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LEXICOGRAPHIC PROBABILITIES AND 
EQUILIBRIUM REFINEMENTS 

BY LAWRENCE BLUME, ADAM BRANDENBURGER, AND EDDIE DEKEL1 

This paper develops a decision-theoretic approach to normal-form refinements of Nash 
equilibrium and, in particular, provides characterizations of (normal-form) perfect equi- 
librium (Selten (1975)) and proper equilibrium (Myerson (1978)). The approach relies on 
a theory of single-person decision making that is a non-Archimedean version of subjective 
expected utility theory. According to this theory, each player in a game possesses, in 
addition to a strategy space and a utility function on outcomes, a vector of probability 
distributions, called a lexicographic probability system (LPS), on the strategies chosen by 
the other players. These probability distributions can be interpreted as the player's 
first-order and higher order theories as to how the game will be played, and are used 
lexicographically in determining an optimal strategy. We define an equilibrium concept, 
called lexicographic Nash equilibrium, that extends the notion of Nash equilibrium in that 
it dictates not only a strategy for each player but also an LPS on the strategies chosen by 
the other players. Perfect and proper equilibria are described as lexicographic Nash 
equilibria by placing various restrictions on the LPS's possessed by the players. 

KEYWORDS: Nash equilibrium, equilibrium refinements, perfect equilibrium, proper 
equilibrium, lexicographic probabilities, non-Archimedean preferences. 

1. INTRODUCTION 

THIS PAPER DEMONSTRATES how a non-Archimedean version of subjective 
expected utility theory can be used to provide decision-theoretic foundations for 
normal-form refinements of Nash equilibrium. In so doing, this paper comple- 
ments recent work by Aumann and others that provides Bayesian foundations 
for correlated equilibrium and for Nash equilibrium itself. 

There are, by now, several well known intuitive arguments as to why certain 
Nash equilibria in a game are unreasonable prescriptions for how the game will 
be played. The large number of refinements of Nash equilibrium in the 
literature represents different attempts to try to capture these intuitive ideas in 
a formal solution concept. In this paper we provide decision-theoretic character- 
izations of two such refinements for normal-form games, namely, perfect equi- 
librium (Selten (1975)) and proper equilibrium (Myerson (1978)). 

An explicitly decision-theoretic approach to game theory requires specifying 
for each player, not only a strategy space and a utility function on outcomes (as 
is done in the orthodox description of a game), but also beliefs over the 
strategies chosen by the other players. This viewpoint rests on the supposition 
that players are Bayesian decision makers who conform to the axioms of 
subjective expected utility theory (Savage (1954)), so that a player's utility 
function and beliefs are derived simultaneously from preferences over strategies. 

IWe wish to thank Bob Anderson, Ken Arrow, Mark Bagnoli, John Geanakoplos, Ehud Kalai, 
Andreu Mas-Colell, Klaus Nehring, Martin Osborne, Ket Richter, and Bill Zame for helpful 
comments. We are especially indebted to David Kreps and two referees. Financial support from the 
Harvard Business School Division of Research, the Miller Institute for Basic Research in Science, 
and NSF Grants IRI-8608964 and SES-8808133 is gratefully acknowledged. 
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The inclusion of beliefs in the description of a game is central to the analysis 
of normal-form games developed by Aumann (1987), Bernheim (1984,1986), 
Brandenburger and Dekel (1987), Pearce (1984), and Tan and Werlang (1988). 
In all these papers players are explicitly modelled as subjective expected utility 
maximizers and hence possess both utility functions on outcomes and probabil- 
ity distributions on strategies. The importance of beliefs has also been stressed 
by Kreps and Wilson (1982) in the context of refinements of Nash equilibrium 
based on the extensive form. Kreps and Wilson's solution concept of sequential 
equilibrium dictates a (behavioral) strategy for each player and, in addition, for 
each information set of that player a probability distribution over the nodes in 
the information set. Moreover, Kreps and Wilson propose a lexicographic 
procedure for forming beliefs at information sets (op. cit., pp. 873-874) that is 
similar to the assumption made in this paper about how players form beliefs. 
The papers by Myerson (1986) and Okada (1987,1988) also employ lexico- 
graphic techniques in the context of equilibrium refinements.2 

This paper is concerned with normal-form games. (The reader is referred to 
Kohlberg and Mertens (1986, pp. 1010-1012) for a defense of the normal-form 
approach to refinements of Nash equilibrium.) However, our treatment of a 
normal-form game is distinct from that in Aumann (1987) and the related 
papers mentioned above in that we begin with a different (non-Archimedean) 
single-person decision theory. Rather than supposing each player to be a 
subjective expected utility maximizer, we apply the theory of decision making 
developed in Blume, Brandenburger, and Dekel (1990). According to this latter 
theory, a player possesses, not a single probability distribution, but rather a 
vector of probability distributions that is used lexicographically in selecting an 
optimal strategy. Such a vector of probability distributions is called a lexico- 
graphic probability system (LPS). The first component of the LPS can be thought 
of as representing the player's primary theory as to how the game will be played, 
the second component the player's secondary theory, and so on. In this paper 
we define an equilibrium concept, called lexicographic Nash equilibrium, that 
extends the notion of Nash equilibrium in that it dictates not only a strategy for 
each player but also an LPS on the strategies chosen by the other players. We 
go on to show how perfect and proper equilibria can be characterized as 
lexicographic Nash equilibria by placing various restrictions on the LPS's 
possessed by the players. 

The organization of the rest of the paper is as follows. Section 2 begins by 
reviewing the non-Archimedean version of subjective expected utility theory 
developed in Blume, Brandenburger, and Dekel (1990). Next, two results are 
presented that play a key role in applying non-Archimedean choice theory to 
the task of characterizing refinements of Nash equilibrium. Section 3 starts by 
defining a lexicographic Nash equilibrium and then provides characterizations 
of perfect and proper equilibrium. We treat two-person and general (N-person) 

2Fishburn (1972) and Skala (1974,1975) investigate existence of equilibrium in two-person 
zero-sum games with non-Archimedean utilities. 
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games separately since the latter require additional assumptions on the players' 
LPS's. Concluding remarks are in Section 4. 

