outcome, with a partial equivalent for the negative-shock setting. These phenomena

stem from a twofold control loss: the risk of being imposed the riskier actions when

those turn out to be detrimental for oneself (“loser trap” effect), and the opposite risk of

not being able to enjoy those riskier actions when one turns out to be a winner, if those

are blocked by a conservative majority (“winner frustration” effect). For large groups,

these effects can entirely annihilate the value of experimentation, causing individuals to

vote myopically, but are reduced if actual preferences types are positively correlated.

The analysis also shows how commitment to an observation-dependent policy and

commitment to an action have very different implications for efficiency.
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Bergemann, D., Välimäki, J. (2006) “Bandit Problems,” Cowles Foundation Dis-

cussion Paper No. 1551.

Bhagwati, J. (1988) Protectionism, Cambridge, MA. MIT Press.

Bolton, P., Harris, C. (1999) “Strategic Experimentation,” Econometrica, Vol. 67,

No. 2, pp. 349–374.

Décamps, J.-P., Mariotti, T. (2004) “Investment Timing and Externalities,” Jour-

nal of Economic Theory, Vol. 118, pp. 80–102.

Dixit, A. K. (1993) The Art of Smooth Pasting, in Fundamentals in Pure and Applied

Economics, Vol. 55. Harwood Academic Publishers.

Fernandez, R., Rodrik, D. (1991) “Resistance to Reform: Status Quo Bias in the

Presence of Individual- Specific Uncertainty,” American Economic Review, Vol. 81,

No. 5., pp. 1146–1155.

Fleming, W.H., Soner, H.M. (1993) Controlled Markov Processes and Viscosity

Solutions, Springer, New York.

Jovanovic, B. (1979) “Job Search and the Theory of Turnover,” Journal of Political

Economy, Vol. 87, pp. 972–990.

Keller, G., Rady, S., and Cripps, M. (2005) “Strategic Experimentation with

Exponential Bandits,” Econometrica, Vol. 73, No. 1, pp. 39–68.

Kuran, T. (1988) “The Tenacious Past: Theories of Personal and Collective Conser-

vatism,” Journal of Economic Behavior and Organization, Vol. 10, pp. 143–171.

51



Li, H. (2001) “A Theory of Conservatism,” Journal of Political Economy, Vol. 109,

No. 3, pp. 617–636.

Malueg, D.A., Tsutsui, S.O. (1997) “Dynamic R&D Competition with Learning,”

RAND Journal of Economics, Vol. 28, pp. 751-772.

Presman, E.L. (1990) “Poisson Version of the Two-Armed Bandit Problem with

Discounting,” Theory of Probability and its Applications, Vol. 35, pp. 307-317.

Presman, E.L., Sonin, I.M. (1990) Sequential Control with Incomplete Information,

Academic Press, New York.

Roberts, K. (1989) “The Theory of Union Behavior: Labour Hoarding and Endoge-

nous Hysteresis,” Mimeo, London School of Economics.

Roberts, K., Weitzman, M. (1981) “Funding Criteria for Research, Development

and Exploration of Projects,” Econometrica, Vol. 49, pp. 1261–1288.

Rodrik, D. (1993) “The Positive Economics of Policy Reform,” American Economic

Review, Vol. 83, No. 2, pp. 356–361.

Rothschild, M. (1974) “A Two-Armed Bandit Theory of Market Pricing,” Journal

of Economic Theory, Vol. 9, pp. 185–202.

Simon, L., Stinchcombe, M. (1989) “Extensite Form Games in Continuous Time:

Pure Strategies,” Econometrica, Vol. 57, pp. 1171–1214.

Weitzman, M. (1979) “Optimal Search for the Best Alternative,” Econometrica,

Vol. 47, pp. 641–654.

52


