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Abstract. This note shows how to apply the procedure of Kim, Shephard and Chib (1998) to the

estimation of VAR, DSGE, factor, and unobserved components models with stochastic volatility. In

particular, it revisits the estimation algorithm of the time-varying VAR model of Primiceri (2005).

The main difference of the new algorithm is the ordering of the various MCMC steps, with each

individual step remaining the same.
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1. The Model in Short

This note is a corrigendum of Primiceri (2005), but its lesson applies more broadly to several

empirical macro models with stochastic volatility that are estimated using the approach of Kim,

Shephard, and Chib (1998, KSC hereafter). Consider the time-varying VAR model of Primiceri

(2005)

(1.1) yt = ct +B1,tyt−1 + ...+Bk,tyt−k +A−1
t Σtεt,

where yt is an n×1 vector of observed endogenous variables; ct is a vector of time-varying intercepts;

Bi,t, i = 1, ..., k, are matrices of time-varying coefficients; At is a lower triangular matrix with ones

on the main diagonal and time-varying coefficients below it; Σt is a diagonal matrix of time-varying

standard deviations; εt is an n×1 vector of unobservable shocks with variance equal to the identity

matrix. All the time-varying coefficients evolve as random walks, except for the diagonal elements

of Σt, which behave as geometric random walks. All the innovations in the model (shocks to

coefficients, log-volatilities and εt) are jointly normally distributed, with mean equal to zero and

covariance matrix equal to V . The matrix V is block diagonal, with blocks corresponding to the

time-varying elements of the B’s, A, Σ and ε. The block structure of the matrix V is described in

detail in Primiceri (2005).
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2. The Original Algorithm of Primiceri (2005)

The unknown objects of the model are the history of the volatilities (ΣT ), the history of the

coefficients (BT and AT ), and the covariance matrix of the innovations (V ). To simplify the

notation, define θ ≡
[
BT , AT , V

]
. Primiceri (2005) proposed to simulate the posterior distribution

of the model coefficients by Gibbs sampling, drawing the history of volatilities with the multi-move

algorithm of KSC.

The difficulty with drawing ΣT is that they enter the model multiplicatively. For given θ,

however, simple algebraic manipulations of (1.1) yield a linear system in the log volatilities. A

consequence of applying these transformations is that they also convert εt into log ε2t , which is a

vector of logχ2 (1) random variables. The method of KSC relies on approximating each element of

log ε2t with a mixture of normals. Conditioning on the mixture indicators makes it possible to use

standard Gaussian state-space methods to conduct inference on the volatilities. As a consequence,

the Gibbs sampler is augmented to include the mixture indicators sT ≡ {st}Tt=1 that select the

component of the mixture for each variable at each date.

Primiceri (2005) adopts the following algorithm to obtain posterior draws for ΣT , sT and θ:

Algorithm 1 (original algorithm)

(1) Draw ΣT from p̃
(
ΣT |yT , θ, sT

)
(2) Draw sT from p̃

(
sT |yT ,ΣT , θ

)
(3) Draw θ from p

(
θ|yT ,ΣT

)
,

where the “˜” in step 1 and 2 indicates that the conditional posteriors of ΣT and sT correspond to

the product of their conditional priors by p̃(yT |ΣT , θ, sT ), i.e. the likelihood of the data conditional

on the components of the mixture-of-normals approximation of the logχ2 (1) distribution for each

date and variable. The conditional posterior of θ in step 3 is instead obtained using the true

likelihood implied by model (1.1), i.e. p
(
yT |ΣT , θ

)
.

There are two reasons why this algorithm does not yield draws from the correct posterior dis-

tribution of the model parameters. First of all, the algorithm alternates between the use of two

different likelihood functions: steps 1 and 2 of the sampler make use of the mixture-of-normals

approximation, to facilitate the draw of ΣT ; step 3, instead, uses the correct likelihood.

More important, the second problem with Algorithm 1 is related to the fact that it was conceived

as a Gibbs sampler with “blocks” ΣT , θ , and sT . In a Gibbs sampler, one has to draw from each

block conditional on all the others. However, the draw of θ in step 3 is not conditional on sT .

Primiceri (2005) erroneously assumed that conditioning on sT in step 3 does not make a difference,

but instead it does: the knowledge of which components of the mixture have been selected for
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each date and variable changes the likelihood of the data, thus affecting the conditional posterior

of θ. This simple observation exposes the problems of Algorithm 1, even abstracting from the

approximation error. In other words, Algorithm 1 would not yield draws from the correct posterior

even if we used an arbitrarily large number of mixture components to make the approximation

arbitrarily accurate.

3. A Gibbs Sampler with Different Blocking

Fixing this problem of Algorithm 1 by simply replacing step 3 with “Draw from p̃
(
θ|yT ,ΣT , sT

)
”

is not a viable option because εt|st in not Gaussian, which precludes the possibility of drawing easily

from p̃
(
θ|yT ,ΣT , sT

)
. An alternative strategy is to use a Gibbs sampler with different blocking.