2. NON-ARCHIMEDEAN SUBJECTIVE EXPECTED UTILITY THEORY 

This section begins with a review of the non-Archimedean version of subjec- 
tive expected utility theory developed in Blume, Brandenburger, and Dekel 
(1990).3 The framework employed follows the treatment in Fishburn (1982) of 
Anscombe and Aumann (1963). 

The decision maker faces a finite set of states Q2 and a set of pure conse- 
quences C. Let 9? denote the set of simple (i.e., finite support) probability 
distributions on consequences. The decision maker has preferences over acts, 
which are maps from the state space Q2 into 9?. Thus the set of acts is the 
product space 94!. The woth coordinate of act x is denoted x,,, and determines 
the objective lottery on consequences that obtain if act x is chosen and state to 
occurs. Conventional subjective expected utility theory imposes axioms on the 
decision maker's weak preference relation on Q that are necessary and 
sufficient for the following familiar representation (Anscombe and Aumann 
(1963)). There is an (affine) utility function u: R R and a probability measure 
p on Q2 such that an act x is (weakly) preferred to another act y if and only if 

(2.1) E p(w)u(x) > E p(w0)u(yW). 
coeIQ ceQ 

In Blume, Brandenburger, and Dekel (1990) a modified axiom system involv- 
ing a weakened Archimedean axiom is proposed that is necessary and sufficient 
for the following representation. There is an (affine) utility function u: 9 R 
and a vector p = (P1, ... I PK), for some integer K, of probability measures on Q2 
such that an act x is (weakly) preferred to another act y if and only if 

(2.2) [Epk()U(X.)] >L [Epk()u(Y.)j.4 
o) EQ ~~k= 1 oQk= 1 

Such a vector p = (P1, ... I PK) of probability measures will be referred to as a 
lexicographic probability system (LPS). The first component p1 of the LPS p can 
be thought of as representing the decision maker's primary "theory" about the 
true state of the world, the second component P2 the decision maker's sec- 
ondary "theory," and so on. 

A "numerical" representation of preferences which is equivalent to the 
representation (2.2) is possible where the "numbers" are elements in a non- 
Archimedean ordered field F that is a proper extension of the real number field 
R. This representation is exactly the same as (2.1) except that while u is an 
R-valued utility function, p is now an F-valued probability distribution on Q2. 

3The reader should refer to this paper for a fuller discussion of the material in this section. 
4 The symbol >L represents the lexicographic ordering. That is, for a, b E RK, a >L b if and only 

if whenever bk > ak, there exists an 1 < k such that a, > b1. 
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As it stands, the class of preferences having the representation (2.2) contains 
conventional Archimedean preferences (the special case K = 1). The force 
behind the modified theory is that, unlike conventional subjective expected 
utility theory, it can be made to guarantee admissibility (Luce and Raiffa (1957, 
Chapter 13)) and the existence of well defined conditional probabilities for any 
event, without giving up some notion of probability 0 events. 

DEFINITION 1: An LPS p = (P1,... , PK) on Q2 has full support if for each 
o e Q, Pk(w)> 0 for some k = 1,...,K. 

Blume, Brandenburger, and Dekel (1990, Section 4) show that if p has full 
support, then admissibility is satisfied and well defined conditional probabilities 
exist for any event. Even so, a state to can be "infinitely unlikely" in the sense 
that p1(co) = 0 (of course, it must then be that Pk(w)> 0 for some k> 1). 
Blume, Brandenburger, and Dekel (1990, Section 5) go on to discuss a partial 
order on states, G >p co', to be read as "co is infinitely more likely than co' 
according to the LPS p." 

DEFINITION 2: Given an LPS p = (P1,... , PK) on Q2 and states co, co E Q, 
write co >P6c' if 

minfk: Pk(v) >0) < minfk: Pk((>) >0) 

The weak version of this order is defined in the usual fashion by c > pcv' if 
not co' > p w. This complete and transitive weak order will turn out to be useful 
in characterizing proper equilibrium (see Sections 3.2 and 3.3 below). 

We close this section by stating two results that are key to understanding the 
relationship between the non-Archimedean choice theory described in this 
section and the test sequences, or "trembles," used in defining refinements of 
Nash equilibrium. Given an LPS P = (P11... I PK) on Q2 and a vector r = 

(r1,. . ., rK 1) E (0, 1)K- 1, write r E p for the probability measure on Q2 defined 
by the nested convex combination 

(1- rl)pl + rl[(l - r2)p2 + r2[(1 - r3)P3 

+r3[ * 
.. 

+rK-2[(1 rK-1)PK-1 + rK-1PK] ...] 

PROPOSITION 1: Given any finite subset X of acts in Q there is a sequence 
r(n) E (0, 1)K- 1 with r(n) -> such that for all x, y E X, x is strictly preferred to y 
if and only if 

E, (r(n)OF p) (to)u(x.,) > E? (r(n) Ol p) (t)u(yj, 
wE=-n wE=-n 

for all n.5 

PROPOSITION 2: Let p(n) be a sequence of probability measures on hi. Then 
there is an LPS p = (P1, ... I PK) on 12 such that a subsequence p(m) of p(n) can 
be written as p(m) = r(m) O p for a sequence r(m) E (0, 1)K- 1 with r(m) -O 0. 

SSee the Appendix for the proof of Proposition 1 and all subsequent results in the paper. 
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Propositions 1 and 2 make precise the sense in which LPS's and (convergent) 
sequences of probability measures-which correspond to the "trembles" of the 
refinements literature-are interchangeable. They play a central role in proving 
the characterizations of refinements of Nash equilibrium to be presented in the 
next section. Finiteness is important in both propositions: Proposition 1 applies 
to a finite subset X of acts in 9Q while Proposition 2 relies on the state space 
Q2 being finite. In what follows, these finiteness assumptions will be satisfied 
since the subject matter is finite games. 

