The Cyclical Behavior of the Price-Cost Markup

Christopher J. Nekarda
Board of Governors of the Federal Reserve System

Valerie A. Ramey
University of California, San Diego and NBER

First version: July 2009
This version: 8 November 2012

Abstract

A countercyclical markup of price over marginal cost is the key transmission mechanism for demand shocks in textbook New Keynesian (NK) models. This paper re-examines the foundation of those models. We study the cyclicality of markups in the private economy as well as in detailed manufacturing industries. First, we show that methods for measuring markups that have produced the strongest evidence for countercyclicality actually produce the opposite result when we substitute new data for the previous calibrations around a steady-state. Second, because the NK model’s predictions differ by the nature of the shock, we present evidence on the conditional cyclicality of the markup. Consistent with the NK model, we find that markups are procyclical conditional on a technology shock. However, we find that they are either procyclical or acyclical conditional on demand shocks. Thus, the textbook NK explanation for the effects of government spending or monetary policy is not supported by the behavior of the markup.

JEL codes: E32, L16, J31
Keywords: markup, cyclicality

Note: The appendix is missing from this draft.

The views in this paper are those of the authors and do not necessarily represent the views or policies of the Board of Governors of the Federal Reserve System or its staff. We are grateful to Susanto Basu, Mark Bils, Olivier Coibion, Steve Davis, Davide Debertoli, Robert Hall, Garey Ramey, Harald Uhlig, Raf Wouters, and participants at numerous seminars for helpful comments. Ben Backes and Myungkyu Shim provided excellent research assistance. Valerie Ramey gratefully acknowledges financial support from National Science Foundation grant SES-0617219 through the National Bureau of Economic Research.
How markups move, in response to what, and why, is however nearly terra incognita for macro. . . . [W]e are a long way from having either a clear picture or convincing theories, and this is clearly an area where research is urgently needed.

1 Introduction

The markup of price over marginal cost plays a key role in a number of macroeconomic models. For example, in Rotemberg and Woodford’s (1992) model, an increase in government spending leads to increases in both hours and real wages because imperfect competition generates a countercyclical markup. In the textbook New Keynesian model, sticky prices combined with procyclical marginal cost imply that an expansionary monetary shock or government spending shock lowers the average markup (Goodfriend and King, 1997; Woodford, 2003). This result also holds in the leading New Keynesian models with both sticky prices and sticky wages, such as Erceg, Henderson and Levin (2000); Smets and Wouters (2003, 2007); Christiano, Eichenbaum and Evans (2005). In Jaimovich and Floetotto’s (2008) model, procyclical entry of firms leads to countercyclical markups, and hence to procyclical movements in measured productivity.

The dependence of Keynesian models on countercyclical markups is a feature only of the models formulated since the early 1980s. From the 1930s through the 1970s, the Keynesian model was founded on the assumption of sticky wages (such as Keynes, 1936; Phelps, 1968; Taylor, 1980). Some researchers believed that the implications of this model were at odds with the cyclical properties of real wages, leading to a debate known as the “Dunlop-Tarshis” controversy. In response to the perceived disparity between the data and predictions of the traditional Keynesian model, the literature shifted in the early 1980s to the assumption of sticky prices rather than sticky wages (such as Gordon, 1981; Rotemberg, 1982). This type of model emerged as the leading textbook New Keynesian model. Virtually all current New Keynesian models incorporate the notion that markups fall in response to positive demand shifts.

Estimating the cyclicity of markups is one of the more challenging measurement is-

1. In fact, Dunlop (1938) and Tarshis (1939) were repeatedly misquoted by the literature as showing that real wages were procyclical. Neither of them showed this. Both authors showed that money wages and real wages were positively correlated, and Tarshis went on to show that real wages were in fact negatively correlated with aggregate employment.
sues in macroeconomics. Theory prescribes a comparison of price and marginal cost; how-
ever, available data typically include only average cost. As we will discuss, researchers
have used a variety of techniques to measure markups directly to assess their cyclicality, or
have inferred the cyclicality of markups using indirect evidence. Despite the very mixed
results in this literature, most current research has proceeded as if there were firm evidence
of a countercyclical markup.

In this paper, we present evidence that most measures of the markup are procyclical
or acyclical. After developing the theoretical framework for measuring markups, we first
analyze the cyclicality of markups for the entire private sector. We find that markups are
generally procyclical, hitting troughs during recessions and reaching peaks in the middle
of expansions. These results hold both for the baseline measure in which markups are in-
versely proportional to labor share, as well as the generalizations advocated by Bils (1987)
and Rotemberg and Woodford (1999). Moreover, both monetary shocks and government
spending shocks cause markups and output to comove positively. We then turn to the
analysis of markups in detailed manufacturing industry data. We show that markups are
procyclical unconditionally, as well as conditional on technology shocks. Conditional on
demand shocks, markups are slightly procyclical or acyclical. Our results differ from some
of those in the previous literature because we are able to use new data sources rather than re-
lying on steady-state calibrations or proxy equations. Our new results raise questions about
the basic propagation mechanism of the current versions of the New Keynesian model: If
the markup does not move countercyclically, how can money have short-run real effects?

2 Relationship to the Literature

Industrial organization economists have a long history of studying the cyclicality of price-
cost margins. Macroeconomists only began studying this issue in the mid-1980s when
macro models started to emphasize price setting behavior of firms. Four principal methods
have been used to measure markups directly and two additional methods have been used to
assess the cyclicality of markups indirectly.

The first of the direct methods uses the standard industrial organization concept of a
price-cost margin constructed from revenues and average variable costs. Domowitz, Hub-
bard and Petersen (1986) use this method in a panel of four-digit Standard Industrial Classi-
fication (SIC) manufacturing industries and find that margins are significantly procyclical.

The second method builds on Hall’s (1986) generalization of the Solow residual to
estimate the cyclicality of markups. For example, Haskel, Martin and Small (1995) extend Hall’s framework to allow for time-varying markups and apply it to a panel of two-digit U.K. manufacturing industries. They find that markups are markedly procyclical. Marchetti (2002) applies a similar framework to two-digit manufacturing industries in Italy. He finds no clear pattern of cyclicality of markups; in only 2 of 13 industries does he find consistent evidence across specifications of countercyclical markups.

The third method uses generalized production functions with quasi-fixed factors to estimate markups relative to marginal cost estimated from stochastic Euler equations. Using this type of approach, Morrison (1994) finds weakly procyclical markups in Canadian manufacturing, and Chirinko and Fazzari (1994) find acyclical or procyclical markups in firm-level data. Galeotti and Schianterelli (1998) test the Rotemberg and Saloner (1986) game-theoretic hypothesis and find that, consistent with this hypothesis, markups depend negatively on the current level of output but positively on the growth of output.

The fourth method is the only one that routinely finds evidence for countercyclical markups. This method uses the labor input margin to estimate marginal cost. Under standard assumptions, such as Cobb-Douglas production functions and no overhead labor, this method implies that the markup is inversely proportional to the labor share. Since the labor share is countercyclical, this measure of markups implies that markups are procyclical. Most of the papers using this method thus apply adjustments to the standard model to account for reasons why marginal labor costs might be more procyclical than average labor costs. For example, Bils (1987) argues that the marginal hourly wage paid to workers should be more procyclical than the average wage. He constructs a measure of marginal cost based on estimates of the marginal wage and finds that his markup series has a negative correlation with industry employment in a panel of two-digit industries, suggesting countercyclicality. Rotemberg and Woodford (1991), Rotemberg and Woodford (1999), Oliveira Martins and Scarpetta (2002) and Galí, Gertler and López-Salido (2007) apply additional adjustments to the standard model, such as substituting a constant elasticity of substitution (CES) production function for Cobb-Douglas and allowing for overhead labor. Their applications of these adjustments typically convert procyclical markups (based on standard assumptions) into countercyclical markups.

