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Abstract

We estimate vector autoregressions with drifting coefficients and stochastic
volatility for post WWII U.S. inflation. To make contact with the concept of
inflation incorporated in recent DSGE models, we focus on the inflation gap,
defined as the deviation of inflation from a pure random-walk component of
inflation. We measure the persistence of the inflation gap in terms of short- to
medium-term predictability. We present evidence that inflation-gap persistence
increased until Volcker brought mean inflation down in the early 1980s and that
it then fell during the chairmanships of Volcker and Greenspan. We interpret
these changes in terms of estimates of a dynamic new Keynesian model that
highlight the importance of changes in the central bank’s inflation target.

This paper studies whether inflation persistence changed after the Great Inflation.

The literature reports mixed evidence on this question, with some authors contending

that inflation persistence has declined (e.g. Timothy Cogley and Thomas J. Sargent

2001 and 2005a) and others maintaining that it is unchanged (e.g., Christopher A.

Sims 2001, James H. Stock 2001, and Frederick Pivetta and Ricardo A. Reis 2007).

One reason for the disagreement is that the literature looks at diverse features of
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the inflation process. Some papers focus on inflation itself, while others examine the

inflation gap,1 which we define as the difference between inflation and the Federal

Reserve’s long-run target for inflation. We agree that inflation remains persistent,

principally because of drift in target inflation. But we argue below that the inflation

gap has become less persistent since the Volcker disinflation.

Distinguishing between inflation and the inflation gap resolves some elements of

the controversy but not all. Another source of disagreement is that previous evidence

on inflation-gap persistence is itself inconclusive. For instance, estimates reported

by Cogley and Sargent (2001 and 2005a) suggest a decline, but the estimates are

imprecise and statistically insignificant, leaving open the possibility that inflation-

gap persistence remains unchanged. Here we report new evidence of a statistically

significant decrease in persistence after the Volcker disinflation. The main reason

we obtain stronger results is that we introduce a new measure of persistence based

on short- and medium-term predictability. Our new measures are estimated more

precisely, so we can now say that it is very likely that inflation-gap persistence declined

after the Great Inflation.

We organize the discussion as follows. We begin by explaining why we focus on

the inflation gap. Then we describe a vector autoregressions with drifting parameters

and stochastic volatility similar to those of Cogley and Sargent (2005a) and Giorgio

E. Primiceri (2005). We use these statistical models to define trend inflation and to

focus attention on the inflation gap.

Next we define a measure of persistence in terms of inflation-gap predictability, in

particular, as the fraction of total inflation-gap variation j quarters ahead that is due

to past shocks.2 We say that the inflation gap is weakly persistent when the effects of

shocks decay quickly and that it is strongly persistent when they decay slowly. When

the effects of past shocks die quickly, future shocks account for most of the variation

in the inflation gap, pushing our measure close to zero. But when the effects of past

shocks decay slowly, they account for a higher proportion of near-term movements,

pushing our measure of persistence closer to one. Thus, a large fraction of variation

over short to medium horizons that is due to past shocks signifies strong persistence

1Some of our own earlier work is vague about the feature of interest. For instance, calculations in
Cogley and Sargent (2001 and 2005a) pertain to the inflation gap, but the text refers misleadingly
to inflation persistence. One goal of this paper is to clarify this issue.

2This measure is inspired by Robert B. Barsky (1987) and Francis X. Diebold and Lutz Kilian
(2001).
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and a small fraction indicates weak persistence. Under a convenient approximation,

our measure is the R2 statistic for j-step ahead inflation-gap forecasts.3 Heuristically,

a connection between predictability and persistence arises because past shocks give

rise to forecastable movements, while future shocks contribute to forecast errors.

Hence, the continuing influence of past shocks can be measured by the proportion of

predictable variation in the inflation gap.

We deduce persistence measures from the posterior distribution of a drifting-

parameter VAR, then study how they have changed since the Great Inflation. A key

finding is that inflation gaps were highly predictable circa 1980, but are much less so

now. Furthermore, the evidence of declining persistence is statistically significant at

conventional levels.

After reviewing the purely descriptive statistical evidence, we use a simple dy-

namic new Keynesian model to examine what caused changes in the law of motion

for inflation. We find that both monetary policy and non-policy factors contributed to

the decline in persistence. With respect to monetary policy, the chief improvement

is not a more aggressive reaction to inflation a la Richard H. Clarida, Jordi Gali,

and Mark Gertler (2000) or Thomas A. Lubik and Frank Schorfheide (2004), but

rather that the Fed’s long-run inflation target was better anchored after the Volcker

disinflation. This is because changes in the inflation target induce very persistent

inflation-gap dynamics. The post-Volcker improved stability of the long-run inflation

objective reduces the relative importance of this persistent component. Among non-

policy factors, we find that mark-up shocks became less volatile and persistent after

the mid-1980s, and this also contributed to changes in the law of motion for inflation.

Finally, the paper concludes by relating our work to the broader literature and

suggesting directions for further research.

1 Why we focus on the inflation gap

We decompose inflation πt into two parts, a stochastic trend τt that (to a first-order

approximation) evolves as a driftless random walk, and an inflation gap gt = πt − τt

that represents temporary differences between actual and trend inflation. In general

3Strictly speaking, we should say ‘pseudo forecasts’ because we neglect complications associated
with real-time forecasting. This is not a shortcut; it is intentional. Our goal is to make retrospective
statements about inflation persistence. To attain as much precision as possible, we use ex post
revised data and estimate parameters using data through the end of the sample.
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equilibrium models, trend inflation is typically pinned down by a central bank’s long-

run target. Accordingly, we associate movements in trend inflation with shifts in the

Federal Reserve’s target. Because trend inflation is a driftless random walk, actual

inflation has a unit autoregressive root and is highly persistent. In our view, target

inflation has not stopped drifting, though its conditional variance has declined.4

The inflation gap measures the difference between actual inflation and the central

bank’s long-run target. Many papers on optimal monetary policy assume that the

central bank minimizes a quadratic loss function that, among other things, penalizes

variation in the inflation gap.5 In those settings, an optimal policy rule renders the

inflation gap stationary, for otherwise the central bank’s loss would be unbounded.

An optimal policy eventually brings inflation back to the bank’s long-run target.

Inflation-gap persistence measures the rate at which convergence to the long-run tar-

get can be expected to occur, a rate that depends on interactions between the mone-

tary policy rule and private sector behavior. Our objective is to measure inflation-gap

persistence, to assess evidence for its changes over time, and to interpret those changes

in light of a dynamic new Keynesian model.

Whether persistence in raw inflation or in the inflation gap is more interesting

depends on the context. On the one hand, for pricing long-term nominal bonds, per-

sistence in raw inflation is more relevant. A number of authors explain the volatility

of long-term bond yields by pointing to shifts in the Fed’s long-term target (e.g.,

see Sharon Kozicki and Peter A. Tinsley 2001 and Andrew Ang, Jean Boivin, and

Sen Dong 2007). On the other hand, for understanding the speed and effectiveness

with which a Central Bank brings inflation in proximity to its target, inflation-gap

persistence is more salient.6

4For evidence that the innovation variance for τt has declined, see Stock and Mark W. Watson
(2007).