3. LEXICOGRAPHIC NASH EQUILIBRIUM 

3.1. Nash Equilibrium 

A finite N-person game in normal form is a 2N-tuple r= (A1,..., 
AN; u', ... , uN) where for each i = 1, ..., N, A' is player i's finite set of pure 
strategies (henceforth actions) and ui: x7l AJ -* R is i's von Neumann- 
Morgenstern utility function. For any finite set Y, let 4(Y) denote the set of all 
probability measures on Y. The set of mixed strategies of player i is then 4(A1), 
with a typical element denoted by o-'. An N-tuple of mixed strategies is denoted 
by cr= (cr=1 acN) E x JA(A.) 

For the reasons discussed in the Introduction, we now augment this orthodox 
description of a normal-form game by specifying not only utility functions over 
outcomes but also, for each player, beliefs over the uncertainty that player faces. 
It is assumed that each player is a decision maker of the kind described in 
Section 2, and hence that the beliefs of each player take the form of an LPS on 
an appropriate state space. In order to write down this assumption formally, it 
will be helpful to have some more notation: given sets y',... yN, let Y` 
denote the set yl x ... x yi-1 x yi+1 x ... X yN and yi(Y l 

yi Yi+,..., YN) a typical element of Y-'. The beliefs of player i are de- 
scribed by an LPS pi = (pil, ... I, pii), for some integer Ki, on A-'. A collection 
of LPS's, one for each player, will be denoted by ,tu = (pl,.. ., pN) and called a 
belief system. Given an LPS pi for player i, and j o i, let p1j = (p,il... I, pj 
denote the marginal on AJ of pi. That is, for each k = 1,...,K, p/' is the 
marginal on A' of Pk. 

DEFINITION 3: A pair (,u, o-) is a lexicographic Nash equilibrium if for all 
i= 1,...,N and j#i: 

(i) p(aa) > 0 implies 

[auEJPi(aj)uj(a aJ)] kL[a-EA Pi (a J)uj(bJ a J) 
L.a -ieA-J Jk=1l. a jE-A k=1 

for all b' eA1; 
(ii) p'(a-) = X o (a j) for all a- e- A'. 

joi 

A lexicographic Nash equilibrium is an extension of the notion of Nash 
equilibrium in that it requires specifying for each player, in addition to a 
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(mixed) strategy o- , an LPS p' on the actions of the other players. Condition (i) 
of Definition 3 is a "knowledge of rationality" requirement: if player i assigns 
positive probability under p' to an action ai of some other player j, then ai 
must be an optimal action for j given j's beliefs pi. Notice that Condition (i) 
places no restriction on i's higher order beliefs p',... ., pK. Condition (ii) is a 
consistency condition linking beliefs to strategies. It says that the first order 
probability that player i assigns to each (N - 1)-tuple of actions a-' must 
coincide with the weight given to a-' by the mixed strategies o--. 

It is possible to drop any mention of the strategies a- and work exclusively in 
terms of the belief system ,ut. Conceptually, this approach offers some advan- 
tages. For example, it provides an interpretation of Nash equilibrium solely in 
terms of the players' knowledge and beliefs that does away with the trouble- 
some notion of players randomizing their actions (cf. Aumann (1987) and the 
related papers mentioned in the Introduction). Nevertheless, to facilitate com- 
parisons with the conventional definitions of Nash equilibrium and its refine- 
ments, we chose in this paper to work with strategies as well as beliefs. 

As it stands, Definition 3 of a lexicographic Nash equilibrium is equivalent, in 
terms of equilibrium strategies, to Nash equilibrium. This is stated formally in 
Proposition 3 below. The next two sections demonstrate how, by placing 
restrictions on the players' higher order beliefs, the notion of a lexicographic 
Nash equilibrium can be used to characterize refinements of Nash equilibrium. 

PROPOSITION 3: The strategy profile oa is a Nash equilibrium if and only if there 
is some belief system ,u for which (u, a) is a lexicographic Nash equilibrium. 

Before proceeding, it is worth examining the similarities and differences 
between the solution concepts of lexicographic Nash equilibrium (Definition 3) 
and sequential equilibrium (Kreps and Wilson (1982)). While the first is defined 
on the normal form and the second on the extensive form, both require the 
specification of beliefs as well as strategies. In developing the notion of a 
sequential equilibrium. Kreps and Wilson devote considerable attention to 
placing various "consistency" conditions on beliefs, including a restriction called 
"lexicographic consistency" (Kreps and Wilson (1982, pp. 873-874), Kreps and 
Ramey (1987)). Indeed, in the absence of restrictions on beliefs, in particular if 
beliefs at each information set need not even be concentrated on (i.e., assign 
probability 1 to) that information set, an airalogous result to Proposition 3 
would obtain: sequential equilibrium would be equivalent, in terms of equilib- 
rium strategies, to Nash equilibrium. In what follows we likewise consider 
restrictions on the belief system ,u. Thus we provide a model for analyzing 
normal-form refinements that is analogous to the extensive-form model of 
strategies and beliefs underlying sequential equilibrium.6 A distinction between 
the approach taken by Kreps and Wilson and that in this paper, however, is that 

6 Moreover, sequential equilibrium has proved useful in developing and understanding further 
refinements, e.g., McLennan (1985), Cho and Kreps (1987), Cho (1987). 
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in a sequential equilibrium players take into account higher order beliefs as to 
how the game is being played only if their lower order beliefs are contradicted, 
whereas in a lexicographic Nash equilibrium players always take into account 
(lexicographically, of course) their higher order beliefs. This explains why, once 
the players' LPS's are required to have full support, choices in a lexicographic 
Nash equilibrium are admissible (see Sections 3.2 and 3.3 below) whereas 
choices in a sequential equilibrium need not be. 

3.2. Refinements in Two-person Games 

This section provides characterizations of normal-form perfect equilibrium 
and proper equilibrium in two-person games as lexicographic Nash equilibria 
with restrictions on the players' higher order beliefs. The N-person case, which 
is postponed until Section 3.3, raises two further questions. Do two players 
share the same beliefs about a third player's choice of action? Are a player's 
beliefs over the actions of the other players (stochastically) independent? The 
simplicity of the two-person case derives from the fact that neither of these 
questions arises. 