The two indirect methods for assessing the cyclicality of the markup use entirely different frameworks. Bils and Kahn (2000) present a model of inventories and stockouts in

which the joint cyclicality of the ratio of sales to inventories and the discounted growth rate of output prices reveals the cyclicality of markups. They use this framework to conclude that markups are countercyclical in several two-digit U.S. manufacturing industries. Hall (2012) exploits standard advertising theory to show that countercyclical markups imply that advertising should also be highly countercyclical. He shows, in fact, that advertising is somewhat procyclical.

Overall, this literature has used a host of innovative and clever ways to measure markups and analyze their cyclicality. Most of the papers have tended to find procyclical or acyclical markups. The exceptions are those papers using the methods and adjustments advocated by Bils (1987) and Rotemberg and Woodford (1999) or the inventory research of Bils and Kahn (2000). Perhaps for this reason, many researchers have concluded that markups are countercyclical.

In this paper, we will revisit the method that has produced the strongest evidence of countercyclical markups and has been cited the most by the New Keynesian literature: the hours margin method employed by Bils (1987) and Rotemberg and Woodford (1999), among others. We improve on their implementation in several ways. First, because modern theories predict that markup should move in opposite directions in response to supply and demand shocks, we will analyze conditional cyclicality as well as unconditional cyclicality. Most of the early papers simply used output or shipments as their demand indicator. Second, because the importance of instrument relevance was only beginning to become apparent in the late 1980s and 1990s, many of the methods relied on estimates based on instruments with very low first-stage F statistics. We now know that even in large samples, instruments with low relevance can lead to very misleading results. In our industry analysis, we will use instruments with much better properties. Third, because of progress in data availability and computational capability, we will be able to use richer data, rather than relying on steady-state calibrations and proxy equations. Finally, as a robustness check, we will also conduct the Bils and Kahn (2000) inventory test on our industry data.

Thus, the contribution of this paper is essentially to revisit the empirical work behind the stylized facts that are at the foundation of modern New Keynesian models, but to do so with updated empirical methods and data.

3 Theoretical Framework

We begin by presenting the theoretical framework that forms the basis of our main estimates of markups. The theoretical markup, M, is defined as

$$M = \frac{P}{MC},$$

where P is the price of output and MC is the nominal marginal cost of increasing output. The inverse of the right hand side of equation 1, MC/P, is also known as the real marginal cost.

A cost-minimizing firm should equalize the marginal cost of increasing output across all possible margins for varying production. Thus, it is valid to consider the marginal cost of varying output by changing a particular input. As in Bils (1987) and Rotemberg and Woodford (1999), we focus on the labor input margin, and in particular on hours per worker. We assume that there are potential costs of adjusting the number of employees and the capital stock, but no costs of adjusting hours per worker.\footnote{Hamermesh and Pfann’s (1996) summary of the literature suggests that adjustment costs on the number of employees are relatively small and that adjustment costs on hours per worker are essentially zero.}

Focusing on the static aspect of this cost-minimization problem, consider the problem of a firm that chooses hours per worker, h, to minimize

$$\text{Cost} = W_A(h)hN + \text{other terms not involving } h,$$

subject to $\bar{Y} = F(AhN, \ldots)$. W_A is the average hourly wage (which is potentially a function of average hours), N is the number of workers, Y is output, and A is the level of labor-augmenting technology. Letting λ be the Lagrange multiplier on the constraint, we obtain the first-order condition for h as:

$$W'_A(h)h + W_A(h) = \lambda F'_1(AhN, \ldots)A,$$

where W'_A is the derivative of the average wage with respect to h and F'_1 is the derivative of the production function with respect to effective labor, AhN. The multiplier λ is equal to marginal cost, so the marginal cost of increasing output by raising hours per worker is
given by:

\[MC = \lambda = \frac{W_A h + W_A}{AF_1(AhN, \ldots)}. \]

The denominator of equation 4 is the marginal product of increasing hours per worker; the numerator is the marginal increase in the wage bill (per worker). As discussed above, this marginal cost should also be equal to the marginal cost of raising output by increasing employment or the capital stock. If there are adjustment costs involved in changing those factors, the marginal cost would include an adjustment cost component. Focusing on the hours margin obviates the need to estimate adjustment costs.

3.1 Production Function Assumptions

The formula for the markup above requires an estimate of the marginal product of labor, necessitating assumptions about the production function. Under the standard assumptions that the production function takes the form that output is Cobb-Douglas (denoted by a superscript “CD”) in total hours and that the marginal wage is equal to the average wage (denoted by a subscript “A”), the markup is given by

\[M_{CD}^A = \frac{P}{W_A/ [\alpha (Y/hN)]} = \frac{\alpha}{s}, \]

where \(\alpha \) is the exponent on labor input in the production function and \(s \) is the labor share.

Rotemberg and Woodford (1999) note several reasons why the standard assumption of a production function that is Cobb-Douglas in total hours may lead to estimates of the markup that are biased toward being procyclical. We now consider the most plausible generalizations.

The first reason is overhead labor. In this generalization, the labor term in the production function is instead \((AhN - Ah\bar{N})^\alpha \) where \(\bar{h}N \) represents overhead labor hours. In the Cobb-Douglas case, the markup is given by:

\[M_{CD,OH}^A = \frac{P}{W_A/ [\alpha (Y/hN)]} = \frac{\alpha}{s'}, \]

where

\[s' = \frac{W_A (hN - \bar{h}\bar{N})}{PY}, \]
is the labor share of non-overhead labor.

A second generalization allows the elasticity of substitution between inputs to deviate from unity. For example, consider the following CES production function in which output is measured as value added:

\[Y = \left[\alpha (AhN)^{\sigma - 1} + (1 - \alpha)K^{\sigma - 1} \right]^{\frac{1}{\sigma}}, \]

and \(\sigma \) is the elasticity of substitution between labor and capital. The derivative with respect to effective labor (the \(F_1 \) needed for equation 4) is

\[\frac{\partial Y}{\partial (AhN)} = \alpha \left(\frac{Y}{AhN} \right)^{\frac{1}{\sigma}}. \]

The exponent in equation 9 is the reciprocal of the elasticity of substitution between capital and labor. If the elasticity of substitution is unity, this specializes to the Cobb-Douglas case. On the other hand, if the elasticity of substitution is less than unity, then the exponent will be greater than unity. In this case, we obtain a markup:

\[M_{\sigma}^{CES} = \frac{P}{W_{A}/[A\alpha (Y/AhN)^{\sigma}]^{\frac{1}{\sigma}}} = \frac{\alpha}{s} \left(\frac{Y}{AhN} \right)^{\frac{1}{\sigma} - 1}. \]

This equation is derived assuming that output is measured as value added. When output is measured as gross output, we obtain the same expression for the markup as long as the production function is either (1) a generalized CES in which the elasticities of substitutions are equal across all inputs or (2) a nested CES in which \(\sigma \) is the elasticity of substitution between the labor input and a composite of the other inputs.

Rotemberg and Woodford (1999) and Galí, Gertler and López-Salido (2007) implement these two generalizations using log-linear approximations around a steady-state and then calibrating parameters based on long-run trends and zero profit conditions. As our derivation shows, it is unnecessary to use approximations around a steady state. Instead, our equations require additional data and estimates of elasticities of substitution. We discuss the sources for these shortly.
3.2 Marginal vs. Average Labor Cost

The standard New Keynesian Phillips curve literature assumes that the average wage is the appropriate measure of the marginal increase in hours. Bils (1987) argues to the contrary that the average wage paid by a firm may be increasing in the average hours per worker because of the additional cost of overtime hours. Following Bils, we capture this possibility by specifying the average wage as:

\[
W_A(h) = W_S \left(1 + \rho \theta \frac{v(h)}{h} \right).
\]

where \(W_S\) is the straight-time wage, \(\rho\) is the premium for overtime hours, \(\theta\) is the fraction of overtime hours that command a premium, and \(v/h\) is the ratio of average overtime hours to total hours. The term \(\rho \theta v/h\) captures the idea that firms may have to pay a premium for hours worked beyond the standard workweek.\(^5\) Bils did not include the \(\theta\) term in his specification because he used data for manufacturing from the BLS’s establishment survey, in which overtime hours are defined as those hours commanding a premium (that is, \(\theta = 1\)). In our data, we define overtime hours as those hours in excess of 40 hours per week. Because overtime premium regulations do not apply to all workers, we must allow for the possibility that \(\theta\) is less than unity.