5Frequently this assumption is tacit, as the inflation target is often assumed to be constant.
6Cogley and Argia M. Sbordone (2008) exploit the distinction between inflation and inflation-gap

persistence to resolve a puzzle involving the new Keynesian Phillips curve (NKPC). A number of
studies that base estimation on raw inflation data conclude that purely forward-looking versions of
the NKPC generate too little inflation persistence. To repair that shortcoming, various researchers
have tacked on ad hoc backward-looking elements. But the NKPC is typically derived using a log-
linear approximation around an inflation target of zero, so that what is called inflation in that model
is better thought of as the inflation gap. When Cogley and Sbordone fit their model to measures
of the inflation gap, backward-looking elements drop out, and a purely forward-looking version fit
well.
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2 A VAR

As in Cogley and Sargent (2005a) and Primiceri (2005), we estimate VARs with

drifting parameters and stochastic volatility. Our model can be cast as follows,

yt = X ′
t−1θt−1 + εyt, (1)

θt = θt−1 + εst. (2)

Equation (1) is the measurement equation for a state-space representation, and equa-

tion (2) is the state equation. The vector yt contains current observations on inflation,

unemployment, and a short-term nominal interest rate, and Xt−1 includes constants

plus two lags of yt. The parameter vector θt evolves as a driftless random walk subject

to a reflecting barrier that guarantees nonexplosive VAR roots at every date. The

state and measurement innovations εst and εyt are conditionally normal with mean

zero and variances Qt and Rt, respectively. We assume that εst and εyt are distributed

independently.7

The matrices Qt and Rt have the form

var(εst) = Qt = B−1
s HstB

−1′
s , (3)

var(εyt) = Rt = B−1
y HytB

−1′
y , (4)

where Hst and Hyt are diagonal and Bs and By are lower triangular. The diagonal

elements of Hst and Hyt are independent, univariate stochastic-volatility processes

that evolve as driftless, geometric random walks:

ln hj,t = ln hj,t−1 + σjηjt, (5)

j = 1, ..., dim(εit), i = s, y. The volatility innovations ηjt are standard normal variates,

and the variance of Δ ln hjt depends on the free parameter σj. For tractability and

7This assumption is problematic because it implies that shifts in target inflation are unrelated
to news about inflation and other macroeconomic variables. Our preferred theory is that the Fed
chooses its inflation target and revises it in response to changes in its beliefs about the structure
of the economy (e.g., see Sargent 1999, Cogley and Sargent 2005b, Primiceri 2006, and Sargent,
Noah M. Williams, and Tao Zha 2006). The learning models developed in those papers imply that
state and measurement innovations should be correlated. For that reason, Cogley and Sargent (2001)
estimated a time-varying VAR with correlated state and measurement innovations, but with constant
innovation variances. We have experimented with models incorporating both time-varying volatility
and correlated state and measurement innovations, but we have not succeeded in estimating them
because our simulations fail to converge. We leave this important problem for future research.
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parsimony, we assume that the volatility innovations are mutually independent and

also independent of the normalized state and measurement innovations. The lower-

triangular matrices Bs and By have 1’s along the main diagonal and free parameters

below. For example, if dim(εit) = n,

Bi =

⎡
⎢⎢⎣

1 0 0 0
β21 1 0 0
... ... ... ...
βn1 ... βn,n−1 1

⎤
⎥⎥⎦ . (6)

Specification (3)-(6) is convenient for modeling recurrent persistent changes in vari-

ances. Among other things, it ensures that Qt and Rt are positive definite and allows

for time-varying correlations between vectors of innovations.

This model extends those of Cogley and Sargent (2005a) and Primiceri (2005)

by allowing stochastic volatility in the parameter innovations. Our earlier papers

allowed for stochastic volatility in the VAR innovations but assumed a constant state-

innovation variance, Qt = Q. This extension is motivated by one of Stock and

Watson’s (2007) results. In a univariate unobserved-components model for inflation,

they found evidence of a decline in the innovation variance for trend inflation after

the Volcker disinflation. This feature of the data will be important later when we use

a DSGE model to interpret the causes of changes in the law of motion for inflation.

In what follows, we make frequent use of the companion form of a VAR,

zt+1 = μt + Atzt + εzt+1. (7)

The vector zt includes current and lagged values of yt, the vector μt contains the VAR

intercepts, and the companion matrix At contains the autoregressive parameters. We

use the companion form for multi-step forecasting. When we do that, we approximate

multi-step forecasts by assuming that VAR parameters will remain constant at their

current values going forward in time. This approximation is common in the literature

on bounded rationality and learning, being a key element of an ‘anticipated-utility’

model (David M. Kreps 1998). In other papers, we have found that it does a good job

of approximating the mean of Bayesian predictive densities (e.g., see Cogley, Sergei

Morozov, and Sargent 2005 and Cogley and Sargent 2008).

With this assumption, we can form local-to-date t approximations to the moments

of zt. For the unconditional mean, we follow Stephen Beveridge and Charles R. Nelson

(1981) by defining the stochastic trend in zt as the value to which the series is expected
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to converge in the long run, z̄t = limh→∞ Etzt+h. With θt held constant at its current

value, we approximate this as

z̄t ≈ (I − At)
−1μt. (8)

To a first-order approximation, z̄t evolves as a driftless random walk,8 implying that

inflation and the other variables in yt have a unit root. We interpret the stochastic

trend in inflation as an estimate of target inflation. Thus, τt = eπz̄t, where eπ is a

selector vector.

Having assumed that z̄t is a driftless random walk, the stability constraint on

At just rules out a second unit or explosive root. There is an emerging consensus

that the price level is best modeled as an I(2) process; few observers think that it is

I(3). The stability constraint rules out an I(3) representation. Similarly, although

the natural rate of unemployment and real interest might drift, their first differences

probably do not.

After subtracting z̄t from both sides of (7) and invoking the anticipated-utility

approximation, we get a forecasting model for gap variables,

(zt+1 − z̄t) = At(zt − z̄t) + εz,t+1. (9)

We approximate j-period-ahead forecasts of gap variables as Aj
t ẑt, where ẑt = zt− z̄t,

9

and we approximate the forecast-error variance by

vart(ẑt+j) ≈
∑j−1

h=0
(Ah

t )var(εz,t+1)(A
h
t )

′. (10)

To approximate the unconditional variance of ẑt+1, we take the limit of the conditional

variance as the forecast horizon j increases,10

var(ẑt+1) ≈
∑∞

h=0
(Ah

t )var(εz,t+1)(A
h
t )

′. (11)

Under the anticipated-utility approximation, this is also the unconditional variance

of ẑt+s for s > 1.

8A first-order Taylor series approximation makes z̄t a linear function of θt, which evolves as a
driftless random walk.

9By the anticipated-utility approximation, Etz̄t+j = z̄t. This is a good approximation because z̄t

is a driftless random walk to a first-order approximation.
10This is a second-moment counterpart of the Beveridge-Nelson trend.
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3 Persistence and predictability

A second difference relative to our earlier papers concerns how we measure per-

sistence. Our earlier work characterizes inflation-gap persistence in terms of the

normalized spectrum at frequency zero. Here we introduce statistics that measure

short- and medium-term predictability. These are estimated more precisely, making

it possible to obtain sharper results.