Recall that in two-person games a Nash equilibrium is perfect if and only if 
each player's (mixed) strategy is admissible. This gives an immediate characteri- 
zation of perfect equilibrium in terms of lexicographic Nash equilibrium. (In the 
following, to say that a belief system , = (p1,... ,pN) has full support means 
that each p', i = 1,..., N, has full support.) 

PROPOSITION 4: The strategy profile o- is a perfect equilibrium if and only if 
there is some belief system 1t with full support for which (bA, cr) is a lexicographic 
Nash equilibrium. 

Proper equilibrium can be described as a lexicographic Nash equilibrium by 
ensuring that each player's beliefs respect the preference relations of the other 
players. 

DEFINITION 4: The belief system ut = (p1,... . N) respects preferences if for 
all i= 1,...,N and j # i, each a' eAi satisfies 

[ p(a-)u (a, ai)] jL[_ p(a j)uj(bi, a i)] 
a -JeA' 

- 
k=1 a -JE-A 'J k=l 

for all b1 E Ai with a' > t, bJ. 

Definition 4 says that player i's LPS pi should respect player j's preference 
relation-as determined by j's utility function u' and LPS pJ- in the following 
sense. Suppose player i believes that an action b1 of player j is not infinitely 
more likely than some other action ai. Then bi must not be strictly better than 
a' for player j. Definition 4 is a strengthening of Condition (i) of Definition 3 in 
that the latter applies only to those actions a' of j for which pi(a) > 0. 
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Player 2 
L C R 

1 1 ~~~~~~~0 
T T 1 11 1 1 

1 ~~~2 2 
Player 1 M F1 

1 ~~~~2 2 

1 ~~~~2 3 
B 

0 2 3 

FIGURE 1 

PROPOSITION 5: The strategy profile o- is a proper equilibrium if and only if 
there is some belief system ,u that has full support and respects preferences for 
which (i,u o-) is a lexicographic Nash equilibrium. 

We illustrate Propositions 4 and 5 by means of the game r1 depicted in 
Figure 1. This game has three Nash equilibria: ((1, 0, 0), (1, 0, 0)), 
((0,1,0), (0, 1,0)), and ((0,0, 1), (0,0,1)). Only the last two are perfect and only 
the last is proper. Given of = (o, 1O2) = ((0,1, 0), (0, 1,0)), define a belief system 
4 = (p1, p2) by 

P1I = (0, 1,0) = 0,2, pl2 = (0, 1,90) = al,' 

PI = (1,0,0O), P2 = (10,09 ), 

P1 = (O, O, 1), p2 = (0, 0, 1). 

Condition (i) of Definition 3 is satisfied: p2(M) > 0 and, while M is indifferent 
to B under pl, M is strictly preferred to B under p'. Similarly, p(C) > 0 and 
C is optimal under p2. Hence (i,to) is a lexicographic Nash equilibrium. 
Moreover, , has full support which confirms that a- is a perfect equilibrium. 
Notice, however, that ji does not respect preferences (Definition 4): player 1 
strictly prefers B to T, yet player 2 believes T is infinitely more likely than B. In 
fact, since p1 = -2 by itself implies that player 1 strictly prefers B to T, if ,u is 
to respect preferences, it must be the case that player 2 believes B to be 
infinitely more likely than T. But then player 2 strictly prefers R to C. This 
demonstrates that a- is not a proper equilibrium. Finally, given = (cr1, &2) = 

((O, 0, 1), (0, 0, 1)), define a belief system ,u = (jjl, f2) by 

P61 = (O, O, 1) = cr2, P12 = (O, O, 1) = -1 

,,1 = (0 190 
n ,2_ =n 019 O) 
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Player 2 
L C R 

T 

Player 1 1 -1 2 2 

B 
-1 1 ~~~~~~~~0 

FIGURE 2 

The pair (,u, v) is a lexicographic Nash equilibrium where ,u has full support 
and respects preferences. This confirms that J is a proper equilibrium. 

Observe that in each of the LPS's constructed in the preceding example, 
the component probability distributions had disjoint supports. Blume, 
Brandenburger, and Dekel (1990, Section 5) provide an axiomatic derivation of 
LPS's p = (P1 ... I PK) in which the Pk's have disjoint supports. However, 
despite the appeal of this class of LPS's, it is sometimes necessary to consider 
LPS's in which the Pk's do have overlapping supports. To see this, refer to the 
game F2 depicted in Figure 2. This game has a unique Nash-hence perfect 
and proper-equilibrium: ((, 1),(1, 1,0)). Thus, in any lexicographic Nash 
equilibrium of F2, player l's first-order belief is given by p1 = (2 2, 0). If player 
l's LPS is to have full support, while at the same time p1 and p2 are to have 
disjoint supports, then it must be the case that pl = (0, 0, 1). But then player 1 
strictly prefers T to B, which upsets the equilibrium. A second order belief for 
player 1 that preserves indifference between T and B is pl = (0, 3, 2), but 
notice that now pl and pl have overlapping supports. If, however, we consider 
a game with the same reduced normal form as F2, that is, if duplication of pure 
strategies is permitted, then disjoint supports can be guaranteed (Blume, 
Brandenburger, and Dekel (1990, Section 5)).7 

We close this section by observing that the characterization of proper equilib- 
rium offered in Proposition 5 is helpful in understanding the distinction be- 
tween proper equilibrium and the solution concept of stability due to Kohlberg 
and Mertens (1986). Recall that stable sets of equilibria satisfy the following 
property ("Forward Induction"): given a stable set S of Nash equilibria, if a 
strategy a' that is an inferior response in all equilibria in S is deleted, then S 
contains a stable set of the reduced game (Kohlberg and Mertens (1986, 
Proposition 6)). The strength of this property derives from the fact that it does 
not rely on a specific order of deletion. Proper equilibrium satisfies an analo- 
gous, albeit weaker, property that is order dependent. The following result is an 
immediate consequence of Proposition 5. 