We assume that the firm takes the straight-time wage, the overtime premium, and the fraction of workers receiving premium pay as given, but recognizes the potential effect of raising \(h\) on overtime hours \(v\). With this functional form, the marginal cost of increasing output by raising hours per worker is given by:

\[
MC = \lambda = \frac{W_S \left[1 + \rho \theta \left(\frac{dv}{dh} \right) \right]}{AF_1(AhN, \ldots)}.
\]

Equation 12 makes it clear that the marginal cost of increasing hours per worker is not necessarily equal to the average wage, as is commonly assumed. Following Bils (1987), we call the term in the numerator the “marginal wage” and denote it by \(W_M\):

\[
W_M = W_S \left[1 + \rho \theta \left(\frac{dv}{dh} \right) \right].
\]

\(^5\) It would also be possible to distinguish wages paid for part-time work versus full-time work. However, Hirsch (2005) finds that nearly all of the difference in hourly wages between part-time and full-time workers can be attributed to worker heterogeneity rather than to a premium for full-time work.
To the extent that the marginal wage has different cyclical properties from the average wage, markup measures that use the average wage may embed cyclical biases. Bils (1987) used approximations to the marginal wage itself to substitute for marginal cost in his markup measure. We instead use an adjustment that does not require approximation. In particular, we combine the expressions for the average wage and the marginal wage to obtain their ratio:

\[
\frac{W_M}{W_A} = \frac{1 + \rho \theta \left(\frac{dv}{dh} \right)}{1 + \rho \theta \left(\frac{v}{h} \right)}.
\]

This ratio can be used to convert the observed average wage to the theoretically-correct marginal wage required to estimate the markup. We show below that the ratio of overtime hours to average hours, \(v/h \), is procyclical. Thus, the denominator in equation 14 is procyclical. How \(W_M/W_A \) evolves over the business cycle depends on the relative cyclicity of \(dv/dh \).

In the case where the wage is increasing in average hours, the markup in any of the previous formulations can be adjusted by multiplying \(W_A \) by \(W_M/W_A \). For example in the Cobb-Douglas case, the markup is given by:

\[
\mathcal{M}^{\text{CD}}_M = \frac{P}{W_M/\left[\alpha (Y/hN)\right]} = \frac{\alpha}{s(W_M/W_A)},
\]

where we use equation 14 to convert average wages to marginal wages.

4 Overview of the Empirical Analysis

The rest of the paper uses the theory from the last section to derive new measures of the markup in order to assess cyclicity. We perform the empirical analysis on two data sets. One of the data sets covers the entire private economy and the other consists of a panel of four-digit SIC manufacturing industries. Each data set has advantages and disadvantages.

The aggregate data has the advantage of covering a much broader segment of the U.S. economy and having a higher frequency (quarterly). Moreover, we are able to use an auxiliary data set to calculate the factor needed to construct the theoretically correct marginal wage. In addition, the data are ideal for exploring the effects of aggregate monetary shocks and government spending shocks on markups. On the other hand, the aggregate data have several disadvantages: we only have measures of value added, not gross output; we do not
have a good measure for overhead labor; and the standard macroeconomic shocks we study have the usual low relevance as instruments.

Thus, we also explore the cyclicality of markups in annual four-digit manufacturing data from 1958 to 2009. Analysis of this data set has several advantages. First, because sectoral shifts might drive aggregate results, it is useful to examine the cyclicality of the markup at the disaggregated industry level. Second, the industry data allow us to use gross output rather than value-added output. As Waldmann (1991), Norrbin (1993) and Basu and Fernald (1997) argue, using value-added data can introduce errors in the measurements of markups. Third, the industry data allow us to compare results for production workers and all workers. Since nonproduction workers are more likely to be overhead labor, we can determine whether our results are sensitive to their inclusion. Fourth, we are able to construct highly relevant industry-specific instruments to identify demand and supply shocks.

The detailed industry dataset has some disadvantages as well, though. First, the data are only available at the annual frequency, which masks some business cycle effects. Second, as we will discuss below, the data are not as well suited for estimating the marginal-average wage factor. Third, the manufacturing sector is not representative of the entire U.S. economy: Even at its post-World War II peak, manufacturing accounted for only 25 percent of employment; it now accounts for only 9 percent of employment.

5 Aggregate Analysis

5.1 Baseline Cobb-Douglas

As discussed in section 3, the markup is proportional to the inverse of the labor share if the production function is Cobb-Douglas. We first explore the markup based on three measures of the labor share covering several broad aggregates. Our first measure is the labor share in the private business sector published by the Bureau of Labor Statistics (BLS). This is the broadest aggregate measure and it covers all compensation in this sector. We also consider a labor share measure constructed from the U.S. national income and product accounts (NIPA) that includes only wage and salaries and excludes fringe benefits. Finally, we consider a measure for the nonfinancial corporate business sector, the measure favored by Rotemberg and Woodford (1999), from the BLS. The appendix provides additional details.
Figure 1. Aggregate Price-Cost Markup

Source: Authors’ calculations using quarterly data from the BEA and the BLS.

Notes: Markups are inverse of labor share from the BLS, unless noted otherwise. NIPA markup is wage and salary disbursements divided by income without capital consumption adjustment. Shaded areas represent periods of business recession as determined by the National Bureau of Economic Research.

Figure 1 displays measures of the baseline markup, as defined in equation 5. The data are quarterly and extend from 1948 through 2011. The most salient characteristic of all three measures is the propensity to trough during a recession and to peak in the middle of an expansion. That is, they all appear to be procyclical, though the peaks appear to lead the business cycle. Also evident from figure 1 is the pronounced upward trend, particularly for the markup in private business. Although prior to the mid-2000s the markup was considered stationary, its rise over the past decade looks to be an acceleration of an upward trend that began in the 1980s.

We assess the cyclicality statistically by computing the correlation of markups with GDP.6 To extract the cyclical components from each series, we consider three different

6 Hall (2012) assesses cyclicality with respect to labor market variables rather than GDP. Because the
Table 1. Cyclicality of the Price-Cost Markup, 1948–2011

Correlation with real GDP

<table>
<thead>
<tr>
<th>Measure</th>
<th>Filter</th>
<th>Hodrick-Prescott</th>
<th>Baxter-King</th>
<th>First-difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobb-Douglas production function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Private business (BLS)</td>
<td></td>
<td>0.344</td>
<td>0.342</td>
<td>0.506</td>
</tr>
<tr>
<td>2. Private business (NIPA)</td>
<td></td>
<td>0.209</td>
<td>0.196</td>
<td>0.255</td>
</tr>
<tr>
<td>3. Nonfinancial corporate business (BLS)</td>
<td></td>
<td>0.205</td>
<td>0.205</td>
<td>0.396</td>
</tr>
<tr>
<td>CES production function, private business (BLS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Technology estimated from SVAR</td>
<td></td>
<td>0.420</td>
<td>0.398</td>
<td>0.626</td>
</tr>
<tr>
<td>5. Technology estimated using HP filter</td>
<td></td>
<td>0.457</td>
<td>0.407</td>
<td>0.643</td>
</tr>
<tr>
<td>Cobb-Douglas production function, private business (BLS), 1976–2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Average wage</td>
<td></td>
<td>0.271</td>
<td>0.292</td>
<td>0.496</td>
</tr>
<tr>
<td>7. Marginal wage</td>
<td></td>
<td>0.198</td>
<td>0.176</td>
<td>0.448</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations using quarterly data from the BLS and NIPA. Data are for 1948:Q1–2011:Q4

Notes: Contemporaneous correlation of cyclical components of log real GDP and log markup. For CES production function, elasticity of substitution between capital and labor $\sigma = 0.5$; see equation 10. For SVAR case, technology is identified using a bivariate VAR with labor productivity and hours per capita in first-differences. Baxter-King correlations exclude three years at start and end of sample. Markup based on marginal wage is given by equation 15.