To measure persistence at a given date t, we calculate the fraction of the total

variation in gt+j that is due to shocks inherited from the past relative to those that will

occur in the future. This is equivalent to 1 minus the fraction of the total variation

due to future shocks. Since future shocks account for the forecast error, that fraction

can be expressed as the ratio of the conditional variance to the unconditional variance,

R2
jt = 1 − vart(eπẑt+j)

var(eπ ẑt+j)
≈ 1 −

eπ

[∑j−1
h=0(A

h
t )var(εzt+1)(A

h
t )

′
]
e′π

eπ

[∑∞
h=0(A

h
t )var(εzt+1)(Ah

t )
′] e′π

. (12)

We label this R2
jt because it is analogous to the R2 statistic for j-step ahead

forecasts. This fraction must lie between zero and one, and it converges to zero as

the forecast horizon j lengthens.11 Whether it converges rapidly or slowly reflects the

degree of persistence. If past shocks die out quickly, the fraction converges rapidly

to zero. But if one or more shocks decay slowly, the fraction may converge only

gradually to zero, possibly remaining close to one for some time. Thus, for small or

medium j ≥ 1, a small fraction signifies weak persistence and a large fraction strong

persistence.

This ratio depends on all of the parameters of the companion matrix At. Some-

times economists summarize persistence in a VAR by focusing on the largest autore-

gressive root in At. This is problematic for two reasons. One is that the largest root

could be associated not with inflation but with another variable in the VAR. Hence

the largest root of At might exaggerate persistence in the inflation gap. Another

problem is that two large roots could matter for inflation, in which case the largest

root of At would understate the degree of persistence. We think it is important to

retain all the information in At.

Nevertheless, (12) is not entirely satisfactory because it depends on the conditional

variance Vt+1 in addition to the conditional mean parameters At. Changes in Vt+1

11This follows from the stability constraint on At.
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that take the form of a scalar multiplication are not a problem because the scalar

cancels in numerator and denominator. But R2
jt is not invariant to other changes in

Vt+1. For instance, our measure of persistence would be reduced by a change in the

composition of structural shocks away from those whose impulse response functions

decay slowly and toward those whose impulse response functions vanish quickly.

This problem relates to questions about why inflation persistence has changed,

not whether it has changed. For the moment, we want to focus on the latter. We

think that assembling descriptive statistical evidence about inflation persistence is a

useful first step. We prefer to use a structural model for causal interpretation, as for

example in section 5.

In what follows, we focus on horizons of 1, 4, and 8 quarters, those being the most

relevant for monetary policy. We calculate values of R2
jt implied by drifting-parameter

VARs and study how they have changed over time.

4 Properties of inflation

We study two measures of inflation, namely, the log-differences of the GDP and

PCE chain-weighted price indices. Stock and Watson (2007) examine GDP inflation.

Colleagues in the Federal Reserve system encouraged us to look at PCE inflation as

well, saying that the Fed pays more attention to the PCE for policy purposes.12

The VAR also conditions on unemployment and a short-term nominal interest

rate. Unemployment is measured by the civilian unemployment rate. The original

monthly series was converted to a quarterly basis by sampling the middle month

of each quarter. To guarantee that expectations of the unemployment rate always

lie between 0 and 1, we specify the VAR in terms of the logit of the unemployment

rate. The secondary market rate on three-month Treasury bills measures the nominal

interest rate. The nominal interest data are also sampled monthly, and we converted

to a quarterly series by selecting the first month of each quarter in order to align the

interest rate as well as possible with inflation.

The inflation and unemployment data are seasonally adjusted, and the sample

spans the period 1948.Q1 to 2006.Q4. The data are available from the Federal Reserve

12Fed officials prefer the PCE because it measures the cost of consumption goods and hence is
more closely related to the cost of living. Being a chain-weighted index, the PCE is subject to less
substitution bias than the CPI.
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Economic Database (FRED) and have FRED mnemonics GDPCTPI, PCECTPI,

UNRATE, and TB3MS, respectively.

Our priors are described in the appendices. For the most part, they follow our

earlier papers. Our guiding principle was to use proper priors to ensure that the

posterior is proper, but to make the priors as weakly informative as possible, so

that the posterior is dominated by information in the data.13 The posteriors were

simulated using Markov Chain Monte Carlo algorithms, details of which can also be

found in the appendices.

4.1 Trend inflation and inflation volatility

A number of our findings resemble those reported elsewhere (e.g. Cogley and

Sargent 2005a, Stock and Watson 2007). We briefly touch on them before moving on

to novel results.

Figure 1 portrays the posterior median and interquartile range for trend inflation,

with estimates for GDP inflation shown in the left panel and those for PCE inflation

in the right. The estimates are conditioned on data through 2006.Q4. Hence, the

figure presents a retrospective interpretation of the data.
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Figure 1: Trend Inflation

The estimates differ in some details from those reported elsewhere, but the broad

contour is the same. Trend inflation was low and steady in the early 1960s,began

rising in the mid-1960s, and attained twin peaks near the times of the 1970s oil

13We think this is appropriate for exploratory data analysis. However it means that we cannot
compare models via Bayes factors for reasons having to do with the Lindley paradox. E.g., see Alan
E. Gelfand (1996).
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shocks. It fell sharply during the Volcker disinflation and then settled down to the

neighborhood of 2 percent after the mid-1990s.

Figure 2 summarizes changes in inflation volatility. Once again, we plot the pos-

terior median and interquartile range at each date. The top row shows the standard

deviation for the inflation innovation, and the bottom plots a local-to-date-t approx-

imation to the unconditional standard deviation of the inflation gap.14.
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Figure 2: Inflation Volatility

The innovation variance remains roughly constant for most of the sample, except

for a spike in the late 1970s and early 1980s when the Fed was targeting monetary

aggregates. The unconditional variance for the inflation gap also spikes around that

time, but the magnitude of the spike is much greater. In the early 1980s, the standard

deviation of inflation innovations rose by about 10 basis points, an increase of roughly

20 percent. At the same time, the unconditional standard deviation of the inflation

gap increased by roughly 4 percentage points, or about 200 percent. Hence changes

in the innovation variance account for a relatively small proportion of changes in the

unconditional variance.

14This approximation is defined in eq. (11)
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Stock and Watson (2007) assume that the transitory component of inflation is a

martingale difference, and they find that its variance is roughly constant throughout

the sample. For a martingale difference, the two measures of volatility shown in

figure 2 coincide. Apart from the spike around 1980, we find that the innovation

variance for inflation is roughly constant, and in that respect our estimates agree with

theirs. However, we also find a substantial decline in the unconditional variance of the

inflation gap after the Volcker disinflation. Our model differs from theirs by allowing

for serial dependence in the inflation gap, possibly with time-varying persistence. In

principle, a decline in persistence could account for the patterns shown in figure 2.

In what follows, we look more closely into this question.

4.2 Has the inflation gap become less persistent?

To focus more clearly on changes in persistence, we turn to evidence on inflation-

gap predictability. For each draw in the posterior distribution, we calculate R2
jt

statistics as in equation (12) and then study how they change during and after the

Great Inflation. Figure 3 portrays the posterior median and interquartile range for

R2
jt at each date for j = 1, 4, and 8 quarters.