7 Let player 2's new strategy space be {L, C, C, RI where the column C duplicates the column C, 
and let 1= (, 4,0,0), f = (0,0, 1, 2). Then 1 and 51 have disjoint supports and correspond to 
the original equilibrium. 
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COROLLARY 1: Given a lexicographic Nash equilibrium (1A, o-) where the belief 
system A has full support and respects preferences, for some player i delete all 
ai eA' that are least preferred by i. Then the restriction of (,LL, v) to the reduced 
game is again a lexicographic Nash equilibrium where the (restricted) belief system 
,t has full support and respects preferences. 

3.3. Refinements in N-person Games 

This section extends the characterizations of perfect and proper equilibrium 
in two-person games to general (N-person) games. In order to carry out this 
extension, we need to ensure that the players' beliefs satisfy the following two 
conditions: (1) any two players share the same beliefs about a third player's 
choice of action; and (2) each player's beliefs over the actions of the other 
players are stochastically independent. 

Condition (1) can be satisfied by assuming a non-Archimedean analog to the 
Common Prior Assumption in Aumann (1987). 

DEFINITION 5: The belief system = (p, I. .,- N) satisfies the Common Prior 
Assumption (CPA) if there is an LPS p on X N 1 A' such that for all i= 1,...,N, 
p' is the marginal on A` of p. 

The meaning of Condition (2) is more ambiguous. In Blume, Brandenburger, 
and Dekel (1990, Section 7) it is shown that three possible definitions of 
stochastic independence, while equivalent in standard probability theory, are 
distinct in the lexicographic setting. We briefly review each of the three 
definitions within the framework of Section 2. Suppose that the set of states Q2 
is a product space 1' x ... X QN. An LPS P= (P1,... ,PK) on Q2 satisfies 
S-independence if p1 is a product measure (see Blume, Brandenburger, and 
Dekel (1990, Definition 7.2)). Axiom 6 in Blume, Brandenburger, and Dekel 
(1990) provides a stronger, preference-based, notion of stochastic independence. 
The axiom states that for any i = 1,..., N and wi, 63' E (2', the decision maker's 
conditional preference relation given {c')} x f2-' is the same as that given 
{63'} x f2-i. Being preference-based, this definition of stochastic independence is 
perhaps the most compelling from a decision-theoretic perspective. Finally, 
given an LPS P = (P1, ... ,PK) on Q2, the strongest version of independence 
(Blume, Brandenburger, and Dekel (1990, Definition 7.1)) requires there to be 
an equivalent F-valued probability measure that is a product measure. In this 
case we will say that p satisfies strong independence. It is straightforward to 
show that p satisfies strong independence if and only if there is a sequence 
r(n) E (0, 1)K- Iwith r(n) -* 0 such that r(n) O p is a product measure for all n. 
Notice that in the special case K = 1, strong independence coincides with 
S-independence, but in general the former is more restrictive.8 

8Since limn r(n)Ui p = p1, strong independence implies S-independence. 
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In a lexicographic Nash equilibrium (p., cr) of a game F, each player i's LPS 
= (pi, ... , P') automatically satisfies S-independence since Condition (ii) of 

Definition 3 requires the first order belief p' to be a product measure. But 
neither of the stronger notions of independence is necessarily satisfied. Without 
imposing either of these stronger versions of independence, or the CPA, the 
following N-person analog to Proposition 4 obtains. This proposition also 
provides a characterization of c-perfect equilibrium (Fudenberg, Kreps, and 
Levine (1988, p. 377)). 

PROPOSITION 6: The strategy profile ow is a Nash equilibrium in admissible 
strategies if and only if there is some belief system p. with full support for which 
(,u,o) is a lexicographic Nash equilibrium. 

In order to characterize perfect and proper equilibrium in N-person games, 
both the CPA and strong independence must be imposed. To apply strong 
independence to a game F, we suppose that the belief system p. = (pV, .. , p N) 
satisfies the CPA. That is, there is an LPS p on XN 7 A' such that each pi is the 
marginal on A-' of p. In this case we say that A satisfies strong independence if 
p satisfies strong independence. 

PROPOSITION 7: The strategy profile oa is a perfect equilibrium if and only if 
there is some belief system ,u that has fuill support and satisfies the CPA and strong 
independence for which (p., o) is a lexicographic Nash equilibrium. 

PROPOSITION 8: The strategy profile o- is a proper equilibrium if and only if 
there is some belief system p. that has full support, respects preferences, and 
satisfies the CPA and strong independence for which (p., o) is a lexicographic Nash 
equilibrium. 

Proposition 8 immediately provides the following N-person analog to 
Corollary 1. 

COROLLARY 2: Given a lexicographic Nash equilibrium (pu, o-) where the belief 
system p has full support, respects preferences, and satisfies the CPA and strong 
independence, for some player i delete all a' EA' that are least preferred by i. Then 
the restriction of (p., o) to the reduced game is again a lexicographic Nash 
equilibrium where the (restricted) belief system p. has full support, respects 
preferences, and satisfies the CPA and strong independence. 

4. CONCLUDING REMARKS 

This paper has shown how non-Archimedean choice theory provides a deci- 
sion-theoretic characterization of equilibrium refinements. The non-Archi- 
medean approach is useful both to deepen our understanding of existing 
refinements and to develop alternatives. 
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For example, we have seen (in Section 3.3) that strong independence is the 
appropriate notion of stochastic independence for characterizing perfect and 
proper equilibrium. However, strong independence is obviously a stringent 
requirement and perhaps not totally compelling from a decision-theoretic per- 
spective. Hence, it would be of interest to characterize lexicographic Nash 
equilibria in which weaker notions of stochastic independence are satisfied. 
Figure 7.1 in Blume, Brandenburger, and Dekel (1990) shows that Axiom 6 is 
strictly weaker than strong independence in single-person decision problems. 
The same example can be used to construct a game in which there is a 
lexicographic Nash equilibrium (,, o-), where the belief system A has full 
support, respects preferences, and satisfies the CPA and stochastic indepen- 
dence in the guise of Axiom 6, but where o- is not a proper equilibrium. Hence 
Axiom 6 is also strictly weaker than strong independence in the context of 
equilibrium. A characterization of the effect of substituting Axiom 6 for strong 
independence would be useful. Related issues are discussed in Binmore 
(1987,1988), Dekel and Fudenberg (1990), Fudenberg, Kreps, and Levine (1988), 
and Kreps and Ramey (1987). Along the same lines of weakening stochastic 
independence assumptions, another possible extension would be to use the 
non-Archimedean choice theory described in Section 2 of this paper to charac- 
terize refinements of correlated equilibrium, such as acceptable correlated 
equilibrium and predominant correlated equilibrium (Myerson (1986)). 
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APPENDIX 