The first three rows in table 1 report our three measures of cyclicality for the baseline markup over 1948 to 2011. In every case, the correlation is positive, with correlations ranging from 0.2 to 0.5, depending on the markup measure and the filtering method used. These results should not be a surprise to anyone who has studied the cyclicality of labor share. In fact, Table 1 of Galí, Gertler and López-Salido (2007) report a correlation of the price-cost markup with GDP of 0.28 for their sample and data.

cyclical behavior of productivity changed dramatically in the mid-1980s and because some shocks, such as technology shocks, are often found to drive output and labor in opposite directions, we chose GDP as the best measure of cyclical.

7. Because our sample ends so close to a long and deep recession, there are end-point problems with the statistical filters. Thus, we also assessed the cyclical correlations with GDP detrended using the Congressional Budget Office’s potential output series. The markup was a bit less procyclical using this cyclical indicator, but never countercyclical.
As figure 1 showed, and as Rotemberg and Woodford (1999) also noted, there are interesting dynamics involved as well—in particular, the markup peaks well before the peak of the business cycle. The left panel of figure 2 plots the cross-correlations of the cyclical components of real GDP and the markup, with the cyclical components derived using the HP filter. The correlations are positive for all leads and current values, indicating that an increase in the markup signals a current and forthcoming increase in GDP. The peak correlation occurs at a lead of three quarters. The correlations become negative for lagged values, though, meaning that a current decrease in GDP signals an upcoming increase in markups. The right panel plots the dynamic correlations of the markup with the unemployment rate. Note that because the unemployment rate moves opposite of GDP, the pattern is inverted. Additionally, because the unemployment rate tends to lag GDP, it is not surprising to see that the dynamic correlations are shifted so that the contemporaneous correlation with unemployment is roughly zero.8

5.2 CES Production Function

The markup based on a Cobb-Douglas production function with no overhead labor was procyclical. This section relaxes some of those assumptions. Because there are no good data series or proxies for overhead labor in the aggregate data, we do not explore this generalization here. However, we show in section 6.3 that accounting for overhead labor in the industry data does not change the estimated cyclicality of markups much.

This section considers the generalization that allows for a CES production function and a lower elasticity of substitution between capital and labor. The logarithm of the CES measure of the markup is

$$\ln(M_A^{\text{CES}}) = -\ln s + \left(\frac{1}{\sigma} - 1\right) [\ln Y - \ln (A h N)].$$

To construct this measure of the markup, we require a value of the elasticity of substitution (σ) and a measure of the level of technology (A). Chirinko (2008) surveys the literature estimating the elasticity of substitution between capital and labor and concludes

8. These dynamic correlations provide a clue as to why Hall (2012) finds procyclical labor share. He uses a nonstandard filter that is based on regressing labor share on both the current value of the unemployment rate as well as the difference between the current value of the unemployment rate and the average of four lags of the unemployment rate; see equation 23 of his paper. The impulse response functions we present later, which show the full dynamics, imply the standard stylized fact of countercyclical labor share (and hence procyclical markups).
that it is in the range of 0.4 to 0.6. Thus, we use an elasticity of substitution of 0.5. We consider two alternative methods for creating a series for the level of technology. The first uses Galí’s (1999) structural vector autoregression (SVAR) to estimate technology shocks that can be used to create a technology level series. This SVAR identifies technology shocks as those shocks that have permanent effects on labor productivity in the long-run. We use a simple bivariate SVAR in productivity growth and hours growth, allowing for four lags.\footnote{Of course, there is a long-standing debate on whether hours should appear in levels, first-differences, or detrended. Since we do not study the response of hours to technology shocks, the particular choice we make is not as important.}

The second method uses the trend in labor productivity estimated with an HP filter.\footnote{We also examined markups in the CES case using the NIPA measure, because it excludes any fixed compensation that might be tied to employment rather than hours worked. The markups based on this measure were also procyclical.}

We study the markup based on the BLS labor share in the private business sector. Although this measure is slightly more procyclical than the NIPA-based measure, using the BLS series ensures that the markup measure is consistent with the labor productivity series we use to construct our measures of technology.\footnote{The middle panel of table 1 shows that after allowing for the CES production function generalization, the markup is, in fact,}
slightly more procyclical. This conclusion is not sensitive to the method used to estimate the level of technology. Thus, this production function generalization does not produce countercyclical markups.

Our findings differ from those of Rotemberg and Woodford (1999) and Galí, Gertler and López-Salido (2007). As Appendix B of Galí, Gertler and López-Salido (2007) outlines, they operationalize the CES production function assumption as

\[\mu = -\ln s + \theta (\ln Y - \ln K), \]

where \(\mu \) is the log of the aggregate price markup and \(K \) is the capital stock. The value of \(\theta \) is calculated based on a nonlinear combination of several steady-state elasticities. In addition to an elasticity of substitution between capital and labor of 0.5, their value of \(\theta \) also depends on their calibrations of steady-state labor share of 0.7 and a steady-state average gross markup near unity. These values imply a value of \(\theta \) equal to \(-0.4\). Their method also requires that capital services be proportional to the stock of capital, so there can be no variation in capital utilization, which is at odds with the assumptions of most New Keynesian models. Since output tends to rise relative to the capital stock during booms and their value of \(\theta \) is negative, the second term in the equation above induces more countercyclicality of the markup. In contrast, our approach requires only a value for the elasticity of substitution and a measure of the level of technology. The latter must be estimated, of course, but we have shown that our conclusions are robust to the two most obvious ways to estimate it.

5.3 The Marginal Wage Distinction

We next consider the cyclicality of the markup when we allow for the marginal-average wage distinction. In this case, the measured markup (in natural logarithms) is given by

\[\mu_{\text{CD}} = -\ln s - \ln \left(\frac{W_M}{W_A} \right), \]

where \(\mu \equiv \ln M \). The last term is the log of the wage factor used in the average-marginal wage adjustment factor (equation 14).

To construct the ratio of marginal to average wages, we require (1) estimates of the marginal change in overtime hours with respect to a change in average total hours, \(d\omega/dh \); (2) estimates of the ratio of overtime hours to average hours, \(\omega/h \); (3) the fraction of
overtime hours that command a premium, θ; and (4) the premium for overtime hours, ρ.

The series for $\frac{dv}{dh}$ is the most challenging to measure. Bils (1987) speculated that $\frac{dv}{dh}$ was procyclical because a given increase in average hours would be more likely to come from an increase in overtime hours if the starting level of average hours was higher. He implementing this idea by regressing the change in average overtime hours, Δv, on the change in average total hours, Δh, in annual two-digit SIC manufacturing data, and allowing the coefficient in the regression to be a polynomial of average hours.

Average hours based on industry or aggregate data are not ideal for measuring this component for several reasons. As Bils pointed out, higher moments of the average hours distribution could matter because all workers do not work the same average hours. For example, it matters for the marginal wage whether average hours are increasing because more workers are moving from 38 to 39 hours per week or more workers are moving from 40 to 41 hours per week. Ideally, we want to compute the ratio of the change in overtime hours to the change in average hours at the level of the individual worker and then average over all workers at each point in time. That is, we want to construct the “average marginal” change in overtime hours with respect to a change in average hours. The ideal way to do this is to use panel data on individual workers. To construct this series, we use Nekarda’s (2009) Lonitudinal Population Database, a monthly panel data set constructed from the Current Population Survey (CPS) microdata that matches individuals across all months in the survey. The data are available starting in 1976. We measure overtime hours as any hours worked above 40 per week. For each matched individual j who was employed two consecutive months, we compute the change in average hours Δh_{jt} and the change in overtime hours Δv_{jt}. By studying only those employed two consecutive months, we isolate the intensive margin, consistent with the theory. We construct the ratio $\frac{dv_{jt}}{dh_{jt}}$ for each individual and compute the average of this ratio for all individuals each month. We then take the quarterly average of the monthly series to match our other aggregate data. Additional details are provided in the appendix.