The top row refers to 1-quarter ahead forecasts. In the mid 1960s, VAR pseudo

forecasts accounted for approximately 50 to 55 percent of the variation of the infla-

tion gap (see footnote 3 for why we say ‘pseudo’). During the Great Inflation, this

increased to more than 90 percent and at times approached 99 percent. The inflation

gap became less predictable during the Volcker disinflation, and after that R2
1t settled

to the neighborhood of 50 percent.

The second and third rows refer to 4 and 8 quarter forecasting horizons. As

expected, R2
jt statistics are lower for longer horizons. For j = 4, VAR pseudo forecasts

accounted for roughly a quarter of the inflation-gap variation in the mid 1960s, for

approximately 50 to 75 percent during the Great Inflation, and for about 15 percent

after the Volcker disinflation. For j = 8, the numbers follow a similar pattern but are

lower. VAR pseudo forecasts accounted for about 10 percent of inflation-gap variation

in the mid-1960s, for 20 to 35 percent during the mid 1970s and early 1980s, and for 10

percent or less after the Volcker disinflation. Taken at face value, the figure suggests

the inflation gap was more persistent during the Great Inflation and less persistent

after the mid-1980s.
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Figure 3: R2
t,j Statistics

The controversy about inflation-gap persistence hinges not on the evolution of

the posterior median or mean, however, but rather on whether changes in R2
jt are

statistically significant. To assess this, we examine the joint posterior distribution

for (R2
jt, R

2
jτ) across pairs of time periods (t, τ). There are many possible pairs, of

course, and to make the problem manageable we concentrate on two pairs, 1960-1980

and 1980-2004. The years 1960 and 2006 are the beginning and end of our sample,

respectively. We chose 1980.Q4 because it was the eve of the Volcker disinflation and

because it splits the sample roughly in half. However, the results reported below are

not particularly sensitive to this choice. Dates adjacent to 1980.Q4 tell much the

same story.

Figure 4 depicts a number of pairwise comparisons for R2
1t. The top row plots the

joint distribution for the years 1980 and 2006, with values of R2
1,1980 plotted on the
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x-axis and the associated value of R2
1,2006 shown on the y-axis. Similarly, the bottom

row portrays the joint distribution for the years 1960 and 1980, with values for 1960

on the x-axis and those for 1980 on the y-axis.15
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Figure 4: Joint Distribution for R2
1 Statistics, 1960-80 and 1980-2006

Each point in the respective panels represents a draw from the joint distribution

for years x and y. Thus, combinations clustered near the 45 degree line represent

pairs for which there was little or no change between years x and y. Those below the

45 degree line represent a decrease in predictability (R2
1,y < R2

1,x), while those above

the 45 degree line represent increasing persistence (R2
1,y > R2

1,x). Very few points

lie close to the 45 degree line. On the contrary, in the top row, virtually the entire

distribution lies below the 45 degree line, signifying that R2
1,1980 > R2

1,2004 with high

probability. Similarly, in the bottom row, most of the point lie above the 45 degree

line, signifying that R2
1,1960 < R2

1,1980 with high probability.

15Our MCMC algorithm generates draws of sequences of R2
1t for t = 1, ..., T , thus capturing

dependence across t. We discard most of those time periods, retaining only 1960.Q4, 1980.Q4, and
2006.Q4. Each panel is a scatterplot of joint outcomes for a pair of those years.
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Table 1 records the fraction of posterior draws for which R2
jt declined between

1980 and 2006. For 1-step ahead pseudo forecasts, the probability of a decline is

99.5 and 98.5 percent, respectively, for GDP and PCE inflation, thus confirming

the visual impression conveyed by the figure. For 4- and 8-quarter ahead forecasts,

the joint distributions are less tightly concentrated than those shown above, and the

probabilities are a bit lower. Nevertheless, at the 4-quarter horizon, the probability of

a decline in R2
jt is 96.5 percent for GDP inflation and 94.3 percent for PCE inflation.

At the 8-quarter horizon, the probabilities are and 90.1 and 89.6 percent, respectively,

for the two inflation measures.

Table 1: Probability of Changing R2
jt

GDP Inflation
pair 1 Quarter Ahead 4 Quarters Ahead 8 Quarters Ahead

1980, 2006 0.995 0.965 0.909
1960, 1980 0.992 0.944 0.868

PCE Inflation
pair 1 Quarter Ahead 4 Quarters Ahead 8 Quarters Ahead

1980, 2006 0.985 0.943 0.896
1960, 1980 0.969 0.845 0.773

Table 1 also reports the probability of an increase in R2
j,t between 1960 and 1980.

For GDP inflation, this probability is 99.2 percent for 1-quarter ahead pseudo fore-

casts, 94.4 percent for 1-year ahead forecasts, and 86.8 percent for 2-year ahead

forecasts. The probabilities are lower for PCE inflation, but the results still point to

a significant change in predictability at the 1-quarter horizon.

Thus, statistically significant evidence for changes in inflation-gap persistence

emerges from VARs. Estimates of R2
1t put posterior probabilities above 96 percent

on an increase in persistence during the Great Inflation and a decline in persistence

after the Volcker disinflation. The results for 4-quarter ahead forecasts also point in

this direction, standing at the 94 or 96 percent levels for a fall in persistence in the

second half of the sample and straddling the 90 percent level for a rise in the first

half. The results for 2-year ahead forecasts hint at a change in persistence, but fall

short of statistical significance.
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The main reason we obtain stronger results than in our earlier papers is that we

examine a different measure of persistence. Our earlier papers characterized inflation-

gap persistence in terms of the normalized spectrum at frequency zero. That statistic

is estimated less precisely than R2
jt, and had we used it here the results would still

be statistically insignificant. Measure of short- and medium-term predictability are

estimated more precisely, producing sharper results.

One aspect of the results that might be a cause for concern is that the distribution

of R2
1t clusters near its upper bound of unity during much of the Great Inflation.

Taken at face value, that means the inflation gap had a near unit root at that time.

One possible explanation involves the Fed’s attitude toward disinflation. According

to Cogley and Sargent (2005b) and Primiceri (2006), the Fed sought lower inflation

throughout this period but wanted to disinflate very slowly. A policy of very gradual

disinflation could make the inflation gap highly persistent and account for the pileup

near unity.

Alternatively, the pileup might reflect model misspecification. For instance, sup-

pose there were a spike in the trend innovation variance at some date, associated

with a big jump in the true value of τt. If for some reason the model underesti-

mated the trend innovation variance at that date, estimates of τt would not be able

to jump by as much of the true value and would instead approach the true value in

a sequence of smaller steps. The model’s autoregressive parameters would compen-

sate by adding persistence, moving at least one of the VAR roots toward unity. Our

stochastic volatility specification allows jumps in τt, but the model is complicated and

high dimensional and might not fully capture this feature of the data. More research

directed toward estimating models with jumps would be helpful for addressing this

concern.