PROOF OF PROPOSITION 1: NVecessity. Assume first that X = {x, y}. Suppose that x is strictly 
preferred to y. That is, there is a k < K such that 

E p1(cW)[u(x.) - u(yA)I = 0 for all 1 < k, 

E Pk(W)[u(XW) - U(yw)] > 0. 
GE n 

If k = K, then set (2. = r(1) > r(2) > .... Otherwise set = rl(1) > rj(2) > ... for all l # k. 
Let 

W= min{u(x,) - u(y,): to E l2}, 

B= E Pk(W)[U(Xw)-u(yw)]. 
GE n 
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Note that B > 0, and E, Eq(W)(u(x,) - u(y,)]> W for all q e A(n). Choose rk(l) E (0,1) to 
solve (1 - rk(1))B + rk(l)W> 0 and set rk(l) > rk(2) > ... . Then 

E [(1 - rk(n))pk(w) + rk(n)q(w)][u(x() - u(y.)] > 0 
wCf2 

for all n and q E zWJ(i). But 

E? (r(n) O p)(.w)[u(x.,)-u(yj]= 

E, rl(n) 
... 

rk-,(n)[(l -rk(n))Pk(W) +rk(n)(r'(n)O p')(oi)][u(x.) -u(y.,)] 

where r'(n)=(rk?l(n),...,rK-l(n)) and p =(Pk+1,...,PK), and is therefore greater than 0 for 
all n. 

If X consists of more than two elements, first calculate r(l) as above for all pairs x, y E X for 
which x is strictly preferred to y; then choose the minimum r(l). 

Sufficiency. Suppose E.,n(r(n) o pX&))[u(x.) - u(y,)]> 0 for all n. Letting rl(n) -*0 gives 
E, E=p-l(cW)[u(xz,))-u(y",)]> 0. If strict inequality holds, then x is strictly preferred to y. So 
suppose equality holds. Then it must be true that E., E8n(r'(n)L 0p'X))[u(x.) - u(yt)]> 0 where 
r'(n) = (r2(n),.**,rK-l(n)) and P' = (P2,. PK)* Letting r2(n) -*O gives E.E Qnp2(w0)[u(x) - 

u(y )]> 0. Continuing in this manner, strict inequality must arise at some stage, since otherwise 
EW E=-2(r(n)O pXw)[u(x,,) - u(y,,,)] = 0. Hence x is strictly preferred to y. Q.E.D. 

REMARK: The proof of sufficiency in Proposition 1 shows that for any sequence r(n) E (0, 1)K- 1 
with r(n) -*0, if 

E (r(n)O p)(w)u(x.)> , (r(n)0 p)(w)u(y.) 
toE- n2 wo e12 

for all n, then x is strictly preferred to y. 

PROOF OF PROPOSITION 2: Define a function f: A(n) xAW) --* R by 

i(p,jp) = sup{r E R: p(eo)-r3(w) > 0 for all w E 2}. 

The following properties of Ei will be used: 

(P1) 0(p, p) = 1 if and only if p = p. 
(P2) If Supp p c Supp p, then p(o)) - tf(p, fi)fi(w) = 0 for some c e Supp p (Supp denotes the 

support of a measure). 
(P3) qi is continuous in its first argument. 

The proof proceeds by a number of steps. (In what follows we do not distinguish notationally a 
subsequence from its parent sequence.) 

Step 1: Choose a subsequence of p(n) such that if for any w E Q, p(nXw) = 0 infinitely often 
(i.o.), then p(nXw) 0 for all n. 

Step 2: Choose a convergent subsequence of p(n), converging to p1, say. 
Step 3: If p(n) =p1 i.o., the proof is complete. So suppose p(n) * p1 for all sufficiently large n. 

In this case, by (P1) there is a well defined new sequence p2(n) E AG() given by 

p(n) - 0(p(n) pl)p 

(Al1) p2(n) = - (p(n), pl) 

Note that if p(nXw) = 0 for all n, then p2(nXw) = 0 for all n. That is, Supp p2(n) c Supp p(n) for 
all n. In fact, since Supp p1 C Supp p(n), it follows from (P2) that for each n, p2(nXW) = 0 for some 
C E Supp p(n). That is, for each n, Supp p2(n) c Supp p(n). 
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Step 4: Observe that from (A.1), p(n) can be written as 

(A.2) p(n) = q/(p(n), pl)pl + [1 - /i(p(n), p) ]p2(n) 

where /i(p(n), p1) E (0, 1), and /i(p(n), p1) -* 1 using (P3). Letting r1(n) = 1 - q/(p(n), p1), (A.2) 
can be rewritten as 

(A.3) p(n) = [1 -rl(n)]pl + rl(n)p2(n) 

where r1(n) E (0, 1) and r1(n) -* 0. 
Now repeat Steps 1-4 on the sequence p2(n). This yields a subsequence of p2(n) that can be 

written as 

(A.4) P2(n) = f(P2(n), P2)P2 + [1-(4p2(n), P2)]P3(n) 

where p2(n) p2 and, for each n, Supp p3(n) C Supp p2(n). Letting r2(n) = 1 - f((p2(n), P2), (A.3) 
and (A.4) can be combined to give 

p(n) = [1 - rl(n)]pl + rl(n)[[l - r2(n)]p2 + r2(n)p3(n)]. 

Repeating Steps 1-4 on the sequence p3(n), and continuing in this fashion, shows that a 
subsequence of p(n) can be written as p(n) = r(n) O p, where the length K of the LPS p is 
bounded by the cardinality of Q since Supp p(n) D Supp P2(n) D Supp p3(n) D .... Q E.D. 