The top panel of figure 3 shows the value of $\frac{dv}{dh}$ for from 1976 through 2011. The series shows obvious procyclicality: it tends to rise during expansions and fall during recessions. It also exhibits some low frequency movements, rising from the mid-1970s to late 1990s and then trending lower thereafter. Because $\frac{dv}{dh}$ appears in the numerator of the wage factor, its procyclicality makes the wage factor more procyclical. But because the wage factor appears in the denominator of the markup, procyclicality of $\frac{dv}{dh}$ has a

11. We are indebted to Steve Davis for suggesting this method for calculating $\frac{dv}{dh}$.

16
countercyclical influence on the markup.

The second series required for the wage factor is the average series \(v/h \) that appears in the denominator of equation 14. To be consistent in our data sources, we also use the LPD to measure this series. In particular, we calculate time series for \(v \) and \(h \) based on all individuals, and then compute their ratio.\(^\text{12}\)

The middle panel of figure 3 shows the fraction \(v/h \). It is procyclical as well, though it tends to peak a bit before the peak of the business cycle. Like \(dv/dh \), it also displays low frequency movements, although the decline since the late-1990s is more pronounced. Thus, the wage factor in equation 14 contains a procyclical series in both the numerator and denominator. Hence, the cyclicity of the factor depends in large part on the relative cyclicality of \(dv/dh \) versus \(v/h \).

Two more parameters are also required to construct the marginal-average wage factor. One is the fraction of overtime hours that command a premium, \(\theta \). We define as overtime hours, any hours worked greater than 40 hours per week. As some of those hours may from salaried workers or persons with second jobs, not all hours over 40 are paid a premium. The only direct information is from the May supplements to the CPS in 1969–81, which asked workers whether they received higher pay for hours over 40 hours per week. We also use the BLS’s Employee Costs for Employee Compensation survey which provides information on total compensation, straight time wages and salaries, and various benefits, such as overtime pay, annually from 1991 to 2001 and quarterly from 2002 to the present. Based on the information from these two data sources, we use a value of \(\theta = 0.3 \) for the private economy. Additional details are provided in the appendix.

The final input required for the wage factor is the premium paid for overtime hours, \(\rho \). The Fair Labor Standards Act requires that employers pay a 50 percent premium for hours in excess of 40 per week for covered employees. Evidence from Carr (1986) indicates that in 1985, 92 percent of those who earned premium pay received a 50 percent premium.\(^\text{13}\) Although there is considerable evidence that the implicit premium could be closer to 0.25, we use a \(\rho \) of 0.50 to reflect the statutory premium.\(^\text{14}\) Using the higher overtime premium

\(^\text{12}\) Earlier versions of this paper used an alternative data source that allowed us to calculate \(v \) and \(h \) for the entire private economy back to 1960. However, because we could not calculate \(dv/dh \) from that source, we confine ourselves to the period from 1976 forward.

\(^\text{13}\) See Wetzel (1966) and Taylor and Sekscenski (1982) for other estimates.

\(^\text{14}\) Trejo (1991) has questioned whether the true cost of an extra overtime hour for those covered is actually 50 percent. He shows that the implicit cost of overtime hours is lower than 50 percent because straight-time wages are lower in industries that offer more overtime. Hamermesh (2006) updates his analysis and finds supporting results: the implicit overtime premium is 25 percent, not 50 percent. The results using a
Figure 3. Ratio of Marginal to Average Wages and Selected Components

\[\frac{dv}{dh} \]

\[\frac{v}{h} \]

\[\frac{W_M}{W_A} \]

Source: Authors’ calculations from Nekarda (2009).

Notes: Shaded areas represent periods of business recession as determined by the National Bureau of Economic Research.
will bias the analysis toward finding countercyclical markups.

The bottom panel of figure 3 shows the marginal-average wage factor. Although the movements in the wage factor look procyclical, the variation is so small that it is unlikely to change substantially the cyclicality of the markup. This intuition is verified in the bottom panel of table 1, shown previously. Because our estimate of the adjustment factor begins in 1976, row 6 reports the markup based on average wage over this shorter sample. Row 7 shows the markup over the marginal wage. Taking into account the procyclicality of marginal wages relative to average wages reduces the correlations by between 10 and 40 percent, depending on the filtering method. In no case, however, does the correlation become negative. The dashed lines in figure 2 show the effect of adjusting for the marginal wage on the dynamic correlation. As expected, the markup using marginal wages is less procyclical.

To summarize, this section explored the unconditional cyclicality of the markup. Using three different measures of the baseline markup and three different methods for isolating the cyclical component, we found that the correlation with GDP was always positive. The correlation remained positive even with a more general production function and allowing for marginal wages to differ from average wages. However, even with the baseline markup, we found interesting dynamic correlations, which while positive for contemporaneous values and leads, were negative for lags. These results are linked to the propensity for markups to peak well in advance of the peak of the business cycle.

5.4 The Conditional Cyclicality of Markups

We now consider the cyclicality of the markup conditional on three types of shocks: technology shocks, government spending shocks, and monetary shocks. To capture the full dynamics, we investigate the comovement of GDP and markups using impulse responses estimated from VARs.

Because of sample constraints on key variables, as well as a desire not to include too many variables in one nested VAR, we use three separate off-the-shelf VARs to analyze the effects of our three shocks.\(^\text{15}\) We estimate the effects of a technology shock using the same SVAR we used to estimate the technology level in section 5.2, but with the first-difference 25 percent premium lie between those using the average wage and those using the 50 percent premium.

\(^{15}\) As argued by Ramey (2011) there is not enough variation in aggregate government purchases to identify shocks in the post-Korean War sample. Standard measures of monetary shocks include shocks to the federal funds rate, which is only available starting after the end of the Korean War.
of the log markup included as a third variable. This system is estimated from 1948:Q1 through 2011:Q4. To investigate the effects of a government spending shock, we use the Ramey (2011) military news variable, which is measured as the present value of changes in expectations about future military spending, divided by lagged nominal GDP. The VAR also includes log real government spending, log real GDP, the three-month treasury bill rate, the Barro and Redlick (2011) average marginal tax rate, and the log of the markup.\footnote{The military news variable is ordered first. The sample extends from 1948:Q1 through 2008:Q4 and the specification includes four lags and deterministic trends.} We estimate the aggregate monetary shock using a standard VAR where shocks to the federal funds rate are the monetary policy shocks (such as in Christiano, Eichenbaum and Evans, 1999). We include quarterly log real GDP, the log of the GDP deflator, the log of the price index for commodities, the log of the markup, and the federal funds rate.\footnote{The federal funds rate is ordered last. Four lags are included and a quadratic time trend are included and the VAR is estimated from 1954:Q3 through 2011:Q4.}