5 A More Structural Analysis

In this section we offer a structural explanation of the statistical findings presented

above. We estimate a New-Keynesian model along the lines of Julio J. Rotemberg and

Michael Woodford (1997) and Jean Boivin and Marc P. Giannoni (2006). However,

differently from these studies, we allow for the Central Bank’s inflation target to

change over time. Our goal is to construct and estimate a simple model to help us

understand the causes of the declines observed in the volatility and predictability of
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inflation.

5.1 The model

The model economy is populated by a representative household, a continuum of

monopolistically competitive firms, and a government. The representative household

maximizes

Et

∞∑
s=0

δsbt+s

[
log (Ct+s − hCt+s−1) − ϕ

∫ 1

0

Lt+s (i)1+ν

1 + ν
di

]
, (13)

subject to a sequence of budget constraints∫ 1

0

Pt (i) Ct (i) di + Bt + Tt ≤ Rt−1Bt−1 + Πt +

∫ 1

0

Wt (i) Lt (i) di. (14)

Bt represents government bonds, Tt denotes lump-sum taxes and transfers, Rt is the

gross nominal interest rate, and Πt the profits that firms pay to the household. Ct is

a Dixit-Stigliz aggregator of differentiated consumption goods,

Ct =

[∫ 1

0

Ct(i)
1

1+θt di

]1+θt

. (15)

Pt is the associated price index, Lt (i) denotes labor of type i that is used to produce

differentiated good i, and Wt (i) is the corresponding nominal wage. The coefficients

h and ν set the degree of internal habit formation and the inverse Frisch elasticity

of labor supply, respectively. Finally, bt and θt are exogenous shocks that follow the

stochastic processes

log bt = ρb log bt−1 + εb,t (16)

log θt = (1 − ρθ) log θ + ρθ log θt−1 + εθ,t.

The random variable bt is an intertemporal preference shock perturbing the discount

factor, and θt can be interpreted as a shock to the firms’ desired mark-up.

Each differentiated consumption good is produced by a monopolistically compet-

itive firm using a linear production function,

Yt(i) = AtLt(i), (17)
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where Yt (i) denotes the production of good i, and At represents aggregate labor

productivity. We model At as a unit root process with a growth rate zt ≡ log(At/At−1)

that follows the exogenous process

zt = (1 − ρz)γ + ρzzt−1 + εz,t. (18)

As in Guillermo A. Calvo (1983), at each point in time a fraction ξ of firms

cannot re-optimize their prices and simply indexes them to the steady-state value

of inflation. Subject to the usual cost-minimization condition, a re-optimizing firm

chooses its price (P̃t(i)) by maximizing the present value of future profits,

Et

∞∑
s=0

ξsδsλt+s

{
P̃t(i)π

sYt+s(i) − Wt+s (i) Lt+s(i)
}

, (19)

where π is the gross rate of inflation in steady state and λt+s is the marginal utility

of consumption.

The monetary authority sets short-term nominal interest rates according to a

Taylor rule,

Rt

R
=

(
Rt−1

R

)ρR

[(
π̄4,t

(π∗
t )

4

)φπ
4

(
Yt

Y ∗
t

)φY

]1−ρR

eεR,t . (20)

The central bank smooths interest rates and responds to two gaps, the deviation of

annual inflation (π̄4,t) from a time-varying inflation target and the difference between

output and its flexible price level. R is the steady-state value for the gross nominal

interest rate and εR,t is a monetary policy shock that we assume to be i.i.d.

Following Peter N. Ireland (2007), we model the inflation target π∗
t as an exogenous

random process,

log π∗
t = (1 − ρ∗) log π + ρ∗ log π∗

t + ε∗,t. (21)

There are many reasons that the Central Bank’s inflation target might vary over time.

Our favorite one is that the central bank adjusts its target as it learns about the

structure of the economy. For instance, Sargent (1999), Cogley and Sargent (2005b),

Primiceri (2006), and Sargent, Williams, and Zha (2006) hypothesize that changing

beliefs about the output-inflation tradeoff generated a pronounced low-frequency,

hump-shaped pattern in inflation. We approximate outcomes of this learning process

by an exogenous random variable like (21).16

16As in Ireland (2007), we also experimented with a model in which target inflation evolves
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5.2 Model solution and observation equation

Since the technology process At is assumed to have a unit root, consumption, real

wages, and output evolve along a stochastic growth path. To solve the model, we first

rewrite it in terms of deviations of these variables from the technology process. Then

we solve the log-linear approximation of the model around the non-stochastic steady

state. We specify the vector of observable variables as [log Yt − log Yt−1, πt, Rt]. For

estimation, we use data on per-capita GDP growth, the quarterly growth rate of the

GDP deflator, and the Federal funds rate.17

5.3 Bayesian inference and priors

We use Bayesian methods to characterize the posterior distribution of the model’s

structural parameters. Table 2 reports our priors. These priors are relatively disperse

and are broadly in line with those adopted in previous studies (see, for instance, Marco

Del Negro, Frank Schorfheide, Frank Smets and Rafael Wouters 2007 or Alejandro

Justiniano and Giorgio Primiceri 2008). But a few items deserve discussion.

• We set the Frisch elasticity of labor supply (1/ν) to 0.5 and the steady-state

price mark-up (θ) to 10%. These parameters only enter the slope of the Phillips

curve and are not identified separately from the degree of price stickiness ξ.

Since we treat ξ as a free parameter, we must calibrate ν and θ.

• For all but two persistence parameters, we use a Beta prior with mean 0.6

and standard deviation 0.2. One exception concerns labor productivity, which

already includes a unit root. For this reason, we center the prior for the autocor-

relation of its growth rate (ρz) at 0.4. The other exception is the autocorrelation

of the inflation target shock, which we calibrate to 0.995. In other words, we

restrict π∗
t so that it captures low-frequency movements in inflation.18

• Because it governs the rate at which π∗
t drifts, the standard deviation of the

innovation to the inflation target is a crucial parameter in our analysis. We

partly endogenously in response to innovations in technology and the mark-up. However, with
uninformative priors on these new coefficients, we found that variation in π∗

t is still driven primarily
by the exogenous shock ε∗,t. The results for that version of the model are almost identical to those
presented below.

17These variables are standard for estimating small-scale DSGE models (see, for instance, Boivin
and Giannoni 2006).

18Section 5.6 describes the results of an alternative specification of the model where we set ρ∗ = 1.
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want a weakly informative prior in order to let the data dominate the posterior.

Accordingly, we adopt a uniform prior on (0,0.15). For the standard deviations

of the other shocks, we follow Del Negro et al. (2007) by choosing priors that

are fairly disperse and that generate realistic volatilities for the endogenous

variables.

• In light of the results of Clarida et al. (2000) and Lubik and Schorfheide (2004),

we experimented with a model with indeterminate equilibrium outcomes. How-

ever, identification was very weak. Moreover, such a model increased the value

of the likelihood and posterior at the mode only slightly, while introducing sev-

eral additional free parameters. As a consequence, we decided to truncate the

prior at the boundary of the determinacy region.