PROOF OF PROPOSITION 3: Sufficiency. Suppose (A, o-) is a lexicographic Nash equilibrium. It 
follows from Conditions (i) and (ii) of Definition 3 that if o-j(ai) > 0 for a player j, then 

E a-j(a-i )ui(ai, a -i) > , a-j(a -j)uj(bi, a -J) 
a -J (=-A -J a -J r=A -J 

for all bi EA1. This is precisely the condition that o- is a Nash equilibrium. 

Necessity. Suppose o- is a Nash equilibrium. For each player i let pi be the one-level hierarchy 
given by p'(a-) = o-'(a-) for a- eA -. Then ( o-) is a lexicographic Nash equilibrium. Q.E.D. 

PROOF OF PROPOSITION 4: Sufficiency. Suppose (,, o-) is a lexicographic Nash equilibrium where 
A has full support. By Proposition 3, o- is a Nash equilibrium. Moreover, it follows from Proposition 
1 that there is an rl E (0, 1)K-1 such that each a' assigned positive weight by oa is a best reply to 
ri IE p1ecz(A2). For any finite set Y, let z1(Y) denote the subset of z(Y) consisting of those 
probability measures on Y with full support. Then, in fact, rI P I EA(A2) since pl has full 
support. That is, oa is a best reply to r pl e AO(A2), or oa is admissible. A similar argument 
establishes that a-2 is admissible. 

Necessity. Suppose o- is a perfect equilibrium. Then there are l' E Ao(Al), a2 c oA(A2) such that 
al1 is a best reply to a2 and '2 is a best reply to al. Give player 1 the two-level hierarchy 
p' = ( pl, p') where p1 = o-2 and pl = 62. Give player 2 the analogous two-level hierarchy. Then 
(,,a-) is a lexicographic Nash equilibrium and ,u has full support. Q.E.D. 

PROOF OF PROPOSITION 5: Sufficiency. Suppose (A, a-) is a lexicographic Nash equilibrium where 
A has full support and respects preferences. For k = 1. K1, let 

kr ={a2eA2:pk(a2) > 0 and pl(a2)= 0 for I < k}. 

Since pl has full support, {7ri.7rKi) is a partition of A2. Since A respects preferences, each 
a2 E7r2 is optimal for player 2 among actions in UK-7r2 Hence by Proposition 1, for every k 1 2, k 2Ul=~~~~1k 1 ec yPooiin1 o vr 
k K 1. K1 there is a sequence r2k(n) C (0, 1)K 1 with r2k(n) -*0 such that for each a2 c 
ir2, b2 e KU 2~k~ 

(A.5) E (r2"k(n) ul p2)(a')[u2(al a2) -u2(a', b2)] > 0 
al eAl 

for all n. Moreover, (A.5) holds with equality if b2 c 7rk2. For each n, let r2(n) = min{r2,k(n): 
k= 1. K1). 
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We have found a set of mixed strategies M2 = (r2(n)W p2: n = 1,2,...) cA?(AA), with r2(n) -O 0, 
and a partition {17r 2, .i .,r2i) of A2 such that against a given r2(n)E p2 e M2 all actions in 7r 2 yield 
the same expected utility to player 2, and yield at least as great expected utility to player 2 as does 
any action in r2?1 By a similar construction, we can find a set of mixed strategies Ml= 
{rl(n)cp1: n = 1,2, .. .}cAo(A2), with rl(n) -*, and a partition (ITI..r2} of A' with analo- 
gous properties. 

Given the sequence (r2(n) op2, rl(n)o pl) eAO(A1) XzA(A2) with r2(n) -O 0, rl(n) -*0, the 
proof of sufficiency is completed by finding a sequence of positive numbers e(n) -O 0 such that 

a1 E 7r1 and b1 ei 7r = (r2(n)0op2)(bl) <E(n)(r2(n)Elp2)(a'), 

a2 E C7r and b2 Eir?1 (r'(n)O p1)(b2) <2(n)(r'(n)0 p')(a2). 

For k = 1, K2, let m2 = min{pk2(a1): a1 e Suppp 2). Let m2 = min{m : k = 1. K2). Note that 
for a1 erk 

(r2(n)f0 p2)(a') > rj (n) ... rk 1(n)[1 - rk(n)]pk(a') 

,- r 2(n) ***rk2 1(n)[1 - r (n)]m 

while for b1 Er1k+l 

(r2(n) 0 p2) (bl) < r 2(n) 
.. r r2(n). 

Hence (r2(n) J p2)(bl) < e(n)(r2(n)o p2)(a1) if 

r 2(n) ... r 2(n) < E(n)r2(n) ... r 2_ l(n)[I - r 2(n)]m2 

or 

r2(n) 
e(n) 1 

k- rk(n)]m2 

Let 

2r 2(n)]m . 21 E2(n) max [1 -r(n)]M2 k - 

The argument for a2 E 7rk and b2 e 7r2k+l is similar. Hence defining E1(n) in an analogous fashion, 
a suitable sequence E(n) is given by 8(n) = max{81(n), 2(n)). 

Necessity. Suppose a- is a proper equilibrium. That is, there is a sequence cr(n) = (a'1(n), -2(n)) 
EC 1(A1) x AO(A2) of E(n)-proper equilibria converging to (. By Proposition 2 there is an LPS 
P = (P, .... PK) on A1 xA2 such that a subsequence (m) of o-(n) can be written as o-(mXal, a2) 
= (r(m)o pXa', a2), (a, a2) eA1 xA2, for a sequence r(m) e (0, 1)K- 1 with r(m) -*0. Let player 
l's LPS pl = (pl,..*, pK) be the marginal on A2 of p and let player 2's LPS p2 = (p2,. p 2 P) be 
the marginal on Al of p. Note that pl and p2 have full support since a(m) e AO(AL) x 40(A2), and 
that pl = a2, p>2 = a1. It remains to show that ,u = (pl, p2) respects preferences. Suppose not. Then 
there are, say, a2, b2 eA2 such that 

[ p,2(a1)u2(a1, a2)] <L [E p (a)u2(a ,b2)] 
al EAl k= l a IeA k=l 

but a2 >Pi b2. By the remark following the proof of Proposition I 

E ( r(m)o p2)(a')U2(a', a2) < E (Ar(m)cOp2) (a1)u2(a', b2) 
a 

I 
(=-AI a 

I 
(=-AI 
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for all sufficiently large m. That is 

(A.6) E o1'(m)(a')u2(a', a2) < E o-1(m)(a')u2(al, b2) 
a1 (EA1 a1e(EA1 

for all sufficiently large m. But if pl(a2) > 0 and pl(b2) = 0 for l < k, then 

o2(m)(a2) > rl(m) ... rkil(m)[1 - rk(m)]Pk(a ) 

and 

0a2(m)(b2) < rl(m) . .. rk - (M). 