Instead of using three blocks, ΣT , θ , and sT , one can use two blocks, i.e. ΣT and (θ, sT ). The

first step of the new sampler is to draw ΣT conditional on (θ, sT ) and the data yT . The second

step is to draw from the joint distribution of (θ, sT ) conditional on ΣT and the data. Of course,

drawing from the joint of
(
θ, sT

)
can be accomplished by drawing first from the marginal of θ and

then from the conditional of sT given θ. This yields the following algorithm (of which the online

appendix presents a more formal treatment):

Algorithm 2 (correct algorithm under no approximation error)

(1) Draw ΣT from p̃
(
ΣT |yT , θ, sT

)
(2) Draw (θ, sT ) from p̃

(
θ, sT |yT ,ΣT

)
, which is accomplished by

(a) Drawing θ from p
(
θ|yT ,ΣT

)
(b) Drawing sT from p̃

(
sT |yT ,ΣT , θ

)
,

where the “˜” notation in steps 1 and 2b continues to indicate the use of the auxiliary approximating

model—as opposed to the true likelihood—to facilitate the draw of the history of volatilities.

Like Algorithm 1, also Algorithm 2 alternates between the use of the correct and the approximate

likelihood. However, unlike Algorithm 1, Algorithm 2 has the property that it would yield draws

from the correct posterior in the hypothetical case in which the mixture of normals represented a

perfect approximation for the logχ2 (1) distribution, as we formally show in the online appendix. As

we stress in the next section, in practice, the mixture of normals is of course only an approximation

of the logχ2 (1) distribution. We therefore think of Algorithm 2 as a sampler from an approximate

posterior.

Finally, notice that the individual steps in Algorithms 1 and 2 are the same, but the order is

different: in Algorithm 2 the indicators sT are sampled after θ and before ΣT . Since the individual
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steps remain the same, they can all be implemented as in Primiceri (2005).1 Algorithm 2 is therefore

equivalent to switching steps (d) and (e) in the algorithm summarized in Appendix A.5 of Primiceri

(2005).2 This order is key to derive Algorithm 2 as a Gibbs sampler based on the two blocks ΣT

and (θ, sT ), and thus to justify the draw of θ from a posterior that does not conditions on sT .

4. Addressing the Approximation Problem

In this section we explicitly deal with the issue of the approximation error, recognizing the fact

that the finite mixture of normals is only used as an approximation of the logχ2 (1) distribution.

Stroud et al. (2003) show how to address this problem by turning step 1 of Algorithm 2 into

a Metropolis-Hastings step, where the distribution p̃
(
ΣT |yT , θ, sT

)
is used as a proposal density.

Specifically, we set up another algorithm, which we denote by Algorithm 3 (correct algorithm).

Steps 2a and 2b of Algorithm 3 are the same as in Algorithm 2. Step 1 is instead replaced with

a candidate draw from the proposal density p̃
(
ΣT |yT , θ, sT

)
. This draw is then accepted with

probability proportional to the ratio between the conditional density of the new and previous draw,

re-weighted by the ratio between the proposal density of the previous and the new draw, as standard

in each Metropolis-Hastings algorithm. If the candidate draw of ΣT is not accepted, the draw of

ΣT is set equal to the previous draw. The functional form of the acceptance probability is shown

in equation (11) of Stroud et al. (2003), and re-derived in our online appendix for the specific case

of our model.

A formal illustration of Algorithm 3 requires some investment in notation and is therefore rele-

gated to the online appendix. We stress that this sampler is correct (i.e. eventually yields the right

posterior density of ΣT and θ) regardless of the quality of the approximation, which matters only

for its efficiency. We also emphasize that a key step in Algorithm 3, as in Algorithm 2, consists in

integrating out the mixture components when drawing θ, which implies inverting the order of the

draws of ΣT and sT relative to the original Gibbs sampler. This is the main difference relative to

Primiceri (2005). The lesson of this note is that researchers using the KSC approach to estimate

VAR, DSGE, or factor models with time-varying volatility need to make sure they sample the indi-

cators sT right before the history of volatilities. Examples of such papers are numerous in the past

1In particular, step (2) can be implemented by drawing from p
(
BT |yT , AT , V,ΣT

)
, p

(
AT |yT , BT , V,ΣT

)
and

p
(
V |yT , AT , BT ,ΣT

)
.

2Section A.5 in Primiceri (2005) actually contains a typo: step (d) of the algorithm should be

p(sT |yT ,BT, AT ,ΣT , V ) as opposed to p(sT |yT , AT ,ΣT , V ). Unlike the conceptual mistake outlined in the previ-

ous section, this typo was inconsequential given that it is mechanically not possible to draw sT without conditioning

on BT .



TIME VARYING STRUCTURAL VECTOR AUTOREGRESSIONS: A CORRIGENDUM 5

decade, e.g. Justiniano and Primiceri (2008).3 This lesson also applies to unobserved components

models with stochastic volatility (e.g., Stock and Watson, 2007).

5. Consequences for the Results

In the online appendix, we have applied Geweke’s (2004) “Joint Distribution Tests of Posterior

Simulators” to further confirm that Algorithm 3 is fully correct, Algorithm 2 provides a close

approximation to the true posterior distribution, while Algorithm 1 provides a poor approximation.

In addition, we have re-estimated the model of Primiceri (2005) using Algorithm 2 and 3, and

compared the results to the original ones obtained with Algorithm 1.

Algorithm 2 generates results that are indistinguishable from those obtained with Algorithm 3,

suggesting that the mixture-of-normals approximation error involved in the procedure of KSC is

negligible in our application (as it was in theirs). The results based on Algorithm 2 and 3 are

instead not the same as those obtained with Algorithm 1, albeit qualitatively similar. The main

difference is that some estimates of the time-varying objects are now smoother. The full set of new

results can be found in the online appendix.
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