Table 2: Priors for Structural Parameters

Coefficient Prior

ν
θ

100γ
100 (π − 1)

100 (δ−1 − 1)
h
ξ
φπ

φy

ρR

ρz

ρθ

ρ∗
ρb

100σR

100σz

100σθ

100σ∗
100σb

Density Mean Standard Deviation
Calibrated 2 −
Calibrated 0.1 −
Normal 0.475 0.025
Normal 0.5 0.1
Gamma 0.25 0.1

Beta 0.5 0.1
Beta 0.66 0.1

Normal 1.7 0.3
Gamma 0.3 0.2

Beta 0.6 0.2
Beta 0.4 0.2
Beta 0.6 0.2

Calibrated 0.995 −
Beta 0.6 0.2

Inverse Gamma 0.15 1
Inverse Gamma 1 1
Inverse Gamma 0.15 1

Uniform 0.075 0.0433
Inverse Gamma 1 1
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5.4 Estimation Results

We estimate the model separately on two subsamples.19 The first, 1960:I -

1979:III, corresponds approximately to the period of rising inflation before the Volcker

chairmanship. The second period, 1982:IV - 2006:IV, corresponds to the Volcker and

Greenspan chairmanships, excluding the years of monetary targeting, for which the

Taylor rule might not represent an appropriate description of systematic monetary

policy (see, for instance, Sims and Zha 2006 or Michael S. Hanson 2006). Figure 5

presents the model-implied evolution of the Central Bank inflation objective. Notice

that it resembles quite closely the VAR-based estimate of the permanent component

of inflation plotted in figure 1.
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Figure 5: The Central Bank’s Inflation Target

Table 3 reports estimates of the structural parameters. While many coefficients

are similar across subsamples, there are some important differences. For example,

we find that the Taylor-rule coefficient for inflation (φπ) increased from 1.55 in the

first subsample to 1.78 in the second. While an increase is consistent with findings

of Clarida, et al. (2000) and Lubik and Schorfheide (2004), we do not find values of

φπ in the pre-1980 period as low as they do. This might be due to the fact that, for

simplicity, we have ruled out indeterminacy a priori. Another possibility is that the

presence of a time-varying inflation target reduces the difference between reactions

to inflation in the two subsamples.

19The literature on estimation of DSGE models with drifting parameters and stochastic volatility
is progressing (see, for instance, Jesus Fernandez-Villaverde and Juan Rubio-Ramirez 2008), but
a number of computational challenges remain before these techniques can be applied to a model
like ours. In particular, Fernandez-Villaverde and Rubio-Ramirez restrict attention to models with
a single drifting parameter, while Cogley (2008) emphasizes the importance of allowing several
parameters to drift jointly. Since that is currently beyond the computational frontier, we opt for a
simpler approach based on split-sample estimation.

21



A second notable change in monetary policy concerns the innovation variances for

the two shocks, ε∗,t and εR,t. According to our estimates, both declined substantially

after the Volcker disinflation. The innovation variance for the shock to target inflation

fell by almost 50 percent, from 0.081 to 0.049, while the variance for the funds-

rate shock declined even more, from 0.16 to 0.07. The decline in σ∗ should not be

surprising, given the findings of Stock and Watson (2007) and our VAR results. It

contributes directly to the decline in inflation volatility after 1980.

Table 3: Posteriors for Structural Parameters

Coefficient 1960-1979 1982-2006

100γ
100 (π − 1)

100 (δ−1 − 1)
h
ξ
φπ

φy

ρR

ρz

ρθ

ρb

100σR

100σz

100σθ

100σ∗
100σb

Median 25th pct 75th pct
0.468 0.452 0.484
0.501 0.435 0.566
0.159 0.121 0.204
0.445 0.390 0.502
0.782 0.741 0.818
1.557 1.372 1.746
0.643 0.541 0.772
0.704 0.630 0.759
0.264 0.156 0.390
0.598 0.515 0.676
0.699 0.632 0.758
0.160 0.147 0.174
0.641 0.527 0.797
0.118 0.097 0.139
0.081 0.062 0.104
2.533 2.226 2.889

Median 25th pct 75th pct
0.484 0.467 0.500
0.516 0.452 0.581
0.255 0.199 0.319
0.526 0.482 0.568
0.800 0.762 0.835
1.784 1.598 1.974
0.66 0.562 0.784
0.633 0.576 0.686
0.297 0.191 0.415
0.255 0.182 0.344
0.876 0.850 0.898
0.069 0.063 0.076
0.493 0.426 0.562
0.126 0.114 0.137
0.049 0.037 0.065
2.429 2.146 2.785

Among the nonpolicy parameters, most change only slightly across the two sam-

ples. This is comforting because these parameters are supposed to be invariant to

changes in monetary policy. One exception is the persistence parameter ρθ for the

cost-push shock, which declines from 0.6 to 0.25. Thus, the cost-push shock is less

persistent and has smaller unconditional variance after 1982. This decline might

reflect the reduced incidence of oil-price shocks in the second half of the period.

Table 4 summarizes the model’s implications for inflation volatility and pre-

dictability at the posterior median of the model parameters. Column 1 reports the

unconditional standard deviation of inflation, while columns 2−4 report R2 statistics
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for inflation-gap predictability for forecasting horizons of 1, 4 and 8 quarters.20 The

inflation gap here is defined as the difference between inflation and the central bank

inflation objective that, in the DSGE model, captures the permanent component of

inflation. Notice that, in line with our statistical VAR findings, the model reproduces

well the substantial decline in inflation volatility and predictability. All decrease by

roughly 50 to 70 percent.

Table 4: Implications of the DSGE Model for Inflation Volatility and

Predictability

100 · std (π̂t) R2
1 R2

4 R2
8

1960:I - 1979:III 4.702 0.631 0.433 0.409
1982:IV - 2006:IV 2.354 0.206 0.136 0.124
Percent Change −50 −67 −69 −70

5.5 Counterfactuals

We are sufficiently encouraged by the performance of the DSGE model to con-

duct some counterfactual exercises in order to understand the causes of the decline in

inflation volatility and predictability. In the first experiment, we combine the Taylor-

rule coefficients ([φπ, φy, ρR, σR, σ∗]) of the second subsample with the private-sector

parameters of the first. In this way, we assess the extent to which better monetary

policy would have reduced inflation volatility and persistence during the Great In-

flation. In the second experiment, we combine the private-sector parameters of the

second subsample with the policy parameters of the first. This scenario illustrates

the contribution of nonpolicy factors to the improvement in inflation outcomes.

Table 5 reports the results. The numbers recorded there represent the proportion

of the total change across subsamples accounted for by the hypothetical structural

shift,

100 × counterfactual change

total change
.

Positive numbers signify that the counterfactual goes in the same direction as the

total change, and negative numbers mean that it goes in the opposite direction.

20Since we estimate the model on two separate subsamples, the joint posterior distribution of the
coefficients of the first and second subsample is not available. Therefore, we cannot report standard
errors.
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Table 5: Counterfactual Exercises Based on the DSGE Model

Coefficients volatility
persistence
R2

1 R2
4 R2

8

Policy 2, Private 1 75 43 90 91

σ∗ 69 32 68 69

φπ 9 13 28 28

Private 2, Policy 1 36 43 15 14

ρθ 7 -39 -109 -111

Monetary policy seems to be the most important factor behind the fall in inflation

volatility, with the change in policy rule accounting for 75 percent of the decline. In

contrast, nonpolicy parameters – primarily in the form of a less volatile and persis-

tent cost-push shock – accounts for 36 percent of the decline. This is a substantial

contribution, but only about half the magnitude of the effect of monetary policy.21

The results for predictability are similar, especially at the 4 and 8 quarter horizons.