If m is large, then for any E(m) > 0 

r1(m) ... rk_l(m)[1 - rk(m)]pk(a 2) > e(m)rj(m) ... rk-l(m) or 

(A.7) ar2(m)(a2) > _(M)a2(m)(b2). 

Equations (A.6) and (A.7) contradict the fact that (o1(m), o2(m)) is an E(m)-proper equilibrium. 
Q.ED. 

PROOF OF COROLLARY 1: The proof follows immediately from the proof of sufficiency in 
Proposition 5. Q.E.D. 

PROOF OF PROPOSITION 6: The proof follows exactly the lines of the proof of Proposition 4. 
Q.E.D. 

PROOF OF PROPOSITION 7: Sufficiency. Suppose (,u, oa) is a lexicographic Nash equilibrium where 
,u has full support and satisfies the CPA and strong independence. It follows that there is an LPS 
P = (P1, PK) on x 1 A' and a sequence r(n) c (0, 1)K-1 with r(n) -*0 such that r(n)O0 p is a 
product measure for all n. Define a sequence o(n) = (o'(n),..., oN(n)) C Xfv iA(AL) by letting, for 
each i, oa(n) be the marginal on A' of r(n)O0 p. Note that limn o(n) = o and, for each i, oa(n) c 
A0(A1) since ,u has full support. Also, for each i, (r(n) 0 pi)(a -i) = Xj $o i(n)(a') for a-i c A-'. 
Hence by Condition (i) of Definition 3 and the Remark following the proof of Proposition 1, 
o"(a') > 0 implies a' is a best reply to o-i(n) for all sufficiently large n. 

Necessity. Suppose o is a perfect equilibrium. That is, there is a sequence a(n)= 
(a'(n),...,aN(n)) C x=LI AO(AL) with o(n) -a o and such that for each i, oa is a best reply to 
a-(n) for all n. By Proposition 2 there is an LPS P=(P1.PK) on x=LA1 such that a 
subsequence a(m) of oa(n) can be written as o-(mXa1,..., aN) = (r(m)O pXal,.. aN),(al . aN) 
c x N=1 A', for a sequence r(m) c (0, 1)K-1 with r(m) -*0. Note that p1(al ... aN) = a(a1 ... aN) 
since a(m) --* o. Also, since a(m) i= i A0(A'), p has full support and satisfies strong indepen- 
dence. For each i, let p' be the marginal on A -' of p. (Hence the CPA is satisfied by construction.) 
It remains to show that Condition (i) of Definition 3 is satisfied. But 0(a1) > 0 implies a' is a best 
reply to a-i(m) for all m, and o-r(mXa-i)=(r(m)TpiXa-i) for a-1cA-1. It follows by an 
identical argument to that used in the proof of sufficiency in Proposition 1 that a' is optimal under 
the LPS p'. Q.ED. 

PROOF OF PROPOSITION 8: Sufficiency. Suppose (,u, ar) is a lexicographic Nash equilibrium where 
,u has full support, respects preferences, and satisfies the CPA and strong independence. It follows 
that there is an LPS P = (P1,.PK) on XN1 A' and a sequence r(n) c (0, 1)K-1 with r(n) -.0 
such that r(n)O p is a product measure for all n.. Define a sequence a(n) = (al(n),C...( ).N(n)) C 
xN lA(A1) by letting, for each i, or1(n) be the marginal on A' of r(n) O p. Note that lim ao(n) = ar 
and, for each i, oa'(n) c A0(A1) since ,u has full support. Also, for each i, (r(n) O p1Xa i) = 

Xj$ ij(n)(a1) for a -' c A -. Since ,u respects preferences, a similar argument to that used in the 
proof of sufficiency in Proposition 5 shows that for each player i there is a set of mixed strategies 
M = {o,-(n):n >n1 for some ni) c xj $iA(Ai), and a partition {7r ..... 7rK) of A' with the 
following property. For k = 1. K - 1, all actions in 7r' yield the same expected utility to player i 
against any given a-'(n) c M', and yield at least as great expected utility to i as does any action in 
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7. The proof of sufficiency is completed by finding a sequence of positive numbers e(n) -* 0 such 
that for each i, 

a' E 7r' and b1 E 7re + ? oa(n)(bi) < E(n)o-'(n)(a'). 

Such a sequence e(n) can be constructed by a similar argument to that used in the proof of 
sufficiency in Proposition 5. 

Necessity. Suppose o- is a proper equilibrium. That is, there is a sequence a-(n) E x'= 1 (Ai) of 
E(n)-proper equilibria converging to o-. By Proposition 2 there is an LPS P = (Pl,.PK) on 
XN= 1Al such that a subsequence a(m) of a(n) can be written as o-(mXa . aN) = 

(r(m) O pXa .a N),(al, ..aN) E x 1 A', for a sequence r(m) E (0, 1)Ki with r(m) 0. Note 
that p1(a'...,aN)= o(al,...,aN) since o-(m)a--*o-. Also, since o-(m)e xiv 1Ao(Ai), p has full 
support and satisfies strong independence. For each i, let p' be the marginal on A -' of p. (Hence 
the CPA is satisfied by construction.) It remains to show that A = (pl, . . . PN) respects preferences. 
This follows by an identical argument to that used in the proof of necessity in Proposition 5. Q.E.D. 

PROOF OF COROLLARY 2: The proof follows immediately from the proof of sufficiency in 
Proposition 8. Q.E.D. 
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