Figure 4 shows the impulse responses for log real GDP and the log of the markup in response to the shocks. For ease of comparison, we consider expansionary shocks in all three cases, and scaled such that the peak effect on GDP is unity. According to the estimates, a positive technology shock raises output. The markup rises on impact and remains positive, but response is small and not statistically different from zero. The remaining graphs show that both an expansionary government spending shock and an expansionary monetary shock raise both real GDP and the markup temporarily. Moreover, the positive responses are statistically different from zero for at least several periods. Thus, even conditional on classic demand shocks such as monetary policy or government spending shocks, markups appear to be procyclical. We find no evidence of countercyclical markups in response to demand shocks.\footnote{In their analysis of inefficiency gaps and markups, Galí, Gertler and López-Salido (2007) estimate a standard VAR and find that output and price-cost markups move in opposite directions in response to a federal funds rate shock (see figure 5 of their paper). They use the inverse of the labor share in nonfarm business as their measure of the price markup and they estimate their model from 1960:Q1 through 2004:Q4. To see why our results were different, we performed a variety of checks. First, we substituted markups based on nonfarm business labor share for our measure of the markup. We found that this markup behaved similarly to our measures and that both output and the markup responded positively to a decrease in the federal funds rate. We tried limiting our sample to 1960 through 2004, as well as including Galí, Gertler and López-Salido’s (2007) measure of the inefficiency gap as an additional variable in the system. We continued to find procyclical markups. Thus, we were unable to reproduce their finding of a countercyclical markup.}

Monacelli and Perotti (2008) also explore the effects of government spending shocks on the markup. When they use the standard Blanchard and Perotti (2002) SVAR, they find that markups in fall in response to an increase in government spending. When they use the
Ramey and Shapiro (1998) war dates, they find that markups initially rise in response to a rise in government spending. None of their responses are statistically different from zero (with 68 percent confidence intervals).

6 Industry Analysis

We now turn to the analysis of disaggregated manufacturing industry data. As discussed earlier, this data set allows us to study the cyclicality of markups within narrow industries, as well as to construct markups based on gross output and to use better instruments.

6.1 Data and Econometric Specification

The main part of the data we use is an updated version of the data set constructed by Nekarda and Ramey (2011). This dataset matches four-digit SIC level on government spending and its downstream linkages calculated from the Bureau of Economic Analysis’s benchmark input-output accounts to the Manufacturing Industry Database (MID) published by the National Bureau of Economic Research and the Census Bureau’s Center for Economic Studies. The new data extend from 1958 to 2009. Merging manufacturing SIC industry codes and input-output industry codes yields 274 industries. The web appendix of Nekarda and Ramey (2011) gives full details.

Most of the variables are constructed using data from the MID. This database provides information on variables such as shipments, inventories, price deflators, employment, hours and payroll. The appendix gives full details concerning the construction of the variables.

Our goal is to estimate how the markup responds to changes in real shipments generally, and to changes induced by either shifts in demand or technology. To construct our markup measure, we add industry \((i) \) and time \((t) \) subscripts and take annual log differences. Our estimation involves regressing the change in the logarithm of the markup, \(\Delta \mu \), on the change in the natural logarithm of real shipments, \(\Delta \ln Y \). In particular, we estimate:

\[
(18) \quad \Delta \mu_{it} = \alpha_i + \alpha_t + \beta \Delta \ln Y_{it} + \varepsilon_{it},
\]

where \(\alpha_i \) is industry fixed effects, \(\alpha_t \) is year fixed effects, and \(\varepsilon \) is the error term. The estimate of \(\beta \) in the OLS regression indicates the unconditional cyclicality of the markup. To assess the cyclicality conditional on demand or technology shocks, we instrument for shipments with the appropriate instrument.
Figure 4. Conditional Cyclicality of Markups

Source: Authors’ calculations using quarterly BEA and BLS data.

Notes: Impulse response of real GDP and markup to a shock to variable indicated in heading. Shaded area indicates 95 percent confidence intervals. For technology shock, VAR includes first differences of logs of productivity, hours, and markup, with four lags. For government spending shock, VAR estimated as in Ramey (2011), but adding the log of the markup. For monetary policy shock, VAR includes log real GDP, the log of the GDP deflator, the log of the price index for commodities, the log of the markup, and the federal funds rate, with four lags.
We construct three instruments in order to assess the conditional cyclicality of markups. The first instrument is estimated using long-run restrictions to identify technology shocks. Paralleling our analysis at the aggregate level, this method builds on Galí’s (1999) insight that since only technology shocks can have permanent effect on labor productivity in the long run, one can use long-restrictions to identify technology shocks. Both Kiley (1998) and Chang and Hong (2006) used Galí’s technique to the industry data. Our approach is a hybrid of the two studies. Because the MID’s calculations for total factor productivity (TFP) assume a constant markup, we use labor productivity to identify shocks, as in Kiley (1998). (Chang and Hong used TFP instead of labor productivity.) We estimate SVARs with long-run restrictions on each industry separately to generate series of technology shocks for each industry. Following Chang and Hong (2006), we estimate for each industry a bivariate VAR in productivity growth and hours growth, and allow for one lag. We also use these estimates to construct the index of technology required for the CES production function generalization.

We also consider two demand instruments. The first is based on Nekarda and Ramey (2011). This instrument uses government demand for an industry’s output as an instrument and is constructed by linking the MID to the input-output tables. The government demand instrument is defined as:

\[\Delta g_{it} = \bar{\theta}_i \cdot \Delta \ln G_t, \]

where \(\bar{\theta}_i \) is the time average of the share of an industry’s shipments that are sent to the federal government and \(G_t \) is aggregate real federal purchases from the NIPA. Thus, this measure converts the aggregate government demand variable into an industry specific variable using the industry’s long-term dependence on the government as a weight. As discussed in Nekarda and Ramey (2011), this measure purges the demand instrument of possible correlation between industry-specific technological change and the distribution of government spending across industries. Since all regressions will include industry and year fixed effects, this instrument should be uncorrelated with industry-specific changes in technology or aggregate changes in technology.

The second demand instrument is a monetary shock instrument. We hypothesize that industries that produce more durable goods should find that demand for their products are

19. A common concern with this approach is that of weak instruments. In every industry, the first-stage \(F \) statistic from the regression of the double difference of hours growth on lagged hours growth is well above 10, and in most cases above 25. Thus, the instruments are relevant and the parameters should be identified.
Table 2. First-Stage F Statistics in Manufacturing Industry Analysis

<table>
<thead>
<tr>
<th>Period</th>
<th>Technology</th>
<th>Government spending</th>
<th>Monetary policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961–2009</td>
<td>843.3</td>
<td>62.3</td>
<td>5.2</td>
</tr>
<tr>
<td>1976–2009</td>
<td>562.6</td>
<td>23.8</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Source: Authors’ estimates using four-digit MID data.
Notes: Reported F statistics are from the regression of the change in log real shipments on the instrument, with year and industry fixed effects included. F statistics are based on Newey-West standard errors with two lags.

more sensitive to monetary policy shocks. We use data gathered by Bils and Klenow (1998) as well as the Los Angeles HOA Management “Estimating Useful Life for Capital Assets” to assign a service life to each industry. We estimate the aggregate monetary shock using a standard VAR with quarterly log real GDP, GDP deflator, the price index for commodities, and the federal funds rate.\(^{20}\) To create the industry specific shock, we multiply the aggregate monetary shock by the industry-specific service life:

\[
m_{it} = \kappa_i \cdot \xi_t^M,
\]

where κ_i is the service life for industry i and ξ_t^M is the aggregate monetary shock identified from the VAR.

Table 2 reports the first-stage F statistics from the regression of $\Delta \ln Y_{it}$ on each of the instruments, with fixed effects included. Because there is evidence of serial correlation, the F statistics are based on Newey and West (1987) standard errors allowing for two lags. In the full sample, two of the three instruments have first-stage F statistics well above the Staiger and Stock (1997) threshold of 10, suggesting that these instruments are highly relevant.\(^{21}\) The first-stage F statistic for the monetary policy shock is only 5.2 for the full sample, indicating potential problems with instrument relevance. However, in the restricted sample starting in 1976, all instruments have F statistics above the threshold.

\(^{20}\) The system is the same one estimated for the aggregate data. The federal funds rate is ordered last. Four lags are included and a quadratic time trend are included and the VAR is estimated from 1954:Q3 through 2011:Q4. We then convert to annual data using the value of the shock in the first quarter since it had a higher first-stage F statistic than the average of the shocks over the year.