At those horizons, better monetary policy accounts for approximately 90 percent of

the decline, while changes in private-sector behavior account for around 15 percent.

At the 1-quarter horizon, however, the two factors contribute equally to the decline

in predictability, each accounting for 43 percent of the total change. Thus, for a

complete picture, both private and policy factors are needed.

The second and third rows of the table 5 look more closely at particular aspects

of monetary policy. Here we change a single Taylor-rule parameter, holding all other

coefficients equal to the estimated value from subsample 1. Otherwise the experiments

are the same as before.

Among monetary-policy coefficients, changes in the variability of the inflation

objective (σ∗) and in the reaction to inflation (φπ) have the largest impact on inflation

outcomes. The more stable inflation objective is responsible for the largest portion of

the decline in inflation volatility and persistence, accounting for roughly two-thirds

of the total change.

That a decline in σ∗ reduces overall inflation volatility is obvious. Why it reduces

inflation-gap persistence is less transparent. This is best understood as a composition

effect. The inflation gap is driven by a number of shocks, some whose effects are short-

lived and others whose effects are longer lasting. It turns out that inflation-target

21The two numbers need not sum to 100 because the model is nonlinear in the coefficients and,
therefore, the total change is not the sum of the effects of the policy and nonpolicy coefficients shift.
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shocks induce persistent responses in the inflation gap. A decline in their innovation

variance therefore reduces overall inflation-gap persistence by diminishing the relative

importance of this persistent component.

To illustrate this point, figure 6 plots the impulse response of the inflation gap

and real interest rate to a one percentage point increase in the central bank’s inflation

target. The blue line depicts the response in the first subsample. Because the model

is linear, a reduction in σ∗ with everything else held constant just scales the impulse

responses toward zero. As in Ireland (2007), inflation overshoots the increase in the

target, producing a positive inflation gap. The overshooting is due to the fact that

the nominal interest rate initially responds little, leading to a substantial fall in the

real interest rate (figure 6b), an increase in the output gap and marginal cost, and

a positive jump in expected inflation. The weak initial reaction of nominal interest

rates depends on the form of our policy rule (20), according to which Rt responds

only to the difference between actual and target inflation. Had we adopted a policy

rule in which the inflation target also affects the intercept (e.g., as in Schorfheide

2005), the overshooting would have been less likely.
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Figure 6: Responses to a One-Percent Increase in the Inflation Target.

After the initial overshooting, the inflation gap decays slowly back to zero. There

are two reasons why this is the case. First, the policy response is weak. The central

bank raises the nominal interest rate and brings the real interest rate back to its

steady state level within a few quarters, but the real interest rate never rises above

its steady-state level. Thus, although the central bank reverses the initial decline in

the real rate, it stops short of raising the real interest rate to reverse the increase in
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inflation gap. The second reason for the slow decay is that the estimated degree of

price stickiness makes aggregate price adjustments slow. As a consequence, after the

initial jump, the inflation gap moves gradually back to zero.

The other change in policy highlighted in table 5 involves a stronger monetary-

policy reaction to inflation. The red lines in figure 6 plot the counterfactual response

of the inflation gap and the real rate to a target shock, when we replace the policy

reaction to inflation in the first subsample with the corresponding coefficient for the

1983-2006 period. Interestingly, the shape of the inflation gap response is unchanged,

while the magnitude is reduced. In our model, however, this is secondary to enhanced

stability of the inflation target, accounting for about 10 percent of the decline in

volatility and 13-28 percent of the decline in predictability. One reason why we

find a smaller contribution than have others (e.g., Lubik and Schorfheide (2004) or

Boivin and Giannoni (2006)) is that we truncate our prior on the boundary of the

determinacy region. Thus, our feedback parameter rises from 1.56 to 1.78. Enhanced

feedback plays a role in our model, but not the primary role.

We also look more closely at the particular aspects of private-sector behavior

that have the greatest influence on changing inflation outcomes. Among nonpolicy

parameters, the key change is the shift in the persistence of the mark-up shock. The

final row of table 6 sheds light on its contribution. Everything else equal, the decline

in persistence of the mark-up shock (ρθ) would have induced an increase in inflation-

gap persistence. This might seem surprising but has a simple explanation: a reduction

in ρθ corresponds to a decrease in the unconditional variability of the mark-up shock,

which reduces the volatility of inflation due to this shock. As a consequence, the role

of the inflation-target shock for inflation becomes relatively larger, and this increases

persistence.22

5.6 A unit root in the target inflation

In our baseline specification, we set ρ∗ = 0.995. We did this because the baseline

specification does not possess a non-stochastic steady state when ρ∗ = 1 and cannot

be log-linearized. Following Ireland (2007), we can address this problem by modifying

the baseline model. In particular, to accommodate a unit root in target inflation, we

(i) alter the indexation scheme so that non-optimizing firms are fully indexed to a

22The autoregressive parameter ρb on the discount-factor shock also changes substantially after
1982, but this has a negligible effect on inflation dynamics.
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weighted average of target and lagged inflation and (ii) set the policy-inertia coefficient

ρR in the monetary-policy rule equal to unity. With these changes, the model has

a well defined steady state and can be log-linearized in the usual way. However,

this version of the model generates extremely low inflation-gap predictability in both

subsamples. Upon further investigation, we found that this is due to the arbitrary

restriction on ρR, the inertia coefficient in the policy rule.

We want our DSGE model to reproduce two features of the VAR statistical de-

scription: (i) a highly persistent inflation target and (ii) some degree of inflation-gap

predictability, especially in the first subsample. A DSGE model with a unit root in

the target inflation is consistent with the first feature of the data but is sharply at

odds with second. On the other hand, a model with ρ∗ = 0.995 approximates both

features well. This motivates our specification choice.

6 Relation to the literature

Andrew T. Levin and Jeremy M. Piger (2006) also emphasize the importance of

accounting for shifts in target inflation when estimating inflation persistence. They

estimate univariate autoregressions with breaks in the intercept at unknown dates.

We interpret their shifting intercept as a way to model movements in target inflation.

They find that inflation is less persistent after adjusting for shifts in the intercept,

and they conclude that findings of high-persistence are artifacts of using empirical

methods that neglect shifts in monetary-policy regimes. Earlier versions of their

paper also investigated shifts in autoregressive parameters that would induce changes

in inflation-gap persistence. For the period 1984-2004, they fail to detect a significant

shift in autoregressive parameters. Our findings are consistent with theirs, because

the big decline in persistence shown in figures 3 and 4 occurred before the beginning

of their sample.

Stock and Watson (2007) also document changes in the predictability of inflation,

reporting that inflation has become absolutely easier but relatively harder to forecast

in the Volcker-Greenspan era. In an absolute sense, forecasting inflation is easier

because inflation is less volatile and its innovation variance is smaller. But in a

relative sense, predicting inflation has become more difficult because future inflation

is less closely correlated with current inflation and other predictors.