\(^{21}\) The first-stage F statistic reported for the government spending shock is lower than the one reported in Nekarda and Ramey (2011) because we did not adjust the standard errors in the earlier paper.
6.2 Baseline Industry Results using the Standard Markup Measure

Our baseline measure of the markup is similar to the one used in the aggregate analysis. This measure assumes that (1) the average wage is equal to the marginal wage; (2) the production function is Cobb-Douglas; and (3) there is no overhead labor. The log change in this measure is given by

\[
\mu_{CD} = -\ln s_{it},
\]

which is the negative log change in the labor share, defined as the total wage bill divided by the value of shipments.

We estimate equation 18 using the panel of four-digit manufacturing industries. We lose some observations at the beginning when creating the technology shock instruments, so our sample extends from 1961 through 2009 for those industries with data from 1958 to 2009. Because a few industries do not exist at the beginning or end of the sample, the panel is not balanced. All told, the baseline regressions include a total of 13,307 industry-year observations. To account for serial correlation within industries, we report Newey-West standard errors using two lags.

The first row of table 3 shows results from the baseline specification. The first column shows the simple regression of markup growth on real shipment growth, controlling for year and industry fixed effects. This regression reveals the sign of the unconditional cyclical of the standard markup measure. The estimate of \(\beta \) is 0.27 and is very precisely estimated. Thus, these results indicate that the standard measure of the markup is significantly procyclical in detailed manufacturing industry data. As with the aggregate data, these results on the unconditional cyclical of the standard markup measure should come as no surprise to anyone familiar with the time series properties of the labor share. The labor share is known to be countercyclical, and since the standard measure of the markup is proportional to the inverse of the labor share, this measure of the markup is naturally procyclical.\(^{22}\)

As discussed earlier, the New Keynesian model predicts that the cyclical of the markup should differ based on the type of shock. To assess cyclical conditional on shocks, we estimate equation 18 using instrumental variables. As shown in the second col-

\(^{22}\) We further investigated the robustness of our basic specification in two ways. First, we estimated the model industry-by-industry and found that the markups were procyclical in all but a handful of industries. Second, to determine sensitivity of the results to our use of first-differences, we also estimated the model in levels allowing for industry-specific quadratic trends. These results also indicated procyclical markups. These results are available upon request.
Table 3. Industry Results

<table>
<thead>
<tr>
<th>Specification</th>
<th>OLS</th>
<th>Technology</th>
<th>Government spending</th>
<th>Monetary policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961–2009 (13,307 observations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.267**</td>
<td>0.757**</td>
<td>0.057</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.036)</td>
<td>(0.063)</td>
<td>(0.318)</td>
</tr>
<tr>
<td>Overhead labor</td>
<td>0.244**</td>
<td>0.733**</td>
<td>0.030</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.035)</td>
<td>(0.065)</td>
<td>(0.347)</td>
</tr>
<tr>
<td>CES production, SVAR</td>
<td>0.316**</td>
<td>0.740**</td>
<td>−0.007</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.033)</td>
<td>(0.074)</td>
<td>(0.332)</td>
</tr>
<tr>
<td>CES production, HP filter</td>
<td>0.603**</td>
<td>1.861**</td>
<td>0.059</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.064)</td>
<td>(0.102)</td>
<td>(0.555)</td>
</tr>
<tr>
<td>1976–2009 (8,927 observations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.306**</td>
<td>0.806**</td>
<td>−0.117</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.046)</td>
<td>(0.152)</td>
<td>(0.176)</td>
</tr>
<tr>
<td>Marginal wage</td>
<td>0.301**</td>
<td>0.806**</td>
<td>−0.148</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.047)</td>
<td>(0.159)</td>
<td>(0.178)</td>
</tr>
</tbody>
</table>

Source: Author’s regressions using data from MID, BEA benchmark IO accounts, and the BLS.

Notes: Regression of Δμ_{it} = α_{i} + α_{t} + βΔln Y_{it} + ε_{it} (equation 18) for industry i in year t. Newey-West standard errors (2 lags) are reported in parentheses; *** indicates significance at 1-percent, ** at 5-percent, and * at 10-percent level.

umn, the markup is strongly procyclical conditional on a technology shock; the coefficient is 0.76 and is precisely estimated. This result is consistent with New Keynesian model, which predicts that a positive technology shock will raise the markup because prices are slow to adjust. Contrary to the predictions of the New Keynesian model, Column three shows that the markup does not respond to an industry-specific shock to government demand; the coefficient estimate is small, 0.06, and is not statistically different from zero. Finally, the fourth column reports results from using the industry-specific monetary policy shock as an instrument. The coefficient is 0.08 and is also not statistically significant from zero. Thus, the markup appears to be slightly procyclical or acyclical with respect to both the government spending and monetary shock demand instruments.

These baseline results are generally consistent with most of the literature’s results that use dynamic factor demand methods or that generalize Hall’s method for measuring markups. We now explore how the cyclicity changes when we apply Bils’s (1987) and
Rotemberg and Woodford’s (1999) adjustments using our techniques and data.

6.3 Generalizing the Production Function

We now redefine the markup to allow for the generalizations of the production function discussed in section 3 above. Using equation 6, we allow for overhead labor in the Cobb-Douglas production function and define the markup as:

\begin{equation}
\mu_{\text{CDOH}}^{\text{CDOH}} = -\ln s',
\end{equation}

where \(s' \) is the labor share of production workers. This implementation builds on Ramey’s (1991) argument that overhead labor is most likely linked to the number of nonproduction or supervisory workers. Unlike in the aggregate data, this alternative measure of the markup is easily measured in the MID.

The second generalization allows for a CES production function. We construct the markup under this generalization as we did in the aggregate section. We investigate both the SV AR and HP filter methods for estimating the level of technology for each industry.

The second row of table 3 shows the results for the markup that allows for overhead labor. All of the results are very close to those in the baseline case. Both the OLS results and the IV results conditional on the technology instrument show substantial procyclicality, whereas the IV results using the government spending instrument and the monetary shock instrument indicate slight procyclicality or acyclicality. Thus, excluding overhead labor, as measured by non-production workers, reduces the procyclicality only a small amount.

The third and fourth rows show the results when we allow for a CES production function with elasticity of substitution equal to 0.5. The third row shows the results when the technology index is measured with the SV AR and the fourth row shows the results when the technology index is measured using the HP filter. The results are similar to the Cobb-Douglas case. When the technology index is measured using the SV AR and the cyclicality is measured conditional on government spending, the parameter estimate becomes slightly negative (−0.01) but is not different from zero. When the technology index is measured using the HP filter, the markup is even more procyclical than in the baseline case.

In short, when we use our new data, rather than steady-state calibrations and log-linear approximations, we find that the production function generalizations do not lead to countercyclical markups, even conditional on demand shocks.
6.4 The Marginal Wage Distinction

We now consider the cyclicality of the markup when we allow for the marginal-average wage distinction. In this case, the measured markup is given by:

\[
\mu_{CD}^{it} = - \ln s_{it} - \ln \left(\frac{W_M}{W_A} \right)_{it}.
\]

The last term is the log of the wage factor used in the average-marginal wage adjustment factor.

Our technique for constructing the marginal-average wage is similar to the one used in the aggregate data, but has two main differences. First, to ensure sufficient cell sizes, we constructed \(\hat{d}v/dh \) and \(v/h \) at the two-digit industry level rather than the four-digit industry level. We then assigned the two-digit value to each four-digit industry.\(^{23}\)

The second difference is the value of \(\theta \), which gives the fraction of hours above 40 that are paid a premium. Because manufacturing data are richer, we were able to calibrate this parameter by comparing our estimates of overtime hours in the two-digit LPD to overtime hours from the two-digit manufacturing data from the BLS’s establishment survey, since this latter data set defines overtime hours as those hours that are paid a premium. We found that overtime hours in the establishment survey were, on average, only slightly lower than our constructed overtime hours series, so we set \(\theta = 1 \) for the manufacturing sample.