Stock and Watson estimate a univariate unobserved-components model for infla-
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tion. Our VAR can be interpreted as a multivariate extension of their model. To

recover their representation, set yt = πt, Xt = 1, θt = τt, and Bs = By = 1. Their

representation makes inflation the sum of a driftless random walk and a martingale-

difference error and highlights the importance of drift in trend inflation. Our main

focus, however, is on the inflation gap, gt ≡ πt − τt. We want to know how persistent

gt is and whether the degree of persistence in gt has changed over time. Stock and

Watson’s model is not a suitable vehicle for investigating this issue because it imposes

that gt is serially uncorrelated for all t. Our VAR extends their model by allowing for

time-varying serial dependence in the inflation gap and by including unemployment

and nominal interest as predictors of inflation.

Stock and Watson also interpret a result of Andrew G. Atkeson and Lee E. Oha-

nian (2001) in terms of the changing time-series properties of inflation. Atkeson and

Ohanian studied the predictive power of backward-looking Phillips-curve models dur-

ing the Volcker-Greenspan era and found that Phillips-curve forecasts were inferior

to a naive forecast that equates expected inflation over the next 12 months with

the simple average of inflation over the previous year. Stock and Watson show that

Phillips-curve models were more helpful during the Great Inflation, and they account

for the change by pointing to two features of the data. First, like many macroeco-

nomic variables, unemployment has become less volatile since the mid-1980s. Hence

there is less variation in the predictor. Second, the coefficients linking unemployment

and other activity variables to future inflation have declined in absolute value, further

muting their predictive power.

Our VARs share these characteristics, while our estimated structural model re-

produces the declining predictive power of real activity for future inflation.23 For

explaining Atkeson and Ohanian’s results, however, the relative importance of pol-

icy and nonpolicy factors is reversed. Changes in private sector parameters go in the

right direction and overpredict the total decline in the output coefficient in a Phillips-

curve regression, while changes in policy parameters go in the wrong direction and

predict an increase in forecastability. Once again, both policy and nonpolicy factors

contribute to explaining the outcomes.

Luca Benati (2008) provides perhaps the most comprehensive analysis of infla-

tion persistence in the literature. Across a wide variety of monetary regimes and

23Our replication and analysis of Atkeson and Ohanian’s findings can be found in an unpublished
appendix posted on our web page.
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historical periods, he finds strong evidence of changes in inflation persistence. In

particular, inflation tends to be weakly persistent in monetary regimes with a clearly

defined nominal anchor and highly persistent otherwise. He interprets this finding as

reflecting the workings of the cross-equation restrictions emphasized by Lucas (1976).

For the period in which we are interested, however, Benati (2008) fails to detect

a change in U.S. inflation persistence, measured either by the GDP or PCE deflator

(see Benati’s table VIII). He explains that his results differ from ours because he is

interested in inflation persistence, while we examine inflation-gap persistence. Since

trend inflation continued to drift after the Volcker disinflation, our representation

implies that raw inflation still had an autoregressive root equal to unity, explaining

Benati’s findings. Our results only say that deviations between actual and trend

inflation became less persistent.24

A number of other papers also use new Keynesian DSGE models estimated across

various subsamples to examine how changes in monetary policy altered equilibrium

outcomes. Prominent examples include Lubik and Schorfheide (2004) and Boivin

and Gianonni (2006), among others. These papers attribute improvements in inflation

outcomes to better monetary policy, but they say that the primary cause was stronger

feedback to expected inflation. As in Clarida, et al., their estimates suggest that the

Fed violated the Taylor principle during the Great Inflation but satisfied it after the

Volcker disinflation. Thus, monetary policy contributed to higher inflation volatility

and persistence during the 1970s by failing to determine a unique equilibrium.25

One difference between our model and theirs is that we allow target inflation

to vary within each subperiod, while they assume it is constant. This distinction

is significant because our results suggest that a reduced innovation variance for the

inflation target was the single most important improvement in monetary policy during

the Volcker-Greenspan years. We also find a stronger policy reaction to inflation after

the mid-1980s, but the change is smaller, and its contribution is secondary.

It is true that we truncate our prior on the boundary of the determinacy region,

thus ruling out indeterminacy, but the data led us to this modeling choice. As de-

24Benati also examines univariate inflation persistence while we study predictability based on a
multivariate information set. In earlier work, we found that multivariate models produced stronger
evidence of changes in predictability than univariate models.

25In a textbook new Keynesian model, Benati and Paolo Surico (2008) demonstrate that a more
aggressive policy reaction to inflation reduces inflation persistence and predictability. They do not
estimate a policy rule for the Great Inflation, however, thus stopping short of the stance taken by
Lubik-Schorfheide and Boivin-Giannoni.
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scribed above, preliminary estimates of a specification that allowed for indeterminacy

increased the posterior mode only slightly, while introducing several new free param-

eters. Bayesian model comparisons reward fit and penalize free parameters. In this

case, the improvement in fit seemed too slight to compensate for the additional model

complexity, and we chose to focus on the simpler representation. That specification

points toward better anchoring of the inflation target as the chief improvement of

policy.

More work is needed to get to the bottom of this question. Obtaining a decisive

resolution empirically might be difficult, however, in light of Andreas Beyer and Roger

E.A. Farmer’s (2007) analysis of identification.

Finally, Pivetta and Reis (2007), Benati and Surico (2008), Fabio Canova, Luca

Gambetti, and Evi Pappa (2008) and Canova and Gambetti (2009) use VAR meth-

ods to study changes in inflation persistence. Their papers report mixed results,

with Benati and Surico replicating our results, Canova et al. reporting only weakly

statistically significant changes in inflation persistence, and Pivetta and Reis finding

that changes in persistence are statistically insignificant. One possible explanation

for this discrepancy is that Benati and Surico use our new measure of persistence

based on short- and medium-term predictability, which is estimated more precisely,

while Pivetta and Reis and Canova et al. do not. Moreover, Pivetta and Reis use

univariate methods that we have found to weaken the evidence in favor of changes in

inflation persistence.

7 Concluding remarks

This paper reports what vector autoregressions with drifting coefficients and stochas-

tic volatility say about inflation-gap persistence, defined as the fraction of variation

of future inflation gaps that is due to past shocks. A high proportion means that past

shocks retain influence for a long time, while a low proportion signifies that their in-

fluence decays quickly. Since past shocks give rise to forecastable variation in future

inflation gaps, our concept of persistence is closely related to predictability. VAR

estimates point to a statistically significant increase in inflation-gap predictability

during the Great Inflation and to a statistically significant decline in predictability

after the Volcker disinflation.

We have used a new Keynesian DSGE model to interpret what might have caused
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these changes. We find evidence that both better policy and changes in the en-

vironment confronting firms – in the form of less volatile and less persistent cost-

push shocks – contributed to improved inflation outcomes. In our DSGE model, the

enhanced stability of the Fed’s long-run inflation target stands as the single most

important factor behind the reductions in inflation volatility and persistence.

The DSGE model treats the inflation target as an exogenous random process.

Explaining why it drifts is a priority for future research. We like stories that feature

learning and what it implies about changing central bank beliefs about the structure

of the economy (Cogley and Sargent 2005b, Primiceri 2006, and Sargent, Williams,

and Zha 2006), but more work is needed to understand this source of variations over

time in monetary policy.
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