Because the LPD starts in 1976, we restrict our analysis to start in that year. The bottom panel of table 3 shows the results when we adjust the markup measure. We continue to make the baseline assumption of Cobb-Douglas in total hours. For reference, the first row of the lower panel reports the results using the average wage for the shorter sample. As in the longer sample, markups are procyclical in the baseline specification both unconditionally and conditional on technology shocks. The markup is negatively related conditional on the government spending shock and positively related to shipments conditional on the monetary shock. However, the coefficients are near zero in magnitude and statistical significance. The second row of the lower panel shows the markup constructed with the marginal

\(^{23}\) A second reason we did not calculate \(\hat{d}v/dh \) and \(v/h \) at the four-digit level is the difficulty of compiling a crosswalk of detailed industries across time. Separately, we explored using an alternative procedure for imputing the values to the four-digit data. We regressed the two-digit estimates of \(\hat{d}v/dh \) and \(v/h \) on \(h \) in the two-digit data and then used the estimated coefficients along with \(h \) from the four-digit MID data to create the two series for the four-digit data. The results we report below are little changed by this alternative procedure. Moreover, Nekarda and Ramey (2011) show that applying a Bils’ type cubic polynomial adjustment, but estimated on quarterly data rather than annual data, also gives similar results to those reported below.
wage assuming an overtime premium of 50 percent. In every case, the results differ little from those of the baseline case. The coefficient in the case of the government spending shock falls to −0.15 but it is not statistically different from zero. We also explored the effects of combining the production function generalizations with the marginal wage adjustment and found little effect.

Thus, the industry results give the same message as the aggregate results. Using richer data rather than calibration based on steady-state approximations and parameters indicates that adjusting the markup for production function generalizations or marginal wage considerations has a minor effect on the estimated cyclicality of markups. Moreover, there is no evidence of countercyclical markups even conditional on demand shocks.

6.5 Robustness Check: The Behavior of Inventories

We have shown that neither the baseline measure of the markup nor standard generalizations exhibit any countercyclicality. These measures depend, however, on various assumptions. One key assumption made in our work, as well as in virtually all of the New Keynesian models, is that wages are allocative and that firms are on their labor demand curves. If wages include insurance aspects, as suggested by Baily (1974) and Hall (1980), then our measures of marginal costs based on wages may not indicate the true marginal cost of increasing output. Also, while our method allows for adjustment costs on the number of workers, if firms engage in labor hoarding and are prevented from lowering hours per worker below some threshold, then the true marginal cost of an extra hour of labor may fall much more in a recession than suggested by our measure.

Thus it is useful to provide a robustness check based on a framework that uses completely different assumptions. To this end, we check our results by subjecting the data to the Bils and Kahn’s (2000) inventory test. They introduce a model in which the joint behavior of the inventory-sales ratio and output price growth has implications for the cyclicality of markups. In their model, if the ratio of sales to inventory stock is procyclical, then either the markup must be countercyclical or the discounted growth of marginal costs must be countercyclical. The intuition is straightforward. In their model, firms hold inventories because they raise demand. When markups are constant and there are no short-run intertemporal considerations at play, firms find it optimal to hold a constant sales-inventory ratio. In the short-run, firms will allow the sales-inventory ratio to rise above its long-run average only if the benefit of holding inventories (i.e., the markup) falls or if current marginal costs of
production are high relative to expected discounted marginal costs next period.

Estimating marginal costs sufficiently precisely to uncover subtle variations across periods is difficult. One can use this theory, however, to assess qualitatively whether markups are countercyclical without having to estimate marginal costs. In particular, the model implies that if both the sales-inventory ratio and the discounted growth of prices are procyclical, then markups must be countercyclical.

To assess the cyclicality of these two series in our data, we estimate the following equations:

\[
\Delta \ln \left(\frac{Y_{it}}{\text{stock}_{it}} \right) = \alpha_i + \alpha_t + \gamma \Delta \ln Y_{it} + \varepsilon_{it}.
\]

\[
\Delta \ln \left(\frac{p_{it}}{p_{it-1}} \right) = \alpha_i + \alpha_t + \phi \Delta \ln Y_{it} + \varepsilon_{it}.
\]

where \(\text{stock}\) is the stock available for sale (equal to beginning of period inventories plus current production), and \(p\) is the output price. The appendix gives details on how we construct the various series.

According to the Bils and Kahn (2000) model, if both \(\gamma\) and \(\phi\) are positive, then markups must be countercyclical. Table 4 shows the coefficient estimates. The first column shows OLS regressions, which indicate the unconditional correlations. The estimates imply that the sales-inventory ratio depends positively on shipments, while the growth rate of prices depends negatively on shipments. Thus, the two key variables have opposite signs on their correlations, so the results do not imply countercyclical markups. The remaining columns show the results when the three instruments are used for shipments growth in order to judge the conditional correlations. The technology shock instrument produces correlations that are opposite in sign, and hence does not point to countercyclical markups. For the government spending and monetary shock instruments, both the sales-inventory ratio and the growth rate of prices are acyclical. All coefficients are positive, but they are not statistically different from zero and they are small.

Thus, in the two cases where the sales-inventory ratio is procyclical with respect to shipments, the growth of prices is countercyclical. In the other two cases, both variables

24. Bils and Kahn (2000) implement both the qualitative version and the structural version that requires the estimation of marginal costs. Their test statistics indicate that the structural model is rejected by the data for most industries.

25. Several assumptions are required to derive this implication; see Bils and Kahn (2000) for more details.
Table 4. Inventory Results

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Instrument for shipments</th>
<th>OLS</th>
<th>Technology</th>
<th>Government spending</th>
<th>Monetary policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales-inventory ratio growth</td>
<td></td>
<td>0.111**</td>
<td>0.103**</td>
<td>0.013</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.005)</td>
<td>(0.013)</td>
<td>(0.029)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>Price change growth</td>
<td></td>
<td>-0.144**</td>
<td>-0.299**</td>
<td>0.051</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.021)</td>
<td>(0.037)</td>
<td>(0.027)</td>
<td>(0.500)</td>
</tr>
</tbody>
</table>

Source: Author’s regressions using data from MID, BEA benchmark IO accounts, and the BLS.

Notes: Regressions of $\Delta \ln X = \alpha_i + \alpha_t + \gamma \Delta \ln Y_{it} + \varepsilon_{it}$, where $X = Y_{it}/stock_{it}$ and p_{it}/p_{t-1}, respectively. Newey-West standard errors (2 lags) are reported in parentheses; *** indicates significance at 1-percent, ** at 5-percent, and * at 10-percent level.

are acyclical. Thus, none of these results implies countercyclical markups. The results support those we found using our preferred method.

7 Conclusion

This paper has presented evidence that markups are largely procyclical or acyclical. Whether we look at broad aggregates or detailed manufacturing industries, average wages or marginal wages, or generalize the production function for lower elasticities of substitution or overhead labor, we find that all measures of the markup are procyclical or acyclical. We find no evidence of countercyclical markups. These results hold even when we confine our analysis to changes in output driven by monetary policy or government spending.

Our results call into question the basic mechanism of the leading New Keynesian models. These models assume that monetary policy and government spending affect the economy through their impact on markups. If prices are sticky, an increase in demand should raise prices less than marginal cost, resulting in a fall in markups. Even with sticky wages, most New Keynesian models still predict a fall in markups. Our empirical evidence suggests that the opposite is true.

Recently, some researchers have begun to focus more on the wage markup (such as Galí, Gertler and López-Salido, 2007) and to study sticky wages in more detail (such as Baratierri, Basu and Gottschalk, 2010). It is possible that a return to this traditional focus of Keynesian models on sticky wages might render these models more consistent with the microeconomic evidence.
References

Appendix

To come.